A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise

In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter is a practical algorithm. Influenced by outliers under unknown heavy-tailed measurement noise, the SMC-PHD filter suffers severe performance degradation. In this paper, a robust SMC-PHD (RSMC-PHD) fi...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 11; p. 3611
Main Authors Gong, Yang, Cui, Chen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 22.05.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter is a practical algorithm. Influenced by outliers under unknown heavy-tailed measurement noise, the SMC-PHD filter suffers severe performance degradation. In this paper, a robust SMC-PHD (RSMC-PHD) filter is proposed. In the proposed filter, Student-t distribution is introduced to describe the unknown heavy-tailed measurement noise where the degrees of freedom (DOF) and the scale matrix of the Student-t distribution are respectively modeled as a Gamma distribution and an inverse Wishart distribution. Furthermore, the variational Bayesian (VB) technique is employed to infer the unknown DOF and scale matrix parameters while the recursion estimation framework of the RSMC-PHD filter is derived. In addition, considering that the introduced Student- t distribution might lead to an overestimation of the target number, a strategy is applied to modify the updated weight of each particle. Simulation results demonstrate that the proposed filter is effective with unknown heavy-tailed measurement noise.
AbstractList In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter is a practical algorithm. Influenced by outliers under unknown heavy-tailed measurement noise, the SMC-PHD filter suffers severe performance degradation. In this paper, a robust SMC-PHD (RSMC-PHD) filter is proposed. In the proposed filter, Student-t distribution is introduced to describe the unknown heavy-tailed measurement noise where the degrees of freedom (DOF) and the scale matrix of the Student-t distribution are respectively modeled as a Gamma distribution and an inverse Wishart distribution. Furthermore, the variational Bayesian (VB) technique is employed to infer the unknown DOF and scale matrix parameters while the recursion estimation framework of the RSMC-PHD filter is derived. In addition, considering that the introduced Student- t distribution might lead to an overestimation of the target number, a strategy is applied to modify the updated weight of each particle. Simulation results demonstrate that the proposed filter is effective with unknown heavy-tailed measurement noise.
Author Cui, Chen
Gong, Yang
AuthorAffiliation Institute of Electronic Countermeasure, National University of Defense Technology, Hefei 230037, China; ky13285650152@163.com
AuthorAffiliation_xml – name: Institute of Electronic Countermeasure, National University of Defense Technology, Hefei 230037, China; ky13285650152@163.com
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-9649-6834
  surname: Gong
  fullname: Gong, Yang
– sequence: 2
  givenname: Chen
  surname: Cui
  fullname: Cui, Chen
BookMark eNpdkk1v1DAQQC1URD_gwD-wxAUOAdvjJPYFqVooW6kLCLZHZDn2ZOs2axc7adV_T8pWFeU0o5mnp5nRHJK9mCIS8pqz9wCafSiCcw4N58_IAZdCVkoItvdPvk8OS7lkTACAekH2QbKmFbo5IL-O6Y_UTWWkP1eL6vvyEz0Jw4iZ9inT1TSMoVrbvMGRrrN1VyFu6G0YL-h5vIrpNtIl2pu7GQkDerpCW6aMW4wj_ZpCwZfkeW-Hgq8e4hE5P_m8Xiyrs29fThfHZ5WbBxkrJxgHLhvvlQWPntVc6L6TXtdOWaVR1V45y7qeO0Qp0IHvPHiPqnWscXBETnden-yluc5ha_OdSTaYv4WUN8bmMbgBDYBthGq57CTKvrVWQV9rwUFoqZsOZtfHnet66rbo3bxMtsMT6dNODBdmk26M4rpRnM2Ctw-CnH5PWEazDcXhMNiIaSpG1NDIltWtmtE3_6GXacpxPtU9pXWrNa9n6t2OcjmVkrF_HIYzc_8A5vEB4A-ymqIC
Cites_doi 10.1016/j.cja.2013.10.007
10.1109/TAC.2017.2730480
10.1109/JSEN.2016.2591260
10.1109/ACCESS.2017.2700428
10.1109/MLSP.2012.6349794
10.1109/TAES.2010.5417160
10.1109/MLSP.2013.6661935
10.1109/TSP.2006.881190
10.1109/TSP.2010.2080271
10.1109/TAES.2016.150722
10.1109/TAES.2017.2651684
10.1109/TSP.2008.920469
10.1109/TAC.2008.2008348
10.1109/TAES.2003.1261119
10.1016/j.sigpro.2013.08.002
10.1049/iet-rsn.2012.0357
10.1016/j.dsp.2019.04.002
10.1109/LSP.2013.2289975
10.1201/9781420053098.ch16
10.1049/iet-rsn.2012.0291
10.2514/1.51000
10.13164/re.2020.0529
10.1016/j.ins.2012.09.017
10.1109/TAES.2005.1561884
10.1109/TAES.2018.2884183
10.1109/MAES.2004.1263228
10.1016/j.sigpro.2013.06.012
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21113611
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Databases
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_33a628714b4e4f7aa83f5921329496b3
10_3390_s21113611
GroupedDBID ---
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ABUWG
ADBBV
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
ITC
KB.
KQ8
L6V
M1P
M48
M7S
MODMG
M~E
OK1
P2P
P62
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c406t-c2013146dd8a3ded05129fb4d95c8a89e85d8ca0bf1cee42ec3dbd3dde87c06c3
IEDL.DBID RPM
ISSN 1424-8220
IngestDate Tue Oct 22 15:14:26 EDT 2024
Tue Sep 17 21:10:14 EDT 2024
Fri Oct 25 11:09:49 EDT 2024
Fri Nov 01 20:54:14 EDT 2024
Thu Sep 26 21:50:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-c2013146dd8a3ded05129fb4d95c8a89e85d8ca0bf1cee42ec3dbd3dde87c06c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9649-6834
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196810/
PMID 34067296
PQID 2539979915
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_33a628714b4e4f7aa83f5921329496b3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8196810
proquest_miscellaneous_2536470578
proquest_journals_2539979915
crossref_primary_10_3390_s21113611
PublicationCentury 2000
PublicationDate 20210522
PublicationDateYYYYMMDD 2021-05-22
PublicationDate_xml – month: 5
  year: 2021
  text: 20210522
  day: 22
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Huang (ref_20) 2017; 5
Li (ref_22) 2014; 94
Wu (ref_14) 2013; 26
Huang (ref_21) 2017; 53
Zhu (ref_26) 2013; 221
Sarkka (ref_9) 2009; 54
ref_10
Christmas (ref_27) 2010; 59
ref_18
Schuhmacher (ref_28) 2008; 56
Li (ref_24) 2020; 29
Yang (ref_13) 2013; 7
Li (ref_17) 2016; 16
Vo (ref_6) 2005; 41
Xu (ref_25) 2013; 21
Wu (ref_12) 2013; 7
Vo (ref_5) 2006; 54
Bilik (ref_15) 2010; 46
Huang (ref_11) 2018; 63
Yan (ref_8) 2019; 90
ref_1
ref_2
Mahler (ref_4) 2003; 39
Kim (ref_16) 2010; 33
Huang (ref_19) 2016; 52
Zhou (ref_7) 2014; 94
Dong (ref_23) 2018; 55
Blackman (ref_3) 2004; 19
References_xml – volume: 26
  start-page: 1517
  year: 2013
  ident: ref_14
  article-title: Particle filters for probability hypothesis density filter with the presence of unknown measurement noise covariance
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2013.10.007
  contributor:
    fullname: Wu
– volume: 63
  start-page: 594
  year: 2018
  ident: ref_11
  article-title: A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2017.2730480
  contributor:
    fullname: Huang
– volume: 16
  start-page: 6966
  year: 2016
  ident: ref_17
  article-title: A Variational Bayesian-Based Unscented Kalman Filter with Both Adaptivity and Robustness
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2016.2591260
  contributor:
    fullname: Li
– volume: 5
  start-page: 7964
  year: 2017
  ident: ref_20
  article-title: Robust Student’s t-Based Stochastic Cubature Filter for Nonlinear Systems with Heavy-Tailed Process and Measurement Noises
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2700428
  contributor:
    fullname: Huang
– ident: ref_18
  doi: 10.1109/MLSP.2012.6349794
