A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise
In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter is a practical algorithm. Influenced by outliers under unknown heavy-tailed measurement noise, the SMC-PHD filter suffers severe performance degradation. In this paper, a robust SMC-PHD (RSMC-PHD) fi...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 11; p. 3611 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
22.05.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter is a practical algorithm. Influenced by outliers under unknown heavy-tailed measurement noise, the SMC-PHD filter suffers severe performance degradation. In this paper, a robust SMC-PHD (RSMC-PHD) filter is proposed. In the proposed filter, Student-t distribution is introduced to describe the unknown heavy-tailed measurement noise where the degrees of freedom (DOF) and the scale matrix of the Student-t distribution are respectively modeled as a Gamma distribution and an inverse Wishart distribution. Furthermore, the variational Bayesian (VB) technique is employed to infer the unknown DOF and scale matrix parameters while the recursion estimation framework of the RSMC-PHD filter is derived. In addition, considering that the introduced Student- t distribution might lead to an overestimation of the target number, a strategy is applied to modify the updated weight of each particle. Simulation results demonstrate that the proposed filter is effective with unknown heavy-tailed measurement noise. |
---|---|
AbstractList | In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter is a practical algorithm. Influenced by outliers under unknown heavy-tailed measurement noise, the SMC-PHD filter suffers severe performance degradation. In this paper, a robust SMC-PHD (RSMC-PHD) filter is proposed. In the proposed filter, Student-t distribution is introduced to describe the unknown heavy-tailed measurement noise where the degrees of freedom (DOF) and the scale matrix of the Student-t distribution are respectively modeled as a Gamma distribution and an inverse Wishart distribution. Furthermore, the variational Bayesian (VB) technique is employed to infer the unknown DOF and scale matrix parameters while the recursion estimation framework of the RSMC-PHD filter is derived. In addition, considering that the introduced Student- t distribution might lead to an overestimation of the target number, a strategy is applied to modify the updated weight of each particle. Simulation results demonstrate that the proposed filter is effective with unknown heavy-tailed measurement noise. |
Author | Cui, Chen Gong, Yang |
AuthorAffiliation | Institute of Electronic Countermeasure, National University of Defense Technology, Hefei 230037, China; ky13285650152@163.com |
AuthorAffiliation_xml | – name: Institute of Electronic Countermeasure, National University of Defense Technology, Hefei 230037, China; ky13285650152@163.com |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-9649-6834 surname: Gong fullname: Gong, Yang – sequence: 2 givenname: Chen surname: Cui fullname: Cui, Chen |
BookMark | eNpdkk1v1DAQQC1URD_gwD-wxAUOAdvjJPYFqVooW6kLCLZHZDn2ZOs2axc7adV_T8pWFeU0o5mnp5nRHJK9mCIS8pqz9wCafSiCcw4N58_IAZdCVkoItvdPvk8OS7lkTACAekH2QbKmFbo5IL-O6Y_UTWWkP1eL6vvyEz0Jw4iZ9inT1TSMoVrbvMGRrrN1VyFu6G0YL-h5vIrpNtIl2pu7GQkDerpCW6aMW4wj_ZpCwZfkeW-Hgq8e4hE5P_m8Xiyrs29fThfHZ5WbBxkrJxgHLhvvlQWPntVc6L6TXtdOWaVR1V45y7qeO0Qp0IHvPHiPqnWscXBETnden-yluc5ha_OdSTaYv4WUN8bmMbgBDYBthGq57CTKvrVWQV9rwUFoqZsOZtfHnet66rbo3bxMtsMT6dNODBdmk26M4rpRnM2Ctw-CnH5PWEazDcXhMNiIaSpG1NDIltWtmtE3_6GXacpxPtU9pXWrNa9n6t2OcjmVkrF_HIYzc_8A5vEB4A-ymqIC |
Cites_doi | 10.1016/j.cja.2013.10.007 10.1109/TAC.2017.2730480 10.1109/JSEN.2016.2591260 10.1109/ACCESS.2017.2700428 10.1109/MLSP.2012.6349794 10.1109/TAES.2010.5417160 10.1109/MLSP.2013.6661935 10.1109/TSP.2006.881190 10.1109/TSP.2010.2080271 10.1109/TAES.2016.150722 10.1109/TAES.2017.2651684 10.1109/TSP.2008.920469 10.1109/TAC.2008.2008348 10.1109/TAES.2003.1261119 10.1016/j.sigpro.2013.08.002 10.1049/iet-rsn.2012.0357 10.1016/j.dsp.2019.04.002 10.1109/LSP.2013.2289975 10.1201/9781420053098.ch16 10.1049/iet-rsn.2012.0291 10.2514/1.51000 10.13164/re.2020.0529 10.1016/j.ins.2012.09.017 10.1109/TAES.2005.1561884 10.1109/TAES.2018.2884183 10.1109/MAES.2004.1263228 10.1016/j.sigpro.2013.06.012 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21113611 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Databases ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_33a628714b4e4f7aa83f5921329496b3 10_3390_s21113611 |
GroupedDBID | --- 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABJCF ABUWG ADBBV AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO ITC KB. KQ8 L6V M1P M48 M7S MODMG M~E OK1 P2P P62 PDBOC PIMPY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c406t-c2013146dd8a3ded05129fb4d95c8a89e85d8ca0bf1cee42ec3dbd3dde87c06c3 |
IEDL.DBID | RPM |
ISSN | 1424-8220 |
IngestDate | Tue Oct 22 15:14:26 EDT 2024 Tue Sep 17 21:10:14 EDT 2024 Fri Oct 25 11:09:49 EDT 2024 Fri Nov 01 20:54:14 EDT 2024 Thu Sep 26 21:50:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-c2013146dd8a3ded05129fb4d95c8a89e85d8ca0bf1cee42ec3dbd3dde87c06c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9649-6834 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196810/ |
PMID | 34067296 |
PQID | 2539979915 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_33a628714b4e4f7aa83f5921329496b3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8196810 proquest_miscellaneous_2536470578 proquest_journals_2539979915 crossref_primary_10_3390_s21113611 |
PublicationCentury | 2000 |
PublicationDate | 20210522 |
PublicationDateYYYYMMDD | 2021-05-22 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210522 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Huang (ref_20) 2017; 5 Li (ref_22) 2014; 94 Wu (ref_14) 2013; 26 Huang (ref_21) 2017; 53 Zhu (ref_26) 2013; 221 Sarkka (ref_9) 2009; 54 ref_10 Christmas (ref_27) 2010; 59 ref_18 Schuhmacher (ref_28) 2008; 56 Li (ref_24) 2020; 29 Yang (ref_13) 2013; 7 Li (ref_17) 2016; 16 Vo (ref_6) 2005; 41 Xu (ref_25) 2013; 21 Wu (ref_12) 2013; 7 Vo (ref_5) 2006; 54 Bilik (ref_15) 2010; 46 Huang (ref_11) 2018; 63 Yan (ref_8) 2019; 90 ref_1 ref_2 Mahler (ref_4) 2003; 39 Kim (ref_16) 2010; 33 Huang (ref_19) 2016; 52 Zhou (ref_7) 2014; 94 Dong (ref_23) 2018; 55 Blackman (ref_3) 2004; 19 |
References_xml | – volume: 26 start-page: 1517 year: 2013 ident: ref_14 article-title: Particle filters for probability hypothesis density filter with the presence of unknown measurement noise covariance publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2013.10.007 contributor: fullname: Wu – volume: 63 start-page: 594 year: 2018 ident: ref_11 article-title: A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2017.2730480 contributor: fullname: Huang – volume: 16 start-page: 6966 year: 2016 ident: ref_17 article-title: A Variational Bayesian-Based Unscented Kalman Filter with Both Adaptivity and Robustness publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2016.2591260 contributor: fullname: Li – volume: 5 start-page: 7964 year: 2017 ident: ref_20 article-title: Robust Student’s t-Based Stochastic Cubature Filter for Nonlinear Systems with Heavy-Tailed Process and Measurement Noises publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2700428 contributor: fullname: Huang – ident: ref_18 doi: 10.1109/MLSP.2012.6349794 – volume: 46 start-page: 246 year: 2010 ident: ref_15 article-title: Maneuvering Target Tracking in the Presence of Glint using the Nonlinear Gaussian Mixture Kalman Filter publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2010.5417160 contributor: fullname: Bilik – ident: ref_10 doi: 10.1109/MLSP.2013.6661935 – volume: 54 start-page: 4091 year: 2006 ident: ref_5 article-title: The Gaussian Mixture Probability Hypothesis Density Filter publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881190 contributor: fullname: Vo – volume: 59 start-page: 48 year: 2010 ident: ref_27 article-title: Robust Autoregression: Student-t Innovations Using Variational Bayes publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2080271 contributor: fullname: Christmas – volume: 52 start-page: 2586 year: 2016 ident: ref_19 article-title: Robust student’s t based nonlinear filter and smoother publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2016.150722 contributor: fullname: Huang – volume: 53 start-page: 1545 year: 2017 ident: ref_21 article-title: A Novel Robust Student’s t-Based Kalman Filter publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2017.2651684 contributor: fullname: Huang – volume: 56 start-page: 3447 year: 2008 ident: ref_28 article-title: A Consistent Metric for Performance Evaluation of Multi-Object Filters publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2008.920469 contributor: fullname: Schuhmacher – volume: 54 start-page: 596 year: 2009 ident: ref_9 article-title: Recursive Noise Adaptive Kalman Filter ing by Variational Bayesian Approximations publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2008348 contributor: fullname: Sarkka – volume: 39 start-page: 1152 year: 2003 ident: ref_4 article-title: Multitarget bayes filtering via first-order multitarget moments publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2003.1261119 contributor: fullname: Mahler – volume: 94 start-page: 650 year: 2014 ident: ref_7 article-title: Entropy distribution and coverage rate-based birth intensity estimation in GM-PHD filter for multi-target visual tracking publication-title: Signal Process. doi: 10.1016/j.sigpro.2013.08.002 contributor: fullname: Zhou – volume: 7 start-page: 959 year: 2013 ident: ref_13 article-title: Adaptive probability hypothesis density filter based on variational Bayesian approximation for multi-target tracking publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2012.0357 contributor: fullname: Yang – volume: 90 start-page: 54 year: 2019 ident: ref_8 article-title: An improved partitioning algorithm based on FCM algorithm for extended target tracking in PHD filter publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2019.04.002 contributor: fullname: Yan – volume: 21 start-page: 30 year: 2013 ident: ref_25 article-title: A Robust Particle Filtering Algorithm with Non-Gaussian Measurement Noise Using Student-t Dis-tribution publication-title: IEEE Signal Process. Letters doi: 10.1109/LSP.2013.2289975 contributor: fullname: Xu – ident: ref_1 doi: 10.1201/9781420053098.ch16 – ident: ref_2 – volume: 7 start-page: 895 year: 2013 ident: ref_12 article-title: Adaptive noise variance identification for probability hypothesis density-based multi-target filter by variational Bayesian approximations publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2012.0291 contributor: fullname: Wu – volume: 33 start-page: 1 year: 2010 ident: ref_16 article-title: Particle Filter for Ballistic Target Tracking with Glint Noise publication-title: J. Guidan. Control Dynam. doi: 10.2514/1.51000 contributor: fullname: Kim – volume: 29 start-page: 529 year: 2020 ident: ref_24 article-title: Robust Student’s T Distribution Based PHD/CPHD Filter for Multiple Targets Tracking Using Variational Bayesian Approach publication-title: Radioengineering doi: 10.13164/re.2020.0529 contributor: fullname: Li – volume: 221 start-page: 201 year: 2013 ident: ref_26 article-title: A variational Bayesian approach to robust sensor fusion based on Student-t distribution publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.09.017 contributor: fullname: Zhu – volume: 41 start-page: 1224 year: 2005 ident: ref_6 article-title: Sequential monte carlo methods for multi-target filtering with random finite sets publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2005.1561884 contributor: fullname: Vo – volume: 55 start-page: 2253 year: 2018 ident: ref_23 article-title: The Labeled Multi-Bernoulli Filter for Multitarget Tracking with Glint Noise publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2018.2884183 contributor: fullname: Dong – volume: 19 start-page: 5 year: 2004 ident: ref_3 article-title: Multiple hypothesis tracking for multiple target tracking publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2004.1263228 contributor: fullname: Blackman – volume: 94 start-page: 48 year: 2014 ident: ref_22 article-title: PHD filter for multi-target tracking with glint noise publication-title: Signal Process. doi: 10.1016/j.sigpro.2013.06.012 contributor: fullname: Li |
SSID | ssj0023338 |
Score | 2.3746457 |
Snippet | In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter is a practical algorithm. Influenced by outliers under... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 3611 |
SubjectTerms | Algorithms Approximation Degrees of freedom multi-target tracking Multiple target tracking Noise Noise measurement Normal distribution Outliers (statistics) Parameter estimation Probability distribution functions SMC-PHD filter Statistical analysis student-t distribution variational Bayesian |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIT1EoyCBWq6ntOM5YClWF1ApBK3VBUfwR0SVFNEXi33OXpKWZWFhjD85d7Hvvcn5HyB33Md6H9CwTHgmK8sxAHGMxZuKltk6FeN95NFbDqXyahbOtVl9YE1bJA1eG6wiRKkT10kgvsyhNtcjCmGN_dBkrU-l8BvGaTNVUSwDzqnSEBJD6zpJjR3XV7TaiTynS30CWzbrIrUAzOCQHNUKkvWplR2TH58dkf0s38IS89ejLwqyWBX0d9dnz8IEO5vjXmwICpeWVWjYpK7wphCKLyXCK-VY6zTGFltOhT7--YQqcCI6OfrOEdLyYL_0pmQ4eJ_0hq_skMAvGLZjlKJojlXM6Fc67AIN4ZqSLQ6tTHXsdOm3TwGRdCImSeyuccQIONh3ZQFlxRnbzRe7PCTUqyOIAWIbFjuk2NNhuCliy0qZrAB20yO3afslHJYeRAI1AIycbI7fIPVp2MwEVrMsH4Nek9mvyl19bpL32S1Jvq2XCUUc3AkgLC7nZDMOGwL8cae4Xq3KOkhHAUN0iUcOfjQU1R_L5eymtDfgIBdou_uMNLskexwKYIGSct8lu8bnyV4BgCnNdfqw_4IDuHw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VeimHCtoiUh5yq14tEttxnBPitV1VWoQoK3GpovgRupdkS3aR-u87k80u5NJr7CjR2J75vrH9DcA3EXK6Dxl4JQMRFB24xTjGc8rEK-O8Tum-8-RGj6fqx0P60Cfc2v5Y5dondo7aN45y5KeCJFQzRDPp2fwPp6pRtLval9DYgreJyDIiX2b0fUO4JPKvlZqQRGp_2gqqq66TZBCDOqn-Ab4cno58FW5Gu_C-x4nsfDWwe_Am1B9g55V64Ef4dc7uGrtsF-zn5JLfjq_YaEZ73wxxKOsu1vL77pw3w4DkKCXOKOvKpjUl0mo2DuXzX-yCfsGzyUuukN00szZ8guno-v5yzPtqCdyhiRfcCZLOUdp7U0offEyhvLLK56kzpcmDSb1xZWyrBAOjEsFJb71E92YyF2sn92G7bupwAMzquMpj5BqO6qa71FLRKeTK2tjEIkaI4OvafsV8JYpRIJkgIxcbI0dwQZbddCAd6-5B8_RY9MsCXyk1cTZlVVBVVpZGVmkukCLnKtdWRnC0HpeiX1xt8TIVIviyacZlQXsdZR2aZddHqwzBqIkgG4zn4IeGLfXsdyewjSiJZNo-___jh_BO0AGXOOVCHMH24mkZjhGhLOxJNw3_AUkM5xw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5EL3oQn1hfrOJ1NW42m81BxFcpQkW0BS8Sso9oQRJtUtF_70ya1gY8eM1OQph9zHyzM98QcsRdhPWQjqW-Q4AiHdNgx1iEkXihjJUB1jt372SnL26fgqc5MumxWSuw-BPaYT-p_vDt-Ovj-xw2_BkiToDsJwXHfukSK3wXuACAjhl8YnqZwH2AYWNSoaZ4wxRVjP0NN7OZJDljddorZLl2F-nFeH5XyZzL1sjSDIngOnm-oA-5HhUlfexesfvONW0P8AqcgjtKq_pa1qvSvSnYJYORcYrBV9rPMJ6W0Y5LPr9BBI4HS7u_IUN6lw8Kt0H67ZveVYfVTROYAU2XzHBk0BHSWpX41lkPLXqqhY0CoxIVORVYZRJPp6dgHwV3xrfa-nDKqdB40vibZD7LM7dFqJZeGnkAOQy2TzeBxt5TAJml0qcaXIUWOZzoL34fc2PEgClQyfFUyS1yiZqdCiCddfUgH77E9e6AVxKJ0E1o4UQaJony0yDigJQjEUntt8juZF7iyRKJOZLqhuDfwo8cTIdhd-CVR5K5fFTJSBGCT6paJGzMZ-OHmiPZ4LXi2QZnCdnatv_x9R2yyDHZxQsY57tkvhyO3B54K6Xer9biD5Fa6mI priority: 102 providerName: Scholars Portal |
Title | A Robust SMC-PHD Filter for Multi-Target Tracking with Unknown Heavy-Tailed Measurement Noise |
URI | https://www.proquest.com/docview/2539979915 https://search.proquest.com/docview/2536470578 https://pubmed.ncbi.nlm.nih.gov/PMC8196810 https://doaj.org/article/33a628714b4e4f7aa83f5921329496b3 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tLhc4IJ6isFQGcc02tR3HOe6WLRVSqmrZSr2gKH4EKrHJatsi8e-ZcZPSXLn4ENuSY489843H3wB84j6j95A-qoQngKJ8ZFCPRRl54qW2TiX03jmfq9lSfl0lqxNIurcwIWjfmvVF_evuol7_DLGV93d21MWJjRb5BLUY0WiNTuEUBbSD6C3KEgi69hRCAvH8aMMpmboaU0oYIenikfj5j3RQoOrv2Zf96MgjdTN9Bk9bO5Fd7sfzHE58_QKeHLEHvoTvl-ymMbvNln3LJ9Fi9plN13T3zdAOZeFhbXQb4rwZKiRLLnFGXle2rMmRVrOZL3__wSZ4LjiW__MVsnmz3vhXsJxe305mUZstIbL4W9vIcqLOkco5XQrnXUyqvDLSZYnVpc68Tpy2ZWyqMSpGyb0VzjiBx5tObayseA1ndVP7N8CMiqssRqxhKW-6TQwlnUKsrLQZG7QRBvCxm7_ifk-KUSCYoPkuDvM9gCua2UMD4rEOH5qHH0W7mtilVITZpJFeVmlZalElGUeInMlMGTGA825dinZzbQpObLopGrY4kA-HatwWdNdR1r7ZhTZKpmiM6gGkvfXsDahfg_IWCLZb-Xr73z3fwWNOsS9xEnF-Dmfbh51_j8bL1gxRZFcplnr6ZQiPrq7ni5thcARgmUs9DML8F8HQ9Sc |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,43322,43612,43817,53804,53806,74079,74369,74636 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BOQAHBBTUQCmm6tVq1nYc54RK6RKgu6pgV-oFRfFHYC9JaXaR-u-ZyWa3zaXX2FGisT0zbzzzBuBIhIzqIQOvZCCAogO3aMd4RpF4ZZzXCdU7T6Y6n6tvl8llH3Br-7TKjU7sFLVvHMXIjwVRqKbozSQfr_5y6hpFt6t9C42H8EhJtNVUKT7-sgVcEvHXmk1IIrQ_bgX1Vdej0cAGdVT9A_9ymB15x9yMn8Oz3k9kJ-uFfQEPQv0Snt5hD9yFXyfsR2NX7ZL9nJzyi_wzGy_o7puhH8q6wlo-6_K8GRokRyFxRlFXNq8pkFazPJT_bnAK6gXPJrexQjZtFm14BfPx2ew05323BO5QxEvuBFHnKO29KaUPPiZTXlnls8SZ0mTBJN64MrbVCA2jEsFJb71E9WZSF2snX8NO3dRhD5jVcZXFiDUc9U13iaWmU4iVtbEjiz5CBIcb-RVXa1KMAsEECbnYCjmCTyTZ7QTise4eNNe_i_5Y4CulJsymrAqqSsvSyCrJBELkTGXaygj2N-tS9IerLW63QgQftsN4LOiuo6xDs-rmaJWiM2oiSAfrOfih4Ui9-NMRbKOXRDRtb-7_-Ht4nM8m58X51-n3t_BEULJLnHAh9mFneb0K79BbWdqDbkv-Byw26f4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKyE4IEpBBEoxqFdrs7bjOCfUB2F57KqCrtQLiuJHYC9JaXaR-PedyWa3zaXX2FGi8XhmvvH4G4AjETK6Dxl4JQMBFB24RT_GM8rEK-O8Tui-83SmJ3P19TK57Ouf2r6scmMTO0PtG0c58pEgCtUUo5lkVPVlEedn-cerv5w6SNFJa99O4yHsolfUpOEm_7wFXxKx2JpZSCLMH7WCeqzr8Xjgjzra_kGsOayUvON68mfwtI8Z2fF6kffgQaifw5M7TIL78OuY_Wjsql2yn9NTfj45Y_mCzsEZxqSsu2TLL7qab4bOyVF6nFEGls1rSqrVbBLKf_9xCtoIz6a3eUM2axZteAHz_NPF6YT3nRO4Q3EvuRNEo6O096aUPviY3Hpllc8SZ0qTBZN448rYVmN0kkoEJ731Ek2dSV2snXwJO3VTh1fArI6rLEbc4aiHukssNaBC3KyNHVuMFyL4sJFfcbUmyCgQWJCQi62QIzghyW4nEKd196C5_l30WwRfKTXhN2VVUFValkZWSSYQLmcq01ZGcLBZl6LfaG1xqxYRvN8O4xahc4-yDs2qm6NVioGpiSAdrOfgh4Yj9eJPR7aNERNRtr2-_-Pv4BFqY_H9y-zbG3gsqO4lTrgQB7CzvF6Ftxi4LO1hp5E3CoXuPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Robust+SMC-PHD+Filter+for+Multi-Target+Tracking+with+Unknown+Heavy-Tailed+Measurement+Noise&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Gong%2C+Yang&rft.au=Cui%2C+Chen&rft.date=2021-05-22&rft.eissn=1424-8220&rft.volume=21&rft.issue=11&rft_id=info:doi/10.3390%2Fs21113611&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |