Axisymmetric three-dimensional gravity currents generated by lock exchange

Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of large eddy simulations under the Boussinesq approximation, with Grashof numbers varying over five orders of magnitudes. The study shows that,...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 851; pp. 507 - 544
Main Authors Inghilesi, Roberto, Adduce, Claudia, Lombardi, Valentina, Roman, Federico, Armenio, Vincenzo
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of large eddy simulations under the Boussinesq approximation, with Grashof numbers varying over five orders of magnitudes. The study shows that, after an initial transient, the flow can be separated into an axisymmetric expansion and a globally translating motion. In particular, the circular frontline spreads like a constant-flow-rate, axially symmetric gravity current about a virtual source translating along the symmetry axis. The flow is characterised by the presence of lobe and cleft instabilities and hydrodynamic shocks. Depending on the Grashof number, the shocks can either be isolated or produced continuously. In the latter case a typical ring structure is visible in the density and velocity fields. The analysis of the frontal spreading of the axisymmetric part of the current indicates the presence of three regimes, namely, a slumping phase, an inertial–buoyancy equilibrium regime and a viscous–buoyancy equilibrium regime. The viscous–buoyancy phase is in good agreement with the model of Huppert (J. Fluid Mech., vol. 121, 1982, pp. 43–58), while the inertial phase is consistent with the experiments of Britter (Atmos. Environ., vol. 13, 1979, pp. 1241–1247), conducted for purely axially symmetric, constant inflow, gravity currents. The adoption of the slumping model of Huppert & Simpson (J. Fluid Mech., vol. 99 (04), 1980, pp. 785–799), which is here extended to the case of constant-flow-rate cylindrical currents, allows reconciling of the different theories about the initial radial spreading in the context of different asymptotic regimes. As expected, the slumping phase is governed by the Froude number at the lock’s gate, whereas the transition to the viscous phase depends on both the Froude number at the gate and the Grashof number. The identification of the inertial–buoyancy regime in the presence of hydrodynamic shocks for this class of flows is important, due to the lack of analytical solutions for the similarity problem in the framework of shallow water theory. This fact has considerably slowed the research on variable-flow-rate axisymmetric gravity currents, as opposed to the rapid development of the knowledge about cylindrical constant-volume and planar gravity currents, despite their own environmental relevance.
AbstractList Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of large eddy simulations under the Boussinesq approximation, with Grashof numbers varying over five orders of magnitudes. The study shows that, after an initial transient, the flow can be separated into an axisymmetric expansion and a globally translating motion. In particular, the circular frontline spreads like a constant-flow-rate, axially symmetric gravity current about a virtual source translating along the symmetry axis. The flow is characterised by the presence of lobe and cleft instabilities and hydrodynamic shocks. Depending on the Grashof number, the shocks can either be isolated or produced continuously. In the latter case a typical ring structure is visible in the density and velocity fields. The analysis of the frontal spreading of the axisymmetric part of the current indicates the presence of three regimes, namely, a slumping phase, an inertial–buoyancy equilibrium regime and a viscous–buoyancy equilibrium regime. The viscous–buoyancy phase is in good agreement with the model of Huppert (J. Fluid Mech., vol. 121, 1982, pp. 43–58), while the inertial phase is consistent with the experiments of Britter (Atmos. Environ., vol. 13, 1979, pp. 1241–1247), conducted for purely axially symmetric, constant inflow, gravity currents. The adoption of the slumping model of Huppert & Simpson (J. Fluid Mech., vol. 99 (04), 1980, pp. 785–799), which is here extended to the case of constant-flow-rate cylindrical currents, allows reconciling of the different theories about the initial radial spreading in the context of different asymptotic regimes. As expected, the slumping phase is governed by the Froude number at the lock’s gate, whereas the transition to the viscous phase depends on both the Froude number at the gate and the Grashof number. The identification of the inertial–buoyancy regime in the presence of hydrodynamic shocks for this class of flows is important, due to the lack of analytical solutions for the similarity problem in the framework of shallow water theory. This fact has considerably slowed the research on variable-flow-rate axisymmetric gravity currents, as opposed to the rapid development of the knowledge about cylindrical constant-volume and planar gravity currents, despite their own environmental relevance.
Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of large eddy simulations under the Boussinesq approximation, with Grashof numbers varying over five orders of magnitudes. The study shows that, after an initial transient, the flow can be separated into an axisymmetric expansion and a globally translating motion. In particular, the circular frontline spreads like a constant-flow-rate, axially symmetric gravity current about a virtual source translating along the symmetry axis. The flow is characterised by the presence of lobe and cleft instabilities and hydrodynamic shocks. Depending on the Grashof number, the shocks can either be isolated or produced continuously. In the latter case a typical ring structure is visible in the density and velocity fields. The analysis of the frontal spreading of the axisymmetric part of the current indicates the presence of three regimes, namely, a slumping phase, an inertial–buoyancy equilibrium regime and a viscous–buoyancy equilibrium regime. The viscous–buoyancy phase is in good agreement with the model of Huppert (J. Fluid Mech., vol. 121, 1982, pp. 43–58), while the inertial phase is consistent with the experiments of Britter (Atmos. Environ., vol. 13, 1979, pp. 1241–1247), conducted for purely axially symmetric, constant inflow, gravity currents. The adoption of the slumping model of Huppert & Simpson (J. Fluid Mech., vol. 99 (04), 1980, pp. 785–799), which is here extended to the case of constant-flow-rate cylindrical currents, allows reconciling of the different theories about the initial radial spreading in the context of different asymptotic regimes. As expected, the slumping phase is governed by the Froude number at the lock’s gate, whereas the transition to the viscous phase depends on both the Froude number at the gate and the Grashof number. The identification of the inertial–buoyancy regime in the presence of hydrodynamic shocks for this class of flows is important, due to the lack of analytical solutions for the similarity problem in the framework of shallow water theory. This fact has considerably slowed the research on variable-flow-rate axisymmetric gravity currents, as opposed to the rapid development of the knowledge about cylindrical constant-volume and planar gravity currents, despite their own environmental relevance.
Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of large eddy simulations under the Boussinesq approximation, with Grashof numbers varying over five orders of magnitudes. The study shows that, after an initial transient, the flow can be separated into an axisymmetric expansion and a globally translating motion. In particular, the circular frontline spreads like a constant-flow-rate, axially symmetric gravity current about a virtual source translating along the symmetry axis. The flow is characterised by the presence of lobe and cleft instabilities and hydrodynamic shocks. Depending on the Grashof number, the shocks can either be isolated or produced continuously. In the latter case a typical ring structure is visible in the density and velocity fields. The analysis of the frontal spreading of the axisymmetric part of the current indicates the presence of three regimes, namely, a slumping phase, an inertial–buoyancy equilibrium regime and a viscous–buoyancy equilibrium regime. The viscous–buoyancy phase is in good agreement with the model of Huppert ( J. Fluid Mech. , vol. 121, 1982, pp. 43–58), while the inertial phase is consistent with the experiments of Britter ( Atmos. Environ. , vol. 13, 1979, pp. 1241–1247), conducted for purely axially symmetric, constant inflow, gravity currents. The adoption of the slumping model of Huppert & Simpson ( J. Fluid Mech. , vol. 99 (04), 1980, pp. 785–799), which is here extended to the case of constant-flow-rate cylindrical currents, allows reconciling of the different theories about the initial radial spreading in the context of different asymptotic regimes. As expected, the slumping phase is governed by the Froude number at the lock’s gate, whereas the transition to the viscous phase depends on both the Froude number at the gate and the Grashof number. The identification of the inertial–buoyancy regime in the presence of hydrodynamic shocks for this class of flows is important, due to the lack of analytical solutions for the similarity problem in the framework of shallow water theory. This fact has considerably slowed the research on variable-flow-rate axisymmetric gravity currents, as opposed to the rapid development of the knowledge about cylindrical constant-volume and planar gravity currents, despite their own environmental relevance.
Author Adduce, Claudia
Roman, Federico
Armenio, Vincenzo
Lombardi, Valentina
Inghilesi, Roberto
Author_xml – sequence: 1
  givenname: Roberto
  orcidid: 0000-0002-9959-3904
  surname: Inghilesi
  fullname: Inghilesi, Roberto
  email: roberto.inghilesi@isprambiente.it
  organization: National Centre for Environmental Crisis, Emergencies and Damage, Italian Institute for Environmental Protection and Research, 00144 Rome, Italy
– sequence: 2
  givenname: Claudia
  surname: Adduce
  fullname: Adduce, Claudia
  organization: Department of Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy
– sequence: 3
  givenname: Valentina
  surname: Lombardi
  fullname: Lombardi, Valentina
  organization: Department of Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy
– sequence: 4
  givenname: Federico
  surname: Roman
  fullname: Roman, Federico
  organization: IEFLUIDS s.r.l., Piazzale Europa 1, 34127 Trieste, Italy
– sequence: 5
  givenname: Vincenzo
  surname: Armenio
  fullname: Armenio, Vincenzo
  organization: Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
BookMark eNptkD1PwzAURS1UJNrCxg-IxErCs-PYyVhVfKoSC8yWYz-nKU1S7BQ1_55UrcTCdJdzr67OjEzarkVCbikkFKh82LgmYUDzJAO4IFPKRRFLwbMJmQIwFlPK4IrMQtgA0BQKOSVvi0MdhqbB3tcm6tceMbZ1g22ou1Zvo8rrn7ofIrP3Hts-RBW26HWPNiqHaNuZrwgPZq3bCq_JpdPbgDfnnJPPp8eP5Uu8en9-XS5WseEg-lijNU6b1DrOqcnTUgiHHKyjRlqUWthCslI7KDjlJTIphNV5yaUVWY4pS-fk7rS78933HkOvNt3ej2eDYgyKPMs5FyN1f6KM70Lw6NTO1432g6KgjrbUaEsdbanR1ognZ1w3pa9thX-r_xZ-AYiSb8I
CitedBy_id crossref_primary_10_1016_j_advwatres_2021_103967
crossref_primary_10_1063_5_0011604
crossref_primary_10_1103_PhysRevFluids_9_063501
crossref_primary_10_1061__ASCE_WW_1943_5460_0000628
crossref_primary_10_1016_j_compfluid_2021_104902
crossref_primary_10_1029_2022JB024847
crossref_primary_10_1063_5_0132830
crossref_primary_10_1063_5_0021196
crossref_primary_10_1016_j_advwatres_2021_103963
crossref_primary_10_1016_j_ijsrc_2020_04_003
crossref_primary_10_1016_j_advwatres_2022_104339
crossref_primary_10_1063_5_0009102
crossref_primary_10_1111_sed_13073
crossref_primary_10_1007_s10652_022_09879_w
crossref_primary_10_1080_00221686_2022_2064345
crossref_primary_10_1103_PhysRevFluids_6_013801
crossref_primary_10_1007_s10652_021_09814_5
crossref_primary_10_1007_s11356_020_11915_5
crossref_primary_10_1038_s41598_020_73504_3
crossref_primary_10_1017_jfm_2020_528
crossref_primary_10_1063_1_5116067
crossref_primary_10_1038_s41598_020_68830_5
crossref_primary_10_1061__ASCE_HY_1943_7900_0001709
crossref_primary_10_1017_jfm_2021_300
crossref_primary_10_1061__ASCE_EM_1943_7889_0001696
crossref_primary_10_1016_j_cpc_2019_03_019
crossref_primary_10_1080_00221686_2019_1647888
crossref_primary_10_1007_s11600_021_00709_z
crossref_primary_10_1134_S2070048223050034
crossref_primary_10_1016_j_cageo_2022_105146
crossref_primary_10_1061_JHEND8_HYENG_13531
crossref_primary_10_1007_s10652_022_09845_6
crossref_primary_10_1007_s10652_020_09758_2
crossref_primary_10_1016_j_compfluid_2021_105209
crossref_primary_10_1016_j_advwatres_2023_104585
crossref_primary_10_1063_5_0135925
crossref_primary_10_1063_5_0039251
crossref_primary_10_1016_j_advwatres_2020_103791
crossref_primary_10_1063_5_0051567
crossref_primary_10_1017_jfm_2023_148
crossref_primary_10_20948_mm_2023_03_05
crossref_primary_10_1016_j_geoen_2024_212894
Cites_doi 10.1080/00221686.2017.1372817
10.1017/S0022112005004933
10.1007/s10652-013-9285-4
10.1017/S0022112094003241
10.1017/S0022112008002553
10.1017/S0022112096007379
10.1063/1.4948760
10.1017/S0022112082001785
10.1016/j.dynatmoce.2011.09.001
10.1017/S002211200600930X
10.1017/S0022112082001797
10.1063/1.4923208
10.1201/9781584889045
10.1017/S0022112093002289
10.1016/0021-9991(83)90065-7
10.1017/S0022112080000894
10.1016/j.euromechflu.2017.09.003
10.1007/s10652-013-9289-0
10.1115/1.4031040
10.1175/JPO-D-16-0175.1
10.1017/S002211200400165X
10.1017/S0022112095002825
10.1017/S0022112001006899
10.1016/0004-6981(79)90078-7
10.1017/jfm.2013.372
10.1017/S0022112096001486
10.1017/S0022112002007851
10.1016/j.ocemod.2017.05.001
10.1016/j.euromechflu.2004.05.006
10.1017/S0022112086000678
10.1016/j.advwatres.2017.07.027
10.1023/A:1009998919233
10.1017/S0022112007005769
10.1017/S0022112079001142
10.1146/annurev.fl.04.010172.002013
10.1063/1.2130747
10.1061/(ASCE)0733-9429(2007)133:9(1037)
10.1017/S0022112000001221
10.1061/(ASCE)HY.1943-7900.0000484
10.1017/jfm.2016.598
10.1088/1742-6596/319/1/012003
10.1080/00221686.2016.1174961
10.1146/annurev.fluid.34.082901.144919
10.1017/S0022112009007599
10.1006/jcph.1994.1146
10.1029/JC089iC02p01989
10.1002/9781118032954
10.1063/1.3002381
10.1002/2013JC009721
10.1017/S0022112006003053
10.1080/00221686.2012.667680
10.1017/S002211200999334X
10.1017/S0022112001005523
10.1016/j.compfluid.2008.12.004
10.1017/S0022112080002017
10.1098/rsta.1952.0005
ContentType Journal Article
Copyright 2018 Cambridge University Press
2018 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018 Cambridge University Press
– notice: 2018 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID IKXGN
AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2018.500
DatabaseName Cambridge Open Access Journals
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate Axisymmetric 3-D gravity currents generated by lock exchange
R. Inghilesi, C. Adduce, V. Lombardi, F. Roman and V. Armenio
EISSN 1469-7645
EndPage 544
ExternalDocumentID 10_1017_jfm_2018_500
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IKXGN
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZMEZD
ZYDXJ
~02
AAYXX
ABVZP
ABXAU
CITATION
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c406t-aedcfac3df441c83b66fe40df1c7de7a6d972baf09414be2766da8b47d658e323
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Thu Oct 10 20:55:29 EDT 2024
Thu Sep 26 17:01:18 EDT 2024
Wed Mar 13 05:44:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords turbulence simulation
shallow water flows
gravity currents
Language English
License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-aedcfac3df441c83b66fe40df1c7de7a6d972baf09414be2766da8b47d658e323
ORCID 0000-0002-9959-3904
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0022112018005001/type/journal_article
PQID 2209858446
PQPubID 34769
PageCount 38
ParticipantIDs proquest_journals_2209858446
crossref_primary_10_1017_jfm_2018_500
cambridge_journals_10_1017_jfm_2018_500
PublicationCentury 2000
PublicationDate 2018-09-25
PublicationDateYYYYMMDD 2018-09-25
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-25
  day: 25
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2018
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2000; 418
1996; 308
2007; 586
2017b; 47
2004; 521
1994; 258
2011; 319
2005; 536
1983; 50
2009; 635
1995; 294
2012; 52
2005; 24
2007; 133
2007; 570
2014; 14
2008; 20
2012; 138
2016a; 54
1993; 254
2017a; 115
2014; 119
1979; 13
1994; 114
2010; 649
2000; 65
2002; 34
2016; 806
1984; 89
2002; 453
2002; 459
1982; 121
1972; 4
2018; 67
2001; 447
2006; 554
1979; 94
2012; 50
2015; 67
1996; 319
1986; 169
2015; 27
2016b; 28
1980; 96
2013; 731
1980; 99
1952; 244A
2018
2008; 610
2018; 56
2005; 17
2009; 38
S0022112018005001_r19
S0022112018005001_r16
S0022112018005001_r17
S0022112018005001_r58
S0022112018005001_r14
Fay (S0022112018005001_r18) 1969
S0022112018005001_r15
S0022112018005001_r59
S0022112018005001_r56
S0022112018005001_r12
S0022112018005001_r57
S0022112018005001_r13
S0022112018005001_r10
S0022112018005001_r11
S0022112018005001_r55
S0022112018005001_r53
S0022112018005001_r7
S0022112018005001_r50
S0022112018005001_r51
S0022112018005001_r8
S0022112018005001_r9
S0022112018005001_r3
S0022112018005001_r4
S0022112018005001_r5
S0022112018005001_r6
Piomelli (S0022112018005001_r48) 1996
S0022112018005001_r2
Abbott (S0022112018005001_r1) 1967
Lombardi (S0022112018005001_r34) 2015; 27
S0022112018005001_r29
S0022112018005001_r27
S0022112018005001_r28
S0022112018005001_r25
S0022112018005001_r26
S0022112018005001_r23
S0022112018005001_r24
S0022112018005001_r21
S0022112018005001_r22
S0022112018005001_r63
S0022112018005001_r20
S0022112018005001_r61
S0022112018005001_r62
S0022112018005001_r60
La Forgia (S0022112018005001_r30) 2018
S0022112018005001_r38
S0022112018005001_r39
S0022112018005001_r36
S0022112018005001_r37
S0022112018005001_r35
S0022112018005001_r32
S0022112018005001_r33
S0022112018005001_r31
S0022112018005001_r49
S0022112018005001_r47
S0022112018005001_r45
S0022112018005001_r46
S0022112018005001_r43
S0022112018005001_r44
Sedov (S0022112018005001_r52) 1993
S0022112018005001_r41
S0022112018005001_r42
S0022112018005001_r40
Simpson (S0022112018005001_r54) 1997
References_xml – volume: 54
  start-page: 541
  issue: 5
  year: 2016a
  end-page: 557
  article-title: Entrainment and mixing in unsteady gravity currents
  publication-title: J. Hydraul Res.
– volume: 319
  start-page: 353
  year: 1996
  end-page: 385
  article-title: A lagrangian dynamic subgrid-scale model of turbulence
  publication-title: J. Fluid Mech.
– volume: 459
  start-page: 1
  year: 2002
  end-page: 42
  article-title: An investigation of stably stratified turbulent channel flow using large-eddy simulation
  publication-title: J. Fluid Mech.
– volume: 17
  year: 2005
  article-title: Large eddy simulation of stably stratified open channel flow
  publication-title: Phys. Fluids
– volume: 94
  start-page: 477
  issue: 3
  year: 1979
  end-page: 495
  article-title: The dynamics of the head of a gravity current advancing over a horizontal surface
  publication-title: J. Fluid Mech.
– volume: 14
  start-page: 295
  issue: 2
  year: 2014
  end-page: 317
  article-title: Les of lock-exchange compositional gravity currents: a brief review of some recent results
  publication-title: Environ. Fluid Mech.
– volume: 115
  start-page: 11
  year: 2017a
  end-page: 13
  article-title: Analysis of the flow in gravity currents propagating up a slope
  publication-title: Ocean Model.
– volume: 244A
  start-page: 285
  year: 1952
  end-page: 311
  article-title: Part III. the dispersion, under gravity, of a column of fluid supported on a rigid horizontal plane in some gravity wave problems in the motion of perfect liquids
  publication-title: Phil. Trans. R. Soc. Lond.
– volume: 34
  start-page: 349
  year: 2002
  end-page: 374
  article-title: Wall-layer models for large-eddy simulations
  publication-title: Annu. Rev. Fluid Mech.
– volume: 554
  start-page: 299
  year: 2006
  end-page: 322
  article-title: Gravity currents: a personal perspective
  publication-title: J. Fluid Mech.
– volume: 89
  start-page: 1989
  issue: C2
  year: 1984
  end-page: 1996
  article-title: Radial spreading of buoyant, surface plumes in coastal waters
  publication-title: J. Geophys. Res.
– volume: 308
  start-page: 289
  year: 1996
  end-page: 311
  article-title: Entrainment into two-dimensional and axisymmetric turbulent gravity currents
  publication-title: J. Fluid Mech.
– volume: 24
  start-page: 71
  year: 2005
  end-page: 90
  article-title: On the slumping of high Reynolds number gravity currents in two-dimensional and axisymmetric configurations
  publication-title: Eur. J. Mech. (B/Fluids)
– volume: 119
  start-page: 2752
  issue: 5
  year: 2014
  end-page: 2768
  article-title: Lock-exchange gravity currents with a low volume of release propagating over an array of obstacles
  publication-title: J.  Geophys. Res.
– volume: 50
  start-page: 215
  issue: 2
  year: 1983
  end-page: 234
  article-title: On one-dimensional stretching functions for finite-difference calculations
  publication-title: J. Comput. Phys.
– volume: 294
  start-page: 93
  year: 1995
  end-page: 121
  article-title: Axisymmetric particle-driven gravity currents
  publication-title: J. Fluid Mech.
– volume: 319
  issue: 1
  year: 2011
  article-title: Hydraulic jump
  publication-title: J. Phys. Conf. Series
– volume: 27
  issue: 1
  year: 2015
  article-title: Gravity currents flowing upslope: laboratory experiments and shallow water simulations
  publication-title: Phys. Fluids
– volume: 50
  start-page: 208
  issue: 2
  year: 2012
  end-page: 217
  article-title: A two-layer, shallow-water model for 3d gravity currents
  publication-title: J. Hydraul Res.
– volume: 635
  start-page: 361
  year: 2009
  end-page: 388
  article-title: Numerical simulations of lock-exchange compositional gravity current
  publication-title: J. Fluid Mech.
– volume: 65
  start-page: 51
  issue: 1
  year: 2000
  end-page: 81
  article-title: A lagrangian mixed subgrid-scale model in generalized coordinates
  publication-title: Flow Turbul. Combust.
– volume: 418
  start-page: 189
  year: 2000
  end-page: 212
  article-title: Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries
  publication-title: J. Fluid Mech.
– volume: 447
  start-page: 1
  year: 2001
  end-page: 29
  article-title: Axisymmetric gravity currents in a rotating system: experimental and numerical investigations
  publication-title: J. Fluid Mech.
– volume: 731
  start-page: 117
  year: 2013
  end-page: 141
  article-title: Experiments on gravity currents propagating on different bottom slopes
  publication-title: J. Fluid Mech.
– volume: 27
  issue: 7
  year: 2015
  article-title: High-resolution simulations of downslope gravity currents in the acceleration phase
  publication-title: Phys. Fluids
– volume: 121
  start-page: 43
  year: 1982
  end-page: 58
  article-title: The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface
  publication-title: J. Fluid Mech.
– volume: 52
  start-page: 386
  issue: 3
  year: 2012
  end-page: 409
  article-title: Experimental and analytical investigation of dense gravity currents in a rotating, up-sloping and converging channel
  publication-title: Dyn. Atmos. Oceans
– volume: 586
  start-page: 1
  year: 2007
  end-page: 39
  article-title: On the front velocity of gravity currents
  publication-title: J. Fluid Mech.
– volume: 254
  start-page: 635
  year: 1993
  end-page: 648
  article-title: Shallow-water approach to the circular hydraulic jump
  publication-title: J. Fluid Mech.
– volume: 14
  start-page: 1251
  issue: 5
  year: 2014
  end-page: 1273
  article-title: Gravity currents in rotating, wedge-shaped, adverse channels
  publication-title: Environ. Fluid Mech.
– volume: 536
  start-page: 49
  year: 2005
  end-page: 78
  article-title: The front condition for gravity currents
  publication-title: J. Fluid Mech.
– volume: 56
  start-page: 399
  issue: 3
  year: 2018
  end-page: 411
  article-title: Unconfined lock-exchange gravity currents with variable lock width: laboratory experiments and shallow-water simulations
  publication-title: J. Hydraul Res.
– volume: 67
  start-page: 125
  year: 2018
  end-page: 136
  article-title: Lattice-boltzmann simulations of gravity currents
  publication-title: Eur. J. Mech. (B/Fluids)
– volume: 138
  start-page: 111
  issue: 2
  year: 2012
  end-page: 121
  article-title: Gravity currents produced by lock exchanges: experiments and simulations with a two-layer shallow-water model with entrainment
  publication-title: J. Hydraul. Eng. ASCE
– volume: 38
  start-page: 1510
  issue: 8
  year: 2009
  end-page: 1527
  article-title: An improved immersed boundary method for curvilinear grids
  publication-title: Comput. Fluids
– volume: 96
  start-page: 47
  year: 1980
  end-page: 64
  article-title: On the formation of nonlinear internal waves from the gravitational collapse of mixed regions in two and three dimensions
  publication-title: J. Fluid Mech.
– volume: 570
  start-page: 253
  year: 2007
  end-page: 296
  article-title: A numerical investigation of the stokes boundary layer in the turbulent regime
  publication-title: J. Fluid Mech.
– volume: 67
  issue: 4
  year: 2015
  article-title: Modeling gravity and turbidity currents: computational approaches and challenges
  publication-title: Appl. Mech. Rev.
– volume: 13
  start-page: 1241
  year: 1979
  end-page: 1247
  article-title: The spread of a negatively buoyant plume in a calm environment
  publication-title: Atmos. Environ.
– volume: 806
  start-page: 71
  year: 2016
  end-page: 101
  article-title: High-resolution simulations of cylindrical gravity currents in a rotating system
  publication-title: J. Fluid Mech.
– volume: 610
  start-page: 99
  year: 2008
  end-page: 129
  article-title: The circular internal hydraulic jump
  publication-title: J. Fluid Mech.
– year: 2018
  article-title: Laboratory investigation on internal solitary waves interacting with a uniform slope
  publication-title: Adv. Water Resour.
– volume: 133
  start-page: 1037
  year: 2007
  end-page: 1047
  article-title: 2d large-eddy simulation of lock-exchange gravity current flows at high grashof numbers
  publication-title: ASCE J. Hydraul Engng
– volume: 4
  start-page: 341
  year: 1972
  end-page: 368
  article-title: Oil spreading on the sea
  publication-title: Annu. Rev. Fluid Mech.
– volume: 258
  start-page: 77
  year: 1994
  end-page: 104
  article-title: Self-similar gravity currents with variable inflow revisited: plane currents
  publication-title: J. Fluid Mech.
– volume: 20
  issue: 10
  year: 2008
  article-title: Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom
  publication-title: Phys. Fluids
– volume: 28
  year: 2016b
  article-title: Mixing in lock-release gravity currents propagating up a slope
  publication-title: Phys. Fluids
– volume: 121
  start-page: 27
  year: 1982
  end-page: 42
  article-title: The viscous spreading of plane and axisymmetric gravity currents
  publication-title: J. Fluid Mech.
– volume: 99
  start-page: 785
  issue: 04
  year: 1980
  end-page: 799
  article-title: The slumping of gravity currents
  publication-title: J. Fluid Mech.
– volume: 649
  start-page: 69
  year: 2010
  end-page: 102
  article-title: Gravity current flow past a circular cylinder: forces, wall shear stresses and implications for scour
  publication-title: J. Fluid Mech.
– volume: 47
  start-page: 485
  issue: 3
  year: 2017b
  end-page: 498
  article-title: Entrainment in a dense current flowing down a rough sloping bottom in a rotating fluid
  publication-title: J. Phys. Oceanogr.
– volume: 169
  start-page: 337
  year: 1986
  end-page: 351
  article-title: Self-similar solutions of the shallow-water equations representing gravity currents with variable inflow
  publication-title: J. Fluid Mech.
– volume: 114
  start-page: 18
  issue: 1
  year: 1994
  end-page: 33
  article-title: A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates
  publication-title: J. Comput. Phys.
– volume: 521
  start-page: 1
  year: 2004
  end-page: 34
  article-title: Gravity currents produced by lock exchange
  publication-title: J. Fluid Mech.
– volume: 453
  start-page: 239
  year: 2002
  end-page: 261
  article-title: A study of three-dimensional gravity currents on a uniform slope
  publication-title: J. Fluid Mech.
– ident: S0022112018005001_r33
  doi: 10.1080/00221686.2017.1372817
– ident: S0022112018005001_r35
  doi: 10.1017/S0022112005004933
– ident: S0022112018005001_r13
  doi: 10.1007/s10652-013-9285-4
– ident: S0022112018005001_r21
  doi: 10.1017/S0022112094003241
– ident: S0022112018005001_r57
  doi: 10.1017/S0022112008002553
– ident: S0022112018005001_r38
  doi: 10.1017/S0022112096007379
– ident: S0022112018005001_r42
  doi: 10.1063/1.4948760
– ident: S0022112018005001_r17
  doi: 10.1017/S0022112082001785
– ident: S0022112018005001_r12
  doi: 10.1016/j.dynatmoce.2011.09.001
– ident: S0022112018005001_r28
  doi: 10.1017/S002211200600930X
– volume-title: Similarity and Dimensional Methods in Mechanics
  year: 1993
  ident: S0022112018005001_r52
  contributor:
    fullname: Sedov
– ident: S0022112018005001_r27
  doi: 10.1017/S0022112082001797
– ident: S0022112018005001_r15
  doi: 10.1063/1.4923208
– volume-title: Oil on the Sea: Proceedings of a Symposium on the Scientific and Engineering Aspects of Oil Pollution of the Sea, Sponsored by Massachusetts Institute of Technology and Woods Hole Oceanographic Institution and held at Cambridge, MA, May 16, 1969
  year: 1969
  ident: S0022112018005001_r18
  contributor:
    fullname: Fay
– ident: S0022112018005001_r59
  doi: 10.1201/9781584889045
– ident: S0022112018005001_r6
  doi: 10.1017/S0022112093002289
– ident: S0022112018005001_r61
  doi: 10.1016/0021-9991(83)90065-7
– ident: S0022112018005001_r29
  doi: 10.1017/S0022112080000894
– ident: S0022112018005001_r45
  doi: 10.1016/j.euromechflu.2017.09.003
– ident: S0022112018005001_r11
  doi: 10.1007/s10652-013-9289-0
– ident: S0022112018005001_r37
  doi: 10.1115/1.4031040
– start-page: 269
  volume-title: Large-Eddy Simulations: Theory and Applications
  year: 1996
  ident: S0022112018005001_r48
  contributor:
    fullname: Piomelli
– ident: S0022112018005001_r44
  doi: 10.1175/JPO-D-16-0175.1
– ident: S0022112018005001_r53
  doi: 10.1017/S002211200400165X
– ident: S0022112018005001_r7
  doi: 10.1017/S0022112095002825
– ident: S0022112018005001_r50
  doi: 10.1017/S0022112001006899
– ident: S0022112018005001_r8
  doi: 10.1016/0004-6981(79)90078-7
– ident: S0022112018005001_r14
  doi: 10.1017/jfm.2013.372
– ident: S0022112018005001_r23
  doi: 10.1017/S0022112096001486
– ident: S0022112018005001_r4
  doi: 10.1017/S0022112002007851
– ident: S0022112018005001_r43
  doi: 10.1016/j.ocemod.2017.05.001
– ident: S0022112018005001_r60
  doi: 10.1016/j.euromechflu.2004.05.006
– ident: S0022112018005001_r22
  doi: 10.1017/S0022112086000678
– volume-title: Gravity Currents: In the Environment and the Laboratory
  year: 1997
  ident: S0022112018005001_r54
  contributor:
    fullname: Simpson
– year: 2018
  ident: S0022112018005001_r30
  article-title: Laboratory investigation on internal solitary waves interacting with a uniform slope
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.07.027
  contributor:
    fullname: La Forgia
– ident: S0022112018005001_r3
  doi: 10.1023/A:1009998919233
– ident: S0022112018005001_r9
  doi: 10.1017/S0022112007005769
– ident: S0022112018005001_r55
  doi: 10.1017/S0022112079001142
– ident: S0022112018005001_r26
  doi: 10.1146/annurev.fl.04.010172.002013
– ident: S0022112018005001_r56
  doi: 10.1063/1.2130747
– start-page: 228
  volume-title: Proc. Coastal Engng Conf. (14th), Tokyo
  year: 1967
  ident: S0022112018005001_r1
  contributor:
    fullname: Abbott
– ident: S0022112018005001_r39
  doi: 10.1061/(ASCE)0733-9429(2007)133:9(1037)
– ident: S0022112018005001_r10
– ident: S0022112018005001_r25
  doi: 10.1017/S0022112000001221
– ident: S0022112018005001_r2
  doi: 10.1061/(ASCE)HY.1943-7900.0000484
– ident: S0022112018005001_r16
  doi: 10.1017/jfm.2016.598
– volume: 27
  year: 2015
  ident: S0022112018005001_r34
  article-title: Gravity currents flowing upslope: laboratory experiments and shallow water simulations
  publication-title: Phys. Fluids
  contributor:
    fullname: Lombardi
– ident: S0022112018005001_r5
  doi: 10.1088/1742-6596/319/1/012003
– ident: S0022112018005001_r41
  doi: 10.1080/00221686.2016.1174961
– ident: S0022112018005001_r47
  doi: 10.1146/annurev.fluid.34.082901.144919
– ident: S0022112018005001_r40
  doi: 10.1017/S0022112009007599
– ident: S0022112018005001_r63
  doi: 10.1006/jcph.1994.1146
– ident: S0022112018005001_r19
  doi: 10.1029/JC089iC02p01989
– ident: S0022112018005001_r62
  doi: 10.1002/9781118032954
– ident: S0022112018005001_r31
  doi: 10.1063/1.3002381
– ident: S0022112018005001_r58
  doi: 10.1002/2013JC009721
– ident: S0022112018005001_r51
  doi: 10.1017/S0022112006003053
– ident: S0022112018005001_r32
  doi: 10.1080/00221686.2012.667680
– ident: S0022112018005001_r20
  doi: 10.1017/S002211200999334X
– ident: S0022112018005001_r24
  doi: 10.1017/S0022112001005523
– ident: S0022112018005001_r49
  doi: 10.1016/j.compfluid.2008.12.004
– ident: S0022112018005001_r36
  doi: 10.1017/S0022112080002017
– ident: S0022112018005001_r46
  doi: 10.1098/rsta.1952.0005
SSID ssj0013097
Score 2.5077815
Snippet Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Publisher
StartPage 507
SubjectTerms Approximation
Axisymmetric flow
Boussinesq approximation
Buoyancy
Computer simulation
Dimensional analysis
Exact solutions
Exchanging
Experiments
Flow rates
Fluid mechanics
Fluids
Frameworks
Froude number
Grashof number
Gravitation
Gravity
Hydrodynamics
Inflow
JFM Papers
Laboratories
Large eddy simulation
Phase transitions
R&D
Research & development
Reynolds number
Ring structures
Shallow water
Slumping
Spreading
Symmetry
Velocity distribution
SummonAdditionalLinks – databaseName: Cambridge Open Access Journals
  dbid: IKXGN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50RdCDj1XxTQ6Kp2o3bZr2KOIb9-TC3kqeorKr2Ar675006a57ELwVWhL4pul8ab75BuBIWmtYaiWub6lwg5LRqKBxHllWsMJixG3TP-Whn90M0rshG87BsK2FcbLKicdBc5Lf9Ed79_anZ8_aa2jMh6vxpbh7oc6BKmbOScj9tDwLISgD8POwQJMkoR1YuL0fXvenJwxxwVsncTdKEMU7O-kX60rUe_kpc3VvU8uF2dQ1--Vu0tHVGqwEHknO_fzrMGfGXVgNnJKEFVt1YfmX4WAXFhvBp6o24O7867n6Ho1cQy1FaoyoibRz-vcuHcS1JUKCTpT3b6rIU-NPjfyUyG-CGfCVmC9fNbwJg6vLx4ubKPRViBQGo46E0coKlWiLXEjlicwya9JY257i2nCR6YJTKSzu_HqpNJRnmRa5TLlGumISmmxBZ_w2NttAciGEYjymBu8XqcpT2xOCCsyNGGpOd-BkAl8ZQlOVXlnGSwS6dECXCPQOHLfglu_eaOOP5_Zb5KcDUhoXOVKpNNv994R7sOQunfaDsn3o1B-f5gAJRi0Pw7vyA17Nz-g
  priority: 102
  providerName: Cambridge University Press
Title Axisymmetric three-dimensional gravity currents generated by lock exchange
URI https://www.cambridge.org/core/product/identifier/S0022112018005001/type/journal_article
https://www.proquest.com/docview/2209858446
Volume 851
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BKyQYeBQQhYI8gJgCqZvEyYQKastDVAiB1C3yEwHqA1Kk9t9zTlxKB5gyOPLwne37zr77DuBYGKPDwAjc30JigBJRL6F-7JkwCRODFjd5_5T7bnT9HNz2wp67cMtcWuXsTMwPajWU9o78nFI_idFbBtHF6MOzXaPs66probEMZYqRAi1B-bLVfXicvyP4CZvphSOz8F3quxWNfjO2EL0en4W2um0urLDooBbP59zptDdh3bFF0izMuwVLelCBDccciduXWQXWfskKVmAlT-uU2TbcNiev2bTft22zJBmj3bSnrJ5_ocVBbPMhpOFEFipNGXnJVaiRhRIxJejn3omeFLXBO_Dcbj1dXXuue4InEfKxx7WShsuGMsh4ZNwQUWR04CtTl0xpxiOVMCq4wfiuHghNWRQpHouAKSQlukEbu1AaDAd6D0jMOZch86nG8SSQcWDqnFOOHhANymgVTn_gS90eyNIif4ylCHRqgU4R6CqczMBNR4Wcxh__1WbIzyecL4H9_4cPYNVOZNM6aFiD0vjzSx8idxiLI1iO250jt0zwe3PX63S_ARBQxmA
link.rule.ids 315,783,787,12779,21402,23332,27938,27939,33387,33758,43614,43819,56138
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB2xCAEHlgKirD6AOAVSx4mTE6oQpZSWUytxi7wiQJQlRSp_zzhxKRzgbMuHN_bMsz3zBuBIWmtiZiWeb6nwgpLQIKNhGtg4izOLFrdl_5TebdIesM5dfOcf3AqfVjnxiaWj1i_KvZGfURpmKUZLlpy_vgWua5T7XfUtNGZhnkUYaFyleOtq-osQZnyiFo68IvSJ704y-tG6MvRGehq72raprMLv8PTbO5chp7UGK54rkmZl3HWYMcMarHreSPypLGqw_ENUsAYLZVKnKjag0xw_FJ_Pz65pliIjtJoJtFPzr5Q4iGs9hCScqEqjqSD3pQY1clAiPwlGuSdixlVl8CYMWpf9i3bgeycECgEfBcJoZYWKtEW-o9JIJok1LNS2obg2XCQ641QKi7e7BpOG8iTRIpWMa6QkJqLRFswNX4ZmG0gqhFAxD6nB8YyplNmGEFRg_ENzclqHk2_4cn8CirzKHuM5Ap07oHMEug7HE3Dz10pM4495exPkpwtON8DO_8OHsNju97p59_r2ZheW3KIuwYPGezA3ev8w-8giRvKg3CpfUErFYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Axisymmetric+three-dimensional+gravity+currents+generated+by+lock+exchange&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Inghilesi%2C+Roberto&rft.au=Adduce%2C+Claudia&rft.au=Lombardi%2C+Valentina&rft.au=Roman%2C+Federico&rft.date=2018-09-25&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=851&rft.spage=507&rft.epage=544&rft_id=info:doi/10.1017%2Fjfm.2018.500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jfm_2018_500
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon