Area under the Curve as an Alternative to Latent Growth Curve Modeling When Assessing the Effects of Predictor Variables on Repeated Measures of a Continuous Dependent Variable

Researchers conducting longitudinal data analysis in psychology and the behavioral sciences have several statistical methods to choose from, most of which either require specialized software to conduct or advanced knowledge of statistical methods to inform the selection of the correct model options...

Full description

Saved in:
Bibliographic Details
Published inStats (Basel, Switzerland) Vol. 6; no. 2; pp. 674 - 688
Main Author Rodriguez, Daniel
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Researchers conducting longitudinal data analysis in psychology and the behavioral sciences have several statistical methods to choose from, most of which either require specialized software to conduct or advanced knowledge of statistical methods to inform the selection of the correct model options (e.g., correlation structure). One simple alternative to conventional longitudinal data analysis methods is to calculate the area under the curve (AUC) from repeated measures and then use this new variable in one’s model. The present study assessed the relative efficacy of two AUC measures: the AUC with respect to the ground (AUC-g) and the AUC with respect to the increase (AUC-i) in comparison to latent growth curve modeling (LGCM), a popular repeated measures data analysis method. Using data from the ongoing Panel Study of Income Dynamics (PSID), we assessed the effects of four predictor variables on repeated measures of social anxiety, using both the AUC and LGCM. We used the full information maximum likelihood (FIML) method to account for missing data in LGCM and multiple imputation to account for missing data in the calculation of both AUC measures. Extracting parameter estimates from these models, we next conducted Monte Carlo simulations to assess the parameter bias and power (two estimates of performance) of both methods in the same models, with sample sizes ranging from 741 to 50. The results using both AUC measures in the initial models paralleled those of LGCM, particularly with respect to the LGCM baseline. With respect to the simulations, both AUC measures preformed as well or even better than LGCM in all sample sizes assessed. These results suggest that the AUC may be a viable alternative to LGCM, especially for researchers with less access to the specialized software necessary to conduct LGCM.
AbstractList Researchers conducting longitudinal data analysis in psychology and the behavioral sciences have several statistical methods to choose from, most of which either require specialized software to conduct or advanced knowledge of statistical methods to inform the selection of the correct model options (e.g., correlation structure). One simple alternative to conventional longitudinal data analysis methods is to calculate the area under the curve (AUC) from repeated measures and then use this new variable in one’s model. The present study assessed the relative efficacy of two AUC measures: the AUC with respect to the ground (AUC-g) and the AUC with respect to the increase (AUC-i) in comparison to latent growth curve modeling (LGCM), a popular repeated measures data analysis method. Using data from the ongoing Panel Study of Income Dynamics (PSID), we assessed the effects of four predictor variables on repeated measures of social anxiety, using both the AUC and LGCM. We used the full information maximum likelihood (FIML) method to account for missing data in LGCM and multiple imputation to account for missing data in the calculation of both AUC measures. Extracting parameter estimates from these models, we next conducted Monte Carlo simulations to assess the parameter bias and power (two estimates of performance) of both methods in the same models, with sample sizes ranging from 741 to 50. The results using both AUC measures in the initial models paralleled those of LGCM, particularly with respect to the LGCM baseline. With respect to the simulations, both AUC measures preformed as well or even better than LGCM in all sample sizes assessed. These results suggest that the AUC may be a viable alternative to LGCM, especially for researchers with less access to the specialized software necessary to conduct LGCM.