– volume: 46
  start-page: 246
  year: 2010
  ident: ref_15
  article-title: Maneuvering Target Tracking in the Presence of Glint using the Nonlinear Gaussian Mixture Kalman Filter
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2010.5417160
  contributor:
    fullname: Bilik
– ident: ref_10
  doi: 10.1109/MLSP.2013.6661935
– volume: 54
  start-page: 4091
  year: 2006
  ident: ref_5
  article-title: The Gaussian Mixture Probability Hypothesis Density Filter
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881190
  contributor:
    fullname: Vo
– volume: 59
  start-page: 48
  year: 2010
  ident: ref_27
  article-title: Robust Autoregression: Student-t Innovations Using Variational Bayes
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2080271
  contributor:
    fullname: Christmas
– volume: 52
  start-page: 2586
  year: 2016
  ident: ref_19
  article-title: Robust student’s t based nonlinear filter and smoother
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2016.150722
  contributor:
    fullname: Huang
– volume: 53
  start-page: 1545
  year: 2017
  ident: ref_21
  article-title: A Novel Robust Student’s t-Based Kalman Filter
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2017.2651684
  contributor:
    fullname: Huang
– volume: 56
  start-page: 3447
  year: 2008
  ident: ref_28
  article-title: A Consistent Metric for Performance Evaluation of Multi-Object Filters
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2008.920469
  contributor:
    fullname: Schuhmacher
– volume: 54
  start-page: 596
  year: 2009
  ident: ref_9
  article-title: Recursive Noise Adaptive Kalman Filter ing by Variational Bayesian Approximations
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2008.2008348
  contributor:
    fullname: Sarkka
– volume: 39
  start-page: 1152
  year: 2003
  ident: ref_4
  article-title: Multitarget bayes filtering via first-order multitarget moments
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2003.1261119
  contributor:
    fullname: Mahler
– volume: 94
  start-page: 650
  year: 2014
  ident: ref_7
  article-title: Entropy distribution and coverage rate-based birth intensity estimation in GM-PHD filter for multi-target visual tracking
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.08.002
  contributor:
    fullname: Zhou
– volume: 7
  start-page: 959
  year: 2013
  ident: ref_13
  article-title: Adaptive probability hypothesis density filter based on variational Bayesian approximation for multi-target tracking
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2012.0357
  contributor:
    fullname: Yang
– volume: 90
  start-page: 54
  year: 2019
  ident: ref_8
  article-title: An improved partitioning algorithm based on FCM algorithm for extended target tracking in PHD filter
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2019.04.002
  contributor:
    fullname: Yan
– volume: 21
  start-page: 30
  year: 2013
  ident: ref_25
  article-title: A Robust Particle Filtering Algorithm with Non-Gaussian Measurement Noise Using Student-t Dis-tribution
  publication-title: IEEE Signal Process. Letters
  doi: 10.1109/LSP.2013.2289975
  contributor:
    fullname: Xu
– ident: ref_1
  doi: 10.1201/9781420053098.ch16
– ident: ref_2
– volume: 7
  start-page: 895
  year: 2013
  ident: ref_12
  article-title: Adaptive noise variance identification for probability hypothesis density-based multi-target filter by variational Bayesian approximations
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2012.0291
  contributor:
    fullname: Wu
– volume: 33
  start-page: 1
  year: 2010
  ident: ref_16
  article-title: Particle Filter for Ballistic Target Tracking with Glint Noise
  publication-title: J. Guidan. Control Dynam.
  doi: 10.2514/1.51000
  contributor:
    fullname: Kim
– volume: 29
  start-page: 529
  year: 2020
  ident: ref_24
  article-title: Robust Student’s T Distribution Based PHD/CPHD Filter for Multiple Targets Tracking Using Variational Bayesian Approach
  publication-title: Radioengineering
  doi: 10.13164/re.2020.0529
  contributor:
    fullname: Li
– volume: 221
  start-page: 201
  year: 2013
  ident: ref_26
  article-title: A variational Bayesian approach to robust sensor fusion based on Student-t distribution
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.09.017
  contributor:
    fullname: Zhu
– volume: 41
  start-page: 1224
  year: 2005
  ident: ref_6
  article-title: Sequential monte carlo methods for multi-target filtering with random finite sets
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2005.1561884
  contributor:
    fullname: Vo
– volume: 55
  start-page: 2253
  year: 2018
  ident: ref_23
  article-title: The Labeled Multi-Bernoulli Filter for Multitarget Tracking with Glint Noise
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2018.2884183
  contributor:
    fullname: Dong
– volume: 19
  start-page: 5
  year: 2004
  ident: ref_3
  article-title: Multiple hypothesis tracking for multiple target tracking
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2004.1263228
  contributor:
    fullname: Blackman
– volume: 94
  start-page: 48
  year: 2014
  ident: ref_22
  article-title: PHD filter for multi-target tracking with glint noise
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2013.06.012
  contributor:
    fullname: Li
SSID ssj0023338
Score 2.3746457
Snippet In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter is a practical algorithm. Influenced by outliers under...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 3611
SubjectTerms Algorithms
Approximation
Degrees of freedom
multi-target tracking
Multiple target tracking
Noise
Noise measurement
Normal distribution
Outliers (statistics)
Parameter estimation
Probability distribution functions
SMC-PHD filter
Statistical analysis
student-t distribution
variational Bayesian
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIT1EoyCBWq6ntOM5YClWF1ApBK3VBUfwR0SVFNEXi33OXpKWZWFhjD85d7Hvvcn5HyB33Md6H9CwTHgmK8sxAHGMxZuKltk6FeN95NFbDqXyahbOtVl9YE1bJA1eG6wiRKkT10kgvsyhNtcjCmGN_dBkrU-l8BvGaTNVUSwDzqnSEBJD6zpJjR3XV7TaiTynS30CWzbrIrUAzOCQHNUKkvWplR2TH58dkf0s38IS89ejLwqyWBX0d9dnz8IEO5vjXmwICpeWVWjYpK7wphCKLyXCK-VY6zTGFltOhT7--YQqcCI6OfrOEdLyYL_0pmQ4eJ_0hq_skMAvGLZjlKJojlXM6Fc67AIN4ZqSLQ6tTHXsdOm3TwGRdCImSeyuccQIONh3ZQFlxRnbzRe7PCTUqyOIAWIbFjuk2NNhuCliy0qZrAB20yO3afslHJYeRAI1AIycbI7fIPVp2MwEVrMsH4Nek9mvyl19bpL32S1Jvq2XCUUc3AkgLC7nZDMOGwL8cae4Xq3KOkhHAUN0iUcOfjQU1R_L5eymtDfgIBdou_uMNLskexwKYIGSct8lu8bnyV4BgCnNdfqw_4IDuHw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VeimHCtoiUh5yq14tEttxnBPitV1VWoQoK3GpovgRupdkS3aR-u87k80u5NJr7CjR2J75vrH9DcA3EXK6Dxl4JQMRFB24xTjGc8rEK-O8Tum-8-RGj6fqx0P60Cfc2v5Y5dondo7aN45y5KeCJFQzRDPp2fwPp6pRtLval9DYgreJyDIiX2b0fUO4JPKvlZqQRGp_2gqqq66TZBCDOqn-Ab4cno58FW5Gu_C-x4nsfDWwe_Am1B9g55V64Ef4dc7uGrtsF-zn5JLfjq_YaEZ73wxxKOsu1vL77pw3w4DkKCXOKOvKpjUl0mo2DuXzX-yCfsGzyUuukN00szZ8guno-v5yzPtqCdyhiRfcCZLOUdp7U0offEyhvLLK56kzpcmDSb1xZWyrBAOjEsFJb71E92YyF2sn92G7bupwAMzquMpj5BqO6qa71FLRKeTK2tjEIkaI4OvafsV8JYpRIJkgIxcbI0dwQZbddCAd6-5B8_RY9MsCXyk1cTZlVVBVVpZGVmkukCLnKtdWRnC0HpeiX1xt8TIVIviyacZlQXsdZR2aZddHqwzBqIkgG4zn4IeGLfXsdyewjSiJZNo-___jh_BO0AGXOOVCHMH24mkZjhGhLOxJNw3_AUkM5xw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5EL3oQn1hfrOJ1NW42m81BxFcpQkW0BS8Sso9oQRJtUtF_70ya1gY8eM1OQph9zHyzM98QcsRdhPWQjqW-Q4AiHdNgx1iEkXihjJUB1jt372SnL26fgqc5MumxWSuw-BPaYT-p_vDt-Ovj-xw2_BkiToDsJwXHfukSK3wXuACAjhl8YnqZwH2AYWNSoaZ4wxRVjP0NN7OZJDljddorZLl2F-nFeH5XyZzL1sjSDIngOnm-oA-5HhUlfexesfvONW0P8AqcgjtKq_pa1qvSvSnYJYORcYrBV9rPMJ6W0Y5LPr9BBI4HS7u_IUN6lw8Kt0H67ZveVYfVTROYAU2XzHBk0BHSWpX41lkPLXqqhY0CoxIVORVYZRJPp6dgHwV3xrfa-nDKqdB40vibZD7LM7dFqJZeGnkAOQy2TzeBxt5TAJml0qcaXIUWOZzoL34fc2PEgClQyfFUyS1yiZqdCiCddfUgH77E9e6AVxKJ0E1o4UQaJony0yDigJQjEUntt8juZF7iyRKJOZLqhuDfwo8cTIdhd-CVR5K5fFTJSBGCT6paJGzMZ-OHmiPZ4LXi2QZnCdnatv_x9R2yyDHZxQsY57tkvhyO3B54K6Xer9biD5Fa6mI
  priority: 102
  providerName: Scholars Portal
Title A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise
URI https://www.proquest.com/docview/2539979915
https://search.proquest.com/docview/2536470578
https://pubmed.ncbi.nlm.nih.gov/PMC8196810
https://doaj.org/article/33a628714b4e4f7aa83f5921329496b3
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tLhc4IJ6isFQGcc02tR3HOe6WLRVSqmrZSr2gKH4EKrHJatsi8e-ZcZPSXLn4ENuSY489843H3wB84j6j95A-qoQngKJ8ZFCPRRl54qW2TiX03jmfq9lSfl0lqxNIurcwIWjfmvVF_evuol7_DLGV93d21MWJjRb5BLUY0WiNTuEUBbSD6C3KEgi69hRCAvH8aMMpmboaU0oYIenikfj5j3RQoOrv2Zf96MgjdTN9Bk9bO5Fd7sfzHE58_QKeHLEHvoTvl-ymMbvNln3LJ9Fi9plN13T3zdAOZeFhbXQb4rwZKiRLLnFGXle2rMmRVrOZL3__wSZ4LjiW__MVsnmz3vhXsJxe305mUZstIbL4W9vIcqLOkco5XQrnXUyqvDLSZYnVpc68Tpy2ZWyqMSpGyb0VzjiBx5tObayseA1ndVP7N8CMiqssRqxhKW-6TQwlnUKsrLQZG7QRBvCxm7_ifk-KUSCYoPkuDvM9gCua2UMD4rEOH5qHH0W7mtilVITZpJFeVmlZalElGUeInMlMGTGA825dinZzbQpObLopGrY4kA-HatwWdNdR1r7ZhTZKpmiM6gGkvfXsDahfg_IWCLZb-Xr73z3fwWNOsS9xEnF-Dmfbh51_j8bL1gxRZFcplnr6ZQiPrq7ni5thcARgmUs9DML8F8HQ9Sc
link.rule.ids 230,315,730,783,787,867,888,2109,2228,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,53804,53806,74079,74369,74636
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BOQAHBBTUQCmm6tVq1nYc54RK6RKgu6pgV-oFRfFHYC9JaXaR-u-ZyWa3zaXX2FGisT0zbzzzBuBIhIzqIQOvZCCAogO3aMd4RpF4ZZzXCdU7T6Y6n6tvl8llH3Br-7TKjU7sFLVvHMXIjwVRqKbozSQfr_5y6hpFt6t9C42H8EhJtNVUKT7-sgVcEvHXmk1IIrQ_bgX1Vdej0cAGdVT9A_9ymB15x9yMn8Oz3k9kJ-uFfQEPQv0Snt5hD9yFXyfsR2NX7ZL9nJzyi_wzGy_o7puhH8q6wlo-6_K8GRokRyFxRlFXNq8pkFazPJT_bnAK6gXPJrexQjZtFm14BfPx2ew05323BO5QxEvuBFHnKO29KaUPPiZTXlnls8SZ0mTBJN64MrbVCA2jEsFJb71E9WZSF2snX8NO3dRhD5jVcZXFiDUc9U13iaWmU4iVtbEjiz5CBIcb-RVXa1KMAsEECbnYCjmCTyTZ7QTise4eNNe_i_5Y4CulJsymrAqqSsvSyCrJBELkTGXaygj2N-tS9IerLW63QgQftsN4LOiuo6xDs-rmaJWiM2oiSAfrOfih4Ui9-NMRbKOXRDRtb-7_-Ht4nM8m58X51-n3t_BEULJLnHAh9mFneb0K79BbWdqDbkv-Byw26f4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKyE4IEpBBEoxqFdrs7bjOCfUB2F57KqCrtQLiuJHYC9JaXaR-PedyWa3zaXX2FGi8XhmvvH4G4AjETK6Dxl4JQMBFB24RT_GM8rEK-O8Tui-83SmJ3P19TK57Ouf2r6scmMTO0PtG0c58pEgCtUUo5lkVPVlEedn-cerv5w6SNFJa99O4yHsolfUpOEm_7wFXxKx2JpZSCLMH7WCeqzr8Xjgjzra_kGsOayUvON68mfwtI8Z2fF6kffgQaifw5M7TIL78OuY_Wjsql2yn9NTfj45Y_mCzsEZxqSsu2TLL7qab4bOyVF6nFEGls1rSqrVbBLKf_9xCtoIz6a3eUM2axZteAHz_NPF6YT3nRO4Q3EvuRNEo6O096aUPviY3Hpllc8SZ0qTBZN448rYVmN0kkoEJ731Ek2dSV2snXwJO3VTh1fArI6rLEbc4aiHukssNaBC3KyNHVuMFyL4sJFfcbUmyCgQWJCQi62QIzghyW4nEKd196C5_l30WwRfKTXhN2VVUFValkZWSSYQLmcq01ZGcLBZl6LfaG1xqxYRvN8O4xahc4-yDs2qm6NVioGpiSAdrOfgh4Yj9eJPR7aNERNRtr2-_-Pv4BFqY_H9y-zbG3gsqO4lTrgQB7CzvF6Ftxi4LO1hp5E3CoXuPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+SMC-PHD+Filter+for+Multi-Target+Tracking+with+Unknown+Heavy-Tailed+Measurement+Noise&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Gong%2C+Yang&rft.au=Cui%2C+Chen&rft.date=2021-05-22&rft.eissn=1424-8220&rft.volume=21&rft.issue=11&rft_id=info:doi/10.3390%2Fs21113611&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon