Area under the Curve as an Alternative to Latent Growth Curve Modeling When Assessing the Effects of Predictor Variables on Repeated Measures of a Continuous Dependent Variable
Researchers conducting longitudinal data analysis in psychology and the behavioral sciences have several statistical methods to choose from, most of which either require specialized software to conduct or advanced knowledge of statistical methods to inform the selection of the correct model options...
Saved in:
Published in | Stats (Basel, Switzerland) Vol. 6; no. 2; pp. 674 - 688 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Researchers conducting longitudinal data analysis in psychology and the behavioral sciences have several statistical methods to choose from, most of which either require specialized software to conduct or advanced knowledge of statistical methods to inform the selection of the correct model options (e.g., correlation structure). One simple alternative to conventional longitudinal data analysis methods is to calculate the area under the curve (AUC) from repeated measures and then use this new variable in one’s model. The present study assessed the relative efficacy of two AUC measures: the AUC with respect to the ground (AUC-g) and the AUC with respect to the increase (AUC-i) in comparison to latent growth curve modeling (LGCM), a popular repeated measures data analysis method. Using data from the ongoing Panel Study of Income Dynamics (PSID), we assessed the effects of four predictor variables on repeated measures of social anxiety, using both the AUC and LGCM. We used the full information maximum likelihood (FIML) method to account for missing data in LGCM and multiple imputation to account for missing data in the calculation of both AUC measures. Extracting parameter estimates from these models, we next conducted Monte Carlo simulations to assess the parameter bias and power (two estimates of performance) of both methods in the same models, with sample sizes ranging from 741 to 50. The results using both AUC measures in the initial models paralleled those of LGCM, particularly with respect to the LGCM baseline. With respect to the simulations, both AUC measures preformed as well or even better than LGCM in all sample sizes assessed. These results suggest that the AUC may be a viable alternative to LGCM, especially for researchers with less access to the specialized software necessary to conduct LGCM. |
---|---|
AbstractList | Researchers conducting longitudinal data analysis in psychology and the behavioral sciences have several statistical methods to choose from, most of which either require specialized software to conduct or advanced knowledge of statistical methods to inform the selection of the correct model options (e.g., correlation structure). One simple alternative to conventional longitudinal data analysis methods is to calculate the area under the curve (AUC) from repeated measures and then use this new variable in one’s model. The present study assessed the relative efficacy of two AUC measures: the AUC with respect to the ground (AUC-g) and the AUC with respect to the increase (AUC-i) in comparison to latent growth curve modeling (LGCM), a popular repeated measures data analysis method. Using data from the ongoing Panel Study of Income Dynamics (PSID), we assessed the effects of four predictor variables on repeated measures of social anxiety, using both the AUC and LGCM. We used the full information maximum likelihood (FIML) method to account for missing data in LGCM and multiple imputation to account for missing data in the calculation of both AUC measures. Extracting parameter estimates from these models, we next conducted Monte Carlo simulations to assess the parameter bias and power (two estimates of performance) of both methods in the same models, with sample sizes ranging from 741 to 50. The results using both AUC measures in the initial models paralleled those of LGCM, particularly with respect to the LGCM baseline. With respect to the simulations, both AUC measures preformed as well or even better than LGCM in all sample sizes assessed. These results suggest that the AUC may be a viable alternative to LGCM, especially for researchers with less access to the specialized software necessary to conduct LGCM. |
Audience | Academic |
Author | Rodriguez, Daniel |
Author_xml | – sequence: 1 givenname: Daniel orcidid: 0000-0002-7798-5165 surname: Rodriguez fullname: Rodriguez, Daniel |
BookMark | eNptkt9uFCEUxiemJtbaOx-AxFu3MgzDMJebtdYm22iM_-4mZw6HXTZTWIHR-FY-omy3msYYLoCP3_dxcuBpdeKDp6p6XvOLpun5q5QhJ8UF57J5VJ2KtqsXPW-_njxYP6nOU9pxzkWneqnlafVrGQnY7A1FlrfEVnP8TgwSA8-WU6boIbui5MDWkMlndhXDj7y9B2-Cocn5DfuypWJIiVI6bA9Rl9YS5sSCZe8jGYc5RPYZooNxoiJ79oH2VEINuyFIc6Q7Ftgq-Oz8HObEXhei1Fau_WN8Vj22MCU6v5_Pqk9vLj-u3i7W766uV8v1AiVXeTFa1RIZK8A0KCQS6FGgbkyHuu8MoBix6TVhU2uBqMa2K01selOTUp02zVl1fcw1AXbDPrpbiD-HAG64E0LcDBCzw4kGtMZqNL3SWEuwsm96iZ3S0BqQ1tYl68Uxax_Dt5lSHnZhLp2d0iC06HXHpeoKdXGkNlBCnbchR8AyDN06LI9tXdGXXauVrttWFsPLowFjSCmS_VtmzYfDnxge_omCi39wdOXclW5HcNP_Tb8BcgrAjg |
CitedBy_id | crossref_primary_10_3390_stats7040079 |
Cites_doi | 10.7870/cjcmh-2020-003 10.1111/j.1751-9004.2009.00224.x 10.3390/stats6010022 10.21449/ijate.1101295 10.1146/annurev-clinpsy-050212-185631 10.2333/bhmk.29.81 10.3758/s13428-010-0044-x 10.4324/9781315814919 10.1002/nur.21724 10.1080/01621459.1995.10476493 10.1016/S0005-7894(04)80042-X 10.1037/1082-989X.2.4.371 10.1016/j.jad.2016.09.052 10.1007/s10608-006-9017-x 10.1016/S0887-6185(97)00046-7 10.1016/j.adolescence.2021.05.008 10.1016/j.cpr.2017.05.004 10.1016/S0306-4530(02)00108-7 10.1093/biomet/73.1.13 10.1177/0265407517710342 10.1207/s15328007sem1303_2 10.1002/sim.9516 10.1002/9781119013563 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8FK 8FL ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FRNLG F~G K60 K6~ L.- M0C PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3390/stats6020043 |
DatabaseName | CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Databases Business Premium Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ: Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics |
EISSN | 2571-905X |
EndPage | 688 |
ExternalDocumentID | oai_doaj_org_article_cfdf8cd968c14af49394c768a5da4ff1 A758681554 10_3390_stats6020043 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | 7WY 8FL AADQD AAFWJ AAYXX ABUWG AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS BENPR BEZIV CCPQU CITATION DWQXO FRNLG GROUPED_DOAJ IAO INS ITC M0C MODMG M~E OK1 PHGZM PHGZT PIMPY PQBIZ PQBZA PMFND 3V. 7XB 8FK AZQEC K60 K6~ L.- PKEHL PQEST PQQKQ PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c406t-bf65eedf2ad3c24cea8b2c83d7c897dac2bc398ec3182cc6b5739039d1e6678d3 |
IEDL.DBID | DOA |
ISSN | 2571-905X |
IngestDate | Wed Aug 27 01:18:16 EDT 2025 Mon Jun 30 06:47:25 EDT 2025 Tue Jun 10 21:06:29 EDT 2025 Tue Jul 01 00:26:34 EDT 2025 Thu Apr 24 22:55:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-bf65eedf2ad3c24cea8b2c83d7c897dac2bc398ec3182cc6b5739039d1e6678d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7798-5165 |
OpenAccessLink | https://doaj.org/article/cfdf8cd968c14af49394c768a5da4ff1 |
PQID | 2829870467 |
PQPubID | 5046856 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cfdf8cd968c14af49394c768a5da4ff1 proquest_journals_2829870467 gale_infotracacademiconefile_A758681554 crossref_primary_10_3390_stats6020043 crossref_citationtrail_10_3390_stats6020043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Stats (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Wright (ref_32) 2011; 43 Hearn (ref_14) 2017; 208 Hancock (ref_26) 2006; 13 Campbell (ref_13) 2021; 90 Duncan (ref_8) 2004; 35 Mick (ref_15) 1998; 12 (ref_24) 2002; 29 ref_12 Schminkey (ref_11) 2016; 39 Robins (ref_5) 1995; 90 Asher (ref_17) 2017; 56 Lane (ref_7) 2018; 35 Park (ref_3) 2009; 29 Morrison (ref_16) 2013; 9 ref_25 ref_23 ref_22 Liang (ref_4) 1986; 73 ref_20 Curran (ref_9) 1997; 2 ref_1 Asparouhov (ref_29) 2010; 29 ref_2 Sylvestre (ref_18) 2020; 39 Kashdan (ref_19) 2006; 30 ref_28 Duncan (ref_10) 2009; 3 ref_27 Demir (ref_31) 2022; 9 Pruessner (ref_21) 2003; 28 Matore (ref_30) 2020; 13 Yang (ref_6) 2022; 41 |
References_xml | – volume: 39 start-page: 33 year: 2020 ident: ref_18 article-title: Not flourishing mental health is associated with higher risks of anxiety and depressive symptoms in college students publication-title: Can. J. Community Ment. Health doi: 10.7870/cjcmh-2020-003 – volume: 3 start-page: 979 year: 2009 ident: ref_10 article-title: The ABC’s of LGM: An introductory guide to latent variable growth curve modeling publication-title: Soc. Personal. Psychol. Compass doi: 10.1111/j.1751-9004.2009.00224.x – ident: ref_12 doi: 10.3390/stats6010022 – volume: 9 start-page: 397 year: 2022 ident: ref_31 article-title: Comparison of normality tests in terms of sample sizes under different skewness and Kurtosis coefficients publication-title: Int. J. Assess. Tools Educ. doi: 10.21449/ijate.1101295 – volume: 9 start-page: 249 year: 2013 ident: ref_16 article-title: Social anxiety and social anxiety disorder publication-title: Annu. Rev. Clin. Psychol. doi: 10.1146/annurev-clinpsy-050212-185631 – volume: 29 start-page: 81 year: 2002 ident: ref_24 article-title: beyond SEM: General latent variable modeling publication-title: Behaviormetrika doi: 10.2333/bhmk.29.81 – volume: 29 start-page: 238 year: 2010 ident: ref_29 article-title: Multiple imputation with Mplus publication-title: MPlus Web Notes – volume: 43 start-page: 8 year: 2011 ident: ref_32 article-title: Problematic standard errors and confidence intervals for skewness and kurtosis publication-title: Behav. Res. Methods doi: 10.3758/s13428-010-0044-x – ident: ref_23 – ident: ref_1 doi: 10.4324/9781315814919 – volume: 39 start-page: 286 year: 2016 ident: ref_11 article-title: Handling missing data with multilevel structural equation modeling and full information maximum likelihood techniques publication-title: Res. Nurs. Health doi: 10.1002/nur.21724 – volume: 90 start-page: 106 year: 1995 ident: ref_5 article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1995.10476493 – volume: 35 start-page: 333 year: 2004 ident: ref_8 article-title: An introduction to latent growth curve modeling publication-title: Behav. Ther. doi: 10.1016/S0005-7894(04)80042-X – volume: 2 start-page: 371 year: 1997 ident: ref_9 article-title: General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation publication-title: Psychol. Methods doi: 10.1037/1082-989X.2.4.371 – ident: ref_25 – volume: 208 start-page: 33 year: 2017 ident: ref_14 article-title: A worrying trend in Social Anxiety: To what degree are worry and its cognitive factors associated with youth Social Anxiety Disorder? publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2016.09.052 – volume: 30 start-page: 749 year: 2006 ident: ref_19 article-title: Social anxiety and positive outcome expectancies on risk-taking behaviors publication-title: Cogn. Ther. Res. doi: 10.1007/s10608-006-9017-x – ident: ref_27 – ident: ref_2 – volume: 12 start-page: 1 year: 1998 ident: ref_15 article-title: Social Anxiety and History of Behavioral Inhibition in Young Adults publication-title: J. Anxiety Disord. doi: 10.1016/S0887-6185(97)00046-7 – volume: 90 start-page: 45 year: 2021 ident: ref_13 article-title: Greater adolescent tiredness is related to more emotional arousal during a hyperventilation task: An area under the curve approach publication-title: J. Adolesc. doi: 10.1016/j.adolescence.2021.05.008 – volume: 56 start-page: 1 year: 2017 ident: ref_17 article-title: Gender differences in social anxiety disorder: A review publication-title: Clin. Psychol. Rev. doi: 10.1016/j.cpr.2017.05.004 – volume: 28 start-page: 916 year: 2003 ident: ref_21 article-title: Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change publication-title: Psychoneuroendocrinology doi: 10.1016/S0306-4530(02)00108-7 – volume: 13 start-page: 688 year: 2020 ident: ref_30 article-title: The pattern of skewness and kurtosis using mean score and logit in measuring adversity quotient (AQ) for normality testing publication-title: Int. J. Future Gener. Commun. Netw. – volume: 73 start-page: 13 year: 1986 ident: ref_4 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika doi: 10.1093/biomet/73.1.13 – volume: 35 start-page: 7 year: 2018 ident: ref_7 article-title: Power struggles: Estimating sample size for multilevel relationships research publication-title: J. Soc. Pers. Relatsh. doi: 10.1177/0265407517710342 – volume: 13 start-page: 352 year: 2006 ident: ref_26 article-title: A vernacular for linear latent growth models publication-title: Struct. Equ. Model. doi: 10.1207/s15328007sem1303_2 – ident: ref_22 – volume: 41 start-page: 4403 year: 2022 ident: ref_6 article-title: Adaptive response—Dependent two—Phase designs: Some results on robustness and efficiency publication-title: Stat. Med. doi: 10.1002/sim.9516 – ident: ref_20 – ident: ref_28 doi: 10.1002/9781119013563 – volume: 29 start-page: 1 year: 2009 ident: ref_3 article-title: Correct use of repeated measures analysis of variance publication-title: Korean J. Lab. Med. |
SSID | ssj0002769484 |
Score | 2.2358122 |
Snippet | Researchers conducting longitudinal data analysis in psychology and the behavioral sciences have several statistical methods to choose from, most of which... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 674 |
SubjectTerms | area under the curve Data analysis Dependent variables Electronic data processing Growth curve modeling Hypothesis testing latent growth curve modeling longitudinal data Methods Monte Carlo method Monte Carlo simulation study multiple imputation Parameter estimation Research methodology Social anxiety Software Within-subjects design Young adults |
SummonAdditionalLinks | – databaseName: ProQuest Databases dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Bb9UwDI5gu-yCtgHisQ35AOKAqr02aZuc0NvYmBCbJsTQblHqpANpakfbx-_iJ2K3eQ92GMembtX37Nj-7NgW4nU6r-dlJQmmquAS5Tm_S5suCXmOVc6ZpjHgdn5RnF2pT9f5dQy49fFY5Uonjorat8gx8kPO-JFs0b5-f_cz4alRnF2NIzQei01SwZrA1-bRycXll3WUJSsLo7SaTrxLwveHXKfTF3MWDnnPFo0t-x9SzKO1Od0WT6KbCIuJrzviUWh2xRZ7hlNj5afi94LcPeASsA7IiYPjZfcrgOvBNbC4jWE-Whla-Ez-ZDPAR0Lcw_dIyDPQuBIdSBvTA2Pqly_5VVNH4x7aGi47TuQQLodvBKq5zIqWGyC3nXR48HA-hRhHWgfc6upHs2yXPXyIw3WH9YPPxNXpydfjsySOX0iQrPyQVHWRkwWtM-clZgqD01WGWvoStSm9w6xCaXRAUgsZYlHlJf3B0vg0FGQCvXwuNpq2CS8EYECVoTe-dAQopXHG-_Fdck5rqZmJdytGWIy9yXlExq0ljMJss_-ybSberKnvpp4cD9AdMU_XNNxJe1xouxsbN6bF2teaPq3QmCpXKyONQsJgLvdO1XU6E29ZIizvd_okdLFsgX4Yd86yCwJchWavbCb2V0JjoyLo7V-xffn_23tiiyfZT6fQ9sXG0C3DAfk7Q_UqCvUfeyIE6Q priority: 102 providerName: ProQuest |
Title | Area under the Curve as an Alternative to Latent Growth Curve Modeling When Assessing the Effects of Predictor Variables on Repeated Measures of a Continuous Dependent Variable |
URI | https://www.proquest.com/docview/2829870467 https://doaj.org/article/cfdf8cd968c14af49394c768a5da4ff1 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QufSCeIqFtvIBxAGNujvJPHLcvqgQrSpEUW9RxkkEqJpFO7P9Xf2JtZN0tT1UXDhO5BllYsf2F8e2EB9m0zBtOkkwVXlbKMfxXdp0ha8q7CqONMUDt7Pz-vRSfb2qrjZaffGdsFQeOC3cPgYXWnS6bnGmbFBaaoXkI9vKWRVCBD5k8zbA1J8YTqu1alW66S4J1-9zfs5QT1ko5AMbFEv1P6aQo5U5eS6eZfcQ5mlaL8QT378U2-wRpoLKr8TtnNw84NSvJZDzBoer5Y0HO4DtYX6dj_doZFzAN_Ij-xG-ENIef2VC7n3GGehAWpheiCFffuRPpUrGAywCXCw5gEN4HH4SmOb0Khrugdx10t3ewVk6Woy0FrjE1e9-tVgNcJSb6o7rF1-Ly5PjH4enRW67UCBZ97HoQl2R5QyldRJLhd62XYmtdA22unEWyw6lbj2SOigR665qaIGldjNfk-lz8o3Y6he9fysAPaqSmOcaS0BSaqudi9-SUxqb6Yn4fM8Ig7kmObfGuDaETZhtZpNtE_FxTf031eJ4hO6Aebqm4QracYDkymS5Mv-Sq4n4xBJheJ_TlNDmdAX6Ma6YZeYEtOqWvbGJ2LkXGpMVwGA4QE2qkMzQu_8xm_dim_vcpztqO2JrXK78LnlDY7cnnh4cn19834sb4A6ALQ7u |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9kAviKdYWsAHKg4oamI7Dx8Q2r7Y0t1VhVrUm3FspyBVSZtkQfwpxE9kJnEWOJRbj3FsK9GMZ-ab8cwQ8ioKizDNOcBU4XQgLMZ34dAFLo5NHmOkqXO4zRfJ9Ex8OI_P18jPIRcGr1UOMrET1LYy6CPfwYgf8Bac63dX1wF2jcLo6tBCo2eLY_fjO0C25u3RPtB3m7HDg9O9aeC7CgQGlFcb5EUSg2IomLbcMGGcznJmMm5Tk8nUasNyw2XmDHA7MybJ45TLkEsbuQQku-Ww7x2yLjhAmRFZ3z1YnHxceXVYmkiRif6GPYd1O5gX1CQhMiP_R_d1LQJuUgSddju8T-55s5ROej56QNZc-ZBsoCXaF3J-RH5NwLykmHJWUzAa6d6y_uaobqgu6eTSuxVhpK3oDOzXsqXvAeG3X_xE7LmGme8UpD8s6ELN-Ihb9RWUG1oV9KTGwFFb1fQTgHhM64LhkgJMAJ3hLJ33Ls1urqZYWutruayWDd33zXzb1cLH5OxWCPOEjMqqdE8JNc4IZqy0qQYAy6WW1nZ78RDGIjkmbwZCKONroWNLjksFmAjJpv4m25hsr2Zf9TVAbpi3izRdzcHK3d1AVV8oLwiUKWyRwaclmYmELoTkUhjAfDq2WhRFNCavkSMUyhf4JKN9mgT8GFbqUhMAeEmGVuCYbA1Mo7zgadSfY_Ls_69fkrvT0_lMzY4Wx5tkg4Ht1t-A2yKjtl6652BrtfkLz-CUfL7tM_UbdsdDjA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbCfWCykssFPCBigOKNomdhw8IbbtdWtquVoii3ozjByBVSZtkQfwVZ76OmcRZ4FBuPcYZW4nmPeOZIeRFFLowKxi4qdyqgBvM7wLTBTZJdJFgpqkLuJ0u0sMz_u48Od8gv4ZaGLxWOcjETlCbSmOMfIIZP6At4OuJ89cilrP5m8urACdIYaZ1GKfRk8ix_fEd3Lfm9dEMcL0bx_ODD_uHgZ8wEGhQZG1QuDQBJeFiZZiOubYqL2KdM5PpXGRG6bjQTORWA-XHWqdFkjERMmEim4KUNwzOvUU2M_CKwhHZ3DtYLN-vIzxxlgqe8_62PYN9E6wRatIQCZP9owe7cQHXKYVO0823yR1votJpT1N3yYYt75EttEr7ps73yc8pmJoUy89qCgYk3V_V3yxVDVUlnV74ECOstBU9AVu2bOlb8PbbLx4Q569hFTwFTQAburQzPuJRfTflhlaOLmtMIrVVTT-CQ48lXrBcUnAZQH9YQ0_78GYHqyi22fparqpVQ2d-sG-73viAnN0IYh6SUVmV9hGh2moeayNMpsCZZUIJY7qzWAhrkRiTVwMipPZ90XE8x4UE_wjRJv9G25jsrqEv-34g18DtIU7XMNjFu1uo6s_SCwWpnXE5fFqa64grxwUTXIP_pxKjuHPRmLxEipAoa-CTtPIlE_Bj2LVLTsHZS3O0CMdkZyAa6YVQI_-wzOP_v35ObgMvyZOjxfETshWDGddfhtsho7Ze2adgdrXFM0_flHy6aZb6DQ3HR8E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Area+under+the+Curve+as+an+Alternative+to+Latent+Growth+Curve+Modeling+When+Assessing+the+Effects+of+Predictor+Variables+on+Repeated+Measures+of+a+Continuous+Dependent+Variable&rft.jtitle=Stats+%28Basel%2C+Switzerland%29&rft.au=Rodriguez%2C+Daniel&rft.date=2023-06-01&rft.issn=2571-905X&rft.eissn=2571-905X&rft.volume=6&rft.issue=2&rft.spage=674&rft.epage=688&rft_id=info:doi/10.3390%2Fstats6020043&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_stats6020043 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-905X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-905X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-905X&client=summon |