Audience Academic
Author Rodriguez, Daniel
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0002-7798-5165
  surname: Rodriguez
  fullname: Rodriguez, Daniel
BookMark eNptkt9uFCEUxiemJtbaOx-AxFu3MgzDMJebtdYm22iM_-4mZw6HXTZTWIHR-FY-omy3msYYLoCP3_dxcuBpdeKDp6p6XvOLpun5q5QhJ8UF57J5VJ2KtqsXPW-_njxYP6nOU9pxzkWneqnlafVrGQnY7A1FlrfEVnP8TgwSA8-WU6boIbui5MDWkMlndhXDj7y9B2-Cocn5DfuypWJIiVI6bA9Rl9YS5sSCZe8jGYc5RPYZooNxoiJ79oH2VEINuyFIc6Q7Ftgq-Oz8HObEXhei1Fau_WN8Vj22MCU6v5_Pqk9vLj-u3i7W766uV8v1AiVXeTFa1RIZK8A0KCQS6FGgbkyHuu8MoBix6TVhU2uBqMa2K01selOTUp02zVl1fcw1AXbDPrpbiD-HAG64E0LcDBCzw4kGtMZqNL3SWEuwsm96iZ3S0BqQ1tYl68Uxax_Dt5lSHnZhLp2d0iC06HXHpeoKdXGkNlBCnbchR8AyDN06LI9tXdGXXauVrttWFsPLowFjSCmS_VtmzYfDnxge_omCi39wdOXclW5HcNP_Tb8BcgrAjg
CitedBy_id crossref_primary_10_3390_stats7040079
Cites_doi 10.7870/cjcmh-2020-003
10.1111/j.1751-9004.2009.00224.x
10.3390/stats6010022
10.21449/ijate.1101295
10.1146/annurev-clinpsy-050212-185631
10.2333/bhmk.29.81
10.3758/s13428-010-0044-x
10.4324/9781315814919
10.1002/nur.21724
10.1080/01621459.1995.10476493
10.1016/S0005-7894(04)80042-X
10.1037/1082-989X.2.4.371
10.1016/j.jad.2016.09.052
10.1007/s10608-006-9017-x
10.1016/S0887-6185(97)00046-7
10.1016/j.adolescence.2021.05.008
10.1016/j.cpr.2017.05.004
10.1016/S0306-4530(02)00108-7
10.1093/biomet/73.1.13
10.1177/0265407517710342
10.1207/s15328007sem1303_2
10.1002/sim.9516
10.1002/9781119013563
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8FK
8FL
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FRNLG
F~G
K60
K6~
L.-
M0C
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/stats6020043
DatabaseName CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Databases
Business Premium Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 2571-905X
EndPage 688
ExternalDocumentID oai_doaj_org_article_cfdf8cd968c14af49394c768a5da4ff1
A758681554
10_3390_stats6020043
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 7WY
8FL
AADQD
AAFWJ
AAYXX
ABUWG
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
BENPR
BEZIV
CCPQU
CITATION
DWQXO
FRNLG
GROUPED_DOAJ
IAO
INS
ITC
M0C
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PMFND
3V.
7XB
8FK
AZQEC
K60
K6~
L.-
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c406t-bf65eedf2ad3c24cea8b2c83d7c897dac2bc398ec3182cc6b5739039d1e6678d3
IEDL.DBID DOA
ISSN 2571-905X
IngestDate Wed Aug 27 01:18:16 EDT 2025
Mon Jun 30 06:47:25 EDT 2025
Tue Jun 10 21:06:29 EDT 2025
Tue Jul 01 00:26:34 EDT 2025
Thu Apr 24 22:55:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-bf65eedf2ad3c24cea8b2c83d7c897dac2bc398ec3182cc6b5739039d1e6678d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7798-5165
OpenAccessLink https://doaj.org/article/cfdf8cd968c14af49394c768a5da4ff1
PQID 2829870467
PQPubID 5046856
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_cfdf8cd968c14af49394c768a5da4ff1
proquest_journals_2829870467
gale_infotracacademiconefile_A758681554
crossref_primary_10_3390_stats6020043
crossref_citationtrail_10_3390_stats6020043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Stats (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Wright (ref_32) 2011; 43
Hearn (ref_14) 2017; 208
Hancock (ref_26) 2006; 13
Campbell (ref_13) 2021; 90
Duncan (ref_8) 2004; 35
Mick (ref_15) 1998; 12
(ref_24) 2002; 29
ref_12
Schminkey (ref_11) 2016; 39
Robins (ref_5) 1995; 90
Asher (ref_17) 2017; 56
Lane (ref_7) 2018; 35
Park (ref_3) 2009; 29
Morrison (ref_16) 2013; 9
ref_25
ref_23
ref_22
Liang (ref_4) 1986; 73
ref_20
Curran (ref_9) 1997; 2
ref_1
Asparouhov (ref_29) 2010; 29
ref_2
Sylvestre (ref_18) 2020; 39
Kashdan (ref_19) 2006; 30
ref_28
Duncan (ref_10) 2009; 3
ref_27
Demir (ref_31) 2022; 9
Pruessner (ref_21) 2003; 28
Matore (ref_30) 2020; 13
Yang (ref_6) 2022; 41
References_xml – volume: 39
  start-page: 33
  year: 2020
  ident: ref_18
  article-title: Not flourishing mental health is associated with higher risks of anxiety and depressive symptoms in college students
  publication-title: Can. J. Community Ment. Health
  doi: 10.7870/cjcmh-2020-003
– volume: 3
  start-page: 979
  year: 2009
  ident: ref_10
  article-title: The ABC’s of LGM: An introductory guide to latent variable growth curve modeling
  publication-title: Soc. Personal. Psychol. Compass
  doi: 10.1111/j.1751-9004.2009.00224.x
– ident: ref_12
  doi: 10.3390/stats6010022
– volume: 9
  start-page: 397
  year: 2022
  ident: ref_31
  article-title: Comparison of normality tests in terms of sample sizes under different skewness and Kurtosis coefficients
  publication-title: Int. J. Assess. Tools Educ.
  doi: 10.21449/ijate.1101295
– volume: 9
  start-page: 249
  year: 2013
  ident: ref_16
  article-title: Social anxiety and social anxiety disorder
  publication-title: Annu. Rev. Clin. Psychol.
  doi: 10.1146/annurev-clinpsy-050212-185631
– volume: 29
  start-page: 81
  year: 2002
  ident: ref_24
  article-title: beyond SEM: General latent variable modeling
  publication-title: Behaviormetrika
  doi: 10.2333/bhmk.29.81
– volume: 29
  start-page: 238
  year: 2010
  ident: ref_29
  article-title: Multiple imputation with Mplus
  publication-title: MPlus Web Notes
– volume: 43
  start-page: 8
  year: 2011
  ident: ref_32
  article-title: Problematic standard errors and confidence intervals for skewness and kurtosis
  publication-title: Behav. Res. Methods
  doi: 10.3758/s13428-010-0044-x
– ident: ref_23
– ident: ref_1
  doi: 10.4324/9781315814919
– volume: 39
  start-page: 286
  year: 2016
  ident: ref_11
  article-title: Handling missing data with multilevel structural equation modeling and full information maximum likelihood techniques
  publication-title: Res. Nurs. Health
  doi: 10.1002/nur.21724
– volume: 90
  start-page: 106
  year: 1995
  ident: ref_5
  article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1995.10476493
– volume: 35
  start-page: 333
  year: 2004
  ident: ref_8
  article-title: An introduction to latent growth curve modeling
  publication-title: Behav. Ther.
  doi: 10.1016/S0005-7894(04)80042-X
– volume: 2
  start-page: 371
  year: 1997
  ident: ref_9
  article-title: General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation
  publication-title: Psychol. Methods
  doi: 10.1037/1082-989X.2.4.371
– ident: ref_25
– volume: 208
  start-page: 33
  year: 2017
  ident: ref_14
  article-title: A worrying trend in Social Anxiety: To what degree are worry and its cognitive factors associated with youth Social Anxiety Disorder?
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2016.09.052
– volume: 30
  start-page: 749
  year: 2006
  ident: ref_19
  article-title: Social anxiety and positive outcome expectancies on risk-taking behaviors
  publication-title: Cogn. Ther. Res.
  doi: 10.1007/s10608-006-9017-x
– ident: ref_27
– ident: ref_2
– volume: 12
  start-page: 1
  year: 1998
  ident: ref_15
  article-title: Social Anxiety and History of Behavioral Inhibition in Young Adults
  publication-title: J. Anxiety Disord.
  doi: 10.1016/S0887-6185(97)00046-7
– volume: 90
  start-page: 45
  year: 2021
  ident: ref_13
  article-title: Greater adolescent tiredness is related to more emotional arousal during a hyperventilation task: An area under the curve approach
  publication-title: J. Adolesc.
  doi: 10.1016/j.adolescence.2021.05.008
– volume: 56
  start-page: 1
  year: 2017
  ident: ref_17
  article-title: Gender differences in social anxiety disorder: A review
  publication-title: Clin. Psychol. Rev.
  doi: 10.1016/j.cpr.2017.05.004
– volume: 28
  start-page: 916
  year: 2003
  ident: ref_21
  article-title: Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/S0306-4530(02)00108-7
– volume: 13
  start-page: 688
  year: 2020
  ident: ref_30
  article-title: The pattern of skewness and kurtosis using mean score and logit in measuring adversity quotient (AQ) for normality testing
  publication-title: Int. J. Future Gener. Commun. Netw.
– volume: 73
  start-page: 13
  year: 1986
  ident: ref_4
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
– volume: 35
  start-page: 7
  year: 2018
  ident: ref_7
  article-title: Power struggles: Estimating sample size for multilevel relationships research
  publication-title: J. Soc. Pers. Relatsh.
  doi: 10.1177/0265407517710342
– volume: 13
  start-page: 352
  year: 2006
  ident: ref_26
  article-title: A vernacular for linear latent growth models
  publication-title: Struct. Equ. Model.
  doi: 10.1207/s15328007sem1303_2
– ident: ref_22
– volume: 41
  start-page: 4403
  year: 2022
  ident: ref_6
  article-title: Adaptive response—Dependent two—Phase designs: Some results on robustness and efficiency
  publication-title: Stat. Med.
  doi: 10.1002/sim.9516
– ident: ref_20
– ident: ref_28
  doi: 10.1002/9781119013563
– volume: 29
  start-page: 1
  year: 2009
  ident: ref_3
  article-title: Correct use of repeated measures analysis of variance
  publication-title: Korean J. Lab. Med.
SSID ssj0002769484
Score 2.2358122
Snippet Researchers conducting longitudinal data analysis in psychology and the behavioral sciences have several statistical methods to choose from, most of which...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 674
SubjectTerms area under the curve
Data analysis
Dependent variables
Electronic data processing
Growth curve modeling
Hypothesis testing
latent growth curve modeling
longitudinal data
Methods
Monte Carlo method
Monte Carlo simulation study
multiple imputation
Parameter estimation
Research methodology
Social anxiety
Software
Within-subjects design
Young adults
SummonAdditionalLinks – databaseName: ProQuest Databases
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Bb9UwDI5gu-yCtgHisQ35AOKAqr02aZuc0NvYmBCbJsTQblHqpANpakfbx-_iJ2K3eQ92GMembtX37Nj-7NgW4nU6r-dlJQmmquAS5Tm_S5suCXmOVc6ZpjHgdn5RnF2pT9f5dQy49fFY5Uonjorat8gx8kPO-JFs0b5-f_cz4alRnF2NIzQei01SwZrA1-bRycXll3WUJSsLo7SaTrxLwveHXKfTF3MWDnnPFo0t-x9SzKO1Od0WT6KbCIuJrzviUWh2xRZ7hlNj5afi94LcPeASsA7IiYPjZfcrgOvBNbC4jWE-Whla-Ez-ZDPAR0Lcw_dIyDPQuBIdSBvTA2Pqly_5VVNH4x7aGi47TuQQLodvBKq5zIqWGyC3nXR48HA-hRhHWgfc6upHs2yXPXyIw3WH9YPPxNXpydfjsySOX0iQrPyQVHWRkwWtM-clZgqD01WGWvoStSm9w6xCaXRAUgsZYlHlJf3B0vg0FGQCvXwuNpq2CS8EYECVoTe-dAQopXHG-_Fdck5rqZmJdytGWIy9yXlExq0ljMJss_-ybSberKnvpp4cD9AdMU_XNNxJe1xouxsbN6bF2teaPq3QmCpXKyONQsJgLvdO1XU6E29ZIizvd_okdLFsgX4Yd86yCwJchWavbCb2V0JjoyLo7V-xffn_23tiiyfZT6fQ9sXG0C3DAfk7Q_UqCvUfeyIE6Q
  priority: 102
  providerName: ProQuest
Title Area under the Curve as an Alternative to Latent Growth Curve Modeling When Assessing the Effects of Predictor Variables on Repeated Measures of a Continuous Dependent Variable
URI https://www.proquest.com/docview/2829870467
https://doaj.org/article/cfdf8cd968c14af49394c768a5da4ff1
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QufSCeIqFtvIBxAGNujvJPHLcvqgQrSpEUW9RxkkEqJpFO7P9Xf2JtZN0tT1UXDhO5BllYsf2F8e2EB9m0zBtOkkwVXlbKMfxXdp0ha8q7CqONMUDt7Pz-vRSfb2qrjZaffGdsFQeOC3cPgYXWnS6bnGmbFBaaoXkI9vKWRVCBD5k8zbA1J8YTqu1alW66S4J1-9zfs5QT1ko5AMbFEv1P6aQo5U5eS6eZfcQ5mlaL8QT378U2-wRpoLKr8TtnNw84NSvJZDzBoer5Y0HO4DtYX6dj_doZFzAN_Ij-xG-ENIef2VC7n3GGehAWpheiCFffuRPpUrGAywCXCw5gEN4HH4SmOb0Khrugdx10t3ewVk6Woy0FrjE1e9-tVgNcJSb6o7rF1-Ly5PjH4enRW67UCBZ97HoQl2R5QyldRJLhd62XYmtdA22unEWyw6lbj2SOigR665qaIGldjNfk-lz8o3Y6he9fysAPaqSmOcaS0BSaqudi9-SUxqb6Yn4fM8Ig7kmObfGuDaETZhtZpNtE_FxTf031eJ4hO6Aebqm4QracYDkymS5Mv-Sq4n4xBJheJ_TlNDmdAX6Ma6YZeYEtOqWvbGJ2LkXGpMVwGA4QE2qkMzQu_8xm_dim_vcpztqO2JrXK78LnlDY7cnnh4cn19834sb4A6ALQ7u
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbK9kAviKdYWsAHKg4oamI7Dx8Q2r7Y0t1VhVrUm3FspyBVSZtkQfwpxE9kJnEWOJRbj3FsK9GMZ-ab8cwQ8ioKizDNOcBU4XQgLMZ34dAFLo5NHmOkqXO4zRfJ9Ex8OI_P18jPIRcGr1UOMrET1LYy6CPfwYgf8Bac63dX1wF2jcLo6tBCo2eLY_fjO0C25u3RPtB3m7HDg9O9aeC7CgQGlFcb5EUSg2IomLbcMGGcznJmMm5Tk8nUasNyw2XmDHA7MybJ45TLkEsbuQQku-Ww7x2yLjhAmRFZ3z1YnHxceXVYmkiRif6GPYd1O5gX1CQhMiP_R_d1LQJuUgSddju8T-55s5ROej56QNZc-ZBsoCXaF3J-RH5NwLykmHJWUzAa6d6y_uaobqgu6eTSuxVhpK3oDOzXsqXvAeG3X_xE7LmGme8UpD8s6ELN-Ihb9RWUG1oV9KTGwFFb1fQTgHhM64LhkgJMAJ3hLJ33Ls1urqZYWutruayWDd33zXzb1cLH5OxWCPOEjMqqdE8JNc4IZqy0qQYAy6WW1nZ78RDGIjkmbwZCKONroWNLjksFmAjJpv4m25hsr2Zf9TVAbpi3izRdzcHK3d1AVV8oLwiUKWyRwaclmYmELoTkUhjAfDq2WhRFNCavkSMUyhf4JKN9mgT8GFbqUhMAeEmGVuCYbA1Mo7zgadSfY_Ls_69fkrvT0_lMzY4Wx5tkg4Ht1t-A2yKjtl6652BrtfkLz-CUfL7tM_UbdsdDjA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpbCfWCykssFPCBigOKNomdhw8IbbtdWtquVoii3ozjByBVSZtkQfwVZ76OmcRZ4FBuPcYZW4nmPeOZIeRFFLowKxi4qdyqgBvM7wLTBTZJdJFgpqkLuJ0u0sMz_u48Od8gv4ZaGLxWOcjETlCbSmOMfIIZP6At4OuJ89cilrP5m8urACdIYaZ1GKfRk8ix_fEd3Lfm9dEMcL0bx_ODD_uHgZ8wEGhQZG1QuDQBJeFiZZiOubYqL2KdM5PpXGRG6bjQTORWA-XHWqdFkjERMmEim4KUNwzOvUU2M_CKwhHZ3DtYLN-vIzxxlgqe8_62PYN9E6wRatIQCZP9owe7cQHXKYVO0823yR1votJpT1N3yYYt75EttEr7ps73yc8pmJoUy89qCgYk3V_V3yxVDVUlnV74ECOstBU9AVu2bOlb8PbbLx4Q569hFTwFTQAburQzPuJRfTflhlaOLmtMIrVVTT-CQ48lXrBcUnAZQH9YQ0_78GYHqyi22fparqpVQ2d-sG-73viAnN0IYh6SUVmV9hGh2moeayNMpsCZZUIJY7qzWAhrkRiTVwMipPZ90XE8x4UE_wjRJv9G25jsrqEv-34g18DtIU7XMNjFu1uo6s_SCwWpnXE5fFqa64grxwUTXIP_pxKjuHPRmLxEipAoa-CTtPIlE_Bj2LVLTsHZS3O0CMdkZyAa6YVQI_-wzOP_v35ObgMvyZOjxfETshWDGddfhtsho7Ze2adgdrXFM0_flHy6aZb6DQ3HR8E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Area+under+the+Curve+as+an+Alternative+to+Latent+Growth+Curve+Modeling+When+Assessing+the+Effects+of+Predictor+Variables+on+Repeated+Measures+of+a+Continuous+Dependent+Variable&rft.jtitle=Stats+%28Basel%2C+Switzerland%29&rft.au=Rodriguez%2C+Daniel&rft.date=2023-06-01&rft.issn=2571-905X&rft.eissn=2571-905X&rft.volume=6&rft.issue=2&rft.spage=674&rft.epage=688&rft_id=info:doi/10.3390%2Fstats6020043&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_stats6020043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2571-905X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2571-905X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2571-905X&client=summon