Phase Separation in Ultramassive White Dwarfs
Ultramassive white dwarfs are extreme endpoints of stellar evolution. Recent findings, such as a missing multi-Gyr cooling delay for a number of ultramassive white dwarfs and a white dwarf with a quasi-Chandrasekhar mass, motivate a better understanding of their evolution. A key process still subjec...
Saved in:
Published in | The Astrophysical journal Vol. 919; no. 2; pp. 87 - 94 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.10.2021
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/ac1513 |
Cover
Loading…
Abstract | Ultramassive white dwarfs are extreme endpoints of stellar evolution. Recent findings, such as a missing multi-Gyr cooling delay for a number of ultramassive white dwarfs and a white dwarf with a quasi-Chandrasekhar mass, motivate a better understanding of their evolution. A key process still subject to important uncertainties is the crystallization of their dense cores, which are generally assumed to be constituted of
16
O,
20
Ne, and a mixture of several trace elements (most notably
23
Na and
24
Mg). In this work, we use our recently developed Clapeyron integration technique to compute accurate phase diagrams of three-component mixtures relevant to the modeling of O/Ne ultramassive white dwarfs. We show that, unlike the phase separation of
22
Ne impurities in C/O cores, the phase separation of
23
Na impurities in O/Ne white dwarfs cannot lead to the enrichment of their cores in
23
Na via a distillation process. This severely limits the prospect of transporting large quantities of
23
Na toward the center of the star, as needed in the white dwarf core-collapse mechanism recently proposed by Caiazzo et al. We also show that despite representing ≈10% of the ionic mixture,
23
Na and
24
Mg impurities only have a negligible impact on the O/Ne phase diagram, and the two-component O/Ne phase diagram can be safely used in white dwarf evolution codes. We provide analytic fits to our high-accuracy O/Ne phase diagram for implementation in white dwarf models. |
---|---|
AbstractList | We report ultramassive white dwarfs are extreme endpoints of stellar evolution. Recent findings, such as a missing multi-Gyr cooling delay for a number of ultramassive white dwarfs and a white dwarf with a quasi-Chandrasekhar mass, motivate a better understanding of their evolution. A key process still subject to important uncertainties is the crystallization of their dense cores, which are generally assumed to be constituted of 16O, 20Ne, and a mixture of several trace elements (most notably 23Na and 24Mg). In this work, we use our recently developed Clapeyron integration technique to compute accurate phase diagrams of three-component mixtures relevant to the modeling of O/Ne ultramassive white dwarfs. We show that, unlike the phase separation of 22Ne impurities in C/O cores, the phase separation of 23Na impurities in O/Ne white dwarfs cannot lead to the enrichment of their cores in 23Na via a distillation process. This severely limits the prospect of transporting large quantities of 23Na toward the center of the star, as needed in the white dwarf core-collapse mechanism recently proposed by Caiazzo et al. We also show that despite representing ≈10% of the ionic mixture, 23Na and 24Mg impurities only have a negligible impact on the O/Ne phase diagram, and the two-component O/Ne phase diagram can be safely used in white dwarf evolution codes. We provide analytic fits to our high-accuracy O/Ne phase diagram for implementation in white dwarf models. Ultramassive white dwarfs are extreme endpoints of stellar evolution. Recent findings, such as a missing multi-Gyr cooling delay for a number of ultramassive white dwarfs and a white dwarf with a quasi-Chandrasekhar mass, motivate a better understanding of their evolution. A key process still subject to important uncertainties is the crystallization of their dense cores, which are generally assumed to be constituted of 16 O, 20 Ne, and a mixture of several trace elements (most notably 23 Na and 24 Mg). In this work, we use our recently developed Clapeyron integration technique to compute accurate phase diagrams of three-component mixtures relevant to the modeling of O/Ne ultramassive white dwarfs. We show that, unlike the phase separation of 22 Ne impurities in C/O cores, the phase separation of 23 Na impurities in O/Ne white dwarfs cannot lead to the enrichment of their cores in 23 Na via a distillation process. This severely limits the prospect of transporting large quantities of 23 Na toward the center of the star, as needed in the white dwarf core-collapse mechanism recently proposed by Caiazzo et al. We also show that despite representing ≈10% of the ionic mixture, 23 Na and 24 Mg impurities only have a negligible impact on the O/Ne phase diagram, and the two-component O/Ne phase diagram can be safely used in white dwarf evolution codes. We provide analytic fits to our high-accuracy O/Ne phase diagram for implementation in white dwarf models. Ultramassive white dwarfs are extreme endpoints of stellar evolution. Recent findings, such as a missing multi-Gyr cooling delay for a number of ultramassive white dwarfs and a white dwarf with a quasi-Chandrasekhar mass, motivate a better understanding of their evolution. A key process still subject to important uncertainties is the crystallization of their dense cores, which are generally assumed to be constituted of 16O, 20Ne, and a mixture of several trace elements (most notably 23Na and 24Mg). In this work, we use our recently developed Clapeyron integration technique to compute accurate phase diagrams of three-component mixtures relevant to the modeling of O/Ne ultramassive white dwarfs. We show that, unlike the phase separation of 22Ne impurities in C/O cores, the phase separation of 23Na impurities in O/Ne white dwarfs cannot lead to the enrichment of their cores in 23Na via a distillation process. This severely limits the prospect of transporting large quantities of 23Na toward the center of the star, as needed in the white dwarf core-collapse mechanism recently proposed by Caiazzo et al. We also show that despite representing ≈10% of the ionic mixture, 23Na and 24Mg impurities only have a negligible impact on the O/Ne phase diagram, and the two-component O/Ne phase diagram can be safely used in white dwarf evolution codes. We provide analytic fits to our high-accuracy O/Ne phase diagram for implementation in white dwarf models. |
Author | Daligault, Jérôme Blouin, Simon |
Author_xml | – sequence: 1 givenname: Simon orcidid: 0000-0002-9632-1436 surname: Blouin fullname: Blouin, Simon organization: Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA – sequence: 2 givenname: Jérôme orcidid: 0000-0002-8844-6124 surname: Daligault fullname: Daligault, Jérôme organization: Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA |
BackLink | https://www.osti.gov/servlets/purl/1889976$$D View this record in Osti.gov |
BookMark | eNp9kEtLAzEURoNUsK3uXQ7q0rFJ816KbygoaNFdyGQSmtJOxmSq-O-dcURBpKvLvZzv8nFGYFCFygJwiOAZFoRPEMUiJ5jyiTaIIrwDhj-nARhCCEnOMH_ZA6OUlt06lXII8oeFTjZ7tLWOuvGhynyVzVdN1Gudkn-z2fPCNza7fNfRpX2w6_Qq2YPvOQbz66uni9t8dn9zd3E-yw2BrMkLZKgQtISSEUFKggvrHLIFYlQzbIQruDPOYcyYKyRzpSydFVpS6DAjhuExOOr_htR4lUzbwCxMqCprGoWEkJJ30HEP1TG8bmxq1DJsYtX2UlPKOWRiikhLwZ4yMaQUrVN19GsdPxSCqjOnOk2q06R6c22E_Ym0Bb7ktFr8alvwtA_6UP-W2YKf_IPreqkkkmqqBFd16fAn66uNUw |
CitedBy_id | crossref_primary_10_1063_5_0224853 crossref_primary_10_1093_mnrasl_slad039 crossref_primary_10_3847_1538_4357_acbfaa crossref_primary_10_1093_mnras_stad068 crossref_primary_10_1051_0004_6361_202451288 crossref_primary_10_3847_2041_8213_acf76b crossref_primary_10_1016_j_newar_2024_101705 crossref_primary_10_3847_1538_4357_ad6303 crossref_primary_10_1038_s41586_024_07102_y crossref_primary_10_3847_1538_4357_acd057 crossref_primary_10_3847_1538_4357_aca015 crossref_primary_10_1016_j_physrep_2022_09_001 crossref_primary_10_1051_0004_6361_202244604 crossref_primary_10_1093_mnrasl_slae054 crossref_primary_10_1093_mnras_stab3613 crossref_primary_10_1093_mnrasl_slac032 |
Cites_doi | 10.3847/1538-4357/ac0336 10.1051/0004-6361/202038879 10.1086/319169 10.3847/1538-4357/ab733c 10.1093/mnrasl/slaa149 10.1038/s41586-021-03615-y 10.3847/1538-4357/ab9b8d 10.1103/PhysRevLett.104.231101 10.1051/0004-6361/202038930 10.3847/2041-8213/abf14b 10.3847/1538-4357/ab153a 10.1086/304425 10.3847/1538-4357/abc87e 10.3847/1538-4357/ab4989 10.1063/1.465023 10.1038/s41550-020-1028-0 10.1103/PhysRevE.84.016401 10.3847/1538-4357/aac2d2 10.1111/j.1365-2966.2008.13652.x 10.1086/147194 10.1051/0004-6361:20078132 10.1051/0004-6361/201833051 10.1093/mnras/stt1766 10.1051/0004-6361/200811060 10.1086/319535 10.1103/PhysRevE.81.036107 10.1051/0004-6361/200913556 10.1080/00268979300100881 10.3847/1538-4357/abb5a5 10.1051/0004-6361/202140720 10.1051/0004-6361/201832843 10.1063/1.479084 10.1093/mnras/sty3016 10.1093/mnras/stz960 10.1038/s41586-018-0791-x 10.1051/0004-6361/201629272 10.1051/0004-6361/201936889 10.3847/2041-8213/abbda0 10.1093/mnras/stab767 10.1051/0004-6361/201833822 10.1103/PhysRevE.103.043204 10.1093/mnras/sty2057 |
ContentType | Journal Article |
Copyright | 2021. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Oct 01, 2021 |
Copyright_xml | – notice: 2021. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Oct 01, 2021 |
CorporateAuthor | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
CorporateAuthor_xml | – sequence: 0 name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M OIOZB OTOTI |
DOI | 10.3847/1538-4357/ac1513 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | 1889976 10_3847_1538_4357_ac1513 apjac1513 |
GrantInformation_xml | – fundername: DOE ∣ NNSA ∣ Laboratory Directed Research and Development (LDRD) grantid: 20190624PRD2 funderid: https://doi.org/10.13039/100007000 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M OIOZB OTOTI |
ID | FETCH-LOGICAL-c406t-b1c5885d096484d43beff1eb165a63c8fb7fcff3366fb96fd9dfe8a950f364c63 |
IEDL.DBID | O3W |
ISSN | 0004-637X |
IngestDate | Thu Dec 05 06:23:30 EST 2024 Wed Aug 13 09:17:11 EDT 2025 Tue Jul 01 03:24:43 EDT 2025 Thu Apr 24 23:09:36 EDT 2025 Tue Oct 05 22:40:17 EDT 2021 Wed Aug 21 03:42:11 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-b1c5885d096484d43beff1eb165a63c8fb7fcff3366fb96fd9dfe8a950f364c63 |
Notes | AAS33325 Stars and Stellar Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 LA-UR-21-26324 USDOE Laboratory Directed Research and Development (LDRD) Program 89233218CNA000001 |
ORCID | 0000-0002-8844-6124 0000-0002-9632-1436 0000000288446124 0000000296321436 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1889976 |
PQID | 2577068214 |
PQPubID | 4562441 |
PageCount | 8 |
ParticipantIDs | iop_journals_10_3847_1538_4357_ac1513 crossref_primary_10_3847_1538_4357_ac1513 crossref_citationtrail_10_3847_1538_4357_ac1513 osti_scitechconnect_1889976 proquest_journals_2577068214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2021 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – sequence: 0 name: IOP Publishing – name: The American Astronomical Society – name: IOP Publishing |
References | Temmink (apjac1513bib44) 2020; 636 Isern (apjac1513bib28) 1997; 485 Mochkovitch (apjac1513bib36) 1983; 122 Kepler (apjac1513bib29) 2019; 486 Siess (apjac1513bib42) 2007; 476 Vennes (apjac1513bib46) 2008; 389 Salpeter (apjac1513bib38) 1961; 134 Bauer (apjac1513bib2) 2020; 902 Kofke (apjac1513bib32) 1993a; 78 Cheng (apjac1513bib14) 2020; 891 Horowitz (apjac1513bib25) 2010; 104 Bildsten (apjac1513bib4) 2001; 549 Fontaine (apjac1513bib17) 2001; 113 Gentile Fusillo (apjac1513bib21) 2019; 482 Isern (apjac1513bib27) 1991; 241 Caiazzo (apjac1513bib8) 2021; 595 Kilic (apjac1513bib31) 2020; 898 Schwab (apjac1513bib40) 2021b; 916 Caplan (apjac1513bib11) 2018; 860 Blouin (apjac1513bib7) 2020; 640 De Gerónimo (apjac1513bib16) 2018 Althaus (apjac1513bib1) 2021; 646 Hughto (apjac1513bib26) 2011; 84 Gaia Collaboration (apjac1513bib19) 2018a; 616 Dan (apjac1513bib15) 2014; 438 Schwab (apjac1513bib39) 2021a; 906 Cheng (apjac1513bib13) 2019; 886 Gaia Collaboration (apjac1513bib20) 2018b; 616 Siess (apjac1513bib43) 2010; 512 Kilic (apjac1513bib30) 2021; 503 Kofke (apjac1513bib33) 1993b; 98 Hollands (apjac1513bib24) 2018; 480 Medin (apjac1513bib35) 2010; 81 Blouin (apjac1513bib5) 2021; 103 Bergeron (apjac1513bib3) 2019; 876 Lorén-Aguilar (apjac1513bib34) 2009; 500 Shapiro (apjac1513bib41) 1983 Caplan (apjac1513bib12) 2020; 902 Gaia Collaboration (apjac1513bib18) 2016; 595 Blouin (apjac1513bib6) 2021; 911 Camisassa (apjac1513bib10) 2021; 649 Tremblay (apjac1513bib45) 2019; 565 Camisassa (apjac1513bib9) 2019; 625 Hitchcock (apjac1513bib22) 1999; 110 Hollands (apjac1513bib23) 2020; 4 Pshirkov (apjac1513bib37) 2020; 499 |
References_xml | – volume: 241 start-page: L29 year: 1991 ident: apjac1513bib27 publication-title: A&A – volume: 916 start-page: 119 year: 2021b ident: apjac1513bib40 publication-title: ApJ doi: 10.3847/1538-4357/ac0336 – volume: 640 start-page: L11 year: 2020 ident: apjac1513bib7 publication-title: A&A doi: 10.1051/0004-6361/202038879 – volume: 549 start-page: L219 year: 2001 ident: apjac1513bib4 publication-title: ApJL doi: 10.1086/319169 – volume: 891 start-page: 160 year: 2020 ident: apjac1513bib14 publication-title: ApJ doi: 10.3847/1538-4357/ab733c – volume: 499 start-page: L21 year: 2020 ident: apjac1513bib37 publication-title: MNRAS doi: 10.1093/mnrasl/slaa149 – year: 1983 ident: apjac1513bib41 – volume: 595 start-page: 39 year: 2021 ident: apjac1513bib8 publication-title: Natur doi: 10.1038/s41586-021-03615-y – volume: 898 start-page: 84 year: 2020 ident: apjac1513bib31 publication-title: ApJ doi: 10.3847/1538-4357/ab9b8d – volume: 104 start-page: 231101 year: 2010 ident: apjac1513bib25 publication-title: PhRvL doi: 10.1103/PhysRevLett.104.231101 – volume: 646 start-page: A30 year: 2021 ident: apjac1513bib1 publication-title: A&A doi: 10.1051/0004-6361/202038930 – volume: 911 start-page: L5 year: 2021 ident: apjac1513bib6 publication-title: ApJL doi: 10.3847/2041-8213/abf14b – volume: 876 start-page: 67 year: 2019 ident: apjac1513bib3 publication-title: ApJ doi: 10.3847/1538-4357/ab153a – volume: 485 start-page: 308 year: 1997 ident: apjac1513bib28 publication-title: ApJ doi: 10.1086/304425 – volume: 906 start-page: 53 year: 2021a ident: apjac1513bib39 publication-title: ApJ doi: 10.3847/1538-4357/abc87e – volume: 886 start-page: 100 year: 2019 ident: apjac1513bib13 publication-title: ApJ doi: 10.3847/1538-4357/ab4989 – volume: 98 start-page: 4149 year: 1993b ident: apjac1513bib33 publication-title: JChPh doi: 10.1063/1.465023 – volume: 4 start-page: 663 year: 2020 ident: apjac1513bib23 publication-title: NatAs doi: 10.1038/s41550-020-1028-0 – volume: 84 start-page: 016401 year: 2011 ident: apjac1513bib26 publication-title: PhRvE doi: 10.1103/PhysRevE.84.016401 – volume: 860 start-page: 148 year: 2018 ident: apjac1513bib11 publication-title: ApJ doi: 10.3847/1538-4357/aac2d2 – volume: 389 start-page: 1367 year: 2008 ident: apjac1513bib46 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13652.x – volume: 134 start-page: 669 year: 1961 ident: apjac1513bib38 publication-title: ApJ doi: 10.1086/147194 – volume: 476 start-page: 893 year: 2007 ident: apjac1513bib42 publication-title: A&A doi: 10.1051/0004-6361:20078132 – volume: 616 start-page: A1 year: 2018a ident: apjac1513bib19 publication-title: A&A doi: 10.1051/0004-6361/201833051 – volume: 438 start-page: 14 year: 2014 ident: apjac1513bib15 publication-title: MNRAS doi: 10.1093/mnras/stt1766 – volume: 500 start-page: 1193 year: 2009 ident: apjac1513bib34 publication-title: A&A doi: 10.1051/0004-6361/200811060 – year: 2018 ident: apjac1513bib16 – volume: 113 start-page: 409 year: 2001 ident: apjac1513bib17 publication-title: PASP doi: 10.1086/319535 – volume: 81 start-page: 036107 year: 2010 ident: apjac1513bib35 publication-title: PhRvE doi: 10.1103/PhysRevE.81.036107 – volume: 512 start-page: A10 year: 2010 ident: apjac1513bib43 publication-title: A&A doi: 10.1051/0004-6361/200913556 – volume: 78 start-page: 1331 year: 1993a ident: apjac1513bib32 publication-title: MolPh doi: 10.1080/00268979300100881 – volume: 902 start-page: 93 year: 2020 ident: apjac1513bib2 publication-title: ApJ doi: 10.3847/1538-4357/abb5a5 – volume: 649 start-page: L7 year: 2021 ident: apjac1513bib10 publication-title: A&A doi: 10.1051/0004-6361/202140720 – volume: 616 start-page: A10 year: 2018b ident: apjac1513bib20 publication-title: A&A doi: 10.1051/0004-6361/201832843 – volume: 110 start-page: 11433 year: 1999 ident: apjac1513bib22 publication-title: JChPh doi: 10.1063/1.479084 – volume: 482 start-page: 4570 year: 2019 ident: apjac1513bib21 publication-title: MNRAS doi: 10.1093/mnras/sty3016 – volume: 486 start-page: 2169 year: 2019 ident: apjac1513bib29 publication-title: MNRAS doi: 10.1093/mnras/stz960 – volume: 565 start-page: 202 year: 2019 ident: apjac1513bib45 publication-title: Natur doi: 10.1038/s41586-018-0791-x – volume: 595 start-page: A1 year: 2016 ident: apjac1513bib18 publication-title: A&A doi: 10.1051/0004-6361/201629272 – volume: 636 start-page: A31 year: 2020 ident: apjac1513bib44 publication-title: A&A doi: 10.1051/0004-6361/201936889 – volume: 902 start-page: L44 year: 2020 ident: apjac1513bib12 publication-title: ApJL doi: 10.3847/2041-8213/abbda0 – volume: 503 start-page: 5397 year: 2021 ident: apjac1513bib30 publication-title: MNRAS doi: 10.1093/mnras/stab767 – volume: 625 start-page: A87 year: 2019 ident: apjac1513bib9 publication-title: A&A doi: 10.1051/0004-6361/201833822 – volume: 122 start-page: 212 year: 1983 ident: apjac1513bib36 publication-title: A&A – volume: 103 start-page: 043204 year: 2021 ident: apjac1513bib5 publication-title: PhRvE doi: 10.1103/PhysRevE.103.043204 – volume: 480 start-page: 3942 year: 2018 ident: apjac1513bib24 publication-title: MNRAS doi: 10.1093/mnras/sty2057 |
SSID | ssj0004299 |
Score | 2.4584234 |
Snippet | Ultramassive white dwarfs are extreme endpoints of stellar evolution. Recent findings, such as a missing multi-Gyr cooling delay for a number of ultramassive... We report ultramassive white dwarfs are extreme endpoints of stellar evolution. Recent findings, such as a missing multi-Gyr cooling delay for a number of... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 87 |
SubjectTerms | ASTRONOMY AND ASTROPHYSICS Astrophysics Cores Crystallization Degenerate matter Distillation Impurities Phase diagrams Phase separation Plasma physics Stellar evolution Stellar interiors Trace elements White dwarf stars |
Title | Phase Separation in Ultramassive White Dwarfs |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ac1513 https://www.proquest.com/docview/2577068214 https://www.osti.gov/servlets/purl/1889976 |
Volume | 919 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6yKYVeQpO0ZJsHOrSBHty1LVkPcgpJQ1pos9Au3ZuQZIm2JPay6xDy7zuynITQEnrTQZbFN5pvZvSYAXirqM9doLFqgA8ZM7TKlPV5_1bGlfEoqM948-UrP5-xz_NqvgZH929h2sVA_R-wmRIFJwijflPk0kmvo2jlxcQ4tFd0BM-o5DIu7wv64-FRZKkG35dlnIp5OqP85wiPbNII_4v83KKG_cXPvdE5ewkbg7dIjtPcNmHNN1uwc7yK-9ft1S05JH07bU-stuD5NLW2IZv-RPtEvvmU27ttyK-GzC67pblCdxkpjvSl8cjpjVmG1SuYnX38fnKeDaURMocWuMts4SopqxoDECZZzaj1IRTIu7wynDoZrAguoAw4D1bxUKs6eGlUlQfKmeP0Naw3beN3gJg6OMoEs9YKpjyzQklbl8HnwjHLzRgmd-BoN-QNj-UrLjXGDxFOHeHUEU6d4BzD-_svFilnxhN93yHeelCc1RP99h_1M4vfWhVKl1oKvajDGHajxDQunpj81sVbQq7ThcR4UvAx7N0J8mEIJCuRc1kW7M1_TmIXXpTxSkt_l28P1rvltd9Hn6SzBzD6dDE96FfgH3Au1_k |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RIhAXBAXUpS34AEgcwiax48exoqzKq6wEK_Zm2Y6tgtpktRuE-PeM7ZSqAlXcfHAc6_PMN2N7PAPwTFFfukBj1QAfCmZoUyjry_RWxtXxKihlvPl4wo8X7N2yWY51TtNbmH41Uv8rbOZEwRnCqN8UuXSadBStvJgah_aKTldt2IKbDeVNFOtP9Ovlw8hajf4vKzgVy3xP-c9RrtilLfw3cnSPWvYXRyfDM7sHd0ePkRzm-d2HG77bgd3DTTzD7s9_kRcktfMRxWYHbs1z6wEU81O0UeSzz_m9-45868jibFibc3SZkeZIKo9Hjn6addg8hMXszZfXx8VYHqFwaIWHwlaukbJpcRPCJGsZtT6ECrmXN4ZTJ4MVwQVcB86DVTy0qg1eGtWUgXLmOH0E213f-V0gpg2OMsGstYIpz6xQ0rZ18KVwzHIzgekFONqNucNjCYszjXuICKeOcOoIp85wTuDlny9WOW_GNX2fI956VJ7NNf0OrvQzq-9aVUrXWgqNQjCBvbhiGgUoJsB1MVLIDbqSuKcUfAL7Fwt5OQQSlii5rCv2-D8n8RRuz49m-sPbk_d7cKeOES4ptG8ftof1D3-ALspgnyQx_A3dn9ro |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Separation+in+Ultramassive+White+Dwarfs&rft.jtitle=The+Astrophysical+journal&rft.au=Blouin%2C+Simon&rft.au=Daligault%2C+Jerome+Olivier&rft.date=2021-10-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.volume=919&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Fac1513&rft.externalDocID=1889976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |