Polyaniline/CeO2 nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution

•∼6 nm CeO2 particles were uniformly dispersed into PANI matrix.•LEIS and salt spray tests were performed to evaluate the corrosion performance of coatings.•PANI/CeO2 in epoxy coating exhibits a synergetic effect of diffusion barrier and self-healing behaviors. Polyaniline/cerium dioxide (PANI/CeO2)...

Full description

Saved in:
Bibliographic Details
Published inProgress in organic coatings Vol. 139; p. 105430
Main Authors Lei, Yanhua, Qiu, Zhichao, Tan, Ning, Du, Hailiang, Li, Dongdong, Liu, Jingrong, Liu, Tao, Zhang, Weiguo, Chang, Xueting
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.02.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •∼6 nm CeO2 particles were uniformly dispersed into PANI matrix.•LEIS and salt spray tests were performed to evaluate the corrosion performance of coatings.•PANI/CeO2 in epoxy coating exhibits a synergetic effect of diffusion barrier and self-healing behaviors. Polyaniline/cerium dioxide (PANI/CeO2) nanocomposite (NPs) was synthesized by in situ polymerization of aniline in the presence of CeO2 NPs. Various analytical facilities, i.e., powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM), were utilized to characterize the synthesized CeO2 and PANI/CeO2 NPs. The coatings prepared from the synthesized PANI/CeO2 NPs exhibited excellent corrosion resistance that was superior to epoxy coatings added with PANI in NaCl solution. The exceptional improvement of corrosion protection performance of the PANI/CeO2 /epoxy coatings is associated with the synergetic protection of the enhancement of the protective barrier due to the role of CeO2 NPs and PANI against the diffusion of aggressive ions (e.g., Cl−) and the improvement of self-healing protection attributed to the redox behavior of PANI. Thus, the hybrid PANI/CeO2 NPs are considered as the best route to enhance the protection performance of the epoxy coatings on carbon steel.
AbstractList Polyaniline/cerium dioxide (PANI/CeO2) nanocomposite (NPs) was synthesized by in situ polymerization of aniline in the presence of CeO2 NPs. Various analytical facilities, i.e., powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM), were utilized to characterize the synthesized CeO2 and PANI/CeO2 NPs. The coatings prepared from the synthesized PANI/CeO2 NPs exhibited excellent corrosion resistance that was superior to epoxy coatings added with PANI in NaCl solution. The exceptional improvement of corrosion protection performance of the PANI/CeO2 /epoxy coatings is associated with the synergetic protection of the enhancement of the protective barrier due to the role of CeO2 NPs and PANI against the diffusion of aggressive ions (e.g., Cl−) and the improvement of self-healing protection attributed to the redox behavior of PANI. Thus, the hybrid PANI/CeO2 NPs are considered as the best route to enhance the protection performance of the epoxy coatings on carbon steel.
•∼6 nm CeO2 particles were uniformly dispersed into PANI matrix.•LEIS and salt spray tests were performed to evaluate the corrosion performance of coatings.•PANI/CeO2 in epoxy coating exhibits a synergetic effect of diffusion barrier and self-healing behaviors. Polyaniline/cerium dioxide (PANI/CeO2) nanocomposite (NPs) was synthesized by in situ polymerization of aniline in the presence of CeO2 NPs. Various analytical facilities, i.e., powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM), were utilized to characterize the synthesized CeO2 and PANI/CeO2 NPs. The coatings prepared from the synthesized PANI/CeO2 NPs exhibited excellent corrosion resistance that was superior to epoxy coatings added with PANI in NaCl solution. The exceptional improvement of corrosion protection performance of the PANI/CeO2 /epoxy coatings is associated with the synergetic protection of the enhancement of the protective barrier due to the role of CeO2 NPs and PANI against the diffusion of aggressive ions (e.g., Cl−) and the improvement of self-healing protection attributed to the redox behavior of PANI. Thus, the hybrid PANI/CeO2 NPs are considered as the best route to enhance the protection performance of the epoxy coatings on carbon steel.
ArticleNumber 105430
Author Du, Hailiang
Li, Dongdong
Qiu, Zhichao
Lei, Yanhua
Tan, Ning
Liu, Jingrong
Liu, Tao
Chang, Xueting
Zhang, Weiguo
Author_xml – sequence: 1
  givenname: Yanhua
  surname: Lei
  fullname: Lei, Yanhua
  email: yhualei@gmail.com
  organization: Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
– sequence: 2
  givenname: Zhichao
  surname: Qiu
  fullname: Qiu, Zhichao
  organization: Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
– sequence: 3
  givenname: Ning
  surname: Tan
  fullname: Tan, Ning
  organization: Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
– sequence: 4
  givenname: Hailiang
  surname: Du
  fullname: Du, Hailiang
  organization: College of Mechanical and Electronic Engineering, Shanghai Jian Qiao University, Shanghai, China
– sequence: 5
  givenname: Dongdong
  surname: Li
  fullname: Li, Dongdong
  organization: Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
– sequence: 6
  givenname: Jingrong
  surname: Liu
  fullname: Liu, Jingrong
  organization: Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
– sequence: 7
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  organization: Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
– sequence: 8
  givenname: Weiguo
  surname: Zhang
  fullname: Zhang, Weiguo
  organization: SHANGHAI Offshore Engineering Institute, Shanghai Maritime University, Shanghai 201306, China
– sequence: 9
  givenname: Xueting
  surname: Chang
  fullname: Chang, Xueting
  email: xtchang@shmtu.edu.cn
  organization: Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
BookMark eNqFUU1r3DAQFSWFbNL-hSAIOXozkmx5BTmkLOkHhKaHBHoTsjxOtHglV9Iu3T_S31uZbS695DTM6L03evPOyIkPHgm5YLBkwOT1ZjmF-GyDyUsOTJVhUwt4RxZs1YpKCPbzhCxAAFSqruGUnKW0AQAphFqQPz_CeDDejc7j9RofOPXGBxu2U0guY6ImURtiLF3w1PkX17kcYqJDiNRtpxj2zj_T_IKvsD3SCWN53hpvkYaB4hR-H-j8wRlaZKyJXSkpI45Fk4plc0W_m_VIUxh3uWz6QN4PZkz48V89J0-f7x7XX6v7hy_f1p_uK1uDzJVpu5W0jcQVDquu5T1rWdtbNIhq6JTpJDaA0CvBTcslV0PTt0yoWkrOQfbinFwedYuRXztMWW_CLvqyUnPRNAqUAF5Q8oiyxWCKOOgpuq2JB81AzxnojX7NQM8Z6GMGhXjzH9G6bGaDORo3vk2_PdKxnGDvMOpkHZar9i6izboP7i2Jv6QVrIs
CitedBy_id crossref_primary_10_1016_j_heliyon_2024_e40662
crossref_primary_10_1021_acs_iecr_3c00099
crossref_primary_10_1002_mawe_202100147
crossref_primary_10_3390_app14188396
crossref_primary_10_1039_D0RA07800J
crossref_primary_10_1080_17518253_2024_2360497
crossref_primary_10_3390_polym16152115
crossref_primary_10_1134_S2070205124701788
crossref_primary_10_1007_s10853_024_10020_z
crossref_primary_10_1016_j_porgcoat_2021_106218
crossref_primary_10_1016_j_molliq_2020_114214
crossref_primary_10_1002_pat_6307
crossref_primary_10_1016_j_matdes_2021_109839
crossref_primary_10_1021_acs_langmuir_3c00165
crossref_primary_10_1515_corrrev_2023_0156
crossref_primary_10_1515_ijmr_2022_0153
crossref_primary_10_1021_acsanm_1c03173
crossref_primary_10_1007_s10008_023_05456_3
crossref_primary_10_3390_nano14060526
crossref_primary_10_3390_polym14122306
crossref_primary_10_1016_j_jiec_2024_05_010
crossref_primary_10_1088_2053_1591_abe313
crossref_primary_10_1016_j_porgcoat_2024_108660
crossref_primary_10_1080_0371750X_2022_2149623
crossref_primary_10_1007_s11705_022_2147_1
crossref_primary_10_1016_j_molstruc_2024_138525
crossref_primary_10_1021_acsami_3c03461
crossref_primary_10_1016_j_jiec_2020_04_029
crossref_primary_10_1016_j_jtice_2024_105364
crossref_primary_10_1080_01932691_2024_2304072
crossref_primary_10_3390_min13020180
crossref_primary_10_1149_1945_7111_abf4ad
crossref_primary_10_3390_coatings14111378
crossref_primary_10_1007_s40242_020_0213_0
crossref_primary_10_1016_j_jiec_2023_04_024
crossref_primary_10_1016_j_jmapro_2021_07_032
crossref_primary_10_1016_j_vacuum_2023_112864
crossref_primary_10_1080_25740881_2022_2129387
crossref_primary_10_1080_25740881_2020_1819317
crossref_primary_10_1515_revce_2022_0039
crossref_primary_10_1007_s10853_021_06610_w
crossref_primary_10_1080_01694243_2021_1899508
crossref_primary_10_1134_S207020512201021X
crossref_primary_10_1016_j_ceramint_2024_01_141
crossref_primary_10_1021_acsami_2c19946
crossref_primary_10_1016_j_jiec_2022_05_037
crossref_primary_10_1149_1945_7111_ad7891
crossref_primary_10_1016_j_matpr_2021_08_157
Cites_doi 10.1016/j.porgcoat.2018.08.015
10.1016/j.porgcoat.2018.05.006
10.1016/j.jiec.2017.08.032
10.1016/j.synthmet.2017.10.002
10.1016/j.electacta.2007.05.022
10.1016/j.porgcoat.2007.10.001
10.1016/j.porgcoat.2014.01.004
10.1016/j.surfcoat.2014.11.023
10.1007/s11665-019-04028-9
10.1016/j.apsusc.2018.08.118
10.1016/j.corsci.2018.06.013
10.1016/j.btre.2017.11.008
10.1016/j.corsci.2018.03.038
10.20964/110376
10.1039/C6CE01104G
10.1016/j.porgcoat.2013.08.015
10.1002/app.40688
10.1016/j.porgcoat.2016.04.046
10.1149/2.0411813jes
10.1038/s41598-017-15845-0
10.1016/j.ceramint.2013.01.096
10.1016/j.electacta.2007.09.056
10.1016/j.corsci.2006.08.018
10.1016/j.porgcoat.2008.08.003
10.1016/j.materresbull.2007.04.019
10.1016/j.corsci.2013.07.003
10.1016/j.ejpe.2018.01.006
10.1016/j.cej.2017.03.061
10.1016/j.synthmet.2018.12.009
10.1007/s10853-017-1505-8
10.1016/j.surfcoat.2017.02.024
10.1016/j.molstruc.2016.07.114
10.1007/s100080100211
10.1016/j.jiec.2014.05.046
10.1016/j.porgcoat.2013.01.008
10.1016/j.porgcoat.2012.05.004
10.1002/adma.19940060309
10.1149/1.2114008
10.1016/j.matlet.2012.09.051
10.1016/j.surfcoat.2016.01.046
10.1016/j.ceramint.2014.08.122
10.1016/j.porgcoat.2004.08.001
10.1016/j.porgcoat.2016.03.005
10.1016/j.synthmet.2017.11.002
10.1016/j.apsusc.2017.05.079
10.1016/S0300-9440(97)00123-9
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Feb 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 2020
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1016/j.porgcoat.2019.105430
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-331X
ExternalDocumentID 10_1016_j_porgcoat_2019_105430
S0300944019305740
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M24
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SSZ
T5K
UHS
WH7
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c406t-a7b86c56e8ef8b72d1717dceaee9fb9ab6e50e0d932a72629f5d71394662206d3
IEDL.DBID .~1
ISSN 0300-9440
IngestDate Fri Jul 25 06:56:13 EDT 2025
Tue Jul 01 02:27:50 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
Fri Feb 23 02:48:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords LEIS
CeO2
Self-healing
Corrosion
Polyaniline
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-a7b86c56e8ef8b72d1717dceaee9fb9ab6e50e0d932a72629f5d71394662206d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2355909302
PQPubID 2045410
ParticipantIDs proquest_journals_2355909302
crossref_primary_10_1016_j_porgcoat_2019_105430
crossref_citationtrail_10_1016_j_porgcoat_2019_105430
elsevier_sciencedirect_doi_10_1016_j_porgcoat_2019_105430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Progress in organic coatings
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Riaz, Nwaoha, Ashraf (bib0025) 2014; 77
Wessling (bib0075) 1994; 6
Tavandashti, Ghorbani, Shojaei, Gonzalez-Garcia, Terryn, Mol (bib0115) 2016; 99
Calado, Taryba, Carmezim, Montemor (bib0135) 2018; 142
Pehkonen, Yuan (bib0065) 2019; 23
Li, Li, Gao, Qi, Ma, Zhu (bib0105) 2018; 462
Zhang, Hu, Zhang, Cao (bib0200) 2004; 51
Najjar, Katourani, Hosseini (bib0095) 2018; 124
Zhou, Chun (bib0180) 2019; 28
Azzam, El-Salam, Mohamed, Shaban, Shokry (bib0070) 2018; 27
Hao, Sani, Ge, Fang (bib0190) 2017; 419
Sharma, Das, Das (bib0230) 2015; 261
Njoku, Cui, Xiao, Shang, Li (bib0195) 2017; 7
Shi, Zhang, Yu (bib0100) 2017; 233
Kalendová, Veselý, Stejskal (bib0020) 2008; 62
Lei, Sheng, Hyono, Ueda, Ohtsuka (bib0030) 2013; 76
DeBerry (bib0005) 1985; 132
Pagotto, Recio, Motheo, Herrasti (bib0090) 2016; 289
Izadi, Shahrabi, Ramezanzadeh (bib0110) 2018; 57
Sampreeth, Al-Maghrabi, Bahuleyan, Ramesan (bib0085) 2018; 53
Liu, Lei, Qiu, Li, Liu, Zhang, Yin (bib0170) 2018; 165
Gutiérrez-Díaz, Uruchurtu-Chavarín, Güizado-Rodríguez, Barba (bib0045) 2016; 95
Panahi-Kalamuei, Alizadeh, Mousavi-Kamazani, Salavati-Niasari (bib0140) 2015; 21
Mrad, Amor, Dhouibi, Montemor (bib0220) 2017; 234
Hosseini, Aboutalebi (bib0175) 2018; 122
Ramezanzadeh, Moghadam, Shohani, Mahdavian (bib0210) 2017; 320
Schauer, Joos, Dulog, Eisenbach (bib0010) 1998; 33
Spinks, Dominis, Wallace, Tallman (bib0015) 2002; 6
Baldissera, Ferreira (bib0060) 2012; 75
Rajeshkumar, Naik (bib0240) 2018; 17
Ramezanzadeh, Bahlakeh, Ramezanzadeh (bib0130) 2018; 137
Zdravković, Simović, Golubović, Poleti, Veljković, Šćepanović, Branković (bib0150) 2015; 41
Chen, Liu, Chen, Guo, Sun, Lv, Wang (bib0145) 2013; 39
Zhang, Shao, Zhang, Meng, Wang (bib0205) 2013; 76
Meroufel, Deslouis, Touzain (bib0215) 2008; 53
Xu, Li, Li (bib0155) 2008; 43
Zhou, Chun (bib0185) 2017; 315
Mostafaei, Nasirpouri (bib0165) 2014; 77
Samai, Sarkar, Chall, Rakshit, Bhattacharya (bib0235) 2016; 18
Kowalski, Ueda, Ohtsuka (bib0035) 2007; 49
Dai, Zhu, Zhang, Ma, Wang, Lei (bib0050) 2016; 11
Montemor, Ferreira (bib0225) 2007; 52
Babaei-Sati, Parsa, Vakili-Azghandi (bib0040) 2019; 247
Sabouri, Shahrabi, Faridi, Hosseini (bib0080) 2009; 64
da Silva, de Souza, Trovati, Sanches (bib0055) 2017; 1127
Montemor, Ferreira (bib0125) 2007; 52
Campos, Miziara, Cristovan, Pereira (bib0160) 2014; 131
Sharmila, Selvakumar, Jeyasubramanian (bib0120) 2013; 91
Riaz (10.1016/j.porgcoat.2019.105430_bib0025) 2014; 77
Zdravković (10.1016/j.porgcoat.2019.105430_bib0150) 2015; 41
Calado (10.1016/j.porgcoat.2019.105430_bib0135) 2018; 142
Chen (10.1016/j.porgcoat.2019.105430_bib0145) 2013; 39
Pagotto (10.1016/j.porgcoat.2019.105430_bib0090) 2016; 289
DeBerry (10.1016/j.porgcoat.2019.105430_bib0005) 1985; 132
Spinks (10.1016/j.porgcoat.2019.105430_bib0015) 2002; 6
Tavandashti (10.1016/j.porgcoat.2019.105430_bib0115) 2016; 99
Xu (10.1016/j.porgcoat.2019.105430_bib0155) 2008; 43
Kowalski (10.1016/j.porgcoat.2019.105430_bib0035) 2007; 49
Hosseini (10.1016/j.porgcoat.2019.105430_bib0175) 2018; 122
Ramezanzadeh (10.1016/j.porgcoat.2019.105430_bib0210) 2017; 320
Ramezanzadeh (10.1016/j.porgcoat.2019.105430_bib0130) 2018; 137
Samai (10.1016/j.porgcoat.2019.105430_bib0235) 2016; 18
Zhang (10.1016/j.porgcoat.2019.105430_bib0205) 2013; 76
Li (10.1016/j.porgcoat.2019.105430_bib0105) 2018; 462
Schauer (10.1016/j.porgcoat.2019.105430_bib0010) 1998; 33
Sabouri (10.1016/j.porgcoat.2019.105430_bib0080) 2009; 64
Sampreeth (10.1016/j.porgcoat.2019.105430_bib0085) 2018; 53
da Silva (10.1016/j.porgcoat.2019.105430_bib0055) 2017; 1127
Pehkonen (10.1016/j.porgcoat.2019.105430_bib0065) 2019; 23
Liu (10.1016/j.porgcoat.2019.105430_bib0170) 2018; 165
Azzam (10.1016/j.porgcoat.2019.105430_bib0070) 2018; 27
Montemor (10.1016/j.porgcoat.2019.105430_bib0125) 2007; 52
Zhang (10.1016/j.porgcoat.2019.105430_bib0200) 2004; 51
Montemor (10.1016/j.porgcoat.2019.105430_bib0225) 2007; 52
Izadi (10.1016/j.porgcoat.2019.105430_bib0110) 2018; 57
Sharma (10.1016/j.porgcoat.2019.105430_bib0230) 2015; 261
Baldissera (10.1016/j.porgcoat.2019.105430_bib0060) 2012; 75
Dai (10.1016/j.porgcoat.2019.105430_bib0050) 2016; 11
Najjar (10.1016/j.porgcoat.2019.105430_bib0095) 2018; 124
Rajeshkumar (10.1016/j.porgcoat.2019.105430_bib0240) 2018; 17
Hao (10.1016/j.porgcoat.2019.105430_bib0190) 2017; 419
Mrad (10.1016/j.porgcoat.2019.105430_bib0220) 2017; 234
Babaei-Sati (10.1016/j.porgcoat.2019.105430_bib0040) 2019; 247
Njoku (10.1016/j.porgcoat.2019.105430_bib0195) 2017; 7
Sharmila (10.1016/j.porgcoat.2019.105430_bib0120) 2013; 91
Shi (10.1016/j.porgcoat.2019.105430_bib0100) 2017; 233
Lei (10.1016/j.porgcoat.2019.105430_bib0030) 2013; 76
Zhou (10.1016/j.porgcoat.2019.105430_bib0185) 2017; 315
Panahi-Kalamuei (10.1016/j.porgcoat.2019.105430_bib0140) 2015; 21
Mostafaei (10.1016/j.porgcoat.2019.105430_bib0165) 2014; 77
Kalendová (10.1016/j.porgcoat.2019.105430_bib0020) 2008; 62
Meroufel (10.1016/j.porgcoat.2019.105430_bib0215) 2008; 53
Zhou (10.1016/j.porgcoat.2019.105430_bib0180) 2019; 28
Campos (10.1016/j.porgcoat.2019.105430_bib0160) 2014; 131
Gutiérrez-Díaz (10.1016/j.porgcoat.2019.105430_bib0045) 2016; 95
Wessling (10.1016/j.porgcoat.2019.105430_bib0075) 1994; 6
References_xml – volume: 27
  start-page: 897
  year: 2018
  end-page: 910
  ident: bib0070
  article-title: Control the corrosion of mild steel using synthesized polymers based on polyacrylamide
  publication-title: Egypt. J. Pet.
– volume: 57
  start-page: 263
  year: 2018
  end-page: 274
  ident: bib0110
  article-title: Synthesis and characterization of an advanced layer-by-layer assembled Fe3O4/polyaniline nanoreservoir filled with nettle extract as a green corrosion protective system
  publication-title: J. Ind. Eng. Chem.
– volume: 261
  start-page: 235
  year: 2015
  end-page: 243
  ident: bib0230
  article-title: Electrochemical corrosion behavior of CeO2 nanoparticle reinforced Sn–Ag based lead free nanocomposite solders in 3.5 wt.% NaCl bath
  publication-title: Surf. Coat. Technol.
– volume: 289
  start-page: 23
  year: 2016
  end-page: 28
  ident: bib0090
  article-title: Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection
  publication-title: Surf. Coat. Technol.
– volume: 17
  start-page: 1
  year: 2018
  end-page: 5
  ident: bib0240
  article-title: Synthesis and biomedical applications of cerium oxide nanoparticles–a review
  publication-title: Biotechnol. Rep
– volume: 23
  start-page: 23
  year: 2019
  end-page: 61
  ident: bib0065
  article-title: Conducting polymer coatings as effective barrier to corrosion
  publication-title: Interface Science and Technology
– volume: 64
  start-page: 429
  year: 2009
  end-page: 434
  ident: bib0080
  article-title: Polypyrrole and polypyrrole–tungstate electropolymerization coatings on carbon steel and evaluating their corrosion protection performance via electrochemical impedance spectroscopy
  publication-title: Prog. Org. Coat.
– volume: 165
  start-page: C878
  year: 2018
  end-page: C889
  ident: bib0170
  article-title: Insight into the impact of conducting Polyaniline/Graphene nanosheets on corrosion mechanism of zinc-rich epoxy primers on Low alloy DH32 steel in artificial Sea Water
  publication-title: J. Electrochem. Soc.
– volume: 76
  start-page: 804
  year: 2013
  end-page: 811
  ident: bib0205
  article-title: High corrosion protection of a polyaniline/organophilic montmorillonite coating for magnesium alloys
  publication-title: Prog. Org. Coat.
– volume: 315
  start-page: 67
  year: 2017
  end-page: 79
  ident: bib0185
  article-title: Self-healing effects by the Ce-rich precipitations on completing defective boundaries to manage microstructures and oxidation resistance of Ni-CeO
  publication-title: Surface & Coatings Technology
– volume: 41
  start-page: 1970
  year: 2015
  end-page: 1979
  ident: bib0150
  article-title: Comparative study of CeO2 nanopowders obtained by the hydrothermal method from various precursors
  publication-title: Ceram. Int.
– volume: 21
  start-page: 1301
  year: 2015
  end-page: 1305
  ident: bib0140
  article-title: Synthesis and characterization of CeO2 nanoparticles via hydrothermal route
  publication-title: J. Ind. Eng. Chem.
– volume: 95
  start-page: 127
  year: 2016
  end-page: 135
  ident: bib0045
  article-title: Steel protection of two composite coatings: polythiophene with ash or MCM-41 particles containing iron (III) nitrate as inhibitor in chloride media
  publication-title: Prog. Org. Coat.
– volume: 11
  start-page: 4084
  year: 2016
  end-page: 4091
  ident: bib0050
  article-title: Electrosynthesis and characterization of polythiophene and corrosion protection for stainless steel
  publication-title: Int. J. Electrochem. Sci.
– volume: 62
  start-page: 105
  year: 2008
  end-page: 116
  ident: bib0020
  article-title: Organic coatings containing polyaniline and inorganic pigments as corrosion inhibitors
  publication-title: Prog. Org. Coat.
– volume: 247
  start-page: 183
  year: 2019
  end-page: 190
  ident: bib0040
  article-title: Electrodeposition of polypyrrole/metal oxide nanocomposites for corrosion protection of mild steel—A comparative study
  publication-title: Synth. Met.
– volume: 91
  start-page: 78
  year: 2013
  end-page: 80
  ident: bib0120
  article-title: Evaluation of corrosion inhibition in mild steel using cerium oxide nanoparticles
  publication-title: Mater. Lett.
– volume: 43
  start-page: 990
  year: 2008
  end-page: 995
  ident: bib0155
  article-title: CeO2 nanocrystals: seed-mediated synthesis and size control
  publication-title: Mater. Res. Bull.
– volume: 53
  start-page: 2331
  year: 2008
  end-page: 2338
  ident: bib0215
  article-title: Electrochemical and anticorrosion performances of zinc-rich and polyaniline powder coatings
  publication-title: Electrochim. Acta
– volume: 419
  start-page: 826
  year: 2017
  end-page: 837
  ident: bib0190
  article-title: Phytic acid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel
  publication-title: Appl. Surf. Sci.
– volume: 99
  start-page: 197
  year: 2016
  end-page: 209
  ident: bib0115
  article-title: pH responsive Ce(III) loaded polyaniline nanofibers for self-healingcorrosion protection of AA2024-T3
  publication-title: Progress in organic coating
– volume: 6
  start-page: 85
  year: 2002
  end-page: 100
  ident: bib0015
  article-title: Electroactive conducting polymers for corrosion control
  publication-title: J. Solid State Electrochem.
– volume: 142
  start-page: 12
  year: 2018
  end-page: 21
  ident: bib0135
  article-title: Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy
  publication-title: Corros. Sci.
– volume: 1127
  start-page: 337
  year: 2017
  end-page: 344
  ident: bib0055
  article-title: Chloride salt of conducting polyaniline synthesized in the presence of CeO2: structural analysis of the core-shell nanocomposite
  publication-title: J. Mol. Struct.
– volume: 131
  year: 2014
  ident: bib0160
  article-title: Investigations of the electrical conduction mechanisms of polyaniline‐DBSA/poly (acrylonitrile‐butadiene styrene) blends
  publication-title: J. Appl. Polym. Sci.
– volume: 77
  start-page: 743
  year: 2014
  end-page: 756
  ident: bib0025
  article-title: Recent advances in corrosion protective composite coatings based on conducting polymers and natural resource derived polymers
  publication-title: Prog. Org. Coat.
– volume: 234
  start-page: 145
  year: 2017
  end-page: 153
  ident: bib0220
  article-title: Electrochemical study of polyaniline coating electropolymerized onto AA2024-T3 aluminum alloy: physical properties and anticorrosion performance
  publication-title: Synth. Met.
– volume: 77
  start-page: 146
  year: 2014
  end-page: 159
  ident: bib0165
  article-title: Epoxy/polyaniline–ZnO nanorods hybrid nanocomposite coatings: synthesis, characterization and corrosion protection performance of conducting paints
  publication-title: Prog. Org. Coat.
– volume: 53
  start-page: 591
  year: 2018
  end-page: 603
  ident: bib0085
  article-title: Synthesis, characterization, thermal properties, conductivity and sensor application study of polyaniline/cerium-doped titanium dioxide nanocomposites
  publication-title: J. Mater. Sci.
– volume: 39
  start-page: 6607
  year: 2013
  end-page: 6610
  ident: bib0145
  article-title: Synthesis and characterization of CeO2 nano-rods
  publication-title: Ceram. Int.
– volume: 122
  start-page: 56
  year: 2018
  end-page: 63
  ident: bib0175
  article-title: Improving the anticorrosive performance of epoxy coatings by embedding various percentages of unmodified and imidazole modified CeO
  publication-title: Prog. Org. Coat.
– volume: 233
  start-page: 94
  year: 2017
  end-page: 100
  ident: bib0100
  article-title: Hydrophobic polyaniline/modified SiO2 coatings for anticorrosion protection
  publication-title: Synth. Met.
– volume: 52
  start-page: 6976
  year: 2007
  end-page: 6987
  ident: bib0125
  article-title: Cerium salt activated nanoparticles as fillers for silane films: evaluation of the corrosion inhibition performance on galvanised steel substrates
  publication-title: Electrochim. Acta
– volume: 320
  start-page: 363
  year: 2017
  end-page: 375
  ident: bib0210
  article-title: Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating
  publication-title: Chem. Eng. J.
– volume: 18
  start-page: 7873
  year: 2016
  end-page: 7882
  ident: bib0235
  article-title: Polymer-fabricated synthesis of cerium oxide nanoparticles and applications as a green catalyst towards multicomponent transformation with size-dependent activity studies
  publication-title: Cryst Eng Comm
– volume: 132
  start-page: 1022
  year: 1985
  end-page: 1026
  ident: bib0005
  article-title: Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating
  publication-title: J. Electrochem. Soc.
– volume: 49
  start-page: 1635
  year: 2007
  end-page: 1644
  ident: bib0035
  article-title: Corrosion protection of steel by bi-layered polypyrrole doped with molybdophosphate and naphthalenedisulfonate anions
  publication-title: Corros. Sci.
– volume: 51
  start-page: 145
  year: 2004
  end-page: 151
  ident: bib0200
  article-title: Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS
  publication-title: Prog. Org. Coat.
– volume: 33
  start-page: 20
  year: 1998
  end-page: 27
  ident: bib0010
  article-title: Protection of iron against corrosion with polyaniline primers
  publication-title: Prog. Org. Coat.
– volume: 28
  start-page: 2499
  year: 2019
  end-page: 2512
  ident: bib0180
  article-title: Wear and corrosive behaviors of electroless Ni-LaCl3Composites on nanoporous ATO surface of Ti substrate
  publication-title: J. Mater. Eng. Perform.
– volume: 75
  start-page: 241
  year: 2012
  end-page: 247
  ident: bib0060
  article-title: Coatings based on electronic conducting polymers for corrosion protection of metals
  publication-title: Prog. Org. Coat.
– volume: 7
  start-page: 15597
  year: 2017
  ident: bib0195
  article-title: Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques
  publication-title: Sci. Rep.
– volume: 124
  start-page: 110
  year: 2018
  end-page: 121
  ident: bib0095
  article-title: Self-healing and corrosion protection performance of organic polysulfide@ urea-formaldehyde resin core-shell nanoparticles in epoxy/PANI/ZnO nanocomposite coatings on anodized aluminum alloy
  publication-title: Prog. Org. Coat.
– volume: 76
  start-page: 302
  year: 2013
  end-page: 309
  ident: bib0030
  article-title: Electrochemical synthesis of polypyrrole films on copper from phytic solution for corrosion protection
  publication-title: Corros. Sci.
– volume: 6
  start-page: 226
  year: 1994
  end-page: 228
  ident: bib0075
  article-title: Passivation of metals by coating with polyaniline: corrosion potential shift and morphological changes
  publication-title: Adv. Mater.
– volume: 52
  start-page: 6976
  year: 2007
  end-page: 6987
  ident: bib0225
  article-title: Cerium salt activated nanoparticles as fillers for silane films: evaluation of the corrosion inhibition performance on galvanized steel substrates
  publication-title: Electrochim. Acta
– volume: 462
  start-page: 362
  year: 2018
  end-page: 372
  ident: bib0105
  article-title: Synthesis of stabilized dispersion covalently-jointed SiO2@ polyaniline with core-shell structure and anticorrosion performance of its hydrophobic coating for Mg-Li alloy
  publication-title: Appl. Surf. Sci.
– volume: 137
  start-page: 111
  year: 2018
  end-page: 126
  ident: bib0130
  article-title: Polyaniline-cerium oxide (PAni-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel
  publication-title: Corros. Sci.
– volume: 124
  start-page: 110
  year: 2018
  ident: 10.1016/j.porgcoat.2019.105430_bib0095
  article-title: Self-healing and corrosion protection performance of organic polysulfide@ urea-formaldehyde resin core-shell nanoparticles in epoxy/PANI/ZnO nanocomposite coatings on anodized aluminum alloy
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2018.08.015
– volume: 122
  start-page: 56
  year: 2018
  ident: 10.1016/j.porgcoat.2019.105430_bib0175
  article-title: Improving the anticorrosive performance of epoxy coatings by embedding various percentages of unmodified and imidazole modified CeO2 nanoparticles
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2018.05.006
– volume: 57
  start-page: 263
  year: 2018
  ident: 10.1016/j.porgcoat.2019.105430_bib0110
  article-title: Synthesis and characterization of an advanced layer-by-layer assembled Fe3O4/polyaniline nanoreservoir filled with nettle extract as a green corrosion protective system
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2017.08.032
– volume: 23
  start-page: 23
  year: 2019
  ident: 10.1016/j.porgcoat.2019.105430_bib0065
  article-title: Conducting polymer coatings as effective barrier to corrosion
– volume: 233
  start-page: 94
  year: 2017
  ident: 10.1016/j.porgcoat.2019.105430_bib0100
  article-title: Hydrophobic polyaniline/modified SiO2 coatings for anticorrosion protection
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2017.10.002
– volume: 52
  start-page: 6976
  issue: 24
  year: 2007
  ident: 10.1016/j.porgcoat.2019.105430_bib0225
  article-title: Cerium salt activated nanoparticles as fillers for silane films: evaluation of the corrosion inhibition performance on galvanized steel substrates
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.05.022
– volume: 62
  start-page: 105
  issue: 1
  year: 2008
  ident: 10.1016/j.porgcoat.2019.105430_bib0020
  article-title: Organic coatings containing polyaniline and inorganic pigments as corrosion inhibitors
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2007.10.001
– volume: 77
  start-page: 743
  issue: 4
  year: 2014
  ident: 10.1016/j.porgcoat.2019.105430_bib0025
  article-title: Recent advances in corrosion protective composite coatings based on conducting polymers and natural resource derived polymers
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2014.01.004
– volume: 261
  start-page: 235
  year: 2015
  ident: 10.1016/j.porgcoat.2019.105430_bib0230
  article-title: Electrochemical corrosion behavior of CeO2 nanoparticle reinforced Sn–Ag based lead free nanocomposite solders in 3.5 wt.% NaCl bath
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2014.11.023
– volume: 28
  start-page: 2499
  year: 2019
  ident: 10.1016/j.porgcoat.2019.105430_bib0180
  article-title: Wear and corrosive behaviors of electroless Ni-LaCl3Composites on nanoporous ATO surface of Ti substrate
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-019-04028-9
– volume: 462
  start-page: 362
  year: 2018
  ident: 10.1016/j.porgcoat.2019.105430_bib0105
  article-title: Synthesis of stabilized dispersion covalently-jointed SiO2@ polyaniline with core-shell structure and anticorrosion performance of its hydrophobic coating for Mg-Li alloy
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.118
– volume: 142
  start-page: 12
  year: 2018
  ident: 10.1016/j.porgcoat.2019.105430_bib0135
  article-title: Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2018.06.013
– volume: 17
  start-page: 1
  year: 2018
  ident: 10.1016/j.porgcoat.2019.105430_bib0240
  article-title: Synthesis and biomedical applications of cerium oxide nanoparticles–a review
  publication-title: Biotechnol. Rep
  doi: 10.1016/j.btre.2017.11.008
– volume: 52
  start-page: 6976
  issue: 24
  year: 2007
  ident: 10.1016/j.porgcoat.2019.105430_bib0125
  article-title: Cerium salt activated nanoparticles as fillers for silane films: evaluation of the corrosion inhibition performance on galvanised steel substrates
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.05.022
– volume: 137
  start-page: 111
  year: 2018
  ident: 10.1016/j.porgcoat.2019.105430_bib0130
  article-title: Polyaniline-cerium oxide (PAni-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2018.03.038
– volume: 11
  start-page: 4084
  year: 2016
  ident: 10.1016/j.porgcoat.2019.105430_bib0050
  article-title: Electrosynthesis and characterization of polythiophene and corrosion protection for stainless steel
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/110376
– volume: 18
  start-page: 7873
  issue: 40
  year: 2016
  ident: 10.1016/j.porgcoat.2019.105430_bib0235
  article-title: Polymer-fabricated synthesis of cerium oxide nanoparticles and applications as a green catalyst towards multicomponent transformation with size-dependent activity studies
  publication-title: Cryst Eng Comm
  doi: 10.1039/C6CE01104G
– volume: 77
  start-page: 146
  issue: 1
  year: 2014
  ident: 10.1016/j.porgcoat.2019.105430_bib0165
  article-title: Epoxy/polyaniline–ZnO nanorods hybrid nanocomposite coatings: synthesis, characterization and corrosion protection performance of conducting paints
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2013.08.015
– volume: 131
  issue: 17
  year: 2014
  ident: 10.1016/j.porgcoat.2019.105430_bib0160
  article-title: Investigations of the electrical conduction mechanisms of polyaniline‐DBSA/poly (acrylonitrile‐butadiene styrene) blends
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.40688
– volume: 99
  start-page: 197
  year: 2016
  ident: 10.1016/j.porgcoat.2019.105430_bib0115
  article-title: pH responsive Ce(III) loaded polyaniline nanofibers for self-healingcorrosion protection of AA2024-T3
  publication-title: Progress in organic coating
  doi: 10.1016/j.porgcoat.2016.04.046
– volume: 165
  start-page: C878
  issue: 13
  year: 2018
  ident: 10.1016/j.porgcoat.2019.105430_bib0170
  article-title: Insight into the impact of conducting Polyaniline/Graphene nanosheets on corrosion mechanism of zinc-rich epoxy primers on Low alloy DH32 steel in artificial Sea Water
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0411813jes
– volume: 7
  start-page: 15597
  issue: 1
  year: 2017
  ident: 10.1016/j.porgcoat.2019.105430_bib0195
  article-title: Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-15845-0
– volume: 39
  start-page: 6607
  issue: 6
  year: 2013
  ident: 10.1016/j.porgcoat.2019.105430_bib0145
  article-title: Synthesis and characterization of CeO2 nano-rods
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.01.096
– volume: 53
  start-page: 2331
  issue: 5
  year: 2008
  ident: 10.1016/j.porgcoat.2019.105430_bib0215
  article-title: Electrochemical and anticorrosion performances of zinc-rich and polyaniline powder coatings
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.09.056
– volume: 49
  start-page: 1635
  issue: 3
  year: 2007
  ident: 10.1016/j.porgcoat.2019.105430_bib0035
  article-title: Corrosion protection of steel by bi-layered polypyrrole doped with molybdophosphate and naphthalenedisulfonate anions
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2006.08.018
– volume: 64
  start-page: 429
  issue: 4
  year: 2009
  ident: 10.1016/j.porgcoat.2019.105430_bib0080
  article-title: Polypyrrole and polypyrrole–tungstate electropolymerization coatings on carbon steel and evaluating their corrosion protection performance via electrochemical impedance spectroscopy
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2008.08.003
– volume: 43
  start-page: 990
  issue: 4
  year: 2008
  ident: 10.1016/j.porgcoat.2019.105430_bib0155
  article-title: CeO2 nanocrystals: seed-mediated synthesis and size control
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2007.04.019
– volume: 76
  start-page: 302
  year: 2013
  ident: 10.1016/j.porgcoat.2019.105430_bib0030
  article-title: Electrochemical synthesis of polypyrrole films on copper from phytic solution for corrosion protection
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2013.07.003
– volume: 27
  start-page: 897
  issue: 4
  year: 2018
  ident: 10.1016/j.porgcoat.2019.105430_bib0070
  article-title: Control the corrosion of mild steel using synthesized polymers based on polyacrylamide
  publication-title: Egypt. J. Pet.
  doi: 10.1016/j.ejpe.2018.01.006
– volume: 320
  start-page: 363
  year: 2017
  ident: 10.1016/j.porgcoat.2019.105430_bib0210
  article-title: Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.03.061
– volume: 247
  start-page: 183
  year: 2019
  ident: 10.1016/j.porgcoat.2019.105430_bib0040
  article-title: Electrodeposition of polypyrrole/metal oxide nanocomposites for corrosion protection of mild steel—A comparative study
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2018.12.009
– volume: 53
  start-page: 591
  issue: 1
  year: 2018
  ident: 10.1016/j.porgcoat.2019.105430_bib0085
  article-title: Synthesis, characterization, thermal properties, conductivity and sensor application study of polyaniline/cerium-doped titanium dioxide nanocomposites
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-1505-8
– volume: 315
  start-page: 67
  year: 2017
  ident: 10.1016/j.porgcoat.2019.105430_bib0185
  article-title: Self-healing effects by the Ce-rich precipitations on completing defective boundaries to manage microstructures and oxidation resistance of Ni-CeO2 coatings
  publication-title: Surface & Coatings Technology
  doi: 10.1016/j.surfcoat.2017.02.024
– volume: 1127
  start-page: 337
  year: 2017
  ident: 10.1016/j.porgcoat.2019.105430_bib0055
  article-title: Chloride salt of conducting polyaniline synthesized in the presence of CeO2: structural analysis of the core-shell nanocomposite
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2016.07.114
– volume: 6
  start-page: 85
  issue: 2
  year: 2002
  ident: 10.1016/j.porgcoat.2019.105430_bib0015
  article-title: Electroactive conducting polymers for corrosion control
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s100080100211
– volume: 21
  start-page: 1301
  year: 2015
  ident: 10.1016/j.porgcoat.2019.105430_bib0140
  article-title: Synthesis and characterization of CeO2 nanoparticles via hydrothermal route
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2014.05.046
– volume: 76
  start-page: 804
  issue: 5
  year: 2013
  ident: 10.1016/j.porgcoat.2019.105430_bib0205
  article-title: High corrosion protection of a polyaniline/organophilic montmorillonite coating for magnesium alloys
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2013.01.008
– volume: 75
  start-page: 241
  issue: 3
  year: 2012
  ident: 10.1016/j.porgcoat.2019.105430_bib0060
  article-title: Coatings based on electronic conducting polymers for corrosion protection of metals
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2012.05.004
– volume: 6
  start-page: 226
  issue: 3
  year: 1994
  ident: 10.1016/j.porgcoat.2019.105430_bib0075
  article-title: Passivation of metals by coating with polyaniline: corrosion potential shift and morphological changes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.19940060309
– volume: 132
  start-page: 1022
  issue: 5
  year: 1985
  ident: 10.1016/j.porgcoat.2019.105430_bib0005
  article-title: Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2114008
– volume: 91
  start-page: 78
  year: 2013
  ident: 10.1016/j.porgcoat.2019.105430_bib0120
  article-title: Evaluation of corrosion inhibition in mild steel using cerium oxide nanoparticles
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.09.051
– volume: 289
  start-page: 23
  year: 2016
  ident: 10.1016/j.porgcoat.2019.105430_bib0090
  article-title: Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2016.01.046
– volume: 41
  start-page: 1970
  issue: 2
  year: 2015
  ident: 10.1016/j.porgcoat.2019.105430_bib0150
  article-title: Comparative study of CeO2 nanopowders obtained by the hydrothermal method from various precursors
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2014.08.122
– volume: 51
  start-page: 145
  issue: 2
  year: 2004
  ident: 10.1016/j.porgcoat.2019.105430_bib0200
  article-title: Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2004.08.001
– volume: 95
  start-page: 127
  year: 2016
  ident: 10.1016/j.porgcoat.2019.105430_bib0045
  article-title: Steel protection of two composite coatings: polythiophene with ash or MCM-41 particles containing iron (III) nitrate as inhibitor in chloride media
  publication-title: Prog. Org. Coat.
  doi: 10.1016/j.porgcoat.2016.03.005
– volume: 234
  start-page: 145
  year: 2017
  ident: 10.1016/j.porgcoat.2019.105430_bib0220
  article-title: Electrochemical study of polyaniline coating electropolymerized onto AA2024-T3 aluminum alloy: physical properties and anticorrosion performance
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2017.11.002
– volume: 419
  start-page: 826
  year: 2017
  ident: 10.1016/j.porgcoat.2019.105430_bib0190
  article-title: Phytic acid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.05.079
– volume: 33
  start-page: 20
  issue: 1
  year: 1998
  ident: 10.1016/j.porgcoat.2019.105430_bib0010
  article-title: Protection of iron against corrosion with polyaniline primers
  publication-title: Prog. Org. Coat.
  doi: 10.1016/S0300-9440(97)00123-9
SSID ssj0006339
Score 2.5649123
Snippet •∼6 nm CeO2 particles were uniformly dispersed into PANI matrix.•LEIS and salt spray tests were performed to evaluate the corrosion performance of...
Polyaniline/cerium dioxide (PANI/CeO2) nanocomposite (NPs) was synthesized by in situ polymerization of aniline in the presence of CeO2 NPs. Various analytical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105430
SubjectTerms Aniline
Carbon steel
Carbon steels
Carbon-epoxy composites
CeO2
Cerium oxides
Corrosion
Corrosion inhibitors
Corrosion prevention
Corrosion resistance
Electron microscopes
Electron microscopy
Epoxy coatings
Fourier transforms
Infrared analysis
Infrared spectroscopy
LEIS
Microscopy
Nanocomposites
Polyaniline
Polyanilines
Protective coatings
Self-healing
Sodium chloride
X ray powder diffraction
Title Polyaniline/CeO2 nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution
URI https://dx.doi.org/10.1016/j.porgcoat.2019.105430
https://www.proquest.com/docview/2355909302
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqcgAOCAqIQql8gGN2Eydx4mMVUS2sWBBQ0Zs1jic01SpZdRdEL_wMfi8z2ZgWhNQDp0iRbTmel5k3yXwI8QK9aVKXJpFXSA6KdmUECUBUlHHdeINQlpyN_HahZyfZm9P8dEdUIReGwypH3b_V6YO2Hu9Mx9Ocrtp2-pHgSb4J-QeGMFtk7LdnWcEon_y4CvPQ6dBNjAdHPPpalvD5hCjul7oHjqlMDLe8zTga-t8G6i9VPdif4_vi3kgc5dF2bw_EDnZ74nYV-rXtibvXSgs-FD_f98tL6NqhDkaF75TsoOs5gJyjtHAtYS3J8aQtkGBk2521ruXGO5JIrGzDlwZJ9DAM-4ZydZVlIPtGEnf_fin5yXgoLVPDhaMLAQeXtKZMJ_lLuYBqKQPCH4mT41efqlk09mCIajL1mwgKV-o611hiU7pC-YT8P18jIJrGGXAa8xhjTzQQCqWVaXJPfi9XrVcq1j59LHa7vsMnQmLiXQ0p_-kh0pM4yJw2RZoqr4B0He6LPBy8rccC5dwnY2lDJNq5DQKzLDC7Fdi-mP6et9qW6LhxhglytX-AzZIduXHuQQCCHV_3tVXE2kxMOFRP_2PpZ-KOYm9-iAk_ELubi6_4nCjPxh0OmD4Ut45ez2cLvs4_fJ7_Ait9BgQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqcigcEBQQpQV8gGN2Eydx4iOKqBZoFyRaqTdrHE8g1SpZdZeKXvgZ_F5msjEtCKkHTpEi20o8zzNvkvkQ4hV606QuTSKvkBwU7coIEoCoKOO68QahLDkb-XiuZ6fZ-7P8bEtUIReGwypH3b_R6YO2Hu9Mx92cLtt2-pngSb4J-QeGMFtk5Lffyej4chuDyY_rOA-dDu3EeHTEw2-kCZ9PiON-qXvgoMrEcM_bjMOh_22h_tLVgwE6fCDuj8xRvtk83EOxhd2u2KlCw7Zdce9GbcFH4uenfnEFXTsUwqjwo5IddD1HkHOYFq4krCR5nvQIJBnZdl9b13LnHUksVrbhU4MkfhiGXaJcXqcZyL6RRN6_X0l-Mx5Ky9Rw4ehCyMEFrSnTSf5azqFayADxx-L08O1JNYvGJgxRTbZ-HUHhSl3nGktsSlcon5AD6GsERNM4A05jHmPsiQdCobQyTe7J8eWy9UrF2qdPxHbXd_hUSEy8qyHlXz3EehIHmdOmSFPlFZCywz2Rh4239VihnBtlLGwIRTu3QWCWBWY3AtsT09_zlpsaHbfOMEGu9g-0WTIkt849CECw43lfWUW0zcQERPXsP5Z-KXZmJ8dH9ujd_MO-uKvYtR8CxA_E9vriGz4n_rN2LwZ8_wLgJwXv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyaniline%2FCeO2+nanocomposites+as+corrosion+inhibitors+for+improving+the+corrosive+performance+of+epoxy+coating+on+carbon+steel+in+3.5%25+NaCl+solution&rft.jtitle=Progress+in+organic+coatings&rft.au=Lei%2C+Yanhua&rft.au=Qiu%2C+Zhichao&rft.au=Tan%2C+Ning&rft.au=Du%2C+Hailiang&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=0300-9440&rft.eissn=1873-331X&rft.volume=139&rft_id=info:doi/10.1016%2Fj.porgcoat.2019.105430&rft.externalDocID=S0300944019305740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-9440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-9440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-9440&client=summon