Axisymmetric three-dimensional gravity currents generated by lock exchange
Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of large eddy simulations under the Boussinesq approximation, with Grashof numbers varying over five orders of magnitudes. The study shows that,...
Saved in:
Published in | Journal of fluid mechanics Vol. 851; pp. 507 - 544 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
25.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of large eddy simulations under the Boussinesq approximation, with Grashof numbers varying over five orders of magnitudes. The study shows that, after an initial transient, the flow can be separated into an axisymmetric expansion and a globally translating motion. In particular, the circular frontline spreads like a constant-flow-rate, axially symmetric gravity current about a virtual source translating along the symmetry axis. The flow is characterised by the presence of lobe and cleft instabilities and hydrodynamic shocks. Depending on the Grashof number, the shocks can either be isolated or produced continuously. In the latter case a typical ring structure is visible in the density and velocity fields. The analysis of the frontal spreading of the axisymmetric part of the current indicates the presence of three regimes, namely, a slumping phase, an inertial–buoyancy equilibrium regime and a viscous–buoyancy equilibrium regime. The viscous–buoyancy phase is in good agreement with the model of Huppert (J. Fluid Mech., vol. 121, 1982, pp. 43–58), while the inertial phase is consistent with the experiments of Britter (Atmos. Environ., vol. 13, 1979, pp. 1241–1247), conducted for purely axially symmetric, constant inflow, gravity currents. The adoption of the slumping model of Huppert & Simpson (J. Fluid Mech., vol. 99 (04), 1980, pp. 785–799), which is here extended to the case of constant-flow-rate cylindrical currents, allows reconciling of the different theories about the initial radial spreading in the context of different asymptotic regimes. As expected, the slumping phase is governed by the Froude number at the lock’s gate, whereas the transition to the viscous phase depends on both the Froude number at the gate and the Grashof number. The identification of the inertial–buoyancy regime in the presence of hydrodynamic shocks for this class of flows is important, due to the lack of analytical solutions for the similarity problem in the framework of shallow water theory. This fact has considerably slowed the research on variable-flow-rate axisymmetric gravity currents, as opposed to the rapid development of the knowledge about cylindrical constant-volume and planar gravity currents, despite their own environmental relevance. |
---|---|
AbstractList | Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of large eddy simulations under the Boussinesq approximation, with Grashof numbers varying over five orders of magnitudes. The study shows that, after an initial transient, the flow can be separated into an axisymmetric expansion and a globally translating motion. In particular, the circular frontline spreads like a constant-flow-rate, axially symmetric gravity current about a virtual source translating along the symmetry axis. The flow is characterised by the presence of lobe and cleft instabilities and hydrodynamic shocks. Depending on the Grashof number, the shocks can either be isolated or produced continuously. In the latter case a typical ring structure is visible in the density and velocity fields. The analysis of the frontal spreading of the axisymmetric part of the current indicates the presence of three regimes, namely, a slumping phase, an inertial–buoyancy equilibrium regime and a viscous–buoyancy equilibrium regime. The viscous–buoyancy phase is in good agreement with the model of Huppert (J. Fluid Mech., vol. 121, 1982, pp. 43–58), while the inertial phase is consistent with the experiments of Britter (Atmos. Environ., vol. 13, 1979, pp. 1241–1247), conducted for purely axially symmetric, constant inflow, gravity currents. The adoption of the slumping model of Huppert & Simpson (J. Fluid Mech., vol. 99 (04), 1980, pp. 785–799), which is here extended to the case of constant-flow-rate cylindrical currents, allows reconciling of the different theories about the initial radial spreading in the context of different asymptotic regimes. As expected, the slumping phase is governed by the Froude number at the lock’s gate, whereas the transition to the viscous phase depends on both the Froude number at the gate and the Grashof number. The identification of the inertial–buoyancy regime in the presence of hydrodynamic shocks for this class of flows is important, due to the lack of analytical solutions for the similarity problem in the framework of shallow water theory. This fact has considerably slowed the research on variable-flow-rate axisymmetric gravity currents, as opposed to the rapid development of the knowledge about cylindrical constant-volume and planar gravity currents, despite their own environmental relevance. Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of large eddy simulations under the Boussinesq approximation, with Grashof numbers varying over five orders of magnitudes. The study shows that, after an initial transient, the flow can be separated into an axisymmetric expansion and a globally translating motion. In particular, the circular frontline spreads like a constant-flow-rate, axially symmetric gravity current about a virtual source translating along the symmetry axis. The flow is characterised by the presence of lobe and cleft instabilities and hydrodynamic shocks. Depending on the Grashof number, the shocks can either be isolated or produced continuously. In the latter case a typical ring structure is visible in the density and velocity fields. The analysis of the frontal spreading of the axisymmetric part of the current indicates the presence of three regimes, namely, a slumping phase, an inertial–buoyancy equilibrium regime and a viscous–buoyancy equilibrium regime. The viscous–buoyancy phase is in good agreement with the model of Huppert (J. Fluid Mech., vol. 121, 1982, pp. 43–58), while the inertial phase is consistent with the experiments of Britter (Atmos. Environ., vol. 13, 1979, pp. 1241–1247), conducted for purely axially symmetric, constant inflow, gravity currents. The adoption of the slumping model of Huppert & Simpson (J. Fluid Mech., vol. 99 (04), 1980, pp. 785–799), which is here extended to the case of constant-flow-rate cylindrical currents, allows reconciling of the different theories about the initial radial spreading in the context of different asymptotic regimes. As expected, the slumping phase is governed by the Froude number at the lock’s gate, whereas the transition to the viscous phase depends on both the Froude number at the gate and the Grashof number. The identification of the inertial–buoyancy regime in the presence of hydrodynamic shocks for this class of flows is important, due to the lack of analytical solutions for the similarity problem in the framework of shallow water theory. This fact has considerably slowed the research on variable-flow-rate axisymmetric gravity currents, as opposed to the rapid development of the knowledge about cylindrical constant-volume and planar gravity currents, despite their own environmental relevance. Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of large eddy simulations under the Boussinesq approximation, with Grashof numbers varying over five orders of magnitudes. The study shows that, after an initial transient, the flow can be separated into an axisymmetric expansion and a globally translating motion. In particular, the circular frontline spreads like a constant-flow-rate, axially symmetric gravity current about a virtual source translating along the symmetry axis. The flow is characterised by the presence of lobe and cleft instabilities and hydrodynamic shocks. Depending on the Grashof number, the shocks can either be isolated or produced continuously. In the latter case a typical ring structure is visible in the density and velocity fields. The analysis of the frontal spreading of the axisymmetric part of the current indicates the presence of three regimes, namely, a slumping phase, an inertial–buoyancy equilibrium regime and a viscous–buoyancy equilibrium regime. The viscous–buoyancy phase is in good agreement with the model of Huppert ( J. Fluid Mech. , vol. 121, 1982, pp. 43–58), while the inertial phase is consistent with the experiments of Britter ( Atmos. Environ. , vol. 13, 1979, pp. 1241–1247), conducted for purely axially symmetric, constant inflow, gravity currents. The adoption of the slumping model of Huppert & Simpson ( J. Fluid Mech. , vol. 99 (04), 1980, pp. 785–799), which is here extended to the case of constant-flow-rate cylindrical currents, allows reconciling of the different theories about the initial radial spreading in the context of different asymptotic regimes. As expected, the slumping phase is governed by the Froude number at the lock’s gate, whereas the transition to the viscous phase depends on both the Froude number at the gate and the Grashof number. The identification of the inertial–buoyancy regime in the presence of hydrodynamic shocks for this class of flows is important, due to the lack of analytical solutions for the similarity problem in the framework of shallow water theory. This fact has considerably slowed the research on variable-flow-rate axisymmetric gravity currents, as opposed to the rapid development of the knowledge about cylindrical constant-volume and planar gravity currents, despite their own environmental relevance. |
Author | Adduce, Claudia Roman, Federico Armenio, Vincenzo Lombardi, Valentina Inghilesi, Roberto |
Author_xml | – sequence: 1 givenname: Roberto orcidid: 0000-0002-9959-3904 surname: Inghilesi fullname: Inghilesi, Roberto email: roberto.inghilesi@isprambiente.it organization: National Centre for Environmental Crisis, Emergencies and Damage, Italian Institute for Environmental Protection and Research, 00144 Rome, Italy – sequence: 2 givenname: Claudia surname: Adduce fullname: Adduce, Claudia organization: Department of Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy – sequence: 3 givenname: Valentina surname: Lombardi fullname: Lombardi, Valentina organization: Department of Engineering, University of Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy – sequence: 4 givenname: Federico surname: Roman fullname: Roman, Federico organization: IEFLUIDS s.r.l., Piazzale Europa 1, 34127 Trieste, Italy – sequence: 5 givenname: Vincenzo surname: Armenio fullname: Armenio, Vincenzo organization: Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy |
BookMark | eNptkD1PwzAURS1UJNrCxg-IxErCs-PYyVhVfKoSC8yWYz-nKU1S7BQ1_55UrcTCdJdzr67OjEzarkVCbikkFKh82LgmYUDzJAO4IFPKRRFLwbMJmQIwFlPK4IrMQtgA0BQKOSVvi0MdhqbB3tcm6tceMbZ1g22ou1Zvo8rrn7ofIrP3Hts-RBW26HWPNiqHaNuZrwgPZq3bCq_JpdPbgDfnnJPPp8eP5Uu8en9-XS5WseEg-lijNU6b1DrOqcnTUgiHHKyjRlqUWthCslI7KDjlJTIphNV5yaUVWY4pS-fk7rS78933HkOvNt3ej2eDYgyKPMs5FyN1f6KM70Lw6NTO1432g6KgjrbUaEsdbanR1ognZ1w3pa9thX-r_xZ-AYiSb8I |
CitedBy_id | crossref_primary_10_1016_j_advwatres_2021_103967 crossref_primary_10_1063_5_0011604 crossref_primary_10_1103_PhysRevFluids_9_063501 crossref_primary_10_1061__ASCE_WW_1943_5460_0000628 crossref_primary_10_1016_j_compfluid_2021_104902 crossref_primary_10_1029_2022JB024847 crossref_primary_10_1063_5_0132830 crossref_primary_10_1063_5_0021196 crossref_primary_10_1016_j_advwatres_2021_103963 crossref_primary_10_1016_j_ijsrc_2020_04_003 crossref_primary_10_1016_j_advwatres_2022_104339 crossref_primary_10_1063_5_0009102 crossref_primary_10_1111_sed_13073 crossref_primary_10_1007_s10652_022_09879_w crossref_primary_10_1080_00221686_2022_2064345 crossref_primary_10_1103_PhysRevFluids_6_013801 crossref_primary_10_1007_s10652_021_09814_5 crossref_primary_10_1007_s11356_020_11915_5 crossref_primary_10_1038_s41598_020_73504_3 crossref_primary_10_1017_jfm_2020_528 crossref_primary_10_1063_1_5116067 crossref_primary_10_1038_s41598_020_68830_5 crossref_primary_10_1061__ASCE_HY_1943_7900_0001709 crossref_primary_10_1017_jfm_2021_300 crossref_primary_10_1061__ASCE_EM_1943_7889_0001696 crossref_primary_10_1016_j_cpc_2019_03_019 crossref_primary_10_1080_00221686_2019_1647888 crossref_primary_10_1007_s11600_021_00709_z crossref_primary_10_1134_S2070048223050034 crossref_primary_10_1016_j_cageo_2022_105146 crossref_primary_10_1061_JHEND8_HYENG_13531 crossref_primary_10_1007_s10652_022_09845_6 crossref_primary_10_1007_s10652_020_09758_2 crossref_primary_10_1016_j_compfluid_2021_105209 crossref_primary_10_1016_j_advwatres_2023_104585 crossref_primary_10_1063_5_0135925 crossref_primary_10_1063_5_0039251 crossref_primary_10_1016_j_advwatres_2020_103791 crossref_primary_10_1063_5_0051567 crossref_primary_10_1017_jfm_2023_148 crossref_primary_10_20948_mm_2023_03_05 crossref_primary_10_1016_j_geoen_2024_212894 |
Cites_doi | 10.1080/00221686.2017.1372817 10.1017/S0022112005004933 10.1007/s10652-013-9285-4 10.1017/S0022112094003241 10.1017/S0022112008002553 10.1017/S0022112096007379 10.1063/1.4948760 10.1017/S0022112082001785 10.1016/j.dynatmoce.2011.09.001 10.1017/S002211200600930X 10.1017/S0022112082001797 10.1063/1.4923208 10.1201/9781584889045 10.1017/S0022112093002289 10.1016/0021-9991(83)90065-7 10.1017/S0022112080000894 10.1016/j.euromechflu.2017.09.003 10.1007/s10652-013-9289-0 10.1115/1.4031040 10.1175/JPO-D-16-0175.1 10.1017/S002211200400165X 10.1017/S0022112095002825 10.1017/S0022112001006899 10.1016/0004-6981(79)90078-7 10.1017/jfm.2013.372 10.1017/S0022112096001486 10.1017/S0022112002007851 10.1016/j.ocemod.2017.05.001 10.1016/j.euromechflu.2004.05.006 10.1017/S0022112086000678 10.1016/j.advwatres.2017.07.027 10.1023/A:1009998919233 10.1017/S0022112007005769 10.1017/S0022112079001142 10.1146/annurev.fl.04.010172.002013 10.1063/1.2130747 10.1061/(ASCE)0733-9429(2007)133:9(1037) 10.1017/S0022112000001221 10.1061/(ASCE)HY.1943-7900.0000484 10.1017/jfm.2016.598 10.1088/1742-6596/319/1/012003 10.1080/00221686.2016.1174961 10.1146/annurev.fluid.34.082901.144919 10.1017/S0022112009007599 10.1006/jcph.1994.1146 10.1029/JC089iC02p01989 10.1002/9781118032954 10.1063/1.3002381 10.1002/2013JC009721 10.1017/S0022112006003053 10.1080/00221686.2012.667680 10.1017/S002211200999334X 10.1017/S0022112001005523 10.1016/j.compfluid.2008.12.004 10.1017/S0022112080002017 10.1098/rsta.1952.0005 |
ContentType | Journal Article |
Copyright | 2018 Cambridge University Press 2018 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018 Cambridge University Press – notice: 2018 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | IKXGN AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PQEST PQQKQ PQUKI PTHSS Q9U S0W |
DOI | 10.1017/jfm.2018.500 |
DatabaseName | Cambridge Open Access Journals CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Research Library Prep Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Research Library Prep ProQuest Central Student Technology Collection Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: IKXGN name: Cambridge Open Access Journals url: http://journals.cambridge.org/action/login sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
DocumentTitleAlternate | Axisymmetric 3-D gravity currents generated by lock exchange R. Inghilesi, C. Adduce, V. Lombardi, F. Roman and V. Armenio |
EISSN | 1469-7645 |
EndPage | 544 |
ExternalDocumentID | 10_1017_jfm_2018_500 |
GroupedDBID | -2P -DZ -E. -~6 -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEHGV AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGLWM AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS EJD F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 I.7 IH6 IKXGN IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZE2 ZMEZD ZYDXJ ~02 AAYXX ABVZP ABXAU CITATION 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c406t-aedcfac3df441c83b66fe40df1c7de7a6d972baf09414be2766da8b47d658e323 |
IEDL.DBID | BENPR |
ISSN | 0022-1120 |
IngestDate | Thu Oct 10 20:55:29 EDT 2024 Thu Sep 26 17:01:18 EDT 2024 Wed Mar 13 05:44:06 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | turbulence simulation shallow water flows gravity currents |
Language | English |
License | This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-aedcfac3df441c83b66fe40df1c7de7a6d972baf09414be2766da8b47d658e323 |
ORCID | 0000-0002-9959-3904 |
OpenAccessLink | https://www.cambridge.org/core/product/identifier/S0022112018005001/type/journal_article |
PQID | 2209858446 |
PQPubID | 34769 |
PageCount | 38 |
ParticipantIDs | proquest_journals_2209858446 crossref_primary_10_1017_jfm_2018_500 cambridge_journals_10_1017_jfm_2018_500 |
PublicationCentury | 2000 |
PublicationDate | 2018-09-25 |
PublicationDateYYYYMMDD | 2018-09-25 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge, UK |
PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
PublicationTitle | Journal of fluid mechanics |
PublicationTitleAlternate | J. Fluid Mech |
PublicationYear | 2018 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
References | 2000; 418 1996; 308 2007; 586 2017b; 47 2004; 521 1994; 258 2011; 319 2005; 536 1983; 50 2009; 635 1995; 294 2012; 52 2005; 24 2007; 133 2007; 570 2014; 14 2008; 20 2012; 138 2016a; 54 1993; 254 2017a; 115 2014; 119 1979; 13 1994; 114 2010; 649 2000; 65 2002; 34 2016; 806 1984; 89 2002; 453 2002; 459 1982; 121 1972; 4 2018; 67 2001; 447 2006; 554 1979; 94 2012; 50 2015; 67 1996; 319 1986; 169 2015; 27 2016b; 28 1980; 96 2013; 731 1980; 99 1952; 244A 2018 2008; 610 2018; 56 2005; 17 2009; 38 S0022112018005001_r19 S0022112018005001_r16 S0022112018005001_r17 S0022112018005001_r58 S0022112018005001_r14 Fay (S0022112018005001_r18) 1969 S0022112018005001_r15 S0022112018005001_r59 S0022112018005001_r56 S0022112018005001_r12 S0022112018005001_r57 S0022112018005001_r13 S0022112018005001_r10 S0022112018005001_r11 S0022112018005001_r55 S0022112018005001_r53 S0022112018005001_r7 S0022112018005001_r50 S0022112018005001_r51 S0022112018005001_r8 S0022112018005001_r9 S0022112018005001_r3 S0022112018005001_r4 S0022112018005001_r5 S0022112018005001_r6 Piomelli (S0022112018005001_r48) 1996 S0022112018005001_r2 Abbott (S0022112018005001_r1) 1967 Lombardi (S0022112018005001_r34) 2015; 27 S0022112018005001_r29 S0022112018005001_r27 S0022112018005001_r28 S0022112018005001_r25 S0022112018005001_r26 S0022112018005001_r23 S0022112018005001_r24 S0022112018005001_r21 S0022112018005001_r22 S0022112018005001_r63 S0022112018005001_r20 S0022112018005001_r61 S0022112018005001_r62 S0022112018005001_r60 La Forgia (S0022112018005001_r30) 2018 S0022112018005001_r38 S0022112018005001_r39 S0022112018005001_r36 S0022112018005001_r37 S0022112018005001_r35 S0022112018005001_r32 S0022112018005001_r33 S0022112018005001_r31 S0022112018005001_r49 S0022112018005001_r47 S0022112018005001_r45 S0022112018005001_r46 S0022112018005001_r43 S0022112018005001_r44 Sedov (S0022112018005001_r52) 1993 S0022112018005001_r41 S0022112018005001_r42 S0022112018005001_r40 Simpson (S0022112018005001_r54) 1997 |
References_xml | – volume: 54 start-page: 541 issue: 5 year: 2016a end-page: 557 article-title: Entrainment and mixing in unsteady gravity currents publication-title: J. Hydraul Res. – volume: 319 start-page: 353 year: 1996 end-page: 385 article-title: A lagrangian dynamic subgrid-scale model of turbulence publication-title: J. Fluid Mech. – volume: 459 start-page: 1 year: 2002 end-page: 42 article-title: An investigation of stably stratified turbulent channel flow using large-eddy simulation publication-title: J. Fluid Mech. – volume: 17 year: 2005 article-title: Large eddy simulation of stably stratified open channel flow publication-title: Phys. Fluids – volume: 94 start-page: 477 issue: 3 year: 1979 end-page: 495 article-title: The dynamics of the head of a gravity current advancing over a horizontal surface publication-title: J. Fluid Mech. – volume: 14 start-page: 295 issue: 2 year: 2014 end-page: 317 article-title: Les of lock-exchange compositional gravity currents: a brief review of some recent results publication-title: Environ. Fluid Mech. – volume: 115 start-page: 11 year: 2017a end-page: 13 article-title: Analysis of the flow in gravity currents propagating up a slope publication-title: Ocean Model. – volume: 244A start-page: 285 year: 1952 end-page: 311 article-title: Part III. the dispersion, under gravity, of a column of fluid supported on a rigid horizontal plane in some gravity wave problems in the motion of perfect liquids publication-title: Phil. Trans. R. Soc. Lond. – volume: 34 start-page: 349 year: 2002 end-page: 374 article-title: Wall-layer models for large-eddy simulations publication-title: Annu. Rev. Fluid Mech. – volume: 554 start-page: 299 year: 2006 end-page: 322 article-title: Gravity currents: a personal perspective publication-title: J. Fluid Mech. – volume: 89 start-page: 1989 issue: C2 year: 1984 end-page: 1996 article-title: Radial spreading of buoyant, surface plumes in coastal waters publication-title: J. Geophys. Res. – volume: 308 start-page: 289 year: 1996 end-page: 311 article-title: Entrainment into two-dimensional and axisymmetric turbulent gravity currents publication-title: J. Fluid Mech. – volume: 24 start-page: 71 year: 2005 end-page: 90 article-title: On the slumping of high Reynolds number gravity currents in two-dimensional and axisymmetric configurations publication-title: Eur. J. Mech. (B/Fluids) – volume: 119 start-page: 2752 issue: 5 year: 2014 end-page: 2768 article-title: Lock-exchange gravity currents with a low volume of release propagating over an array of obstacles publication-title: J. Geophys. Res. – volume: 50 start-page: 215 issue: 2 year: 1983 end-page: 234 article-title: On one-dimensional stretching functions for finite-difference calculations publication-title: J. Comput. Phys. – volume: 294 start-page: 93 year: 1995 end-page: 121 article-title: Axisymmetric particle-driven gravity currents publication-title: J. Fluid Mech. – volume: 319 issue: 1 year: 2011 article-title: Hydraulic jump publication-title: J. Phys. Conf. Series – volume: 27 issue: 1 year: 2015 article-title: Gravity currents flowing upslope: laboratory experiments and shallow water simulations publication-title: Phys. Fluids – volume: 50 start-page: 208 issue: 2 year: 2012 end-page: 217 article-title: A two-layer, shallow-water model for 3d gravity currents publication-title: J. Hydraul Res. – volume: 635 start-page: 361 year: 2009 end-page: 388 article-title: Numerical simulations of lock-exchange compositional gravity current publication-title: J. Fluid Mech. – volume: 65 start-page: 51 issue: 1 year: 2000 end-page: 81 article-title: A lagrangian mixed subgrid-scale model in generalized coordinates publication-title: Flow Turbul. Combust. – volume: 418 start-page: 189 year: 2000 end-page: 212 article-title: Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries publication-title: J. Fluid Mech. – volume: 447 start-page: 1 year: 2001 end-page: 29 article-title: Axisymmetric gravity currents in a rotating system: experimental and numerical investigations publication-title: J. Fluid Mech. – volume: 731 start-page: 117 year: 2013 end-page: 141 article-title: Experiments on gravity currents propagating on different bottom slopes publication-title: J. Fluid Mech. – volume: 27 issue: 7 year: 2015 article-title: High-resolution simulations of downslope gravity currents in the acceleration phase publication-title: Phys. Fluids – volume: 121 start-page: 43 year: 1982 end-page: 58 article-title: The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface publication-title: J. Fluid Mech. – volume: 52 start-page: 386 issue: 3 year: 2012 end-page: 409 article-title: Experimental and analytical investigation of dense gravity currents in a rotating, up-sloping and converging channel publication-title: Dyn. Atmos. Oceans – volume: 586 start-page: 1 year: 2007 end-page: 39 article-title: On the front velocity of gravity currents publication-title: J. Fluid Mech. – volume: 254 start-page: 635 year: 1993 end-page: 648 article-title: Shallow-water approach to the circular hydraulic jump publication-title: J. Fluid Mech. – volume: 14 start-page: 1251 issue: 5 year: 2014 end-page: 1273 article-title: Gravity currents in rotating, wedge-shaped, adverse channels publication-title: Environ. Fluid Mech. – volume: 536 start-page: 49 year: 2005 end-page: 78 article-title: The front condition for gravity currents publication-title: J. Fluid Mech. – volume: 56 start-page: 399 issue: 3 year: 2018 end-page: 411 article-title: Unconfined lock-exchange gravity currents with variable lock width: laboratory experiments and shallow-water simulations publication-title: J. Hydraul Res. – volume: 67 start-page: 125 year: 2018 end-page: 136 article-title: Lattice-boltzmann simulations of gravity currents publication-title: Eur. J. Mech. (B/Fluids) – volume: 138 start-page: 111 issue: 2 year: 2012 end-page: 121 article-title: Gravity currents produced by lock exchanges: experiments and simulations with a two-layer shallow-water model with entrainment publication-title: J. Hydraul. Eng. ASCE – volume: 38 start-page: 1510 issue: 8 year: 2009 end-page: 1527 article-title: An improved immersed boundary method for curvilinear grids publication-title: Comput. Fluids – volume: 96 start-page: 47 year: 1980 end-page: 64 article-title: On the formation of nonlinear internal waves from the gravitational collapse of mixed regions in two and three dimensions publication-title: J. Fluid Mech. – volume: 570 start-page: 253 year: 2007 end-page: 296 article-title: A numerical investigation of the stokes boundary layer in the turbulent regime publication-title: J. Fluid Mech. – volume: 67 issue: 4 year: 2015 article-title: Modeling gravity and turbidity currents: computational approaches and challenges publication-title: Appl. Mech. Rev. – volume: 13 start-page: 1241 year: 1979 end-page: 1247 article-title: The spread of a negatively buoyant plume in a calm environment publication-title: Atmos. Environ. – volume: 806 start-page: 71 year: 2016 end-page: 101 article-title: High-resolution simulations of cylindrical gravity currents in a rotating system publication-title: J. Fluid Mech. – volume: 610 start-page: 99 year: 2008 end-page: 129 article-title: The circular internal hydraulic jump publication-title: J. Fluid Mech. – year: 2018 article-title: Laboratory investigation on internal solitary waves interacting with a uniform slope publication-title: Adv. Water Resour. – volume: 133 start-page: 1037 year: 2007 end-page: 1047 article-title: 2d large-eddy simulation of lock-exchange gravity current flows at high grashof numbers publication-title: ASCE J. Hydraul Engng – volume: 4 start-page: 341 year: 1972 end-page: 368 article-title: Oil spreading on the sea publication-title: Annu. Rev. Fluid Mech. – volume: 258 start-page: 77 year: 1994 end-page: 104 article-title: Self-similar gravity currents with variable inflow revisited: plane currents publication-title: J. Fluid Mech. – volume: 20 issue: 10 year: 2008 article-title: Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom publication-title: Phys. Fluids – volume: 28 year: 2016b article-title: Mixing in lock-release gravity currents propagating up a slope publication-title: Phys. Fluids – volume: 121 start-page: 27 year: 1982 end-page: 42 article-title: The viscous spreading of plane and axisymmetric gravity currents publication-title: J. Fluid Mech. – volume: 99 start-page: 785 issue: 04 year: 1980 end-page: 799 article-title: The slumping of gravity currents publication-title: J. Fluid Mech. – volume: 649 start-page: 69 year: 2010 end-page: 102 article-title: Gravity current flow past a circular cylinder: forces, wall shear stresses and implications for scour publication-title: J. Fluid Mech. – volume: 47 start-page: 485 issue: 3 year: 2017b end-page: 498 article-title: Entrainment in a dense current flowing down a rough sloping bottom in a rotating fluid publication-title: J. Phys. Oceanogr. – volume: 169 start-page: 337 year: 1986 end-page: 351 article-title: Self-similar solutions of the shallow-water equations representing gravity currents with variable inflow publication-title: J. Fluid Mech. – volume: 114 start-page: 18 issue: 1 year: 1994 end-page: 33 article-title: A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates publication-title: J. Comput. Phys. – volume: 521 start-page: 1 year: 2004 end-page: 34 article-title: Gravity currents produced by lock exchange publication-title: J. Fluid Mech. – volume: 453 start-page: 239 year: 2002 end-page: 261 article-title: A study of three-dimensional gravity currents on a uniform slope publication-title: J. Fluid Mech. – ident: S0022112018005001_r33 doi: 10.1080/00221686.2017.1372817 – ident: S0022112018005001_r35 doi: 10.1017/S0022112005004933 – ident: S0022112018005001_r13 doi: 10.1007/s10652-013-9285-4 – ident: S0022112018005001_r21 doi: 10.1017/S0022112094003241 – ident: S0022112018005001_r57 doi: 10.1017/S0022112008002553 – ident: S0022112018005001_r38 doi: 10.1017/S0022112096007379 – ident: S0022112018005001_r42 doi: 10.1063/1.4948760 – ident: S0022112018005001_r17 doi: 10.1017/S0022112082001785 – ident: S0022112018005001_r12 doi: 10.1016/j.dynatmoce.2011.09.001 – ident: S0022112018005001_r28 doi: 10.1017/S002211200600930X – volume-title: Similarity and Dimensional Methods in Mechanics year: 1993 ident: S0022112018005001_r52 contributor: fullname: Sedov – ident: S0022112018005001_r27 doi: 10.1017/S0022112082001797 – ident: S0022112018005001_r15 doi: 10.1063/1.4923208 – volume-title: Oil on the Sea: Proceedings of a Symposium on the Scientific and Engineering Aspects of Oil Pollution of the Sea, Sponsored by Massachusetts Institute of Technology and Woods Hole Oceanographic Institution and held at Cambridge, MA, May 16, 1969 year: 1969 ident: S0022112018005001_r18 contributor: fullname: Fay – ident: S0022112018005001_r59 doi: 10.1201/9781584889045 – ident: S0022112018005001_r6 doi: 10.1017/S0022112093002289 – ident: S0022112018005001_r61 doi: 10.1016/0021-9991(83)90065-7 – ident: S0022112018005001_r29 doi: 10.1017/S0022112080000894 – ident: S0022112018005001_r45 doi: 10.1016/j.euromechflu.2017.09.003 – ident: S0022112018005001_r11 doi: 10.1007/s10652-013-9289-0 – ident: S0022112018005001_r37 doi: 10.1115/1.4031040 – start-page: 269 volume-title: Large-Eddy Simulations: Theory and Applications year: 1996 ident: S0022112018005001_r48 contributor: fullname: Piomelli – ident: S0022112018005001_r44 doi: 10.1175/JPO-D-16-0175.1 – ident: S0022112018005001_r53 doi: 10.1017/S002211200400165X – ident: S0022112018005001_r7 doi: 10.1017/S0022112095002825 – ident: S0022112018005001_r50 doi: 10.1017/S0022112001006899 – ident: S0022112018005001_r8 doi: 10.1016/0004-6981(79)90078-7 – ident: S0022112018005001_r14 doi: 10.1017/jfm.2013.372 – ident: S0022112018005001_r23 doi: 10.1017/S0022112096001486 – ident: S0022112018005001_r4 doi: 10.1017/S0022112002007851 – ident: S0022112018005001_r43 doi: 10.1016/j.ocemod.2017.05.001 – ident: S0022112018005001_r60 doi: 10.1016/j.euromechflu.2004.05.006 – ident: S0022112018005001_r22 doi: 10.1017/S0022112086000678 – volume-title: Gravity Currents: In the Environment and the Laboratory year: 1997 ident: S0022112018005001_r54 contributor: fullname: Simpson – year: 2018 ident: S0022112018005001_r30 article-title: Laboratory investigation on internal solitary waves interacting with a uniform slope publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.07.027 contributor: fullname: La Forgia – ident: S0022112018005001_r3 doi: 10.1023/A:1009998919233 – ident: S0022112018005001_r9 doi: 10.1017/S0022112007005769 – ident: S0022112018005001_r55 doi: 10.1017/S0022112079001142 – ident: S0022112018005001_r26 doi: 10.1146/annurev.fl.04.010172.002013 – ident: S0022112018005001_r56 doi: 10.1063/1.2130747 – start-page: 228 volume-title: Proc. Coastal Engng Conf. (14th), Tokyo year: 1967 ident: S0022112018005001_r1 contributor: fullname: Abbott – ident: S0022112018005001_r39 doi: 10.1061/(ASCE)0733-9429(2007)133:9(1037) – ident: S0022112018005001_r10 – ident: S0022112018005001_r25 doi: 10.1017/S0022112000001221 – ident: S0022112018005001_r2 doi: 10.1061/(ASCE)HY.1943-7900.0000484 – ident: S0022112018005001_r16 doi: 10.1017/jfm.2016.598 – volume: 27 year: 2015 ident: S0022112018005001_r34 article-title: Gravity currents flowing upslope: laboratory experiments and shallow water simulations publication-title: Phys. Fluids contributor: fullname: Lombardi – ident: S0022112018005001_r5 doi: 10.1088/1742-6596/319/1/012003 – ident: S0022112018005001_r41 doi: 10.1080/00221686.2016.1174961 – ident: S0022112018005001_r47 doi: 10.1146/annurev.fluid.34.082901.144919 – ident: S0022112018005001_r40 doi: 10.1017/S0022112009007599 – ident: S0022112018005001_r63 doi: 10.1006/jcph.1994.1146 – ident: S0022112018005001_r19 doi: 10.1029/JC089iC02p01989 – ident: S0022112018005001_r62 doi: 10.1002/9781118032954 – ident: S0022112018005001_r31 doi: 10.1063/1.3002381 – ident: S0022112018005001_r58 doi: 10.1002/2013JC009721 – ident: S0022112018005001_r51 doi: 10.1017/S0022112006003053 – ident: S0022112018005001_r32 doi: 10.1080/00221686.2012.667680 – ident: S0022112018005001_r20 doi: 10.1017/S002211200999334X – ident: S0022112018005001_r24 doi: 10.1017/S0022112001005523 – ident: S0022112018005001_r49 doi: 10.1016/j.compfluid.2008.12.004 – ident: S0022112018005001_r36 doi: 10.1017/S0022112080002017 – ident: S0022112018005001_r46 doi: 10.1098/rsta.1952.0005 |
SSID | ssj0013097 |
Score | 2.5077815 |
Snippet | Unconfined three-dimensional gravity currents generated by lock exchange using a small dividing gate in a sufficiently large tank are investigated by means of... |
SourceID | proquest crossref cambridge |
SourceType | Aggregation Database Publisher |
StartPage | 507 |
SubjectTerms | Approximation Axisymmetric flow Boussinesq approximation Buoyancy Computer simulation Dimensional analysis Exact solutions Exchanging Experiments Flow rates Fluid mechanics Fluids Frameworks Froude number Grashof number Gravitation Gravity Hydrodynamics Inflow JFM Papers Laboratories Large eddy simulation Phase transitions R&D Research & development Reynolds number Ring structures Shallow water Slumping Spreading Symmetry Velocity distribution |
SummonAdditionalLinks | – databaseName: Cambridge Open Access Journals dbid: IKXGN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50RdCDj1XxTQ6Kp2o3bZr2KOIb9-TC3kqeorKr2Ar675006a57ELwVWhL4pul8ab75BuBIWmtYaiWub6lwg5LRqKBxHllWsMJixG3TP-Whn90M0rshG87BsK2FcbLKicdBc5Lf9Ed79_anZ8_aa2jMh6vxpbh7oc6BKmbOScj9tDwLISgD8POwQJMkoR1YuL0fXvenJwxxwVsncTdKEMU7O-kX60rUe_kpc3VvU8uF2dQ1--Vu0tHVGqwEHknO_fzrMGfGXVgNnJKEFVt1YfmX4WAXFhvBp6o24O7867n6Ho1cQy1FaoyoibRz-vcuHcS1JUKCTpT3b6rIU-NPjfyUyG-CGfCVmC9fNbwJg6vLx4ubKPRViBQGo46E0coKlWiLXEjlicwya9JY257i2nCR6YJTKSzu_HqpNJRnmRa5TLlGumISmmxBZ_w2NttAciGEYjymBu8XqcpT2xOCCsyNGGpOd-BkAl8ZQlOVXlnGSwS6dECXCPQOHLfglu_eaOOP5_Zb5KcDUhoXOVKpNNv994R7sOQunfaDsn3o1B-f5gAJRi0Pw7vyA17Nz-g priority: 102 providerName: Cambridge University Press |
Title | Axisymmetric three-dimensional gravity currents generated by lock exchange |
URI | https://www.cambridge.org/core/product/identifier/S0022112018005001/type/journal_article https://www.proquest.com/docview/2209858446 |
Volume | 851 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5BKyQYeBQQhYI8gJgCqZvEyYQKastDVAiB1C3yEwHqA1Kk9t9zTlxKB5gyOPLwne37zr77DuBYGKPDwAjc30JigBJRL6F-7JkwCRODFjd5_5T7bnT9HNz2wp67cMtcWuXsTMwPajWU9o78nFI_idFbBtHF6MOzXaPs66probEMZYqRAi1B-bLVfXicvyP4CZvphSOz8F3quxWNfjO2EL0en4W2um0urLDooBbP59zptDdh3bFF0izMuwVLelCBDccciduXWQXWfskKVmAlT-uU2TbcNiev2bTft22zJBmj3bSnrJ5_ocVBbPMhpOFEFipNGXnJVaiRhRIxJejn3omeFLXBO_Dcbj1dXXuue4InEfKxx7WShsuGMsh4ZNwQUWR04CtTl0xpxiOVMCq4wfiuHghNWRQpHouAKSQlukEbu1AaDAd6D0jMOZch86nG8SSQcWDqnFOOHhANymgVTn_gS90eyNIif4ylCHRqgU4R6CqczMBNR4Wcxh__1WbIzyecL4H9_4cPYNVOZNM6aFiD0vjzSx8idxiLI1iO250jt0zwe3PX63S_ARBQxmA |
link.rule.ids | 315,783,787,12779,21402,23332,27938,27939,33387,33758,43614,43819,56138 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB2xCAEHlgKirD6AOAVSx4mTE6oQpZSWUytxi7wiQJQlRSp_zzhxKRzgbMuHN_bMsz3zBuBIWmtiZiWeb6nwgpLQIKNhGtg4izOLFrdl_5TebdIesM5dfOcf3AqfVjnxiaWj1i_KvZGfURpmKUZLlpy_vgWua5T7XfUtNGZhnkUYaFyleOtq-osQZnyiFo68IvSJ704y-tG6MvRGehq72raprMLv8PTbO5chp7UGK54rkmZl3HWYMcMarHreSPypLGqw_ENUsAYLZVKnKjag0xw_FJ_Pz65pliIjtJoJtFPzr5Q4iGs9hCScqEqjqSD3pQY1clAiPwlGuSdixlVl8CYMWpf9i3bgeycECgEfBcJoZYWKtEW-o9JIJok1LNS2obg2XCQ641QKi7e7BpOG8iTRIpWMa6QkJqLRFswNX4ZmG0gqhFAxD6nB8YyplNmGEFRg_ENzclqHk2_4cn8CirzKHuM5Ap07oHMEug7HE3Dz10pM4495exPkpwtON8DO_8OHsNju97p59_r2ZheW3KIuwYPGezA3ev8w-8giRvKg3CpfUErFYQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Axisymmetric+three-dimensional+gravity+currents+generated+by+lock+exchange&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Inghilesi%2C+Roberto&rft.au=Adduce%2C+Claudia&rft.au=Lombardi%2C+Valentina&rft.au=Roman%2C+Federico&rft.date=2018-09-25&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=851&rft.spage=507&rft.epage=544&rft_id=info:doi/10.1017%2Fjfm.2018.500&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_jfm_2018_500 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |