Role of glutamine-169 in the substrate recognition of human aminopeptidase B
Aminopeptidase B (EC 3.4.11.6, APB) preferentially hydrolyzes N-terminal basic amino acids of synthetic and peptide substrates. APB is involved in the production and maturation of peptide hormones and neurotransmitters such as miniglucagon, cholecystokinin and enkephalin by cleaving N-terminal basic...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1840; no. 6; pp. 1872 - 1881 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
01.06.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aminopeptidase B (EC 3.4.11.6, APB) preferentially hydrolyzes N-terminal basic amino acids of synthetic and peptide substrates. APB is involved in the production and maturation of peptide hormones and neurotransmitters such as miniglucagon, cholecystokinin and enkephalin by cleaving N-terminal basic amino acids in extended precursor proteins. Therefore, the specificity for basic amino acids is crucial for the biological function of APB.
Site-directed mutagenesis and molecular modeling of the S1 site were used to identify amino acid residues of the human APB responsible for the basic amino acid preference and enzymatic efficiency.
Substitution of Gln169 with Asn caused a significant decrease in hydrolytic activity toward the fluorescent substrate Lys-4-methylcoumaryl-7-amide (MCA). Substantial retardation of enzyme activity was observed toward Arg-MCA and substitution with Glu caused complete loss of enzymatic activity of APB. Substitution with Asn led to an increase in IC50 values of inhibitors that interact with the catalytic pocket of APB. The EC50 value of chloride ion binding was also found to increase with the Asn mutant. Gln169 was required for maximal cleavage of the peptide substrates. Molecular modeling suggested that interaction of Gln169 with the N-terminal Arg residue of the substrate could be bridged by a chloride anion.
Gln169 is crucial for obtaining optimal enzymatic activity and the unique basic amino acid preference of APB via maintaining the appropriate catalytic pocket structure and thus for its function as a processing enzyme of peptide hormones and neurotransmitters. |
---|---|
AbstractList | Aminopeptidase B (EC 3.4.11.6, APB) preferentially hydrolyzes N-terminal basic amino acids of synthetic and peptide substrates. APB is involved in the production and maturation of peptide hormones and neurotransmitters such as miniglucagon, cholecystokinin and enkephalin by cleaving N-terminal basic amino acids in extended precursor proteins. Therefore, the specificity for basic amino acids is crucial for the biological function of APB.
Site-directed mutagenesis and molecular modeling of the S1 site were used to identify amino acid residues of the human APB responsible for the basic amino acid preference and enzymatic efficiency.
Substitution of Gln169 with Asn caused a significant decrease in hydrolytic activity toward the fluorescent substrate Lys-4-methylcoumaryl-7-amide (MCA). Substantial retardation of enzyme activity was observed toward Arg-MCA and substitution with Glu caused complete loss of enzymatic activity of APB. Substitution with Asn led to an increase in IC50 values of inhibitors that interact with the catalytic pocket of APB. The EC50 value of chloride ion binding was also found to increase with the Asn mutant. Gln169 was required for maximal cleavage of the peptide substrates. Molecular modeling suggested that interaction of Gln169 with the N-terminal Arg residue of the substrate could be bridged by a chloride anion.
Gln169 is crucial for obtaining optimal enzymatic activity and the unique basic amino acid preference of APB via maintaining the appropriate catalytic pocket structure and thus for its function as a processing enzyme of peptide hormones and neurotransmitters. Aminopeptidase B (EC 3.4.11.6, APB) preferentially hydrolyzes N-terminal basic amino acids of synthetic and peptide substrates. APB is involved in the production and maturation of peptide hormones and neurotransmitters such as miniglucagon, cholecystokinin and enkephalin by cleaving N-terminal basic amino acids in extended precursor proteins. Therefore, the specificity for basic amino acids is crucial for the biological function of APB.BACKGROUNDAminopeptidase B (EC 3.4.11.6, APB) preferentially hydrolyzes N-terminal basic amino acids of synthetic and peptide substrates. APB is involved in the production and maturation of peptide hormones and neurotransmitters such as miniglucagon, cholecystokinin and enkephalin by cleaving N-terminal basic amino acids in extended precursor proteins. Therefore, the specificity for basic amino acids is crucial for the biological function of APB.Site-directed mutagenesis and molecular modeling of the S1 site were used to identify amino acid residues of the human APB responsible for the basic amino acid preference and enzymatic efficiency.METHODSSite-directed mutagenesis and molecular modeling of the S1 site were used to identify amino acid residues of the human APB responsible for the basic amino acid preference and enzymatic efficiency.Substitution of Gln169 with Asn caused a significant decrease in hydrolytic activity toward the fluorescent substrate Lys-4-methylcoumaryl-7-amide (MCA). Substantial retardation of enzyme activity was observed toward Arg-MCA and substitution with Glu caused complete loss of enzymatic activity of APB. Substitution with Asn led to an increase in IC50 values of inhibitors that interact with the catalytic pocket of APB. The EC50 value of chloride ion binding was also found to increase with the Asn mutant. Gln169 was required for maximal cleavage of the peptide substrates. Molecular modeling suggested that interaction of Gln169 with the N-terminal Arg residue of the substrate could be bridged by a chloride anion.RESULTSSubstitution of Gln169 with Asn caused a significant decrease in hydrolytic activity toward the fluorescent substrate Lys-4-methylcoumaryl-7-amide (MCA). Substantial retardation of enzyme activity was observed toward Arg-MCA and substitution with Glu caused complete loss of enzymatic activity of APB. Substitution with Asn led to an increase in IC50 values of inhibitors that interact with the catalytic pocket of APB. The EC50 value of chloride ion binding was also found to increase with the Asn mutant. Gln169 was required for maximal cleavage of the peptide substrates. Molecular modeling suggested that interaction of Gln169 with the N-terminal Arg residue of the substrate could be bridged by a chloride anion.Gln169 is crucial for obtaining optimal enzymatic activity and the unique basic amino acid preference of APB via maintaining the appropriate catalytic pocket structure and thus for its function as a processing enzyme of peptide hormones and neurotransmitters.CONCLUSIONGln169 is crucial for obtaining optimal enzymatic activity and the unique basic amino acid preference of APB via maintaining the appropriate catalytic pocket structure and thus for its function as a processing enzyme of peptide hormones and neurotransmitters. Aminopeptidase B (EC 3.4.11.6, APB) preferentially hydrolyzes N-terminal basic amino acids of synthetic and peptide substrates. APB is involved in the production and maturation of peptide hormones and neurotransmitters such as miniglucagon, cholecystokinin and enkephalin by cleaving N-terminal basic amino acids in extended precursor proteins. Therefore, the specificity for basic amino acids is crucial for the biological function of APB.Site-directed mutagenesis and molecular modeling of the S1 site were used to identify amino acid residues of the human APB responsible for the basic amino acid preference and enzymatic efficiency.Substitution of Gln169 with Asn caused a significant decrease in hydrolytic activity toward the fluorescent substrate Lys-4-methylcoumaryl-7-amide (MCA). Substantial retardation of enzyme activity was observed toward Arg-MCA and substitution with Glu caused complete loss of enzymatic activity of APB. Substitution with Asn led to an increase in IC50 values of inhibitors that interact with the catalytic pocket of APB. The EC50 value of chloride ion binding was also found to increase with the Asn mutant. Gln169 was required for maximal cleavage of the peptide substrates. Molecular modeling suggested that interaction of Gln169 with the N-terminal Arg residue of the substrate could be bridged by a chloride anion.Gln169 is crucial for obtaining optimal enzymatic activity and the unique basic amino acid preference of APB via maintaining the appropriate catalytic pocket structure and thus for its function as a processing enzyme of peptide hormones and neurotransmitters. |
Author | Tsujimoto, Masafumi Watanabe, Jobu Ohnishi, Atsushi Sakuma, Yoshiki Hattori, Akira Ogawa, Yuko Goto, Yoshikuni |
Author_xml | – sequence: 1 givenname: Yuko surname: Ogawa fullname: Ogawa, Yuko – sequence: 2 givenname: Atsushi surname: Ohnishi fullname: Ohnishi, Atsushi – sequence: 3 givenname: Yoshikuni surname: Goto fullname: Goto, Yoshikuni – sequence: 4 givenname: Yoshiki surname: Sakuma fullname: Sakuma, Yoshiki – sequence: 5 givenname: Jobu surname: Watanabe fullname: Watanabe, Jobu – sequence: 6 givenname: Akira surname: Hattori fullname: Hattori, Akira – sequence: 7 givenname: Masafumi surname: Tsujimoto fullname: Tsujimoto, Masafumi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24412328$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1PwzAQhj0UQfn4BwhlZEk4O7absAHiS6qEhGC2nPTcukrsEjsD_x5HhYUBTjrd8rynu_c9JjPnHRJyTqGgQOXVtmgavUZXMKC8AFoAsBmZQwk851SKI3IcwhZSiVockiPGOWUlq-Zk-eo7zLzJ1t0YdW8d5lTWmXVZ3GAWxibEQUfMBmz92tlovZvozdhrl0283-Eu2pUOmN2ekgOju4Bn3_OEvD_cv9095cuXx-e7m2XecpAx15oBl1VVC6MlbcFUxkCNrJKSY92ABlkabHQpqGYoFyuzqqBdQJteFXVjyhNyud-7G_zHiCGq3oYWu0479GNQLD2aelHV_6JU0LoqF0KKhF58o2PT40rtBtvr4VP9mJWA6z3QDj6EAY1qbdSTJckj2ykKakpDbdU-DTWloYCqdE0S81_in_1_yr4AgwSQyA |
CitedBy_id | crossref_primary_10_1007_s11010_020_03722_w crossref_primary_10_1093_jb_mvac107 crossref_primary_10_1124_jpet_118_255943 crossref_primary_10_1021_acs_biochem_5b00964 crossref_primary_10_1007_s11064_016_1979_9 crossref_primary_10_1158_1078_0432_CCR_20_4518 |
Cites_doi | 10.1111/j.1471-4159.2006.04325.x 10.1073/pnas.1101262108 10.1073/pnas.94.7.2963 10.1021/bi0604577 10.1007/s10741-007-9078-2 10.1007/s10741-007-9066-6 10.1074/jbc.271.48.30731 10.1074/jbc.M305076200 10.1016/j.cardiores.2003.12.003 10.1186/1471-2091-8-21 10.1096/fasebj.7.2.8440407 10.1016/0303-7207(95)03529-G 10.1021/bi015511s 10.1210/en.2004-0853 10.1038/nsmb.2021 10.1016/j.chembiol.2008.07.018 10.1016/j.peptides.2009.06.030 10.1038/84117 10.1046/j.1432-1327.2001.01848.x 10.1021/bi011409j 10.1038/2121271a0 10.1111/j.1471-4159.1992.tb08871.x 10.1016/j.bbapap.2004.09.011 10.1074/jbc.M109.066712 10.1016/j.virol.2005.02.022 10.1042/BJ20080965 10.1074/jbc.M113.494955 10.3317/jraas.2006.021 10.1093/oxfordjournals.jbchem.a002977 10.1042/bj3340407 10.1074/jbc.M707251200 10.1073/pnas.0500721102 10.1371/journal.pone.0003658 10.1042/bj3390497 10.1007/s10741-007-9064-8 10.1093/oxfordjournals.jbchem.a022812 10.1016/j.biochi.2010.12.015 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: Copyright © 2013 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.bbagen.2014.01.002 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EndPage | 1881 |
ExternalDocumentID | 24412328 10_1016_j_bbagen_2014_01_002 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABEFU ABFNM ABGSF ABMAC ABUDA ABWVN ABXDB ACDAQ ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CITATION CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- -~X .55 .GJ AACTN AAYJJ ABJNI AFFNX AI. CGR CUY CVF ECM EIF F5P H~9 K-O MVM NPM RIG TWZ UHS VH1 X7M Y6R YYP ZE2 ZGI ~KM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c406t-aa20468895fa61c0f8ff09e28664e9b0a063feba351a2e67dfd80c70c01659bf3 |
ISSN | 0304-4165 0006-3002 |
IngestDate | Thu Jul 10 22:14:39 EDT 2025 Fri Jul 11 01:49:10 EDT 2025 Thu Apr 03 06:59:49 EDT 2025 Thu Apr 24 23:12:29 EDT 2025 Tue Jul 01 00:22:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Aminopeptidase Catalytic pocket Site-directed mutagenesis Substrate specificity Proteolytic processing |
Language | English |
License | Copyright © 2013 Elsevier B.V. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c406t-aa20468895fa61c0f8ff09e28664e9b0a063feba351a2e67dfd80c70c01659bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24412328 |
PQID | 1519837565 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000200789 proquest_miscellaneous_1519837565 pubmed_primary_24412328 crossref_citationtrail_10_1016_j_bbagen_2014_01_002 crossref_primary_10_1016_j_bbagen_2014_01_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta |
PublicationTitleAlternate | Biochim Biophys Acta |
PublicationYear | 2014 |
References | Goto (10.1016/j.bbagen.2014.01.002_bb0125) 2007; 282 Cadel (10.1016/j.bbagen.2014.01.002_bb0020) 1995; 110 Fontes (10.1016/j.bbagen.2014.01.002_bb0050) 2005; 146 Maruyama (10.1016/j.bbagen.2014.01.002_bb0115) 2009; 284 Vazeux (10.1016/j.bbagen.2014.01.002_bb0100) 1998; 334 Fukasawa (10.1016/j.bbagen.2014.01.002_bb0025) 1996; 271 Chan (10.1016/j.bbagen.2014.01.002_bb0170) 2005; 102 Nguyen (10.1016/j.bbagen.2014.01.002_bb0070) 2011; 18 Beinfeld (10.1016/j.bbagen.2014.01.002_bb0055) 2009; 30 Speth (10.1016/j.bbagen.2014.01.002_bb0155) 2008; 13 Hattori (10.1016/j.bbagen.2014.01.002_bb0140) 2013 Duquerroy (10.1016/j.bbagen.2014.01.002_bb0195) 2005; 335 Tholander (10.1016/j.bbagen.2014.01.002_bb0200) 2008; 15 Tsujimoto (10.1016/j.bbagen.2014.01.002_bb0010) 2005; 1751 Berezniuk (10.1016/j.bbagen.2014.01.002_bb0180) 2011 Taylor (10.1016/j.bbagen.2014.01.002_bb0005) 1993; 7 Tsujimoto (10.1016/j.bbagen.2014.01.002_bb0085) 2008; 13 Pharm (10.1016/j.bbagen.2014.01.002_bb0095) 2007; 8 Petrov (10.1016/j.bbagen.2014.01.002_bb0145) 2004; 61 Hwang (10.1016/j.bbagen.2014.01.002_bb0045) 2007; 100 Goto (10.1016/j.bbagen.2014.01.002_bb0065) 2008; 416 Thunnissen (10.1016/j.bbagen.2014.01.002_bb0035) 2001; 8 Lausten (10.1016/j.bbagen.2014.01.002_bb0090) 2001; 268 Pham (10.1016/j.bbagen.2014.01.002_bb0110) 2011; 93 Krieger (10.1016/j.bbagen.2014.01.002_bb0185) 1992; 59 Hopsu (10.1016/j.bbagen.2014.01.002_bb0135) 1966; 212 Cadel (10.1016/j.bbagen.2014.01.002_bb0015) 2013 Fukasawa (10.1016/j.bbagen.2014.01.002_bb0040) 1999; 339 Yang (10.1016/j.bbagen.2014.01.002_bb0130) 2013; 288 Fukasawa (10.1016/j.bbagen.2014.01.002_bb0060) 2006; 45 Ramírez (10.1016/j.bbagen.2014.01.002_bb0165) 2008; 13 Hattori (10.1016/j.bbagen.2014.01.002_bb0150) 2000; 128 Hattori (10.1016/j.bbagen.2014.01.002_bb0120) 2001; 130 Tai (10.1016/j.bbagen.2014.01.002_bb0190) 2001; 40 Tanioka (10.1016/j.bbagen.2014.01.002_bb0080) 2003; 278 Iturrioz (10.1016/j.bbagen.2014.01.002_bb0105) 2001; 40 Evnouchidou (10.1016/j.bbagen.2014.01.002_bb0175) 2008; 3 Kochan (10.1016/j.bbagen.2014.01.002_bb0075) 2011; 108 Cadel (10.1016/j.bbagen.2014.01.002_bb0030) 1997; 94 Banegas (10.1016/j.bbagen.2014.01.002_bb0160) 2006; 7 |
References_xml | – volume: 100 start-page: 1340 year: 2007 ident: 10.1016/j.bbagen.2014.01.002_bb0045 article-title: Secretary vesicle aminopeptidase B related to neuropeptide processing: molecular identification and subcellular localization to enkephalin-and NPY-containing chromaffin granules publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2006.04325.x – volume: 108 start-page: 7745 year: 2011 ident: 10.1016/j.bbagen.2014.01.002_bb0075 article-title: Crystal structures of the endoplasmic reticulum aminopeptidase-1 (ERAP1) reveal the molecular basis for N-terminal peptide trimming publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1101262108 – volume: 94 start-page: 2963 year: 1997 ident: 10.1016/j.bbagen.2014.01.002_bb0030 article-title: Aminopeptidase B from the rat testis is a bifunctional enzyme structurally related to leukotriene-A4 hydrolase publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.94.7.2963 – volume: 45 start-page: 11425 year: 2006 ident: 10.1016/j.bbagen.2014.01.002_bb0060 article-title: Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B publication-title: Biochemistry doi: 10.1021/bi0604577 – volume: 13 start-page: 299 year: 2008 ident: 10.1016/j.bbagen.2014.01.002_bb0155 article-title: The significance of brain aminopeptidases in the regulation of the actions of angiotensin peptides in the brain publication-title: Heart Fail. Rev. doi: 10.1007/s10741-007-9078-2 – volume: 13 start-page: 339 year: 2008 ident: 10.1016/j.bbagen.2014.01.002_bb0165 article-title: Role of central and peripheral aminopeptidases activities in the control of blood pressure: a working hypothesis publication-title: Heart Fail. Rev. doi: 10.1007/s10741-007-9066-6 – volume: 271 start-page: 30731 year: 1996 ident: 10.1016/j.bbagen.2014.01.002_bb0025 article-title: Molecular cloning and expression of rat aminopeptidase B publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.48.30731 – volume: 278 start-page: 32275 year: 2003 ident: 10.1016/j.bbagen.2014.01.002_bb0080 article-title: Human leukocyte-derived arginine aminopeptidase: the third member of the oxytocinase subfamily of aminopeptidases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M305076200 – volume: 61 start-page: 724 year: 2004 ident: 10.1016/j.bbagen.2014.01.002_bb0145 article-title: Arginine-aminopeptidase in rat cardiac fibroblastic cells participates in angiotensin peptide turnover publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2003.12.003 – volume: 8 start-page: 21 year: 2007 ident: 10.1016/j.bbagen.2014.01.002_bb0095 article-title: Aminopeptidase B, a glucagon-processing enzyme: site directed mutagenesis of the Zn2+-binding motif and molecular modeling publication-title: BMC Biochem. doi: 10.1186/1471-2091-8-21 – volume: 7 start-page: 290 year: 1993 ident: 10.1016/j.bbagen.2014.01.002_bb0005 article-title: Aminopeptidases: structure and function publication-title: FASEB J. doi: 10.1096/fasebj.7.2.8440407 – volume: 110 start-page: 149 year: 1995 ident: 10.1016/j.bbagen.2014.01.002_bb0020 article-title: Aminopeptidase-B in the rat testes: isolation, functional properties and cellular localization in seminiferous tubules publication-title: Mol. Cell. Endocrinol. doi: 10.1016/0303-7207(95)03529-G – volume: 40 start-page: 7446 year: 2001 ident: 10.1016/j.bbagen.2014.01.002_bb0190 article-title: Characterization of the allosteric anion-binding site of o-acetylserine sulfhydrylase publication-title: Biochemistry doi: 10.1021/bi015511s – volume: 146 start-page: 702 year: 2005 ident: 10.1016/j.bbagen.2014.01.002_bb0050 article-title: Miniglucagon (MG)-generating endopeptidase, which processes glucagon into MG, is composed of N-arginine dibasic convertase and aminopeptidase B publication-title: Endocrinology doi: 10.1210/en.2004-0853 – volume: 18 start-page: 604 year: 2011 ident: 10.1016/j.bbagen.2014.01.002_bb0070 article-title: Structural basis for antigenic peptide precursor processing by endoplasmic reticulum aminopeptidase ERAP1 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2021 – start-page: 473 year: 2013 ident: 10.1016/j.bbagen.2014.01.002_bb0015 article-title: Aminopeptidase B – volume: 15 start-page: 920 year: 2008 ident: 10.1016/j.bbagen.2014.01.002_bb0200 article-title: Structure-based dissection of the active site chemistry of leukotriene A4 hydrolase: implications for M1 aminopeptidases and inhibitor design publication-title: Chem. Biol. doi: 10.1016/j.chembiol.2008.07.018 – volume: 30 start-page: 1882 year: 2009 ident: 10.1016/j.bbagen.2014.01.002_bb0055 article-title: Cathepsin L plays major role in cholecystokinin production in mouse brain cortex in pituitary AtT-20 cells: protease gene knockout and inhibitor studies publication-title: Peptides doi: 10.1016/j.peptides.2009.06.030 – volume: 8 start-page: 131 year: 2001 ident: 10.1016/j.bbagen.2014.01.002_bb0035 article-title: Crystal structure of human leukotriene A4 hydrolase, a bifunctional enzyme in inflammation publication-title: Nat. Struct. Biol. doi: 10.1038/84117 – volume: 268 start-page: 98 year: 2001 ident: 10.1016/j.bbagen.2014.01.002_bb0090 article-title: Mutational analysis of the active site of human insulin-regulated aminopeptidase publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1327.2001.01848.x – volume: 40 start-page: 14440 year: 2001 ident: 10.1016/j.bbagen.2014.01.002_bb0105 article-title: Study of asparagine 353 in aminopeptidase A: characterization of novel motif (GXMEN) implicated in exopeptidase specificity of monozinc aminopeptidases publication-title: Biochemistry doi: 10.1021/bi011409j – volume: 212 start-page: 1271 year: 1966 ident: 10.1016/j.bbagen.2014.01.002_bb0135 article-title: Formation of bradykinin from kallidin-10 by aminopeptidase B publication-title: Nature doi: 10.1038/2121271a0 – volume: 59 start-page: 26 year: 1992 ident: 10.1016/j.bbagen.2014.01.002_bb0185 article-title: Prohormone thiol protease and enkephalin precursor processing: cleavage at dibasic and monobasic sites publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.1992.tb08871.x – volume: 1751 start-page: 9 year: 2005 ident: 10.1016/j.bbagen.2014.01.002_bb0010 article-title: The oxytocinase subfamily of M1 aminopeptidases publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2004.09.011 – volume: 284 start-page: 34692 year: 2009 ident: 10.1016/j.bbagen.2014.01.002_bb0115 article-title: Histidine 379 of human laeverin/aminopeptidase Q, a nonconserved residue within the exopeptidase motif, defines its distinctive enzymatic properties publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.066712 – volume: 335 start-page: 276 year: 2005 ident: 10.1016/j.bbagen.2014.01.002_bb0195 article-title: Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation in the SARS coronavirus spike glycoprotein publication-title: Virology doi: 10.1016/j.virol.2005.02.022 – volume: 416 start-page: 109 year: 2008 ident: 10.1016/j.bbagen.2014.01.002_bb0065 article-title: Glutamine-181 is crucial in the enzymatic activity and substrate specificity of human endoplasmic-reticulum aminopeptidase-1 publication-title: Biochem. J. doi: 10.1042/BJ20080965 – volume: 288 start-page: 25638 year: 2013 ident: 10.1016/j.bbagen.2014.01.002_bb0130 article-title: Structural insights into central hypertension regulation by human aminopeptidase A publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.494955 – volume: 7 start-page: 129 year: 2006 ident: 10.1016/j.bbagen.2014.01.002_bb0160 article-title: Brain aminopeptidases and hypertension publication-title: J. Renin-Angiotensin-Aldosterone Syst. doi: 10.3317/jraas.2006.021 – start-page: 93 year: 2011 ident: 10.1016/j.bbagen.2014.01.002_bb0180 article-title: Endogenous opioids – volume: 130 start-page: 235 year: 2001 ident: 10.1016/j.bbagen.2014.01.002_bb0120 article-title: Genomic organization of the human adipocyte-derived leucine aminopeptidase gene and its relationship to the placental leucine aminopeptidase/oxytocinase gene publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a002977 – volume: 334 start-page: 407 year: 1998 ident: 10.1016/j.bbagen.2014.01.002_bb0100 article-title: A glutamate residue contributes to the exopeptidase specificity in aminopeptidase A publication-title: Biochem. J. doi: 10.1042/bj3340407 – volume: 282 start-page: 37074 year: 2007 ident: 10.1016/j.bbagen.2014.01.002_bb0125 article-title: Aspartic acid 221 is critical in the calcium-induced modulation of enzymatic activity of human aminopeptidase A publication-title: J. Biol. Chem. doi: 10.1074/jbc.M707251200 – volume: 102 start-page: 17107 year: 2005 ident: 10.1016/j.bbagen.2014.01.002_bb0170 article-title: The ER aminopeptidase, ERAP1, trims precursors to lengths of MHC class I peptides by a “molecular ruler” mechanism publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0500721102 – volume: 3 start-page: e3658 year: 2008 ident: 10.1016/j.bbagen.2014.01.002_bb0175 article-title: The internal sequence of the peptide-substrate determines its N-terminus trimming by ERAP1 publication-title: PLoS ONE doi: 10.1371/journal.pone.0003658 – start-page: 442 year: 2013 ident: 10.1016/j.bbagen.2014.01.002_bb0140 article-title: Aminopeptidase Q/Laeverin – volume: 339 start-page: 497 year: 1999 ident: 10.1016/j.bbagen.2014.01.002_bb0040 article-title: Aminopeptidase B is structurally related to leukotriene-A4 hydrolase but is not a bifunctional enzyme with epoxide hydrolase activity publication-title: Biochem. J. doi: 10.1042/bj3390497 – volume: 13 start-page: 285 year: 2008 ident: 10.1016/j.bbagen.2014.01.002_bb0085 article-title: Biochemical and enzymatic properties of the M1 family of aminopeptidases involved in the regulation of blood pressure publication-title: Heart Fail. Rev. doi: 10.1007/s10741-007-9064-8 – volume: 128 start-page: 755 year: 2000 ident: 10.1016/j.bbagen.2014.01.002_bb0150 article-title: Characterization of recombinant human adipocyte-derived leucine aminopeptidase expressed in Chinese hamster ovary cells publication-title: J. Biochem. doi: 10.1093/oxfordjournals.jbchem.a022812 – volume: 93 start-page: 730 year: 2011 ident: 10.1016/j.bbagen.2014.01.002_bb0110 article-title: Mutation in the substrate-binding site of aminopeptidase B confers new enzymatic properties publication-title: Biochimie doi: 10.1016/j.biochi.2010.12.015 |
SSID | ssj0000595 ssj0025309 |
Score | 2.1352959 |
Snippet | Aminopeptidase B (EC 3.4.11.6, APB) preferentially hydrolyzes N-terminal basic amino acids of synthetic and peptide substrates. APB is involved in the... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1872 |
SubjectTerms | Amino Acid Sequence amino acids aminopeptidases Aminopeptidases - antagonists & inhibitors Aminopeptidases - chemistry Aminopeptidases - metabolism Catalytic Domain cholecystokinin enkephalin enzyme activity fluorescence Glutamine Humans Hydrolysis inhibitory concentration 50 median effective concentration Models, Molecular molecular models Molecular Sequence Data mutagenesis mutants neurotransmitters peptide hormones proteins Sodium Chloride - pharmacology Structure-Activity Relationship Substrate Specificity synthetic peptides |
Title | Role of glutamine-169 in the substrate recognition of human aminopeptidase B |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24412328 https://www.proquest.com/docview/1519837565 https://www.proquest.com/docview/2000200789 |
Volume | 1840 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gAXxLvLozISt1VWzstJjqUCVZSHVFrRniI_23RpsmITIXHgtzN2HO9uy4rHJYrsSWLNTMbf2OMZhF4RIaWMqQxIxEiQAOYIGMlUIHKpMwVmU9t0TR8-0oOT5N1penrtdEnLp-LHb8-V_I9UoQ3kak7J_oNk_UuhAe5BvnAFCcP1r2R85EIDz-Ej7ArwYhDSYohcXIBJsKlnJz5IyGFDu25v6Ju5iWmRMJG54svD7m7ViIvKJBKYqHbCq6Zf_2Am84Y345_O2XeLPM-6WeMbL2qzqGUtTrvo4NYH-DS2YNPkrIHGWVf7js9sBgNadlWrCxFhsgyY8sbVhNGRa8a1z8bk1GjVVoZ5X7TnhhHv1xMup5wDmclRGyY2tSpZIwdRzK-sYAGhGGCYL6c0H2g4dG2h7Qj8iGiEtvcOj74cep88jV0UkBv7cLrShgDeHIDJHe1euQ5kNngnFqUc30N3nXuB93pduY9uqfoBur0_VPV7iN4bncGNxms6g6sag85grzN4RWcMtdUZvK4z-PUjdPL2zfH-QeAqagQCgFsbMBaRhOZ5kWpGQ0F0rjUpVJRTmqiCEwaAVSvO4jRkkaKZ1DInIiPCHHoruI4fo1Hd1GoHYZGwOGNCRjLkiYgYuD8wbQLHNDxMaTpG8cCeUrh086bqyddyiCu8LHv-loa_JQlL4O8YBf6peZ9u5Q_0LwfOl8BIs9nFatV0ixKQbJHHWWpGsokmshvxpuDCGD3pxea_Ooj56caeZ-jO8jd4jkbtt069AITa8l20Nf0Z7jpd-wXvU4-K |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+glutamine-169+in+the+substrate+recognition+of+human+aminopeptidase+B&rft.jtitle=Biochimica+et+biophysica+acta&rft.au=Ogawa%2C+Yuko&rft.au=Ohnishi%2C+Atsushi&rft.au=Goto%2C+Yoshikuni&rft.au=Sakuma%2C+Yoshiki&rft.date=2014-06-01&rft.issn=0006-3002&rft.volume=1840&rft.issue=6&rft.spage=1872&rft_id=info:doi/10.1016%2Fj.bbagen.2014.01.002&rft_id=info%3Apmid%2F24412328&rft.externalDocID=24412328 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |