Phase Separation in Ultramassive White Dwarfs

Ultramassive white dwarfs are extreme endpoints of stellar evolution. Recent findings, such as a missing multi-Gyr cooling delay for a number of ultramassive white dwarfs and a white dwarf with a quasi-Chandrasekhar mass, motivate a better understanding of their evolution. A key process still subjec...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 919; no. 2; pp. 87 - 94
Main Authors Blouin, Simon, Daligault, Jérôme
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.10.2021
IOP Publishing
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/ac1513

Cover

Loading…
Abstract Ultramassive white dwarfs are extreme endpoints of stellar evolution. Recent findings, such as a missing multi-Gyr cooling delay for a number of ultramassive white dwarfs and a white dwarf with a quasi-Chandrasekhar mass, motivate a better understanding of their evolution. A key process still subject to important uncertainties is the crystallization of their dense cores, which are generally assumed to be constituted of 16 O, 20 Ne, and a mixture of several trace elements (most notably 23 Na and 24 Mg). In this work, we use our recently developed Clapeyron integration technique to compute accurate phase diagrams of three-component mixtures relevant to the modeling of O/Ne ultramassive white dwarfs. We show that, unlike the phase separation of 22 Ne impurities in C/O cores, the phase separation of 23 Na impurities in O/Ne white dwarfs cannot lead to the enrichment of their cores in 23 Na via a distillation process. This severely limits the prospect of transporting large quantities of 23 Na toward the center of the star, as needed in the white dwarf core-collapse mechanism recently proposed by Caiazzo et al. We also show that despite representing ≈10% of the ionic mixture, 23 Na and 24 Mg impurities only have a negligible impact on the O/Ne phase diagram, and the two-component O/Ne phase diagram can be safely used in white dwarf evolution codes. We provide analytic fits to our high-accuracy O/Ne phase diagram for implementation in white dwarf models.
AbstractList We report ultramassive white dwarfs are extreme endpoints of stellar evolution. Recent findings, such as a missing multi-Gyr cooling delay for a number of ultramassive white dwarfs and a white dwarf with a quasi-Chandrasekhar mass, motivate a better understanding of their evolution. A key process still subject to important uncertainties is the crystallization of their dense cores, which are generally assumed to be constituted of 16O, 20Ne, and a mixture of several trace elements (most notably 23Na and 24Mg). In this work, we use our recently developed Clapeyron integration technique to compute accurate phase diagrams of three-component mixtures relevant to the modeling of O/Ne ultramassive white dwarfs. We show that, unlike the phase separation of 22Ne impurities in C/O cores, the phase separation of 23Na impurities in O/Ne white dwarfs cannot lead to the enrichment of their cores in 23Na via a distillation process. This severely limits the prospect of transporting large quantities of 23Na toward the center of the star, as needed in the white dwarf core-collapse mechanism recently proposed by Caiazzo et al. We also show that despite representing ≈10% of the ionic mixture, 23Na and 24Mg impurities only have a negligible impact on the O/Ne phase diagram, and the two-component O/Ne phase diagram can be safely used in white dwarf evolution codes. We provide analytic fits to our high-accuracy O/Ne phase diagram for implementation in white dwarf models.
Ultramassive white dwarfs are extreme endpoints of stellar evolution. Recent findings, such as a missing multi-Gyr cooling delay for a number of ultramassive white dwarfs and a white dwarf with a quasi-Chandrasekhar mass, motivate a better understanding of their evolution. A key process still subject to important uncertainties is the crystallization of their dense cores, which are generally assumed to be constituted of 16 O, 20 Ne, and a mixture of several trace elements (most notably 23 Na and 24 Mg). In this work, we use our recently developed Clapeyron integration technique to compute accurate phase diagrams of three-component mixtures relevant to the modeling of O/Ne ultramassive white dwarfs. We show that, unlike the phase separation of 22 Ne impurities in C/O cores, the phase separation of 23 Na impurities in O/Ne white dwarfs cannot lead to the enrichment of their cores in 23 Na via a distillation process. This severely limits the prospect of transporting large quantities of 23 Na toward the center of the star, as needed in the white dwarf core-collapse mechanism recently proposed by Caiazzo et al. We also show that despite representing ≈10% of the ionic mixture, 23 Na and 24 Mg impurities only have a negligible impact on the O/Ne phase diagram, and the two-component O/Ne phase diagram can be safely used in white dwarf evolution codes. We provide analytic fits to our high-accuracy O/Ne phase diagram for implementation in white dwarf models.
Ultramassive white dwarfs are extreme endpoints of stellar evolution. Recent findings, such as a missing multi-Gyr cooling delay for a number of ultramassive white dwarfs and a white dwarf with a quasi-Chandrasekhar mass, motivate a better understanding of their evolution. A key process still subject to important uncertainties is the crystallization of their dense cores, which are generally assumed to be constituted of 16O, 20Ne, and a mixture of several trace elements (most notably 23Na and 24Mg). In this work, we use our recently developed Clapeyron integration technique to compute accurate phase diagrams of three-component mixtures relevant to the modeling of O/Ne ultramassive white dwarfs. We show that, unlike the phase separation of 22Ne impurities in C/O cores, the phase separation of 23Na impurities in O/Ne white dwarfs cannot lead to the enrichment of their cores in 23Na via a distillation process. This severely limits the prospect of transporting large quantities of 23Na toward the center of the star, as needed in the white dwarf core-collapse mechanism recently proposed by Caiazzo et al. We also show that despite representing ≈10% of the ionic mixture, 23Na and 24Mg impurities only have a negligible impact on the O/Ne phase diagram, and the two-component O/Ne phase diagram can be safely used in white dwarf evolution codes. We provide analytic fits to our high-accuracy O/Ne phase diagram for implementation in white dwarf models.
Author Daligault, Jérôme
Blouin, Simon
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0002-9632-1436
  surname: Blouin
  fullname: Blouin, Simon
  organization: Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA
– sequence: 2
  givenname: Jérôme
  orcidid: 0000-0002-8844-6124
  surname: Daligault
  fullname: Daligault, Jérôme
  organization: Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA
BackLink https://www.osti.gov/servlets/purl/1889976$$D View this record in Osti.gov
BookMark eNp9kEtLAzEURoNUsK3uXQ7q0rFJ816KbygoaNFdyGQSmtJOxmSq-O-dcURBpKvLvZzv8nFGYFCFygJwiOAZFoRPEMUiJ5jyiTaIIrwDhj-nARhCCEnOMH_ZA6OUlt06lXII8oeFTjZ7tLWOuvGhynyVzVdN1Gudkn-z2fPCNza7fNfRpX2w6_Qq2YPvOQbz66uni9t8dn9zd3E-yw2BrMkLZKgQtISSEUFKggvrHLIFYlQzbIQruDPOYcyYKyRzpSydFVpS6DAjhuExOOr_htR4lUzbwCxMqCprGoWEkJJ30HEP1TG8bmxq1DJsYtX2UlPKOWRiikhLwZ4yMaQUrVN19GsdPxSCqjOnOk2q06R6c22E_Ym0Bb7ktFr8alvwtA_6UP-W2YKf_IPreqkkkmqqBFd16fAn66uNUw
CitedBy_id crossref_primary_10_1063_5_0224853
crossref_primary_10_1093_mnrasl_slad039
crossref_primary_10_3847_1538_4357_acbfaa
crossref_primary_10_1093_mnras_stad068
crossref_primary_10_1051_0004_6361_202451288
crossref_primary_10_3847_2041_8213_acf76b
crossref_primary_10_1016_j_newar_2024_101705
crossref_primary_10_3847_1538_4357_ad6303
crossref_primary_10_1038_s41586_024_07102_y
crossref_primary_10_3847_1538_4357_acd057
crossref_primary_10_3847_1538_4357_aca015
crossref_primary_10_1016_j_physrep_2022_09_001
crossref_primary_10_1051_0004_6361_202244604
crossref_primary_10_1093_mnrasl_slae054
crossref_primary_10_1093_mnras_stab3613
crossref_primary_10_1093_mnrasl_slac032
Cites_doi 10.3847/1538-4357/ac0336
10.1051/0004-6361/202038879
10.1086/319169
10.3847/1538-4357/ab733c
10.1093/mnrasl/slaa149
10.1038/s41586-021-03615-y
10.3847/1538-4357/ab9b8d
10.1103/PhysRevLett.104.231101
10.1051/0004-6361/202038930
10.3847/2041-8213/abf14b
10.3847/1538-4357/ab153a
10.1086/304425
10.3847/1538-4357/abc87e
10.3847/1538-4357/ab4989
10.1063/1.465023
10.1038/s41550-020-1028-0
10.1103/PhysRevE.84.016401
10.3847/1538-4357/aac2d2
10.1111/j.1365-2966.2008.13652.x
10.1086/147194
10.1051/0004-6361:20078132
10.1051/0004-6361/201833051
10.1093/mnras/stt1766
10.1051/0004-6361/200811060
10.1086/319535
10.1103/PhysRevE.81.036107
10.1051/0004-6361/200913556
10.1080/00268979300100881
10.3847/1538-4357/abb5a5
10.1051/0004-6361/202140720
10.1051/0004-6361/201832843
10.1063/1.479084
10.1093/mnras/sty3016
10.1093/mnras/stz960
10.1038/s41586-018-0791-x
10.1051/0004-6361/201629272
10.1051/0004-6361/201936889
10.3847/2041-8213/abbda0
10.1093/mnras/stab767
10.1051/0004-6361/201833822
10.1103/PhysRevE.103.043204
10.1093/mnras/sty2057
ContentType Journal Article
Copyright 2021. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Oct 01, 2021
Copyright_xml – notice: 2021. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Oct 01, 2021
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – sequence: 0
  name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
OIOZB
OTOTI
DOI 10.3847/1538-4357/ac1513
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID 1889976
10_3847_1538_4357_ac1513
apjac1513
GrantInformation_xml – fundername: DOE ∣ NNSA ∣ Laboratory Directed Research and Development (LDRD)
  grantid: 20190624PRD2
  funderid: https://doi.org/10.13039/100007000
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
OIOZB
OTOTI
ID FETCH-LOGICAL-c406t-b1c5885d096484d43beff1eb165a63c8fb7fcff3366fb96fd9dfe8a950f364c63
IEDL.DBID O3W
ISSN 0004-637X
IngestDate Thu Dec 05 06:23:30 EST 2024
Wed Aug 13 09:17:11 EDT 2025
Tue Jul 01 03:24:43 EDT 2025
Thu Apr 24 23:09:36 EDT 2025
Tue Oct 05 22:40:17 EDT 2021
Wed Aug 21 03:42:11 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-b1c5885d096484d43beff1eb165a63c8fb7fcff3366fb96fd9dfe8a950f364c63
Notes AAS33325
Stars and Stellar Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
LA-UR-21-26324
USDOE Laboratory Directed Research and Development (LDRD) Program
89233218CNA000001
ORCID 0000-0002-8844-6124
0000-0002-9632-1436
0000000288446124
0000000296321436
OpenAccessLink https://www.osti.gov/servlets/purl/1889976
PQID 2577068214
PQPubID 4562441
PageCount 8
ParticipantIDs iop_journals_10_3847_1538_4357_ac1513
crossref_primary_10_3847_1538_4357_ac1513
crossref_citationtrail_10_3847_1538_4357_ac1513
osti_scitechconnect_1889976
proquest_journals_2577068214
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
– name: United States
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2021
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – sequence: 0
  name: IOP Publishing
– name: The American Astronomical Society
– name: IOP Publishing
References Temmink (apjac1513bib44) 2020; 636
Isern (apjac1513bib28) 1997; 485
Mochkovitch (apjac1513bib36) 1983; 122
Kepler (apjac1513bib29) 2019; 486
Siess (apjac1513bib42) 2007; 476
Vennes (apjac1513bib46) 2008; 389
Salpeter (apjac1513bib38) 1961; 134
Bauer (apjac1513bib2) 2020; 902
Kofke (apjac1513bib32) 1993a; 78
Cheng (apjac1513bib14) 2020; 891
Horowitz (apjac1513bib25) 2010; 104
Bildsten (apjac1513bib4) 2001; 549
Fontaine (apjac1513bib17) 2001; 113
Gentile Fusillo (apjac1513bib21) 2019; 482
Isern (apjac1513bib27) 1991; 241
Caiazzo (apjac1513bib8) 2021; 595
Kilic (apjac1513bib31) 2020; 898
Schwab (apjac1513bib40) 2021b; 916
Caplan (apjac1513bib11) 2018; 860
Blouin (apjac1513bib7) 2020; 640
De Gerónimo (apjac1513bib16) 2018
Althaus (apjac1513bib1) 2021; 646
Hughto (apjac1513bib26) 2011; 84
Gaia Collaboration (apjac1513bib19) 2018a; 616
Dan (apjac1513bib15) 2014; 438
Schwab (apjac1513bib39) 2021a; 906
Cheng (apjac1513bib13) 2019; 886
Gaia Collaboration (apjac1513bib20) 2018b; 616
Siess (apjac1513bib43) 2010; 512
Kilic (apjac1513bib30) 2021; 503
Kofke (apjac1513bib33) 1993b; 98
Hollands (apjac1513bib24) 2018; 480
Medin (apjac1513bib35) 2010; 81
Blouin (apjac1513bib5) 2021; 103
Bergeron (apjac1513bib3) 2019; 876
Lorén-Aguilar (apjac1513bib34) 2009; 500
Shapiro (apjac1513bib41) 1983
Caplan (apjac1513bib12) 2020; 902
Gaia Collaboration (apjac1513bib18) 2016; 595
Blouin (apjac1513bib6) 2021; 911
Camisassa (apjac1513bib10) 2021; 649
Tremblay (apjac1513bib45) 2019; 565
Camisassa (apjac1513bib9) 2019; 625
Hitchcock (apjac1513bib22) 1999; 110
Hollands (apjac1513bib23) 2020; 4
Pshirkov (apjac1513bib37) 2020; 499
References_xml – volume: 241
  start-page: L29
  year: 1991
  ident: apjac1513bib27
  publication-title: A&A
– volume: 916
  start-page: 119
  year: 2021b
  ident: apjac1513bib40
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac0336
– volume: 640
  start-page: L11
  year: 2020
  ident: apjac1513bib7
  publication-title: A&A
  doi: 10.1051/0004-6361/202038879
– volume: 549
  start-page: L219
  year: 2001
  ident: apjac1513bib4
  publication-title: ApJL
  doi: 10.1086/319169
– volume: 891
  start-page: 160
  year: 2020
  ident: apjac1513bib14
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab733c
– volume: 499
  start-page: L21
  year: 2020
  ident: apjac1513bib37
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slaa149
– year: 1983
  ident: apjac1513bib41
– volume: 595
  start-page: 39
  year: 2021
  ident: apjac1513bib8
  publication-title: Natur
  doi: 10.1038/s41586-021-03615-y
– volume: 898
  start-page: 84
  year: 2020
  ident: apjac1513bib31
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab9b8d
– volume: 104
  start-page: 231101
  year: 2010
  ident: apjac1513bib25
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.104.231101
– volume: 646
  start-page: A30
  year: 2021
  ident: apjac1513bib1
  publication-title: A&A
  doi: 10.1051/0004-6361/202038930
– volume: 911
  start-page: L5
  year: 2021
  ident: apjac1513bib6
  publication-title: ApJL
  doi: 10.3847/2041-8213/abf14b
– volume: 876
  start-page: 67
  year: 2019
  ident: apjac1513bib3
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab153a
– volume: 485
  start-page: 308
  year: 1997
  ident: apjac1513bib28
  publication-title: ApJ
  doi: 10.1086/304425
– volume: 906
  start-page: 53
  year: 2021a
  ident: apjac1513bib39
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc87e
– volume: 886
  start-page: 100
  year: 2019
  ident: apjac1513bib13
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab4989
– volume: 98
  start-page: 4149
  year: 1993b
  ident: apjac1513bib33
  publication-title: JChPh
  doi: 10.1063/1.465023
– volume: 4
  start-page: 663
  year: 2020
  ident: apjac1513bib23
  publication-title: NatAs
  doi: 10.1038/s41550-020-1028-0
– volume: 84
  start-page: 016401
  year: 2011
  ident: apjac1513bib26
  publication-title: PhRvE
  doi: 10.1103/PhysRevE.84.016401
– volume: 860
  start-page: 148
  year: 2018
  ident: apjac1513bib11
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac2d2
– volume: 389
  start-page: 1367
  year: 2008
  ident: apjac1513bib46
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13652.x
– volume: 134
  start-page: 669
  year: 1961
  ident: apjac1513bib38
  publication-title: ApJ
  doi: 10.1086/147194
– volume: 476
  start-page: 893
  year: 2007
  ident: apjac1513bib42
  publication-title: A&A
  doi: 10.1051/0004-6361:20078132
– volume: 616
  start-page: A1
  year: 2018a
  ident: apjac1513bib19
  publication-title: A&A
  doi: 10.1051/0004-6361/201833051
– volume: 438
  start-page: 14
  year: 2014
  ident: apjac1513bib15
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1766
– volume: 500
  start-page: 1193
  year: 2009
  ident: apjac1513bib34
  publication-title: A&A
  doi: 10.1051/0004-6361/200811060
– year: 2018
  ident: apjac1513bib16
– volume: 113
  start-page: 409
  year: 2001
  ident: apjac1513bib17
  publication-title: PASP
  doi: 10.1086/319535
– volume: 81
  start-page: 036107
  year: 2010
  ident: apjac1513bib35
  publication-title: PhRvE
  doi: 10.1103/PhysRevE.81.036107
– volume: 512
  start-page: A10
  year: 2010
  ident: apjac1513bib43
  publication-title: A&A
  doi: 10.1051/0004-6361/200913556
– volume: 78
  start-page: 1331
  year: 1993a
  ident: apjac1513bib32
  publication-title: MolPh
  doi: 10.1080/00268979300100881
– volume: 902
  start-page: 93
  year: 2020
  ident: apjac1513bib2
  publication-title: ApJ
  doi: 10.3847/1538-4357/abb5a5
– volume: 649
  start-page: L7
  year: 2021
  ident: apjac1513bib10
  publication-title: A&A
  doi: 10.1051/0004-6361/202140720
– volume: 616
  start-page: A10
  year: 2018b
  ident: apjac1513bib20
  publication-title: A&A
  doi: 10.1051/0004-6361/201832843
– volume: 110
  start-page: 11433
  year: 1999
  ident: apjac1513bib22
  publication-title: JChPh
  doi: 10.1063/1.479084
– volume: 482
  start-page: 4570
  year: 2019
  ident: apjac1513bib21
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3016
– volume: 486
  start-page: 2169
  year: 2019
  ident: apjac1513bib29
  publication-title: MNRAS
  doi: 10.1093/mnras/stz960
– volume: 565
  start-page: 202
  year: 2019
  ident: apjac1513bib45
  publication-title: Natur
  doi: 10.1038/s41586-018-0791-x
– volume: 595
  start-page: A1
  year: 2016
  ident: apjac1513bib18
  publication-title: A&A
  doi: 10.1051/0004-6361/201629272
– volume: 636
  start-page: A31
  year: 2020
  ident: apjac1513bib44
  publication-title: A&A
  doi: 10.1051/0004-6361/201936889
– volume: 902
  start-page: L44
  year: 2020
  ident: apjac1513bib12
  publication-title: ApJL
  doi: 10.3847/2041-8213/abbda0
– volume: 503
  start-page: 5397
  year: 2021
  ident: apjac1513bib30
  publication-title: MNRAS
  doi: 10.1093/mnras/stab767
– volume: 625
  start-page: A87
  year: 2019
  ident: apjac1513bib9
  publication-title: A&A
  doi: 10.1051/0004-6361/201833822
– volume: 122
  start-page: 212
  year: 1983
  ident: apjac1513bib36
  publication-title: A&A
– volume: 103
  start-page: 043204
  year: 2021
  ident: apjac1513bib5
  publication-title: PhRvE
  doi: 10.1103/PhysRevE.103.043204
– volume: 480
  start-page: 3942
  year: 2018
  ident: apjac1513bib24
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2057
SSID ssj0004299
Score 2.4584234
Snippet Ultramassive white dwarfs are extreme endpoints of stellar evolution. Recent findings, such as a missing multi-Gyr cooling delay for a number of ultramassive...
We report ultramassive white dwarfs are extreme endpoints of stellar evolution. Recent findings, such as a missing multi-Gyr cooling delay for a number of...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 87
SubjectTerms ASTRONOMY AND ASTROPHYSICS
Astrophysics
Cores
Crystallization
Degenerate matter
Distillation
Impurities
Phase diagrams
Phase separation
Plasma physics
Stellar evolution
Stellar interiors
Trace elements
White dwarf stars
Title Phase Separation in Ultramassive White Dwarfs
URI https://iopscience.iop.org/article/10.3847/1538-4357/ac1513
https://www.proquest.com/docview/2577068214
https://www.osti.gov/servlets/purl/1889976
Volume 919
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6yKYVeQpO0ZJsHOrSBHty1LVkPcgpJQ1pos9Au3ZuQZIm2JPay6xDy7zuynITQEnrTQZbFN5pvZvSYAXirqM9doLFqgA8ZM7TKlPV5_1bGlfEoqM948-UrP5-xz_NqvgZH929h2sVA_R-wmRIFJwijflPk0kmvo2jlxcQ4tFd0BM-o5DIu7wv64-FRZKkG35dlnIp5OqP85wiPbNII_4v83KKG_cXPvdE5ewkbg7dIjtPcNmHNN1uwc7yK-9ft1S05JH07bU-stuD5NLW2IZv-RPtEvvmU27ttyK-GzC67pblCdxkpjvSl8cjpjVmG1SuYnX38fnKeDaURMocWuMts4SopqxoDECZZzaj1IRTIu7wynDoZrAguoAw4D1bxUKs6eGlUlQfKmeP0Naw3beN3gJg6OMoEs9YKpjyzQklbl8HnwjHLzRgmd-BoN-QNj-UrLjXGDxFOHeHUEU6d4BzD-_svFilnxhN93yHeelCc1RP99h_1M4vfWhVKl1oKvajDGHajxDQunpj81sVbQq7ThcR4UvAx7N0J8mEIJCuRc1kW7M1_TmIXXpTxSkt_l28P1rvltd9Hn6SzBzD6dDE96FfgH3Au1_k
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RIhAXBAXUpS34AEgcwiax48exoqzKq6wEK_Zm2Y6tgtpktRuE-PeM7ZSqAlXcfHAc6_PMN2N7PAPwTFFfukBj1QAfCmZoUyjry_RWxtXxKihlvPl4wo8X7N2yWY51TtNbmH41Uv8rbOZEwRnCqN8UuXSadBStvJgah_aKTldt2IKbDeVNFOtP9Ovlw8hajf4vKzgVy3xP-c9RrtilLfw3cnSPWvYXRyfDM7sHd0ePkRzm-d2HG77bgd3DTTzD7s9_kRcktfMRxWYHbs1z6wEU81O0UeSzz_m9-45868jibFibc3SZkeZIKo9Hjn6addg8hMXszZfXx8VYHqFwaIWHwlaukbJpcRPCJGsZtT6ECrmXN4ZTJ4MVwQVcB86DVTy0qg1eGtWUgXLmOH0E213f-V0gpg2OMsGstYIpz6xQ0rZ18KVwzHIzgekFONqNucNjCYszjXuICKeOcOoIp85wTuDlny9WOW_GNX2fI956VJ7NNf0OrvQzq-9aVUrXWgqNQjCBvbhiGgUoJsB1MVLIDbqSuKcUfAL7Fwt5OQQSlii5rCv2-D8n8RRuz49m-sPbk_d7cKeOES4ptG8ftof1D3-ALspgnyQx_A3dn9ro
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Separation+in+Ultramassive+White+Dwarfs&rft.jtitle=The+Astrophysical+journal&rft.au=Blouin%2C+Simon&rft.au=Daligault%2C+Jerome+Olivier&rft.date=2021-10-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.volume=919&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Fac1513&rft.externalDocID=1889976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon