Thermodynamics of Brans–Dicke–BTZ black holes coupled to conformal-invariant electrodynamics
The field equations of Brans–Dicke conformal-invariant theory in (2+1)-dimensions are highly nonlinear and difficult to solve directly. They are related to those of Einstein–dilaton theory, where the solutions can be obtained easily, by use of a mathematical tool known as the conformal transformatio...
Saved in:
Published in | Progress of theoretical and experimental physics Vol. 2023; no. 5 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-3911 2050-3911 |
DOI | 10.1093/ptep/ptad053 |
Cover
Abstract | The field equations of Brans–Dicke conformal-invariant theory in (2+1)-dimensions are highly nonlinear and difficult to solve directly. They are related to those of Einstein–dilaton theory, where the solutions can be obtained easily, by use of a mathematical tool known as the conformal transformation. The exact solutions of three-dimensional Brans–Dicke theory, which are obtained from their Einstein-dilaton counterparts, give two novel classes of conformal-invariant black holes. When the scalar potential is absent (or is considered constant) in the action, it has been shown that the exact solution of this theory is just the conformal-invariant BTZ black hole with a trivial constant scalar field. This issue corresponds to the four-dimensional Brans–Dicke–Maxwell theory discussed in Ref. [R.-G. Cai, Y. S. Myung, Phys. Rev. D 56, 3466 (1997)]. The Brans–Dicke conformal-invariant black holes’ thermodynamic quantities have been calculated by use of the appropriator methods, and it has been shown that they satisfy the first law of black hole thermodynamics in its standard form. The thermal stability of Brans–Dicke black holes has been studied by use of the canonical ensemble method and noting the signature of the black holes’ heat capacity. |
---|---|
AbstractList | The field equations of Brans–Dicke conformal-invariant theory in (2+1)-dimensions are highly nonlinear and difficult to solve directly. They are related to those of Einstein–dilaton theory, where the solutions can be obtained easily, by use of a mathematical tool known as the conformal transformation. The exact solutions of three-dimensional Brans–Dicke theory, which are obtained from their Einstein-dilaton counterparts, give two novel classes of conformal-invariant black holes. When the scalar potential is absent (or is considered constant) in the action, it has been shown that the exact solution of this theory is just the conformal-invariant BTZ black hole with a trivial constant scalar field. This issue corresponds to the four-dimensional Brans–Dicke–Maxwell theory discussed in Ref. [R.-G. Cai, Y. S. Myung, Phys. Rev. D 56, 3466 (1997)]. The Brans–Dicke conformal-invariant black holes’ thermodynamic quantities have been calculated by use of the appropriator methods, and it has been shown that they satisfy the first law of black hole thermodynamics in its standard form. The thermal stability of Brans–Dicke black holes has been studied by use of the canonical ensemble method and noting the signature of the black holes’ heat capacity. The field equations of Brans–Dicke conformal-invariant theory in (2+1)-dimensions are highly nonlinear and difficult to solve directly. They are related to those of Einstein–dilaton theory, where the solutions can be obtained easily, by use of a mathematical tool known as the conformal transformation. The exact solutions of three-dimensional Brans–Dicke theory, which are obtained from their Einstein-dilaton counterparts, give two novel classes of conformal-invariant black holes. When the scalar potential is absent (or is considered constant) in the action, it has been shown that the exact solution of this theory is just the conformal-invariant BTZ black hole with a trivial constant scalar field. This issue corresponds to the four-dimensional Brans–Dicke–Maxwell theory discussed in Ref. [R.-G. Cai, Y. S. Myung, Phys. Rev. D 56, 3466 (1997)]. The Brans–Dicke conformal-invariant black holes’ thermodynamic quantities have been calculated by use of the appropriator methods, and it has been shown that they satisfy the first law of black hole thermodynamics in its standard form. The thermal stability of Brans–Dicke black holes has been studied by use of the canonical ensemble method and noting the signature of the black holes’ heat capacity. |
Author | Dehghani, M |
Author_xml | – sequence: 1 givenname: M surname: Dehghani fullname: Dehghani, M email: m.dehghani@razi.ac.ir |
BookMark | eNp9kL1OwzAUhS1UJErpxgNEYmAhcG0ncTPS8itVYikLS3AcR3Wb2MF2K3XjHXhDngRXrRBCguWeO3znXN1zjHraaInQKYZLDDm96rzswuAVpPQA9QmkENMc496P_QgNnVsAAAbGIMF99DqbS9uaaqN5q4SLTB2NLdfu8_3jRomlDDqevURlw8UymptGukiYVdfIKvImrLo2tuVNrPSaW8W1j2QjhbffiSfosOaNk8O9DtDz3e1s8hBPn-4fJ9fTWCSQ-bhMWZLlZS1ZlUpMOKNkJEaZTNIEaEYpg5zXGWWyommGR0l4oC6rkvCSlpgGZoDOdrmdNW8r6XyxMCurw8mCYoZzAoRkgbrYUcIa56ysi86qlttNgaHY1lhsayz2NQac_MKF8twro73lqvnLdL4zhZ7-j_8CyhSKVw |
CitedBy_id | crossref_primary_10_1140_epjc_s10052_023_11917_w crossref_primary_10_1093_ptep_ptad128 |
Cites_doi | 10.1016/j.physletb.2008.10.001 10.1088/1475-7516/2022/05/017 10.1103/PhysRevD.91.064009 10.1103/PhysRevD.73.104003 10.1140/epjc/s10052-016-4106-9 10.1088/0264-9381/23/17/003 10.1063/1.1666069 10.1103/PhysRevD.91.044035 10.1088/1361-6382/ab23d9 10.1103/PhysRev.124.925 10.1093/ptep/ptaa017 10.1016/j.physletb.2009.07.056 10.1140/epjc/s10052-016-4235-1 10.1093/ptep/ptad033 10.3390/universe4110125 10.1103/PhysRevLett.108.081103 10.1098/rspa.1938.0053 10.1007/s10714-006-0275-4 10.1088/1361-6382/abdf6f 10.1103/PhysRevD.89.104019 10.1103/PhysRevD.96.104017 10.1142/S0218271806008814 10.1140/epjp/i2019-13046-8 10.1103/PhysRevD.94.104071 10.1007/JHEP03(2016)203 10.1103/PhysRevD.72.124006 10.1016/j.physletb.2017.08.003 10.1103/PhysRevD.90.044055 10.1142/S0217732315501771 10.1103/PhysRevD.100.084019 10.1088/0264-9381/13/3/010 10.1086/307221 10.1103/PhysRevD.92.104035 10.1103/PhysRevD.99.024001 10.1103/PhysRevD.96.044025 10.1142/S0218271809015904 10.1103/PhysRevLett.83.670 10.1016/0550-3213(76)90406-5 10.1140/epjc/s10052-022-10251-x 10.1007/JHEP07(2012)053 10.1063/1.1665613 10.1007/BF01877518 10.1086/383612 10.1103/PhysRevD.99.104036 10.1103/PhysRevLett.116.061102 10.1142/S0217751X10049700 10.1103/PhysRevD.86.024013 10.1016/j.physletb.2019.04.058 10.1103/PhysRevD.47.5400 10.1103/PhysRevD.51.4208 10.1088/0031-8949/87/04/045004 10.1016/j.physletb.2008.07.002 10.1103/PhysRevD.76.024011 10.1142/S0217732322502054 10.1142/S021827180901531X 10.1103/PhysRevD.96.044014 10.1007/JHEP10(2021)050 10.1103/PhysRevD.90.044028 10.1016/j.physletb.2017.12.048 10.1103/PhysRevD.56.3466 10.1155/2016/9813582 10.1103/PhysRevD.78.064017 10.1088/1475-7516/2007/04/009 10.1140/epjp/i2018-12267-7 10.1103/PhysRevD.100.044022 10.1103/PhysRevD.74.024002 10.1007/JHEP11(2013)006 10.1103/PhysRevD.86.104034 10.1103/PhysRevD.97.044030 10.1103/PhysRevD.41.3696 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023 The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023 – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1093/ptep/ptad053 |
DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Databases url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2050-3911 |
ExternalDocumentID | 10_1093_ptep_ptad053 10.1093/ptep/ptad053 |
GroupedDBID | .I3 0R~ 4.4 5VS AAFWJ AAMVS AAPPN AAPXW AAVAP ABEJV ABGNP ABPTD ABXVV ACGFS ADHZD AENEX AENZO AFPKN AFULF AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL BAYMD BTTYL CIDKT D~K EBS EJD ER. GROUPED_DOAJ H13 IAO ISR ITC KQ8 KSI M~E O9- OAWHX OJQWA OK1 PEELM RHF ROL ROX RXO TOX ~D7 88I AAYXX ABUWG AFKRA AZQEC BENPR CCPQU CITATION DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c406t-b57469bfe7d5e12a7328c86e45403633709af637ed356184107fbdb2ab3b13403 |
IEDL.DBID | BENPR |
ISSN | 2050-3911 |
IngestDate | Mon Jun 30 12:26:49 EDT 2025 Tue Jul 01 02:09:16 EDT 2025 Thu Apr 24 23:12:51 EDT 2025 Fri Jan 31 08:06:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-b57469bfe7d5e12a7328c86e45403633709af637ed356184107fbdb2ab3b13403 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3171920226?pq-origsite=%requestingapplication% |
PQID | 3171920226 |
PQPubID | 7121340 |
ParticipantIDs | proquest_journals_3171920226 crossref_primary_10_1093_ptep_ptad053 crossref_citationtrail_10_1093_ptep_ptad053 oup_primary_10_1093_ptep_ptad053 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Progress of theoretical and experimental physics |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Scheel (2023051009181029500_bib37) 1995; 51 Sheykhi (2023051009181029500_bib43) 2009; 18 Kord Zangeneh (2023051009181029500_bib72) 2015; 91 Nashed (2023051009181029500_bib24) 2022; 2205 Cai (2023051009181029500_bib1) 1997; 56 Nashed (2023051009181029500_bib23) 2019; 36 Sheykhi (2023051009181029500_bib58) 2014; 89 Hawking (2023051009181029500_bib38) 1972; 25 Dehghani (2023051009181029500_bib65) 2018; 133 Dirac (2023051009181029500_bib11) 1938; 165 Riess (2023051009181029500_bib9) 2004; 607 Dehghani (2023051009181029500_bib64) 2023; 2023 Salarpour (2023051009181029500_bib20) 2013; 87 Ghodrati (2023051009181029500_bib34) 2014; 90 Amarilla (2023051009181029500_bib18) 2010; 25 Hendi (2023051009181029500_bib55) 2016; 76 Ling (2023051009181029500_bib33) 2013; 11 Corda (2023051009181029500_bib3) 2007; 04 Demetrian (2023051009181029500_bib17) 2006; 38 Giddings (2023051009181029500_bib46) Dehghani (2023051009181029500_bib69) 2019; 134 Hendi (2023051009181029500_bib42) 2016; 76 Dehghani (2023051009181029500_bib54) 2017; 96 Hendi (2023051009181029500_bib41) 2017; 2017 Lovelock (2023051009181029500_bib13) 1972; 13 Englert (2023051009181029500_bib47) 1976; 117 Dehghani (2023051009181029500_bib51) 2022; 82 Fan (2023051009181029500_bib27) 2015; 91 Habib Mazharimousavi (2023051009181029500_bib52) 2015; 30 Dehghani (2023051009181029500_bib70) 2019; 793 Capozziello (2023051009181029500_bib5) 2008; 669 Sheykhi (2023051009181029500_bib19) 2012; 86 Perlmutter (2023051009181029500_bib7) 1999; 517 Dehghani (2023051009181029500_bib30) 2016; 03 Corda (2023051009181029500_bib6) 2009; 18 Sheykhi (2023051009181029500_bib40) 2009; 679 Sotiriou (2023051009181029500_bib66) 2012; 108 Abbott (2023051009181029500_bib2) 2016; 116 Brans (2023051009181029500_bib35) 1961; 124 Hendi (2023051009181029500_bib21) 2016; 2016 Harvey (2023051009181029500_bib45) Dehghani (2023051009181029500_bib74) 2019; 100 Dehghani (2023051009181029500_bib60) 2018; 97 Dehghani (2023051009181029500_bib68) 2019; 99 Dehghani (2023051009181029500_bib76) 2020; 2020 Sotiriou (2023051009181029500_bib31) 2006; 23 Dehghani (2023051009181029500_bib53) 2016; 94 Weinberg (2023051009181029500_bib10) 1972 Dehghani (2023051009181029500_bib29) 2005; 72 Capozziello (2023051009181029500_bib4) 2006; 15 Dehghani (2023051009181029500_bib67) 2022; 37 Hendi (2023051009181029500_bib14) 2008; 666 Green (2023051009181029500_bib36) 1987 Callosh (2023051009181029500_bib73) 1993; 47 Sheykhi (2023051009181029500_bib75) 2014; 90 Zangeneh (2023051009181029500_bib44) 2015; 92 Rachwal (2023051009181029500_bib48) 2018; 4 Lovelock (2023051009181029500_bib12) 1971; 12 Perlmutter (2023051009181029500_bib8) 1999; 83 Dehghani (2023051009181029500_bib56) 2017; 96 Cai (2023051009181029500_bib32) 2007; 76 de Oliveira (2023051009181029500_bib39) 1996; 13 Deruelle (2023051009181029500_bib15) 1990; 41 Dehghani (2023051009181029500_bib28) 2006; 73 Dehghani (2023051009181029500_bib61) 2019; 99 González (2023051009181029500_bib22) 2012; 1207 Dehghani (2023051009181029500_bib59) 2017; 96 Gergely (2023051009181029500_bib16) 2006; 74 Dehghani (2023051009181029500_bib57) 2017; 773 Hendi (2023051009181029500_bib26) 2014; 23 Pourhassan (2023051009181029500_bib49) 2021; 10 Dehghani (2023051009181029500_bib71) 2018; 777 Faraoni (2023051009181029500_bib62) 2008; 78 Dehghani (2023051009181029500_bib63) 2019; 100 Hendi (2023051009181029500_bib25) 2012; 86 Pourhassan (2023051009181029500_bib50) 2021; 38 |
References_xml | – volume: 669 start-page: 255 year: 2008 ident: 2023051009181029500_bib5 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2008.10.001 – volume: 2205 start-page: 017 year: 2022 ident: 2023051009181029500_bib24 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2022/05/017 – volume: 91 start-page: 064009 year: 2015 ident: 2023051009181029500_bib27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.064009 – volume: 73 start-page: 104003 year: 2006 ident: 2023051009181029500_bib28 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.73.104003 – volume: 76 start-page: 263 year: 2016 ident: 2023051009181029500_bib42 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-4106-9 – volume: 23 start-page: 5117 year: 2006 ident: 2023051009181029500_bib31 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/23/17/003 – volume: 13 start-page: 874 year: 1972 ident: 2023051009181029500_bib13 publication-title: J. Math. Phys. doi: 10.1063/1.1666069 – volume: 91 start-page: 044035 year: 2015 ident: 2023051009181029500_bib72 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.044035 – volume: 36 start-page: 135005 year: 2019 ident: 2023051009181029500_bib23 publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/ab23d9 – volume: 124 start-page: 925 year: 1961 ident: 2023051009181029500_bib35 publication-title: Phys. Rev. doi: 10.1103/PhysRev.124.925 – volume: 2020 start-page: 033E03 year: 2020 ident: 2023051009181029500_bib76 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptaa017 – volume: 679 start-page: 311 year: 2009 ident: 2023051009181029500_bib40 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2009.07.056 – ident: 2023051009181029500_bib46 – volume: 76 start-page: 396 year: 2016 ident: 2023051009181029500_bib55 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-4235-1 – volume: 2023 start-page: 033E03 year: 2023 ident: 2023051009181029500_bib64 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptad033 – volume: 4 start-page: 125 year: 2018 ident: 2023051009181029500_bib48 publication-title: Universe doi: 10.3390/universe4110125 – volume: 108 start-page: 081103 year: 2012 ident: 2023051009181029500_bib66 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.081103 – volume: 165 start-page: 199 year: 1938 ident: 2023051009181029500_bib11 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1938.0053 – volume: 38 start-page: 953 year: 2006 ident: 2023051009181029500_bib17 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-006-0275-4 – volume: 38 start-page: 105001 year: 2021 ident: 2023051009181029500_bib50 publication-title: Class. Quantum Grav. doi: 10.1088/1361-6382/abdf6f – volume: 89 start-page: 104019 year: 2014 ident: 2023051009181029500_bib58 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.104019 – volume: 96 start-page: 104017 year: 2017 ident: 2023051009181029500_bib59 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.104017 – volume: 15 start-page: 1119 year: 2006 ident: 2023051009181029500_bib4 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271806008814 – volume-title: Superstring Theory year: 1987 ident: 2023051009181029500_bib36 – volume: 134 start-page: 515 year: 2019 ident: 2023051009181029500_bib69 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2019-13046-8 – volume: 94 start-page: 104071 year: 2016 ident: 2023051009181029500_bib53 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.104071 – volume: 03 start-page: 203 year: 2016 ident: 2023051009181029500_bib30 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2016)203 – volume: 72 start-page: 124006 year: 2005 ident: 2023051009181029500_bib29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.72.124006 – volume: 773 start-page: 105 year: 2017 ident: 2023051009181029500_bib57 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.08.003 – volume: 90 start-page: 044055 year: 2014 ident: 2023051009181029500_bib34 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.044055 – volume: 23 start-page: 1550088 year: 2014 ident: 2023051009181029500_bib26 publication-title: Int. J. Mod. Phys. D – volume: 30 start-page: 1550177 year: 2015 ident: 2023051009181029500_bib52 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732315501771 – volume: 100 start-page: 084019 year: 2019 ident: 2023051009181029500_bib63 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.084019 – volume: 13 start-page: 425 year: 1996 ident: 2023051009181029500_bib39 publication-title: Class. Quantum Grav. doi: 10.1088/0264-9381/13/3/010 – volume: 517 start-page: 565 year: 1999 ident: 2023051009181029500_bib7 publication-title: Astrophys. J. doi: 10.1086/307221 – volume: 92 start-page: 104035 year: 2015 ident: 2023051009181029500_bib44 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.104035 – volume: 99 start-page: 024001 year: 2019 ident: 2023051009181029500_bib68 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.024001 – volume: 96 start-page: 044025 year: 2017 ident: 2023051009181029500_bib54 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.044025 – volume: 18 start-page: 2275 year: 2009 ident: 2023051009181029500_bib6 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271809015904 – volume: 83 start-page: 670 year: 1999 ident: 2023051009181029500_bib8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.670 – volume: 117 start-page: 407 year: 1976 ident: 2023051009181029500_bib47 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(76)90406-5 – volume: 82 start-page: 367 year: 2022 ident: 2023051009181029500_bib51 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-10251-x – volume: 1207 start-page: 053 year: 2012 ident: 2023051009181029500_bib22 publication-title: J. High Energy Phys. doi: 10.1007/JHEP07(2012)053 – volume: 12 start-page: 498 year: 1971 ident: 2023051009181029500_bib12 publication-title: J. Math. Phys. doi: 10.1063/1.1665613 – volume: 25 start-page: 167 year: 1972 ident: 2023051009181029500_bib38 publication-title: Commun. Math. Phys. doi: 10.1007/BF01877518 – volume: 607 start-page: 665 year: 2004 ident: 2023051009181029500_bib9 publication-title: Astrophys. J. doi: 10.1086/383612 – volume-title: Gravitation and Cosmology year: 1972 ident: 2023051009181029500_bib10 – volume: 99 start-page: 104036 year: 2019 ident: 2023051009181029500_bib61 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.104036 – volume: 116 start-page: 061102 year: 2016 ident: 2023051009181029500_bib2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.061102 – volume: 25 start-page: 3835 year: 2010 ident: 2023051009181029500_bib18 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X10049700 – volume: 86 start-page: 024013 year: 2012 ident: 2023051009181029500_bib19 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.86.024013 – volume: 793 start-page: 234 year: 2019 ident: 2023051009181029500_bib70 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.04.058 – volume: 47 start-page: 5400 year: 1993 ident: 2023051009181029500_bib73 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.47.5400 – volume: 51 start-page: 4208 year: 1995 ident: 2023051009181029500_bib37 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.51.4208 – volume: 87 start-page: 045004 year: 2013 ident: 2023051009181029500_bib20 publication-title: Phys. Scr. doi: 10.1088/0031-8949/87/04/045004 – volume: 666 start-page: 116 year: 2008 ident: 2023051009181029500_bib14 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2008.07.002 – volume: 76 start-page: 024011 year: 2007 ident: 2023051009181029500_bib32 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.76.024011 – ident: 2023051009181029500_bib45 – volume: 2017 start-page: 7158697 year: 2017 ident: 2023051009181029500_bib41 publication-title: Adv. High Energy Phys. – volume: 37 start-page: 2250205 year: 2022 ident: 2023051009181029500_bib67 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732322502054 – volume: 18 start-page: 1773 year: 2009 ident: 2023051009181029500_bib43 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S021827180901531X – volume: 96 start-page: 044014 year: 2017 ident: 2023051009181029500_bib56 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.044014 – volume: 10 start-page: 050 year: 2021 ident: 2023051009181029500_bib49 publication-title: J. High Energy Phys. doi: 10.1007/JHEP10(2021)050 – volume: 90 start-page: 044028 year: 2014 ident: 2023051009181029500_bib75 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.044028 – volume: 777 start-page: 351 year: 2018 ident: 2023051009181029500_bib71 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.12.048 – volume: 56 start-page: 3466 year: 1997 ident: 2023051009181029500_bib1 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.56.3466 – volume: 2016 start-page: 9813582 year: 2016 ident: 2023051009181029500_bib21 publication-title: Adv. High Energy Phys. doi: 10.1155/2016/9813582 – volume: 78 start-page: 064017 year: 2008 ident: 2023051009181029500_bib62 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.064017 – volume: 04 start-page: 009 year: 2007 ident: 2023051009181029500_bib3 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2007/04/009 – volume: 133 start-page: 474 year: 2018 ident: 2023051009181029500_bib65 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2018-12267-7 – volume: 100 start-page: 044022 year: 2019 ident: 2023051009181029500_bib74 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.044022 – volume: 74 start-page: 024002 year: 2006 ident: 2023051009181029500_bib16 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.74.024002 – volume: 11 start-page: 006 year: 2013 ident: 2023051009181029500_bib33 publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2013)006 – volume: 86 start-page: 104034 year: 2012 ident: 2023051009181029500_bib25 publication-title: Phys. Rev D doi: 10.1103/PhysRevD.86.104034 – volume: 97 start-page: 044030 year: 2018 ident: 2023051009181029500_bib60 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.97.044030 – volume: 41 start-page: 3696 year: 1990 ident: 2023051009181029500_bib15 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.41.3696 |
SSID | ssj0001077041 |
Score | 2.3215127 |
Snippet | The field equations of Brans–Dicke conformal-invariant theory in (2+1)-dimensions are highly nonlinear and difficult to solve directly. They are related to... The field equations of Brans–Dicke conformal-invariant theory in (2+1)-dimensions are highly nonlinear and difficult to solve directly. They are related to... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Black holes Entropy Gravitational waves Gravity Hypotheses Quantum field theory Spacetime Theory of relativity Thermodynamics |
Title | Thermodynamics of Brans–Dicke–BTZ black holes coupled to conformal-invariant electrodynamics |
URI | https://www.proquest.com/docview/3171920226 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NS8MwFA-6Xbz4LU7nyEFPUtaaNtlO4nRjCE6RDYaXmk8YzHau1bP_g_-hf4kva-rYQb2khT5SeMn7zMv7IXSqjC9YIIwXagUBigGRavGQeEKAu041WDBjLzjfDWh_FN6Oo7FLuGWurLLUiQtFrVJpc-RNsHPgjIDFoZezV8-iRtnTVQehsY6qoIJbsM-rne7g4XGZZfEZ88PAVbxD9N6c5XoGA1d-RFZs0cr9tlIhL6xMbxttOvcQXxXruYPWdLKLtpyriJ0gZnvoGZZ3_pKqAk8-w6nBHWt1vj4-byYgmPDsDJ-wsOk5bCFwMyzhz1OYJE_htbiENPUmyTsEy8Bd7PBwyhn30ajXHV73PQeW4EmwybknIgaRrjCaqUgHF9w24ZEtqm2HPUIJYX6bG0qYViSyIC_AGSOUuOCCiIAAzQGqJGmiDxEmQMMYEW1uu31J3Q451wGXlErNCPdr6LxkWyxdJ3ELaDGNixNtElsmx47JNXT2Qz0rOmj8QoeBD_-Q1MvliZ2oZfFyYxz9_fkYbVis-KJasY4q-fxNn4BHkYuG2zaNRUQO4_B-_A0AftPd |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV29TsMwED6VdoCFf0ShgAc6oYikTuJ2QIjSVgXaCqEiIZZgJ45UqTSlCSA23oH34KF4Es6NQ8UATCxJJJ8c6Xz2d2f77gPYD0JTMEuEhi0DDFBCnFJVblNDCHTXXYkIFqoE527PbV_b5zfOTQ7es1wYda0yWxOnC3UQ-WqP_BBxDp0RRBz3ePxgKNYodbqaUWikZnEhX54xZIuPzho4vuVKpdXsn7YNzSpg-AheiSEchiGhCCULHGlVuKpW41ddqUrRUZdSZtZ46FImA-ooNhSMj0IRiAoXVFgUZbDfOSjYKqM1D4V6s3d5NdvVMRkzbUvfsDdr9HCcyDE-eGA69Bv2fcunywBgimqtZVjU7ig5Se1nBXJytApL2jUleuLHa3CH5jS5j4KUvz4mUUjqCuU-Xt8aA1wI8F3v3xKhtgOJotyNiY9_HmInSYSfadLT0BiMnjA4x9Ekmn8n63Edrv9FjRuQH0UjuQmEogxjVNS4qi7my5rNubS477q-ZJSbRTjI1Ob5unK5ItAYeukJOvWUkj2t5CKUv6THacWOH-QI6uEPkVI2PJ6e2rE3M8St35v3YL7d73a8zlnvYhsWFE99elOyBPlk8ih30JtJxK42IQJ3_221n7j1DQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamics+of+Brans%E2%80%93Dicke%E2%80%93BTZ+black+holes+coupled+to+conformal-invariant+electrodynamics&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Dehghani%2C+M&rft.date=2023-05-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2023&rft.issue=5&rft_id=info:doi/10.1093%2Fptep%2Fptad053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptad053 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |