Thermodynamics of Brans–Dicke–BTZ black holes coupled to conformal-invariant electrodynamics

The field equations of Brans–Dicke conformal-invariant theory in (2+1)-dimensions are highly nonlinear and difficult to solve directly. They are related to those of Einstein–dilaton theory, where the solutions can be obtained easily, by use of a mathematical tool known as the conformal transformatio...

Full description

Saved in:
Bibliographic Details
Published inProgress of theoretical and experimental physics Vol. 2023; no. 5
Main Author Dehghani, M
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.05.2023
Subjects
Online AccessGet full text
ISSN2050-3911
2050-3911
DOI10.1093/ptep/ptad053

Cover

Abstract The field equations of Brans–Dicke conformal-invariant theory in (2+1)-dimensions are highly nonlinear and difficult to solve directly. They are related to those of Einstein–dilaton theory, where the solutions can be obtained easily, by use of a mathematical tool known as the conformal transformation. The exact solutions of three-dimensional Brans–Dicke theory, which are obtained from their Einstein-dilaton counterparts, give two novel classes of conformal-invariant black holes. When the scalar potential is absent (or is considered constant) in the action, it has been shown that the exact solution of this theory is just the conformal-invariant BTZ black hole with a trivial constant scalar field. This issue corresponds to the four-dimensional Brans–Dicke–Maxwell theory discussed in Ref. [R.-G. Cai, Y. S. Myung, Phys. Rev. D 56, 3466 (1997)]. The Brans–Dicke conformal-invariant black holes’ thermodynamic quantities have been calculated by use of the appropriator methods, and it has been shown that they satisfy the first law of black hole thermodynamics in its standard form. The thermal stability of Brans–Dicke black holes has been studied by use of the canonical ensemble method and noting the signature of the black holes’ heat capacity.
AbstractList The field equations of Brans–Dicke conformal-invariant theory in (2+1)-dimensions are highly nonlinear and difficult to solve directly. They are related to those of Einstein–dilaton theory, where the solutions can be obtained easily, by use of a mathematical tool known as the conformal transformation. The exact solutions of three-dimensional Brans–Dicke theory, which are obtained from their Einstein-dilaton counterparts, give two novel classes of conformal-invariant black holes. When the scalar potential is absent (or is considered constant) in the action, it has been shown that the exact solution of this theory is just the conformal-invariant BTZ black hole with a trivial constant scalar field. This issue corresponds to the four-dimensional Brans–Dicke–Maxwell theory discussed in Ref. [R.-G. Cai, Y. S. Myung, Phys. Rev. D 56, 3466 (1997)]. The Brans–Dicke conformal-invariant black holes’ thermodynamic quantities have been calculated by use of the appropriator methods, and it has been shown that they satisfy the first law of black hole thermodynamics in its standard form. The thermal stability of Brans–Dicke black holes has been studied by use of the canonical ensemble method and noting the signature of the black holes’ heat capacity.
The field equations of Brans–Dicke conformal-invariant theory in (2+1)-dimensions are highly nonlinear and difficult to solve directly. They are related to those of Einstein–dilaton theory, where the solutions can be obtained easily, by use of a mathematical tool known as the conformal transformation. The exact solutions of three-dimensional Brans–Dicke theory, which are obtained from their Einstein-dilaton counterparts, give two novel classes of conformal-invariant black holes. When the scalar potential is absent (or is considered constant) in the action, it has been shown that the exact solution of this theory is just the conformal-invariant BTZ black hole with a trivial constant scalar field. This issue corresponds to the four-dimensional Brans–Dicke–Maxwell theory discussed in Ref. [R.-G. Cai, Y. S. Myung, Phys. Rev. D 56, 3466 (1997)]. The Brans–Dicke conformal-invariant black holes’ thermodynamic quantities have been calculated by use of the appropriator methods, and it has been shown that they satisfy the first law of black hole thermodynamics in its standard form. The thermal stability of Brans–Dicke black holes has been studied by use of the canonical ensemble method and noting the signature of the black holes’ heat capacity.
Author Dehghani, M
Author_xml – sequence: 1
  givenname: M
  surname: Dehghani
  fullname: Dehghani, M
  email: m.dehghani@razi.ac.ir
BookMark eNp9kL1OwzAUhS1UJErpxgNEYmAhcG0ncTPS8itVYikLS3AcR3Wb2MF2K3XjHXhDngRXrRBCguWeO3znXN1zjHraaInQKYZLDDm96rzswuAVpPQA9QmkENMc496P_QgNnVsAAAbGIMF99DqbS9uaaqN5q4SLTB2NLdfu8_3jRomlDDqevURlw8UymptGukiYVdfIKvImrLo2tuVNrPSaW8W1j2QjhbffiSfosOaNk8O9DtDz3e1s8hBPn-4fJ9fTWCSQ-bhMWZLlZS1ZlUpMOKNkJEaZTNIEaEYpg5zXGWWyommGR0l4oC6rkvCSlpgGZoDOdrmdNW8r6XyxMCurw8mCYoZzAoRkgbrYUcIa56ysi86qlttNgaHY1lhsayz2NQac_MKF8twro73lqvnLdL4zhZ7-j_8CyhSKVw
CitedBy_id crossref_primary_10_1140_epjc_s10052_023_11917_w
crossref_primary_10_1093_ptep_ptad128
Cites_doi 10.1016/j.physletb.2008.10.001
10.1088/1475-7516/2022/05/017
10.1103/PhysRevD.91.064009
10.1103/PhysRevD.73.104003
10.1140/epjc/s10052-016-4106-9
10.1088/0264-9381/23/17/003
10.1063/1.1666069
10.1103/PhysRevD.91.044035
10.1088/1361-6382/ab23d9
10.1103/PhysRev.124.925
10.1093/ptep/ptaa017
10.1016/j.physletb.2009.07.056
10.1140/epjc/s10052-016-4235-1
10.1093/ptep/ptad033
10.3390/universe4110125
10.1103/PhysRevLett.108.081103
10.1098/rspa.1938.0053
10.1007/s10714-006-0275-4
10.1088/1361-6382/abdf6f
10.1103/PhysRevD.89.104019
10.1103/PhysRevD.96.104017
10.1142/S0218271806008814
10.1140/epjp/i2019-13046-8
10.1103/PhysRevD.94.104071
10.1007/JHEP03(2016)203
10.1103/PhysRevD.72.124006
10.1016/j.physletb.2017.08.003
10.1103/PhysRevD.90.044055
10.1142/S0217732315501771
10.1103/PhysRevD.100.084019
10.1088/0264-9381/13/3/010
10.1086/307221
10.1103/PhysRevD.92.104035
10.1103/PhysRevD.99.024001
10.1103/PhysRevD.96.044025
10.1142/S0218271809015904
10.1103/PhysRevLett.83.670
10.1016/0550-3213(76)90406-5
10.1140/epjc/s10052-022-10251-x
10.1007/JHEP07(2012)053
10.1063/1.1665613
10.1007/BF01877518
10.1086/383612
10.1103/PhysRevD.99.104036
10.1103/PhysRevLett.116.061102
10.1142/S0217751X10049700
10.1103/PhysRevD.86.024013
10.1016/j.physletb.2019.04.058
10.1103/PhysRevD.47.5400
10.1103/PhysRevD.51.4208
10.1088/0031-8949/87/04/045004
10.1016/j.physletb.2008.07.002
10.1103/PhysRevD.76.024011
10.1142/S0217732322502054
10.1142/S021827180901531X
10.1103/PhysRevD.96.044014
10.1007/JHEP10(2021)050
10.1103/PhysRevD.90.044028
10.1016/j.physletb.2017.12.048
10.1103/PhysRevD.56.3466
10.1155/2016/9813582
10.1103/PhysRevD.78.064017
10.1088/1475-7516/2007/04/009
10.1140/epjp/i2018-12267-7
10.1103/PhysRevD.100.044022
10.1103/PhysRevD.74.024002
10.1007/JHEP11(2013)006
10.1103/PhysRevD.86.104034
10.1103/PhysRevD.97.044030
10.1103/PhysRevD.41.3696
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023
The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1093/ptep/ptad053
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Databases
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2050-3911
ExternalDocumentID 10_1093_ptep_ptad053
10.1093/ptep/ptad053
GroupedDBID .I3
0R~
4.4
5VS
AAFWJ
AAMVS
AAPPN
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABXVV
ACGFS
ADHZD
AENEX
AENZO
AFPKN
AFULF
AIBLX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
BAYMD
BTTYL
CIDKT
D~K
EBS
EJD
ER.
GROUPED_DOAJ
H13
IAO
ISR
ITC
KQ8
KSI
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
RHF
ROL
ROX
RXO
TOX
~D7
88I
AAYXX
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-b57469bfe7d5e12a7328c86e45403633709af637ed356184107fbdb2ab3b13403
IEDL.DBID BENPR
ISSN 2050-3911
IngestDate Mon Jun 30 12:26:49 EDT 2025
Tue Jul 01 02:09:16 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Fri Jan 31 08:06:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-b57469bfe7d5e12a7328c86e45403633709af637ed356184107fbdb2ab3b13403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3171920226?pq-origsite=%requestingapplication%
PQID 3171920226
PQPubID 7121340
ParticipantIDs proquest_journals_3171920226
crossref_primary_10_1093_ptep_ptad053
crossref_citationtrail_10_1093_ptep_ptad053
oup_primary_10_1093_ptep_ptad053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress of theoretical and experimental physics
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Scheel (2023051009181029500_bib37) 1995; 51
Sheykhi (2023051009181029500_bib43) 2009; 18
Kord Zangeneh (2023051009181029500_bib72) 2015; 91
Nashed (2023051009181029500_bib24) 2022; 2205
Cai (2023051009181029500_bib1) 1997; 56
Nashed (2023051009181029500_bib23) 2019; 36
Sheykhi (2023051009181029500_bib58) 2014; 89
Hawking (2023051009181029500_bib38) 1972; 25
Dehghani (2023051009181029500_bib65) 2018; 133
Dirac (2023051009181029500_bib11) 1938; 165
Riess (2023051009181029500_bib9) 2004; 607
Dehghani (2023051009181029500_bib64) 2023; 2023
Salarpour (2023051009181029500_bib20) 2013; 87
Ghodrati (2023051009181029500_bib34) 2014; 90
Amarilla (2023051009181029500_bib18) 2010; 25
Hendi (2023051009181029500_bib55) 2016; 76
Ling (2023051009181029500_bib33) 2013; 11
Corda (2023051009181029500_bib3) 2007; 04
Demetrian (2023051009181029500_bib17) 2006; 38
Giddings (2023051009181029500_bib46)
Dehghani (2023051009181029500_bib69) 2019; 134
Hendi (2023051009181029500_bib42) 2016; 76
Dehghani (2023051009181029500_bib54) 2017; 96
Hendi (2023051009181029500_bib41) 2017; 2017
Lovelock (2023051009181029500_bib13) 1972; 13
Englert (2023051009181029500_bib47) 1976; 117
Dehghani (2023051009181029500_bib51) 2022; 82
Fan (2023051009181029500_bib27) 2015; 91
Habib Mazharimousavi (2023051009181029500_bib52) 2015; 30
Dehghani (2023051009181029500_bib70) 2019; 793
Capozziello (2023051009181029500_bib5) 2008; 669
Sheykhi (2023051009181029500_bib19) 2012; 86
Perlmutter (2023051009181029500_bib7) 1999; 517
Dehghani (2023051009181029500_bib30) 2016; 03
Corda (2023051009181029500_bib6) 2009; 18
Sheykhi (2023051009181029500_bib40) 2009; 679
Sotiriou (2023051009181029500_bib66) 2012; 108
Abbott (2023051009181029500_bib2) 2016; 116
Brans (2023051009181029500_bib35) 1961; 124
Hendi (2023051009181029500_bib21) 2016; 2016
Harvey (2023051009181029500_bib45)
Dehghani (2023051009181029500_bib74) 2019; 100
Dehghani (2023051009181029500_bib60) 2018; 97
Dehghani (2023051009181029500_bib68) 2019; 99
Dehghani (2023051009181029500_bib76) 2020; 2020
Sotiriou (2023051009181029500_bib31) 2006; 23
Dehghani (2023051009181029500_bib53) 2016; 94
Weinberg (2023051009181029500_bib10) 1972
Dehghani (2023051009181029500_bib29) 2005; 72
Capozziello (2023051009181029500_bib4) 2006; 15
Dehghani (2023051009181029500_bib67) 2022; 37
Hendi (2023051009181029500_bib14) 2008; 666
Green (2023051009181029500_bib36) 1987
Callosh (2023051009181029500_bib73) 1993; 47
Sheykhi (2023051009181029500_bib75) 2014; 90
Zangeneh (2023051009181029500_bib44) 2015; 92
Rachwal (2023051009181029500_bib48) 2018; 4
Lovelock (2023051009181029500_bib12) 1971; 12
Perlmutter (2023051009181029500_bib8) 1999; 83
Dehghani (2023051009181029500_bib56) 2017; 96
Cai (2023051009181029500_bib32) 2007; 76
de Oliveira (2023051009181029500_bib39) 1996; 13
Deruelle (2023051009181029500_bib15) 1990; 41
Dehghani (2023051009181029500_bib28) 2006; 73
Dehghani (2023051009181029500_bib61) 2019; 99
González (2023051009181029500_bib22) 2012; 1207
Dehghani (2023051009181029500_bib59) 2017; 96
Gergely (2023051009181029500_bib16) 2006; 74
Dehghani (2023051009181029500_bib57) 2017; 773
Hendi (2023051009181029500_bib26) 2014; 23
Pourhassan (2023051009181029500_bib49) 2021; 10
Dehghani (2023051009181029500_bib71) 2018; 777
Faraoni (2023051009181029500_bib62) 2008; 78
Dehghani (2023051009181029500_bib63) 2019; 100
Hendi (2023051009181029500_bib25) 2012; 86
Pourhassan (2023051009181029500_bib50) 2021; 38
References_xml – volume: 669
  start-page: 255
  year: 2008
  ident: 2023051009181029500_bib5
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2008.10.001
– volume: 2205
  start-page: 017
  year: 2022
  ident: 2023051009181029500_bib24
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2022/05/017
– volume: 91
  start-page: 064009
  year: 2015
  ident: 2023051009181029500_bib27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.064009
– volume: 73
  start-page: 104003
  year: 2006
  ident: 2023051009181029500_bib28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.73.104003
– volume: 76
  start-page: 263
  year: 2016
  ident: 2023051009181029500_bib42
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-016-4106-9
– volume: 23
  start-page: 5117
  year: 2006
  ident: 2023051009181029500_bib31
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/23/17/003
– volume: 13
  start-page: 874
  year: 1972
  ident: 2023051009181029500_bib13
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1666069
– volume: 91
  start-page: 044035
  year: 2015
  ident: 2023051009181029500_bib72
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.044035
– volume: 36
  start-page: 135005
  year: 2019
  ident: 2023051009181029500_bib23
  publication-title: Class. Quantum Grav.
  doi: 10.1088/1361-6382/ab23d9
– volume: 124
  start-page: 925
  year: 1961
  ident: 2023051009181029500_bib35
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.124.925
– volume: 2020
  start-page: 033E03
  year: 2020
  ident: 2023051009181029500_bib76
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptaa017
– volume: 679
  start-page: 311
  year: 2009
  ident: 2023051009181029500_bib40
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2009.07.056
– ident: 2023051009181029500_bib46
– volume: 76
  start-page: 396
  year: 2016
  ident: 2023051009181029500_bib55
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-016-4235-1
– volume: 2023
  start-page: 033E03
  year: 2023
  ident: 2023051009181029500_bib64
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptad033
– volume: 4
  start-page: 125
  year: 2018
  ident: 2023051009181029500_bib48
  publication-title: Universe
  doi: 10.3390/universe4110125
– volume: 108
  start-page: 081103
  year: 2012
  ident: 2023051009181029500_bib66
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.081103
– volume: 165
  start-page: 199
  year: 1938
  ident: 2023051009181029500_bib11
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1938.0053
– volume: 38
  start-page: 953
  year: 2006
  ident: 2023051009181029500_bib17
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-006-0275-4
– volume: 38
  start-page: 105001
  year: 2021
  ident: 2023051009181029500_bib50
  publication-title: Class. Quantum Grav.
  doi: 10.1088/1361-6382/abdf6f
– volume: 89
  start-page: 104019
  year: 2014
  ident: 2023051009181029500_bib58
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.104019
– volume: 96
  start-page: 104017
  year: 2017
  ident: 2023051009181029500_bib59
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.104017
– volume: 15
  start-page: 1119
  year: 2006
  ident: 2023051009181029500_bib4
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271806008814
– volume-title: Superstring Theory
  year: 1987
  ident: 2023051009181029500_bib36
– volume: 134
  start-page: 515
  year: 2019
  ident: 2023051009181029500_bib69
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2019-13046-8
– volume: 94
  start-page: 104071
  year: 2016
  ident: 2023051009181029500_bib53
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.104071
– volume: 03
  start-page: 203
  year: 2016
  ident: 2023051009181029500_bib30
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2016)203
– volume: 72
  start-page: 124006
  year: 2005
  ident: 2023051009181029500_bib29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.72.124006
– volume: 773
  start-page: 105
  year: 2017
  ident: 2023051009181029500_bib57
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.08.003
– volume: 90
  start-page: 044055
  year: 2014
  ident: 2023051009181029500_bib34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.044055
– volume: 23
  start-page: 1550088
  year: 2014
  ident: 2023051009181029500_bib26
  publication-title: Int. J. Mod. Phys. D
– volume: 30
  start-page: 1550177
  year: 2015
  ident: 2023051009181029500_bib52
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732315501771
– volume: 100
  start-page: 084019
  year: 2019
  ident: 2023051009181029500_bib63
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.084019
– volume: 13
  start-page: 425
  year: 1996
  ident: 2023051009181029500_bib39
  publication-title: Class. Quantum Grav.
  doi: 10.1088/0264-9381/13/3/010
– volume: 517
  start-page: 565
  year: 1999
  ident: 2023051009181029500_bib7
  publication-title: Astrophys. J.
  doi: 10.1086/307221
– volume: 92
  start-page: 104035
  year: 2015
  ident: 2023051009181029500_bib44
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.104035
– volume: 99
  start-page: 024001
  year: 2019
  ident: 2023051009181029500_bib68
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.024001
– volume: 96
  start-page: 044025
  year: 2017
  ident: 2023051009181029500_bib54
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.044025
– volume: 18
  start-page: 2275
  year: 2009
  ident: 2023051009181029500_bib6
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S0218271809015904
– volume: 83
  start-page: 670
  year: 1999
  ident: 2023051009181029500_bib8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.670
– volume: 117
  start-page: 407
  year: 1976
  ident: 2023051009181029500_bib47
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(76)90406-5
– volume: 82
  start-page: 367
  year: 2022
  ident: 2023051009181029500_bib51
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-022-10251-x
– volume: 1207
  start-page: 053
  year: 2012
  ident: 2023051009181029500_bib22
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP07(2012)053
– volume: 12
  start-page: 498
  year: 1971
  ident: 2023051009181029500_bib12
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1665613
– volume: 25
  start-page: 167
  year: 1972
  ident: 2023051009181029500_bib38
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01877518
– volume: 607
  start-page: 665
  year: 2004
  ident: 2023051009181029500_bib9
  publication-title: Astrophys. J.
  doi: 10.1086/383612
– volume-title: Gravitation and Cosmology
  year: 1972
  ident: 2023051009181029500_bib10
– volume: 99
  start-page: 104036
  year: 2019
  ident: 2023051009181029500_bib61
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.104036
– volume: 116
  start-page: 061102
  year: 2016
  ident: 2023051009181029500_bib2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.061102
– volume: 25
  start-page: 3835
  year: 2010
  ident: 2023051009181029500_bib18
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X10049700
– volume: 86
  start-page: 024013
  year: 2012
  ident: 2023051009181029500_bib19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.024013
– volume: 793
  start-page: 234
  year: 2019
  ident: 2023051009181029500_bib70
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2019.04.058
– volume: 47
  start-page: 5400
  year: 1993
  ident: 2023051009181029500_bib73
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.47.5400
– volume: 51
  start-page: 4208
  year: 1995
  ident: 2023051009181029500_bib37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.51.4208
– volume: 87
  start-page: 045004
  year: 2013
  ident: 2023051009181029500_bib20
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/87/04/045004
– volume: 666
  start-page: 116
  year: 2008
  ident: 2023051009181029500_bib14
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2008.07.002
– volume: 76
  start-page: 024011
  year: 2007
  ident: 2023051009181029500_bib32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.76.024011
– ident: 2023051009181029500_bib45
– volume: 2017
  start-page: 7158697
  year: 2017
  ident: 2023051009181029500_bib41
  publication-title: Adv. High Energy Phys.
– volume: 37
  start-page: 2250205
  year: 2022
  ident: 2023051009181029500_bib67
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732322502054
– volume: 18
  start-page: 1773
  year: 2009
  ident: 2023051009181029500_bib43
  publication-title: Int. J. Mod. Phys. D
  doi: 10.1142/S021827180901531X
– volume: 96
  start-page: 044014
  year: 2017
  ident: 2023051009181029500_bib56
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.044014
– volume: 10
  start-page: 050
  year: 2021
  ident: 2023051009181029500_bib49
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP10(2021)050
– volume: 90
  start-page: 044028
  year: 2014
  ident: 2023051009181029500_bib75
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.044028
– volume: 777
  start-page: 351
  year: 2018
  ident: 2023051009181029500_bib71
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.12.048
– volume: 56
  start-page: 3466
  year: 1997
  ident: 2023051009181029500_bib1
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.56.3466
– volume: 2016
  start-page: 9813582
  year: 2016
  ident: 2023051009181029500_bib21
  publication-title: Adv. High Energy Phys.
  doi: 10.1155/2016/9813582
– volume: 78
  start-page: 064017
  year: 2008
  ident: 2023051009181029500_bib62
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.064017
– volume: 04
  start-page: 009
  year: 2007
  ident: 2023051009181029500_bib3
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2007/04/009
– volume: 133
  start-page: 474
  year: 2018
  ident: 2023051009181029500_bib65
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2018-12267-7
– volume: 100
  start-page: 044022
  year: 2019
  ident: 2023051009181029500_bib74
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.044022
– volume: 74
  start-page: 024002
  year: 2006
  ident: 2023051009181029500_bib16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.74.024002
– volume: 11
  start-page: 006
  year: 2013
  ident: 2023051009181029500_bib33
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP11(2013)006
– volume: 86
  start-page: 104034
  year: 2012
  ident: 2023051009181029500_bib25
  publication-title: Phys. Rev D
  doi: 10.1103/PhysRevD.86.104034
– volume: 97
  start-page: 044030
  year: 2018
  ident: 2023051009181029500_bib60
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.044030
– volume: 41
  start-page: 3696
  year: 1990
  ident: 2023051009181029500_bib15
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.41.3696
SSID ssj0001077041
Score 2.3215127
Snippet The field equations of Brans–Dicke conformal-invariant theory in (2+1)-dimensions are highly nonlinear and difficult to solve directly. They are related to...
The field equations of Brans–Dicke conformal-invariant theory in (2+1)-dimensions are highly nonlinear and difficult to solve directly. They are related to...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Black holes
Entropy
Gravitational waves
Gravity
Hypotheses
Quantum field theory
Spacetime
Theory of relativity
Thermodynamics
Title Thermodynamics of Brans–Dicke–BTZ black holes coupled to conformal-invariant electrodynamics
URI https://www.proquest.com/docview/3171920226
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NS8MwFA-6Xbz4LU7nyEFPUtaaNtlO4nRjCE6RDYaXmk8YzHau1bP_g_-hf4kva-rYQb2khT5SeMn7zMv7IXSqjC9YIIwXagUBigGRavGQeEKAu041WDBjLzjfDWh_FN6Oo7FLuGWurLLUiQtFrVJpc-RNsHPgjIDFoZezV8-iRtnTVQehsY6qoIJbsM-rne7g4XGZZfEZ88PAVbxD9N6c5XoGA1d-RFZs0cr9tlIhL6xMbxttOvcQXxXruYPWdLKLtpyriJ0gZnvoGZZ3_pKqAk8-w6nBHWt1vj4-byYgmPDsDJ-wsOk5bCFwMyzhz1OYJE_htbiENPUmyTsEy8Bd7PBwyhn30ajXHV73PQeW4EmwybknIgaRrjCaqUgHF9w24ZEtqm2HPUIJYX6bG0qYViSyIC_AGSOUuOCCiIAAzQGqJGmiDxEmQMMYEW1uu31J3Q451wGXlErNCPdr6LxkWyxdJ3ELaDGNixNtElsmx47JNXT2Qz0rOmj8QoeBD_-Q1MvliZ2oZfFyYxz9_fkYbVis-KJasY4q-fxNn4BHkYuG2zaNRUQO4_B-_A0AftPd
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV29TsMwED6VdoCFf0ShgAc6oYikTuJ2QIjSVgXaCqEiIZZgJ45UqTSlCSA23oH34KF4Es6NQ8UATCxJJJ8c6Xz2d2f77gPYD0JTMEuEhi0DDFBCnFJVblNDCHTXXYkIFqoE527PbV_b5zfOTQ7es1wYda0yWxOnC3UQ-WqP_BBxDp0RRBz3ePxgKNYodbqaUWikZnEhX54xZIuPzho4vuVKpdXsn7YNzSpg-AheiSEchiGhCCULHGlVuKpW41ddqUrRUZdSZtZ46FImA-ooNhSMj0IRiAoXVFgUZbDfOSjYKqM1D4V6s3d5NdvVMRkzbUvfsDdr9HCcyDE-eGA69Bv2fcunywBgimqtZVjU7ig5Se1nBXJytApL2jUleuLHa3CH5jS5j4KUvz4mUUjqCuU-Xt8aA1wI8F3v3xKhtgOJotyNiY9_HmInSYSfadLT0BiMnjA4x9Ekmn8n63Edrv9FjRuQH0UjuQmEogxjVNS4qi7my5rNubS477q-ZJSbRTjI1Ob5unK5ItAYeukJOvWUkj2t5CKUv6THacWOH-QI6uEPkVI2PJ6e2rE3M8St35v3YL7d73a8zlnvYhsWFE99elOyBPlk8ih30JtJxK42IQJ3_221n7j1DQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamics+of+Brans%E2%80%93Dicke%E2%80%93BTZ+black+holes+coupled+to+conformal-invariant+electrodynamics&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Dehghani%2C+M&rft.date=2023-05-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2023&rft.issue=5&rft_id=info:doi/10.1093%2Fptep%2Fptad053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptad053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon