Polyaniline/CeO2 nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution
•∼6 nm CeO2 particles were uniformly dispersed into PANI matrix.•LEIS and salt spray tests were performed to evaluate the corrosion performance of coatings.•PANI/CeO2 in epoxy coating exhibits a synergetic effect of diffusion barrier and self-healing behaviors. Polyaniline/cerium dioxide (PANI/CeO2)...
Saved in:
Published in | Progress in organic coatings Vol. 139; p. 105430 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.02.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •∼6 nm CeO2 particles were uniformly dispersed into PANI matrix.•LEIS and salt spray tests were performed to evaluate the corrosion performance of coatings.•PANI/CeO2 in epoxy coating exhibits a synergetic effect of diffusion barrier and self-healing behaviors.
Polyaniline/cerium dioxide (PANI/CeO2) nanocomposite (NPs) was synthesized by in situ polymerization of aniline in the presence of CeO2 NPs. Various analytical facilities, i.e., powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM), were utilized to characterize the synthesized CeO2 and PANI/CeO2 NPs. The coatings prepared from the synthesized PANI/CeO2 NPs exhibited excellent corrosion resistance that was superior to epoxy coatings added with PANI in NaCl solution. The exceptional improvement of corrosion protection performance of the PANI/CeO2 /epoxy coatings is associated with the synergetic protection of the enhancement of the protective barrier due to the role of CeO2 NPs and PANI against the diffusion of aggressive ions (e.g., Cl−) and the improvement of self-healing protection attributed to the redox behavior of PANI. Thus, the hybrid PANI/CeO2 NPs are considered as the best route to enhance the protection performance of the epoxy coatings on carbon steel. |
---|---|
AbstractList | Polyaniline/cerium dioxide (PANI/CeO2) nanocomposite (NPs) was synthesized by in situ polymerization of aniline in the presence of CeO2 NPs. Various analytical facilities, i.e., powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM), were utilized to characterize the synthesized CeO2 and PANI/CeO2 NPs. The coatings prepared from the synthesized PANI/CeO2 NPs exhibited excellent corrosion resistance that was superior to epoxy coatings added with PANI in NaCl solution. The exceptional improvement of corrosion protection performance of the PANI/CeO2 /epoxy coatings is associated with the synergetic protection of the enhancement of the protective barrier due to the role of CeO2 NPs and PANI against the diffusion of aggressive ions (e.g., Cl−) and the improvement of self-healing protection attributed to the redox behavior of PANI. Thus, the hybrid PANI/CeO2 NPs are considered as the best route to enhance the protection performance of the epoxy coatings on carbon steel. •∼6 nm CeO2 particles were uniformly dispersed into PANI matrix.•LEIS and salt spray tests were performed to evaluate the corrosion performance of coatings.•PANI/CeO2 in epoxy coating exhibits a synergetic effect of diffusion barrier and self-healing behaviors. Polyaniline/cerium dioxide (PANI/CeO2) nanocomposite (NPs) was synthesized by in situ polymerization of aniline in the presence of CeO2 NPs. Various analytical facilities, i.e., powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM), were utilized to characterize the synthesized CeO2 and PANI/CeO2 NPs. The coatings prepared from the synthesized PANI/CeO2 NPs exhibited excellent corrosion resistance that was superior to epoxy coatings added with PANI in NaCl solution. The exceptional improvement of corrosion protection performance of the PANI/CeO2 /epoxy coatings is associated with the synergetic protection of the enhancement of the protective barrier due to the role of CeO2 NPs and PANI against the diffusion of aggressive ions (e.g., Cl−) and the improvement of self-healing protection attributed to the redox behavior of PANI. Thus, the hybrid PANI/CeO2 NPs are considered as the best route to enhance the protection performance of the epoxy coatings on carbon steel. |
ArticleNumber | 105430 |
Author | Du, Hailiang Li, Dongdong Qiu, Zhichao Lei, Yanhua Tan, Ning Liu, Jingrong Liu, Tao Chang, Xueting Zhang, Weiguo |
Author_xml | – sequence: 1 givenname: Yanhua surname: Lei fullname: Lei, Yanhua email: yhualei@gmail.com organization: Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China – sequence: 2 givenname: Zhichao surname: Qiu fullname: Qiu, Zhichao organization: Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China – sequence: 3 givenname: Ning surname: Tan fullname: Tan, Ning organization: Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China – sequence: 4 givenname: Hailiang surname: Du fullname: Du, Hailiang organization: College of Mechanical and Electronic Engineering, Shanghai Jian Qiao University, Shanghai, China – sequence: 5 givenname: Dongdong surname: Li fullname: Li, Dongdong organization: Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China – sequence: 6 givenname: Jingrong surname: Liu fullname: Liu, Jingrong organization: Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China – sequence: 7 givenname: Tao surname: Liu fullname: Liu, Tao organization: Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China – sequence: 8 givenname: Weiguo surname: Zhang fullname: Zhang, Weiguo organization: SHANGHAI Offshore Engineering Institute, Shanghai Maritime University, Shanghai 201306, China – sequence: 9 givenname: Xueting surname: Chang fullname: Chang, Xueting email: xtchang@shmtu.edu.cn organization: Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China |
BookMark | eNqFUU1r3DAQFSWFbNL-hSAIOXozkmx5BTmkLOkHhKaHBHoTsjxOtHglV9Iu3T_S31uZbS695DTM6L03evPOyIkPHgm5YLBkwOT1ZjmF-GyDyUsOTJVhUwt4RxZs1YpKCPbzhCxAAFSqruGUnKW0AQAphFqQPz_CeDDejc7j9RofOPXGBxu2U0guY6ImURtiLF3w1PkX17kcYqJDiNRtpxj2zj_T_IKvsD3SCWN53hpvkYaB4hR-H-j8wRlaZKyJXSkpI45Fk4plc0W_m_VIUxh3uWz6QN4PZkz48V89J0-f7x7XX6v7hy_f1p_uK1uDzJVpu5W0jcQVDquu5T1rWdtbNIhq6JTpJDaA0CvBTcslV0PTt0yoWkrOQfbinFwedYuRXztMWW_CLvqyUnPRNAqUAF5Q8oiyxWCKOOgpuq2JB81AzxnojX7NQM8Z6GMGhXjzH9G6bGaDORo3vk2_PdKxnGDvMOpkHZar9i6izboP7i2Jv6QVrIs |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e40662 crossref_primary_10_1021_acs_iecr_3c00099 crossref_primary_10_1002_mawe_202100147 crossref_primary_10_3390_app14188396 crossref_primary_10_1039_D0RA07800J crossref_primary_10_1080_17518253_2024_2360497 crossref_primary_10_3390_polym16152115 crossref_primary_10_1134_S2070205124701788 crossref_primary_10_1007_s10853_024_10020_z crossref_primary_10_1016_j_porgcoat_2021_106218 crossref_primary_10_1016_j_molliq_2020_114214 crossref_primary_10_1002_pat_6307 crossref_primary_10_1016_j_matdes_2021_109839 crossref_primary_10_1021_acs_langmuir_3c00165 crossref_primary_10_1515_corrrev_2023_0156 crossref_primary_10_1515_ijmr_2022_0153 crossref_primary_10_1021_acsanm_1c03173 crossref_primary_10_1007_s10008_023_05456_3 crossref_primary_10_3390_nano14060526 crossref_primary_10_3390_polym14122306 crossref_primary_10_1016_j_jiec_2024_05_010 crossref_primary_10_1088_2053_1591_abe313 crossref_primary_10_1016_j_porgcoat_2024_108660 crossref_primary_10_1080_0371750X_2022_2149623 crossref_primary_10_1007_s11705_022_2147_1 crossref_primary_10_1016_j_molstruc_2024_138525 crossref_primary_10_1021_acsami_3c03461 crossref_primary_10_1016_j_jiec_2020_04_029 crossref_primary_10_1016_j_jtice_2024_105364 crossref_primary_10_1080_01932691_2024_2304072 crossref_primary_10_3390_min13020180 crossref_primary_10_1149_1945_7111_abf4ad crossref_primary_10_3390_coatings14111378 crossref_primary_10_1007_s40242_020_0213_0 crossref_primary_10_1016_j_jiec_2023_04_024 crossref_primary_10_1016_j_jmapro_2021_07_032 crossref_primary_10_1016_j_vacuum_2023_112864 crossref_primary_10_1080_25740881_2022_2129387 crossref_primary_10_1080_25740881_2020_1819317 crossref_primary_10_1515_revce_2022_0039 crossref_primary_10_1007_s10853_021_06610_w crossref_primary_10_1080_01694243_2021_1899508 crossref_primary_10_1134_S207020512201021X crossref_primary_10_1016_j_ceramint_2024_01_141 crossref_primary_10_1021_acsami_2c19946 crossref_primary_10_1016_j_jiec_2022_05_037 crossref_primary_10_1149_1945_7111_ad7891 crossref_primary_10_1016_j_matpr_2021_08_157 |
Cites_doi | 10.1016/j.porgcoat.2018.08.015 10.1016/j.porgcoat.2018.05.006 10.1016/j.jiec.2017.08.032 10.1016/j.synthmet.2017.10.002 10.1016/j.electacta.2007.05.022 10.1016/j.porgcoat.2007.10.001 10.1016/j.porgcoat.2014.01.004 10.1016/j.surfcoat.2014.11.023 10.1007/s11665-019-04028-9 10.1016/j.apsusc.2018.08.118 10.1016/j.corsci.2018.06.013 10.1016/j.btre.2017.11.008 10.1016/j.corsci.2018.03.038 10.20964/110376 10.1039/C6CE01104G 10.1016/j.porgcoat.2013.08.015 10.1002/app.40688 10.1016/j.porgcoat.2016.04.046 10.1149/2.0411813jes 10.1038/s41598-017-15845-0 10.1016/j.ceramint.2013.01.096 10.1016/j.electacta.2007.09.056 10.1016/j.corsci.2006.08.018 10.1016/j.porgcoat.2008.08.003 10.1016/j.materresbull.2007.04.019 10.1016/j.corsci.2013.07.003 10.1016/j.ejpe.2018.01.006 10.1016/j.cej.2017.03.061 10.1016/j.synthmet.2018.12.009 10.1007/s10853-017-1505-8 10.1016/j.surfcoat.2017.02.024 10.1016/j.molstruc.2016.07.114 10.1007/s100080100211 10.1016/j.jiec.2014.05.046 10.1016/j.porgcoat.2013.01.008 10.1016/j.porgcoat.2012.05.004 10.1002/adma.19940060309 10.1149/1.2114008 10.1016/j.matlet.2012.09.051 10.1016/j.surfcoat.2016.01.046 10.1016/j.ceramint.2014.08.122 10.1016/j.porgcoat.2004.08.001 10.1016/j.porgcoat.2016.03.005 10.1016/j.synthmet.2017.11.002 10.1016/j.apsusc.2017.05.079 10.1016/S0300-9440(97)00123-9 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Feb 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Feb 2020 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1016/j.porgcoat.2019.105430 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-331X |
ExternalDocumentID | 10_1016_j_porgcoat_2019_105430 S0300944019305740 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M24 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCE SDF SDG SES SEW SMS SPC SPCBC SSG SSM SSZ T5K UHS WH7 WUQ ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c406t-a7b86c56e8ef8b72d1717dceaee9fb9ab6e50e0d932a72629f5d71394662206d3 |
IEDL.DBID | .~1 |
ISSN | 0300-9440 |
IngestDate | Fri Jul 25 06:56:13 EDT 2025 Tue Jul 01 02:27:50 EDT 2025 Thu Apr 24 23:03:51 EDT 2025 Fri Feb 23 02:48:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | LEIS CeO2 Self-healing Corrosion Polyaniline |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-a7b86c56e8ef8b72d1717dceaee9fb9ab6e50e0d932a72629f5d71394662206d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2355909302 |
PQPubID | 2045410 |
ParticipantIDs | proquest_journals_2355909302 crossref_primary_10_1016_j_porgcoat_2019_105430 crossref_citationtrail_10_1016_j_porgcoat_2019_105430 elsevier_sciencedirect_doi_10_1016_j_porgcoat_2019_105430 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 20200201 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Progress in organic coatings |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Riaz, Nwaoha, Ashraf (bib0025) 2014; 77 Wessling (bib0075) 1994; 6 Tavandashti, Ghorbani, Shojaei, Gonzalez-Garcia, Terryn, Mol (bib0115) 2016; 99 Calado, Taryba, Carmezim, Montemor (bib0135) 2018; 142 Pehkonen, Yuan (bib0065) 2019; 23 Li, Li, Gao, Qi, Ma, Zhu (bib0105) 2018; 462 Zhang, Hu, Zhang, Cao (bib0200) 2004; 51 Najjar, Katourani, Hosseini (bib0095) 2018; 124 Zhou, Chun (bib0180) 2019; 28 Azzam, El-Salam, Mohamed, Shaban, Shokry (bib0070) 2018; 27 Hao, Sani, Ge, Fang (bib0190) 2017; 419 Sharma, Das, Das (bib0230) 2015; 261 Njoku, Cui, Xiao, Shang, Li (bib0195) 2017; 7 Shi, Zhang, Yu (bib0100) 2017; 233 Kalendová, Veselý, Stejskal (bib0020) 2008; 62 Lei, Sheng, Hyono, Ueda, Ohtsuka (bib0030) 2013; 76 DeBerry (bib0005) 1985; 132 Pagotto, Recio, Motheo, Herrasti (bib0090) 2016; 289 Izadi, Shahrabi, Ramezanzadeh (bib0110) 2018; 57 Sampreeth, Al-Maghrabi, Bahuleyan, Ramesan (bib0085) 2018; 53 Liu, Lei, Qiu, Li, Liu, Zhang, Yin (bib0170) 2018; 165 Gutiérrez-Díaz, Uruchurtu-Chavarín, Güizado-Rodríguez, Barba (bib0045) 2016; 95 Panahi-Kalamuei, Alizadeh, Mousavi-Kamazani, Salavati-Niasari (bib0140) 2015; 21 Mrad, Amor, Dhouibi, Montemor (bib0220) 2017; 234 Hosseini, Aboutalebi (bib0175) 2018; 122 Ramezanzadeh, Moghadam, Shohani, Mahdavian (bib0210) 2017; 320 Schauer, Joos, Dulog, Eisenbach (bib0010) 1998; 33 Spinks, Dominis, Wallace, Tallman (bib0015) 2002; 6 Baldissera, Ferreira (bib0060) 2012; 75 Rajeshkumar, Naik (bib0240) 2018; 17 Ramezanzadeh, Bahlakeh, Ramezanzadeh (bib0130) 2018; 137 Zdravković, Simović, Golubović, Poleti, Veljković, Šćepanović, Branković (bib0150) 2015; 41 Chen, Liu, Chen, Guo, Sun, Lv, Wang (bib0145) 2013; 39 Zhang, Shao, Zhang, Meng, Wang (bib0205) 2013; 76 Meroufel, Deslouis, Touzain (bib0215) 2008; 53 Xu, Li, Li (bib0155) 2008; 43 Zhou, Chun (bib0185) 2017; 315 Mostafaei, Nasirpouri (bib0165) 2014; 77 Samai, Sarkar, Chall, Rakshit, Bhattacharya (bib0235) 2016; 18 Kowalski, Ueda, Ohtsuka (bib0035) 2007; 49 Dai, Zhu, Zhang, Ma, Wang, Lei (bib0050) 2016; 11 Montemor, Ferreira (bib0225) 2007; 52 Babaei-Sati, Parsa, Vakili-Azghandi (bib0040) 2019; 247 Sabouri, Shahrabi, Faridi, Hosseini (bib0080) 2009; 64 da Silva, de Souza, Trovati, Sanches (bib0055) 2017; 1127 Montemor, Ferreira (bib0125) 2007; 52 Campos, Miziara, Cristovan, Pereira (bib0160) 2014; 131 Sharmila, Selvakumar, Jeyasubramanian (bib0120) 2013; 91 Riaz (10.1016/j.porgcoat.2019.105430_bib0025) 2014; 77 Zdravković (10.1016/j.porgcoat.2019.105430_bib0150) 2015; 41 Calado (10.1016/j.porgcoat.2019.105430_bib0135) 2018; 142 Chen (10.1016/j.porgcoat.2019.105430_bib0145) 2013; 39 Pagotto (10.1016/j.porgcoat.2019.105430_bib0090) 2016; 289 DeBerry (10.1016/j.porgcoat.2019.105430_bib0005) 1985; 132 Spinks (10.1016/j.porgcoat.2019.105430_bib0015) 2002; 6 Tavandashti (10.1016/j.porgcoat.2019.105430_bib0115) 2016; 99 Xu (10.1016/j.porgcoat.2019.105430_bib0155) 2008; 43 Kowalski (10.1016/j.porgcoat.2019.105430_bib0035) 2007; 49 Hosseini (10.1016/j.porgcoat.2019.105430_bib0175) 2018; 122 Ramezanzadeh (10.1016/j.porgcoat.2019.105430_bib0210) 2017; 320 Ramezanzadeh (10.1016/j.porgcoat.2019.105430_bib0130) 2018; 137 Samai (10.1016/j.porgcoat.2019.105430_bib0235) 2016; 18 Zhang (10.1016/j.porgcoat.2019.105430_bib0205) 2013; 76 Li (10.1016/j.porgcoat.2019.105430_bib0105) 2018; 462 Schauer (10.1016/j.porgcoat.2019.105430_bib0010) 1998; 33 Sabouri (10.1016/j.porgcoat.2019.105430_bib0080) 2009; 64 Sampreeth (10.1016/j.porgcoat.2019.105430_bib0085) 2018; 53 da Silva (10.1016/j.porgcoat.2019.105430_bib0055) 2017; 1127 Pehkonen (10.1016/j.porgcoat.2019.105430_bib0065) 2019; 23 Liu (10.1016/j.porgcoat.2019.105430_bib0170) 2018; 165 Azzam (10.1016/j.porgcoat.2019.105430_bib0070) 2018; 27 Montemor (10.1016/j.porgcoat.2019.105430_bib0125) 2007; 52 Zhang (10.1016/j.porgcoat.2019.105430_bib0200) 2004; 51 Montemor (10.1016/j.porgcoat.2019.105430_bib0225) 2007; 52 Izadi (10.1016/j.porgcoat.2019.105430_bib0110) 2018; 57 Sharma (10.1016/j.porgcoat.2019.105430_bib0230) 2015; 261 Baldissera (10.1016/j.porgcoat.2019.105430_bib0060) 2012; 75 Dai (10.1016/j.porgcoat.2019.105430_bib0050) 2016; 11 Najjar (10.1016/j.porgcoat.2019.105430_bib0095) 2018; 124 Rajeshkumar (10.1016/j.porgcoat.2019.105430_bib0240) 2018; 17 Hao (10.1016/j.porgcoat.2019.105430_bib0190) 2017; 419 Mrad (10.1016/j.porgcoat.2019.105430_bib0220) 2017; 234 Babaei-Sati (10.1016/j.porgcoat.2019.105430_bib0040) 2019; 247 Njoku (10.1016/j.porgcoat.2019.105430_bib0195) 2017; 7 Sharmila (10.1016/j.porgcoat.2019.105430_bib0120) 2013; 91 Shi (10.1016/j.porgcoat.2019.105430_bib0100) 2017; 233 Lei (10.1016/j.porgcoat.2019.105430_bib0030) 2013; 76 Zhou (10.1016/j.porgcoat.2019.105430_bib0185) 2017; 315 Panahi-Kalamuei (10.1016/j.porgcoat.2019.105430_bib0140) 2015; 21 Mostafaei (10.1016/j.porgcoat.2019.105430_bib0165) 2014; 77 Kalendová (10.1016/j.porgcoat.2019.105430_bib0020) 2008; 62 Meroufel (10.1016/j.porgcoat.2019.105430_bib0215) 2008; 53 Zhou (10.1016/j.porgcoat.2019.105430_bib0180) 2019; 28 Campos (10.1016/j.porgcoat.2019.105430_bib0160) 2014; 131 Gutiérrez-Díaz (10.1016/j.porgcoat.2019.105430_bib0045) 2016; 95 Wessling (10.1016/j.porgcoat.2019.105430_bib0075) 1994; 6 |
References_xml | – volume: 27 start-page: 897 year: 2018 end-page: 910 ident: bib0070 article-title: Control the corrosion of mild steel using synthesized polymers based on polyacrylamide publication-title: Egypt. J. Pet. – volume: 57 start-page: 263 year: 2018 end-page: 274 ident: bib0110 article-title: Synthesis and characterization of an advanced layer-by-layer assembled Fe3O4/polyaniline nanoreservoir filled with nettle extract as a green corrosion protective system publication-title: J. Ind. Eng. Chem. – volume: 261 start-page: 235 year: 2015 end-page: 243 ident: bib0230 article-title: Electrochemical corrosion behavior of CeO2 nanoparticle reinforced Sn–Ag based lead free nanocomposite solders in 3.5 wt.% NaCl bath publication-title: Surf. Coat. Technol. – volume: 289 start-page: 23 year: 2016 end-page: 28 ident: bib0090 article-title: Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection publication-title: Surf. Coat. Technol. – volume: 17 start-page: 1 year: 2018 end-page: 5 ident: bib0240 article-title: Synthesis and biomedical applications of cerium oxide nanoparticles–a review publication-title: Biotechnol. Rep – volume: 23 start-page: 23 year: 2019 end-page: 61 ident: bib0065 article-title: Conducting polymer coatings as effective barrier to corrosion publication-title: Interface Science and Technology – volume: 64 start-page: 429 year: 2009 end-page: 434 ident: bib0080 article-title: Polypyrrole and polypyrrole–tungstate electropolymerization coatings on carbon steel and evaluating their corrosion protection performance via electrochemical impedance spectroscopy publication-title: Prog. Org. Coat. – volume: 165 start-page: C878 year: 2018 end-page: C889 ident: bib0170 article-title: Insight into the impact of conducting Polyaniline/Graphene nanosheets on corrosion mechanism of zinc-rich epoxy primers on Low alloy DH32 steel in artificial Sea Water publication-title: J. Electrochem. Soc. – volume: 76 start-page: 804 year: 2013 end-page: 811 ident: bib0205 article-title: High corrosion protection of a polyaniline/organophilic montmorillonite coating for magnesium alloys publication-title: Prog. Org. Coat. – volume: 315 start-page: 67 year: 2017 end-page: 79 ident: bib0185 article-title: Self-healing effects by the Ce-rich precipitations on completing defective boundaries to manage microstructures and oxidation resistance of Ni-CeO publication-title: Surface & Coatings Technology – volume: 41 start-page: 1970 year: 2015 end-page: 1979 ident: bib0150 article-title: Comparative study of CeO2 nanopowders obtained by the hydrothermal method from various precursors publication-title: Ceram. Int. – volume: 21 start-page: 1301 year: 2015 end-page: 1305 ident: bib0140 article-title: Synthesis and characterization of CeO2 nanoparticles via hydrothermal route publication-title: J. Ind. Eng. Chem. – volume: 95 start-page: 127 year: 2016 end-page: 135 ident: bib0045 article-title: Steel protection of two composite coatings: polythiophene with ash or MCM-41 particles containing iron (III) nitrate as inhibitor in chloride media publication-title: Prog. Org. Coat. – volume: 11 start-page: 4084 year: 2016 end-page: 4091 ident: bib0050 article-title: Electrosynthesis and characterization of polythiophene and corrosion protection for stainless steel publication-title: Int. J. Electrochem. Sci. – volume: 62 start-page: 105 year: 2008 end-page: 116 ident: bib0020 article-title: Organic coatings containing polyaniline and inorganic pigments as corrosion inhibitors publication-title: Prog. Org. Coat. – volume: 247 start-page: 183 year: 2019 end-page: 190 ident: bib0040 article-title: Electrodeposition of polypyrrole/metal oxide nanocomposites for corrosion protection of mild steel—A comparative study publication-title: Synth. Met. – volume: 91 start-page: 78 year: 2013 end-page: 80 ident: bib0120 article-title: Evaluation of corrosion inhibition in mild steel using cerium oxide nanoparticles publication-title: Mater. Lett. – volume: 43 start-page: 990 year: 2008 end-page: 995 ident: bib0155 article-title: CeO2 nanocrystals: seed-mediated synthesis and size control publication-title: Mater. Res. Bull. – volume: 53 start-page: 2331 year: 2008 end-page: 2338 ident: bib0215 article-title: Electrochemical and anticorrosion performances of zinc-rich and polyaniline powder coatings publication-title: Electrochim. Acta – volume: 419 start-page: 826 year: 2017 end-page: 837 ident: bib0190 article-title: Phytic acid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel publication-title: Appl. Surf. Sci. – volume: 99 start-page: 197 year: 2016 end-page: 209 ident: bib0115 article-title: pH responsive Ce(III) loaded polyaniline nanofibers for self-healingcorrosion protection of AA2024-T3 publication-title: Progress in organic coating – volume: 6 start-page: 85 year: 2002 end-page: 100 ident: bib0015 article-title: Electroactive conducting polymers for corrosion control publication-title: J. Solid State Electrochem. – volume: 142 start-page: 12 year: 2018 end-page: 21 ident: bib0135 article-title: Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy publication-title: Corros. Sci. – volume: 1127 start-page: 337 year: 2017 end-page: 344 ident: bib0055 article-title: Chloride salt of conducting polyaniline synthesized in the presence of CeO2: structural analysis of the core-shell nanocomposite publication-title: J. Mol. Struct. – volume: 131 year: 2014 ident: bib0160 article-title: Investigations of the electrical conduction mechanisms of polyaniline‐DBSA/poly (acrylonitrile‐butadiene styrene) blends publication-title: J. Appl. Polym. Sci. – volume: 77 start-page: 743 year: 2014 end-page: 756 ident: bib0025 article-title: Recent advances in corrosion protective composite coatings based on conducting polymers and natural resource derived polymers publication-title: Prog. Org. Coat. – volume: 234 start-page: 145 year: 2017 end-page: 153 ident: bib0220 article-title: Electrochemical study of polyaniline coating electropolymerized onto AA2024-T3 aluminum alloy: physical properties and anticorrosion performance publication-title: Synth. Met. – volume: 77 start-page: 146 year: 2014 end-page: 159 ident: bib0165 article-title: Epoxy/polyaniline–ZnO nanorods hybrid nanocomposite coatings: synthesis, characterization and corrosion protection performance of conducting paints publication-title: Prog. Org. Coat. – volume: 53 start-page: 591 year: 2018 end-page: 603 ident: bib0085 article-title: Synthesis, characterization, thermal properties, conductivity and sensor application study of polyaniline/cerium-doped titanium dioxide nanocomposites publication-title: J. Mater. Sci. – volume: 39 start-page: 6607 year: 2013 end-page: 6610 ident: bib0145 article-title: Synthesis and characterization of CeO2 nano-rods publication-title: Ceram. Int. – volume: 122 start-page: 56 year: 2018 end-page: 63 ident: bib0175 article-title: Improving the anticorrosive performance of epoxy coatings by embedding various percentages of unmodified and imidazole modified CeO publication-title: Prog. Org. Coat. – volume: 233 start-page: 94 year: 2017 end-page: 100 ident: bib0100 article-title: Hydrophobic polyaniline/modified SiO2 coatings for anticorrosion protection publication-title: Synth. Met. – volume: 52 start-page: 6976 year: 2007 end-page: 6987 ident: bib0125 article-title: Cerium salt activated nanoparticles as fillers for silane films: evaluation of the corrosion inhibition performance on galvanised steel substrates publication-title: Electrochim. Acta – volume: 320 start-page: 363 year: 2017 end-page: 375 ident: bib0210 article-title: Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating publication-title: Chem. Eng. J. – volume: 18 start-page: 7873 year: 2016 end-page: 7882 ident: bib0235 article-title: Polymer-fabricated synthesis of cerium oxide nanoparticles and applications as a green catalyst towards multicomponent transformation with size-dependent activity studies publication-title: Cryst Eng Comm – volume: 132 start-page: 1022 year: 1985 end-page: 1026 ident: bib0005 article-title: Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating publication-title: J. Electrochem. Soc. – volume: 49 start-page: 1635 year: 2007 end-page: 1644 ident: bib0035 article-title: Corrosion protection of steel by bi-layered polypyrrole doped with molybdophosphate and naphthalenedisulfonate anions publication-title: Corros. Sci. – volume: 51 start-page: 145 year: 2004 end-page: 151 ident: bib0200 article-title: Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS publication-title: Prog. Org. Coat. – volume: 33 start-page: 20 year: 1998 end-page: 27 ident: bib0010 article-title: Protection of iron against corrosion with polyaniline primers publication-title: Prog. Org. Coat. – volume: 28 start-page: 2499 year: 2019 end-page: 2512 ident: bib0180 article-title: Wear and corrosive behaviors of electroless Ni-LaCl3Composites on nanoporous ATO surface of Ti substrate publication-title: J. Mater. Eng. Perform. – volume: 75 start-page: 241 year: 2012 end-page: 247 ident: bib0060 article-title: Coatings based on electronic conducting polymers for corrosion protection of metals publication-title: Prog. Org. Coat. – volume: 7 start-page: 15597 year: 2017 ident: bib0195 article-title: Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques publication-title: Sci. Rep. – volume: 124 start-page: 110 year: 2018 end-page: 121 ident: bib0095 article-title: Self-healing and corrosion protection performance of organic polysulfide@ urea-formaldehyde resin core-shell nanoparticles in epoxy/PANI/ZnO nanocomposite coatings on anodized aluminum alloy publication-title: Prog. Org. Coat. – volume: 76 start-page: 302 year: 2013 end-page: 309 ident: bib0030 article-title: Electrochemical synthesis of polypyrrole films on copper from phytic solution for corrosion protection publication-title: Corros. Sci. – volume: 6 start-page: 226 year: 1994 end-page: 228 ident: bib0075 article-title: Passivation of metals by coating with polyaniline: corrosion potential shift and morphological changes publication-title: Adv. Mater. – volume: 52 start-page: 6976 year: 2007 end-page: 6987 ident: bib0225 article-title: Cerium salt activated nanoparticles as fillers for silane films: evaluation of the corrosion inhibition performance on galvanized steel substrates publication-title: Electrochim. Acta – volume: 462 start-page: 362 year: 2018 end-page: 372 ident: bib0105 article-title: Synthesis of stabilized dispersion covalently-jointed SiO2@ polyaniline with core-shell structure and anticorrosion performance of its hydrophobic coating for Mg-Li alloy publication-title: Appl. Surf. Sci. – volume: 137 start-page: 111 year: 2018 end-page: 126 ident: bib0130 article-title: Polyaniline-cerium oxide (PAni-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel publication-title: Corros. Sci. – volume: 124 start-page: 110 year: 2018 ident: 10.1016/j.porgcoat.2019.105430_bib0095 article-title: Self-healing and corrosion protection performance of organic polysulfide@ urea-formaldehyde resin core-shell nanoparticles in epoxy/PANI/ZnO nanocomposite coatings on anodized aluminum alloy publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2018.08.015 – volume: 122 start-page: 56 year: 2018 ident: 10.1016/j.porgcoat.2019.105430_bib0175 article-title: Improving the anticorrosive performance of epoxy coatings by embedding various percentages of unmodified and imidazole modified CeO2 nanoparticles publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2018.05.006 – volume: 57 start-page: 263 year: 2018 ident: 10.1016/j.porgcoat.2019.105430_bib0110 article-title: Synthesis and characterization of an advanced layer-by-layer assembled Fe3O4/polyaniline nanoreservoir filled with nettle extract as a green corrosion protective system publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2017.08.032 – volume: 23 start-page: 23 year: 2019 ident: 10.1016/j.porgcoat.2019.105430_bib0065 article-title: Conducting polymer coatings as effective barrier to corrosion – volume: 233 start-page: 94 year: 2017 ident: 10.1016/j.porgcoat.2019.105430_bib0100 article-title: Hydrophobic polyaniline/modified SiO2 coatings for anticorrosion protection publication-title: Synth. Met. doi: 10.1016/j.synthmet.2017.10.002 – volume: 52 start-page: 6976 issue: 24 year: 2007 ident: 10.1016/j.porgcoat.2019.105430_bib0225 article-title: Cerium salt activated nanoparticles as fillers for silane films: evaluation of the corrosion inhibition performance on galvanized steel substrates publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.05.022 – volume: 62 start-page: 105 issue: 1 year: 2008 ident: 10.1016/j.porgcoat.2019.105430_bib0020 article-title: Organic coatings containing polyaniline and inorganic pigments as corrosion inhibitors publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2007.10.001 – volume: 77 start-page: 743 issue: 4 year: 2014 ident: 10.1016/j.porgcoat.2019.105430_bib0025 article-title: Recent advances in corrosion protective composite coatings based on conducting polymers and natural resource derived polymers publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2014.01.004 – volume: 261 start-page: 235 year: 2015 ident: 10.1016/j.porgcoat.2019.105430_bib0230 article-title: Electrochemical corrosion behavior of CeO2 nanoparticle reinforced Sn–Ag based lead free nanocomposite solders in 3.5 wt.% NaCl bath publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2014.11.023 – volume: 28 start-page: 2499 year: 2019 ident: 10.1016/j.porgcoat.2019.105430_bib0180 article-title: Wear and corrosive behaviors of electroless Ni-LaCl3Composites on nanoporous ATO surface of Ti substrate publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-019-04028-9 – volume: 462 start-page: 362 year: 2018 ident: 10.1016/j.porgcoat.2019.105430_bib0105 article-title: Synthesis of stabilized dispersion covalently-jointed SiO2@ polyaniline with core-shell structure and anticorrosion performance of its hydrophobic coating for Mg-Li alloy publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.08.118 – volume: 142 start-page: 12 year: 2018 ident: 10.1016/j.porgcoat.2019.105430_bib0135 article-title: Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy publication-title: Corros. Sci. doi: 10.1016/j.corsci.2018.06.013 – volume: 17 start-page: 1 year: 2018 ident: 10.1016/j.porgcoat.2019.105430_bib0240 article-title: Synthesis and biomedical applications of cerium oxide nanoparticles–a review publication-title: Biotechnol. Rep doi: 10.1016/j.btre.2017.11.008 – volume: 52 start-page: 6976 issue: 24 year: 2007 ident: 10.1016/j.porgcoat.2019.105430_bib0125 article-title: Cerium salt activated nanoparticles as fillers for silane films: evaluation of the corrosion inhibition performance on galvanised steel substrates publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.05.022 – volume: 137 start-page: 111 year: 2018 ident: 10.1016/j.porgcoat.2019.105430_bib0130 article-title: Polyaniline-cerium oxide (PAni-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel publication-title: Corros. Sci. doi: 10.1016/j.corsci.2018.03.038 – volume: 11 start-page: 4084 year: 2016 ident: 10.1016/j.porgcoat.2019.105430_bib0050 article-title: Electrosynthesis and characterization of polythiophene and corrosion protection for stainless steel publication-title: Int. J. Electrochem. Sci. doi: 10.20964/110376 – volume: 18 start-page: 7873 issue: 40 year: 2016 ident: 10.1016/j.porgcoat.2019.105430_bib0235 article-title: Polymer-fabricated synthesis of cerium oxide nanoparticles and applications as a green catalyst towards multicomponent transformation with size-dependent activity studies publication-title: Cryst Eng Comm doi: 10.1039/C6CE01104G – volume: 77 start-page: 146 issue: 1 year: 2014 ident: 10.1016/j.porgcoat.2019.105430_bib0165 article-title: Epoxy/polyaniline–ZnO nanorods hybrid nanocomposite coatings: synthesis, characterization and corrosion protection performance of conducting paints publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2013.08.015 – volume: 131 issue: 17 year: 2014 ident: 10.1016/j.porgcoat.2019.105430_bib0160 article-title: Investigations of the electrical conduction mechanisms of polyaniline‐DBSA/poly (acrylonitrile‐butadiene styrene) blends publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.40688 – volume: 99 start-page: 197 year: 2016 ident: 10.1016/j.porgcoat.2019.105430_bib0115 article-title: pH responsive Ce(III) loaded polyaniline nanofibers for self-healingcorrosion protection of AA2024-T3 publication-title: Progress in organic coating doi: 10.1016/j.porgcoat.2016.04.046 – volume: 165 start-page: C878 issue: 13 year: 2018 ident: 10.1016/j.porgcoat.2019.105430_bib0170 article-title: Insight into the impact of conducting Polyaniline/Graphene nanosheets on corrosion mechanism of zinc-rich epoxy primers on Low alloy DH32 steel in artificial Sea Water publication-title: J. Electrochem. Soc. doi: 10.1149/2.0411813jes – volume: 7 start-page: 15597 issue: 1 year: 2017 ident: 10.1016/j.porgcoat.2019.105430_bib0195 article-title: Understanding the anticorrosive protective mechanisms of modified epoxy coatings with improved barrier, active and self-healing functionalities: EIS and spectroscopic techniques publication-title: Sci. Rep. doi: 10.1038/s41598-017-15845-0 – volume: 39 start-page: 6607 issue: 6 year: 2013 ident: 10.1016/j.porgcoat.2019.105430_bib0145 article-title: Synthesis and characterization of CeO2 nano-rods publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.01.096 – volume: 53 start-page: 2331 issue: 5 year: 2008 ident: 10.1016/j.porgcoat.2019.105430_bib0215 article-title: Electrochemical and anticorrosion performances of zinc-rich and polyaniline powder coatings publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.09.056 – volume: 49 start-page: 1635 issue: 3 year: 2007 ident: 10.1016/j.porgcoat.2019.105430_bib0035 article-title: Corrosion protection of steel by bi-layered polypyrrole doped with molybdophosphate and naphthalenedisulfonate anions publication-title: Corros. Sci. doi: 10.1016/j.corsci.2006.08.018 – volume: 64 start-page: 429 issue: 4 year: 2009 ident: 10.1016/j.porgcoat.2019.105430_bib0080 article-title: Polypyrrole and polypyrrole–tungstate electropolymerization coatings on carbon steel and evaluating their corrosion protection performance via electrochemical impedance spectroscopy publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2008.08.003 – volume: 43 start-page: 990 issue: 4 year: 2008 ident: 10.1016/j.porgcoat.2019.105430_bib0155 article-title: CeO2 nanocrystals: seed-mediated synthesis and size control publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2007.04.019 – volume: 76 start-page: 302 year: 2013 ident: 10.1016/j.porgcoat.2019.105430_bib0030 article-title: Electrochemical synthesis of polypyrrole films on copper from phytic solution for corrosion protection publication-title: Corros. Sci. doi: 10.1016/j.corsci.2013.07.003 – volume: 27 start-page: 897 issue: 4 year: 2018 ident: 10.1016/j.porgcoat.2019.105430_bib0070 article-title: Control the corrosion of mild steel using synthesized polymers based on polyacrylamide publication-title: Egypt. J. Pet. doi: 10.1016/j.ejpe.2018.01.006 – volume: 320 start-page: 363 year: 2017 ident: 10.1016/j.porgcoat.2019.105430_bib0210 article-title: Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.061 – volume: 247 start-page: 183 year: 2019 ident: 10.1016/j.porgcoat.2019.105430_bib0040 article-title: Electrodeposition of polypyrrole/metal oxide nanocomposites for corrosion protection of mild steel—A comparative study publication-title: Synth. Met. doi: 10.1016/j.synthmet.2018.12.009 – volume: 53 start-page: 591 issue: 1 year: 2018 ident: 10.1016/j.porgcoat.2019.105430_bib0085 article-title: Synthesis, characterization, thermal properties, conductivity and sensor application study of polyaniline/cerium-doped titanium dioxide nanocomposites publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1505-8 – volume: 315 start-page: 67 year: 2017 ident: 10.1016/j.porgcoat.2019.105430_bib0185 article-title: Self-healing effects by the Ce-rich precipitations on completing defective boundaries to manage microstructures and oxidation resistance of Ni-CeO2 coatings publication-title: Surface & Coatings Technology doi: 10.1016/j.surfcoat.2017.02.024 – volume: 1127 start-page: 337 year: 2017 ident: 10.1016/j.porgcoat.2019.105430_bib0055 article-title: Chloride salt of conducting polyaniline synthesized in the presence of CeO2: structural analysis of the core-shell nanocomposite publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2016.07.114 – volume: 6 start-page: 85 issue: 2 year: 2002 ident: 10.1016/j.porgcoat.2019.105430_bib0015 article-title: Electroactive conducting polymers for corrosion control publication-title: J. Solid State Electrochem. doi: 10.1007/s100080100211 – volume: 21 start-page: 1301 year: 2015 ident: 10.1016/j.porgcoat.2019.105430_bib0140 article-title: Synthesis and characterization of CeO2 nanoparticles via hydrothermal route publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2014.05.046 – volume: 76 start-page: 804 issue: 5 year: 2013 ident: 10.1016/j.porgcoat.2019.105430_bib0205 article-title: High corrosion protection of a polyaniline/organophilic montmorillonite coating for magnesium alloys publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2013.01.008 – volume: 75 start-page: 241 issue: 3 year: 2012 ident: 10.1016/j.porgcoat.2019.105430_bib0060 article-title: Coatings based on electronic conducting polymers for corrosion protection of metals publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2012.05.004 – volume: 6 start-page: 226 issue: 3 year: 1994 ident: 10.1016/j.porgcoat.2019.105430_bib0075 article-title: Passivation of metals by coating with polyaniline: corrosion potential shift and morphological changes publication-title: Adv. Mater. doi: 10.1002/adma.19940060309 – volume: 132 start-page: 1022 issue: 5 year: 1985 ident: 10.1016/j.porgcoat.2019.105430_bib0005 article-title: Modification of the electrochemical and corrosion behavior of stainless steels with an electroactive coating publication-title: J. Electrochem. Soc. doi: 10.1149/1.2114008 – volume: 91 start-page: 78 year: 2013 ident: 10.1016/j.porgcoat.2019.105430_bib0120 article-title: Evaluation of corrosion inhibition in mild steel using cerium oxide nanoparticles publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.09.051 – volume: 289 start-page: 23 year: 2016 ident: 10.1016/j.porgcoat.2019.105430_bib0090 article-title: Multilayers of PAni/n-TiO2 and PAni on carbon steel and welded carbon steel for corrosion protection publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2016.01.046 – volume: 41 start-page: 1970 issue: 2 year: 2015 ident: 10.1016/j.porgcoat.2019.105430_bib0150 article-title: Comparative study of CeO2 nanopowders obtained by the hydrothermal method from various precursors publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.08.122 – volume: 51 start-page: 145 issue: 2 year: 2004 ident: 10.1016/j.porgcoat.2019.105430_bib0200 article-title: Studies of water transport behavior and impedance models of epoxy-coated metals in NaCl solution by EIS publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2004.08.001 – volume: 95 start-page: 127 year: 2016 ident: 10.1016/j.porgcoat.2019.105430_bib0045 article-title: Steel protection of two composite coatings: polythiophene with ash or MCM-41 particles containing iron (III) nitrate as inhibitor in chloride media publication-title: Prog. Org. Coat. doi: 10.1016/j.porgcoat.2016.03.005 – volume: 234 start-page: 145 year: 2017 ident: 10.1016/j.porgcoat.2019.105430_bib0220 article-title: Electrochemical study of polyaniline coating electropolymerized onto AA2024-T3 aluminum alloy: physical properties and anticorrosion performance publication-title: Synth. Met. doi: 10.1016/j.synthmet.2017.11.002 – volume: 419 start-page: 826 year: 2017 ident: 10.1016/j.porgcoat.2019.105430_bib0190 article-title: Phytic acid doped polyaniline containing epoxy coatings for corrosion protection of Q235 carbon steel publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.05.079 – volume: 33 start-page: 20 issue: 1 year: 1998 ident: 10.1016/j.porgcoat.2019.105430_bib0010 article-title: Protection of iron against corrosion with polyaniline primers publication-title: Prog. Org. Coat. doi: 10.1016/S0300-9440(97)00123-9 |
SSID | ssj0006339 |
Score | 2.5649123 |
Snippet | •∼6 nm CeO2 particles were uniformly dispersed into PANI matrix.•LEIS and salt spray tests were performed to evaluate the corrosion performance of... Polyaniline/cerium dioxide (PANI/CeO2) nanocomposite (NPs) was synthesized by in situ polymerization of aniline in the presence of CeO2 NPs. Various analytical... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105430 |
SubjectTerms | Aniline Carbon steel Carbon steels Carbon-epoxy composites CeO2 Cerium oxides Corrosion Corrosion inhibitors Corrosion prevention Corrosion resistance Electron microscopes Electron microscopy Epoxy coatings Fourier transforms Infrared analysis Infrared spectroscopy LEIS Microscopy Nanocomposites Polyaniline Polyanilines Protective coatings Self-healing Sodium chloride X ray powder diffraction |
Title | Polyaniline/CeO2 nanocomposites as corrosion inhibitors for improving the corrosive performance of epoxy coating on carbon steel in 3.5% NaCl solution |
URI | https://dx.doi.org/10.1016/j.porgcoat.2019.105430 https://www.proquest.com/docview/2355909302 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqcgAOCAqIQql8gGN2Eydx4mMVUS2sWBBQ0Zs1jic01SpZdRdEL_wMfi8z2ZgWhNQDp0iRbTmel5k3yXwI8QK9aVKXJpFXSA6KdmUECUBUlHHdeINQlpyN_HahZyfZm9P8dEdUIReGwypH3b_V6YO2Hu9Mx9Ocrtp2-pHgSb4J-QeGMFtk7LdnWcEon_y4CvPQ6dBNjAdHPPpalvD5hCjul7oHjqlMDLe8zTga-t8G6i9VPdif4_vi3kgc5dF2bw_EDnZ74nYV-rXtibvXSgs-FD_f98tL6NqhDkaF75TsoOs5gJyjtHAtYS3J8aQtkGBk2521ruXGO5JIrGzDlwZJ9DAM-4ZydZVlIPtGEnf_fin5yXgoLVPDhaMLAQeXtKZMJ_lLuYBqKQPCH4mT41efqlk09mCIajL1mwgKV-o611hiU7pC-YT8P18jIJrGGXAa8xhjTzQQCqWVaXJPfi9XrVcq1j59LHa7vsMnQmLiXQ0p_-kh0pM4yJw2RZoqr4B0He6LPBy8rccC5dwnY2lDJNq5DQKzLDC7Fdi-mP6et9qW6LhxhglytX-AzZIduXHuQQCCHV_3tVXE2kxMOFRP_2PpZ-KOYm9-iAk_ELubi6_4nCjPxh0OmD4Ut45ez2cLvs4_fJ7_Ait9BgQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqcigcEBQQpQV8gGN2Eydx4iOKqBZoFyRaqTdrHE8g1SpZdZeKXvgZ_F5msjEtCKkHTpEi20o8zzNvkvkQ4hV606QuTSKvkBwU7coIEoCoKOO68QahLDkb-XiuZ6fZ-7P8bEtUIReGwypH3b_R6YO2Hu9Mx92cLtt2-pngSb4J-QeGMFtk5Lffyej4chuDyY_rOA-dDu3EeHTEw2-kCZ9PiON-qXvgoMrEcM_bjMOh_22h_tLVgwE6fCDuj8xRvtk83EOxhd2u2KlCw7Zdce9GbcFH4uenfnEFXTsUwqjwo5IddD1HkHOYFq4krCR5nvQIJBnZdl9b13LnHUksVrbhU4MkfhiGXaJcXqcZyL6RRN6_X0l-Mx5Ky9Rw4ehCyMEFrSnTSf5azqFayADxx-L08O1JNYvGJgxRTbZ-HUHhSl3nGktsSlcon5AD6GsERNM4A05jHmPsiQdCobQyTe7J8eWy9UrF2qdPxHbXd_hUSEy8qyHlXz3EehIHmdOmSFPlFZCywz2Rh4239VihnBtlLGwIRTu3QWCWBWY3AtsT09_zlpsaHbfOMEGu9g-0WTIkt849CECw43lfWUW0zcQERPXsP5Z-KXZmJ8dH9ujd_MO-uKvYtR8CxA_E9vriGz4n_rN2LwZ8_wLgJwXv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polyaniline%2FCeO2+nanocomposites+as+corrosion+inhibitors+for+improving+the+corrosive+performance+of+epoxy+coating+on+carbon+steel+in+3.5%25+NaCl+solution&rft.jtitle=Progress+in+organic+coatings&rft.au=Lei%2C+Yanhua&rft.au=Qiu%2C+Zhichao&rft.au=Tan%2C+Ning&rft.au=Du%2C+Hailiang&rft.date=2020-02-01&rft.pub=Elsevier+B.V&rft.issn=0300-9440&rft.eissn=1873-331X&rft.volume=139&rft_id=info:doi/10.1016%2Fj.porgcoat.2019.105430&rft.externalDocID=S0300944019305740 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0300-9440&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0300-9440&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0300-9440&client=summon |