Rheology of a dilute binary mixture of inertial suspension under simple shear flow

Abstract The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation. The effect of the surrounding viscous gas on the solid particles is accounted for by means of a deterministic viscous drag force plus a stocha...

Full description

Saved in:
Bibliographic Details
Published inProgress of theoretical and experimental physics Vol. 2023; no. 11
Main Authors Takada, Satoshi, Hayakawa, Hisao, Garzó, Vicente
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.11.2023
Subjects
Online AccessGet full text
ISSN2050-3911
2050-3911
DOI10.1093/ptep/ptad126

Cover

Loading…
Abstract Abstract The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation. The effect of the surrounding viscous gas on the solid particles is accounted for by means of a deterministic viscous drag force plus a stochastic Langevin-like term defined in terms of the environmental temperature Tenv. Grad’s moment method is employed to determine the temperature ratio and the pressure tensor in terms of the coefficients of restitution, concentration, the masses and diameters of the components of the mixture, and the environmental temperature. Analytical results are compared against event-driven Langevin simulations for mixtures of hard spheres with the same mass density m1/m2 = (σ(1)/σ(2))3, mi and σ(1) being the mass and diameter, respectively, of the species i. It is confirmed that the theoretical predictions agree with simulations of various size ratios σ(1)/σ(2) and for elastic and inelastic collisions in a wide range of parameter space. It is remarkable that the temperature ratio T1/T2 and the viscosity ratio η1/η2 (ηi being the partial contribution of the species i to the total shear viscosity η = η1 + η2) discontinuously change at a certain shear rate as the size ratio increases; this feature (which is expected to occur in the thermodynamic limit) cannot be completely captured by simulations due to the small system size. In addition, a Bhatnagar–Gross–Krook (BGK)-type kinetic model adapted to mixtures of inelastic hard spheres is exactly solved when Tenv is much smaller than the kinetic temperature T. A comparison between the velocity distribution functions obtained from Grad’s method, the BGK model, and simulations is carried out.
AbstractList The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation. The effect of the surrounding viscous gas on the solid particles is accounted for by means of a deterministic viscous drag force plus a stochastic Langevin-like term defined in terms of the environmental temperature Tenv. Grad’s moment method is employed to determine the temperature ratio and the pressure tensor in terms of the coefficients of restitution, concentration, the masses and diameters of the components of the mixture, and the environmental temperature. Analytical results are compared against event-driven Langevin simulations for mixtures of hard spheres with the same mass density m1/m2 = (σ(1)/σ(2))3, mi and σ(1) being the mass and diameter, respectively, of the species i. It is confirmed that the theoretical predictions agree with simulations of various size ratios σ(1)/σ(2) and for elastic and inelastic collisions in a wide range of parameter space. It is remarkable that the temperature ratio T1/T2 and the viscosity ratio η1/η2 (ηi being the partial contribution of the species i to the total shear viscosity η = η1 + η2) discontinuously change at a certain shear rate as the size ratio increases; this feature (which is expected to occur in the thermodynamic limit) cannot be completely captured by simulations due to the small system size. In addition, a Bhatnagar–Gross–Krook (BGK)-type kinetic model adapted to mixtures of inelastic hard spheres is exactly solved when Tenv is much smaller than the kinetic temperature T. A comparison between the velocity distribution functions obtained from Grad’s method, the BGK model, and simulations is carried out.
The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation. The effect of the surrounding viscous gas on the solid particles is accounted for by means of a deterministic viscous drag force plus a stochastic Langevin-like term defined in terms of the environmental temperature Tenv. Grad’s moment method is employed to determine the temperature ratio and the pressure tensor in terms of the coefficients of restitution, concentration, the masses and diameters of the components of the mixture, and the environmental temperature. Analytical results are compared against event-driven Langevin simulations for mixtures of hard spheres with the same mass density m1/m2 = (σ(1)/σ(2))3, mi and σ(1) being the mass and diameter, respectively, of the species i. It is confirmed that the theoretical predictions agree with simulations of various size ratios σ(1)/σ(2) and for elastic and inelastic collisions in a wide range of parameter space. It is remarkable that the temperature ratio T1/T2 and the viscosity ratio η1/η2 (ηi being the partial contribution of the species i to the total shear viscosity η = η1 + η2) discontinuously change at a certain shear rate as the size ratio increases; this feature (which is expected to occur in the thermodynamic limit) cannot be completely captured by simulations due to the small system size. In addition, a Bhatnagar–Gross–Krook (BGK)-type kinetic model adapted to mixtures of inelastic hard spheres is exactly solved when Tenv is much smaller than the kinetic temperature T. A comparison between the velocity distribution functions obtained from Grad’s method, the BGK model, and simulations is carried out.
Abstract The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation. The effect of the surrounding viscous gas on the solid particles is accounted for by means of a deterministic viscous drag force plus a stochastic Langevin-like term defined in terms of the environmental temperature Tenv. Grad’s moment method is employed to determine the temperature ratio and the pressure tensor in terms of the coefficients of restitution, concentration, the masses and diameters of the components of the mixture, and the environmental temperature. Analytical results are compared against event-driven Langevin simulations for mixtures of hard spheres with the same mass density m1/m2 = (σ(1)/σ(2))3, mi and σ(1) being the mass and diameter, respectively, of the species i. It is confirmed that the theoretical predictions agree with simulations of various size ratios σ(1)/σ(2) and for elastic and inelastic collisions in a wide range of parameter space. It is remarkable that the temperature ratio T1/T2 and the viscosity ratio η1/η2 (ηi being the partial contribution of the species i to the total shear viscosity η = η1 + η2) discontinuously change at a certain shear rate as the size ratio increases; this feature (which is expected to occur in the thermodynamic limit) cannot be completely captured by simulations due to the small system size. In addition, a Bhatnagar–Gross–Krook (BGK)-type kinetic model adapted to mixtures of inelastic hard spheres is exactly solved when Tenv is much smaller than the kinetic temperature T. A comparison between the velocity distribution functions obtained from Grad’s method, the BGK model, and simulations is carried out.
Author Hayakawa, Hisao
Garzó, Vicente
Takada, Satoshi
Author_xml – sequence: 1
  givenname: Satoshi
  orcidid: 0000-0002-2716-1846
  surname: Takada
  fullname: Takada, Satoshi
  email: takada@go.tuat.ac.jp
– sequence: 2
  givenname: Hisao
  orcidid: 0000-0003-3462-5562
  surname: Hayakawa
  fullname: Hayakawa, Hisao
  email: hisao@yukawa.kyoto-u.ac.jp
– sequence: 3
  givenname: Vicente
  orcidid: 0000-0001-6531-9328
  surname: Garzó
  fullname: Garzó, Vicente
  email: vicenteg@unex.es
BookMark eNp9UE1Lw0AQXaSCtfbmD1jw4MXo7CbZbY5S_AJBKHoO02Rit6S7cXeD9t-b0h5E0Mu8gXnvDe-dspF1lhg7F3AtoEhvukjdMLAWUh2xsYQckrQQYvRjP2HTENYAIEBryMSYLRYrcq1733LXcOS1aftIfGks-i3fmK_Ye9qdjCUfDbY89KEjG4yzvLc1eR7MpmuJhxWh503rPs_YcYNtoOkBJ-zt_u51_pg8vzw8zW-fkyoDFRNU1ORYFUusB8y1qiRCo0FTpgRRJhtUStZFUUO6FKJWMwE5EmYzLTGtlumEXex9O-8-egqxXLve2-FlmQotskLmOhtYV3tW5V0Inpqy82YzpCsFlLviyl1x5aG4gS5_0SsTMQ5xo0fT_iW63Itc3_1v_w0CQoSq
CitedBy_id crossref_primary_10_1093_ptep_ptaf008
crossref_primary_10_1103_PhysRevE_109_064901
Cites_doi 10.1088/1742-5468/2007/02/P02012
10.1103/PhysRevLett.88.194301
10.1007/978-3-030-04444-2
10.1088/1742-5468/2010/07/P07024
10.1103/PhysRevE.78.020301
10.1103/PhysRevE.106.064902
10.1146/annurev.fluid.33.1.619
10.1103/PhysRevE.101.012904
10.1017/S002211200200263X
10.1016/S0378-4371(99)00153-3
10.1038/nature10667
10.1103/PhysRevE.69.031308
10.1103/PhysRevLett.95.268302
10.1017/CBO9780511977978
10.1146/annurev-fluid-122316-045201
10.1103/PhysRevLett.114.098301
10.1103/PhysRevE.75.061306
10.1103/PhysRevE.69.061303
10.1017/jfm.2017.722
10.1093/ptep/ptz075
10.1039/D0SM01846E
10.1103/PhysRevE.70.061101
10.1209/0295-5075/94/50009
10.1063/1.1428324
10.1103/PhysRevE.83.051301
10.1017/jfm.2021.688
10.1051/epjconf/201714009003
10.1017/S0022112097006496
10.1103/PhysRevE.85.011302
10.1063/5.0134408
10.1103/PhysRevE.92.052205
10.1103/PhysRevE.97.022902
10.1038/nature17167
10.1016/S0378-4371(02)00786-0
10.1002/cpa.3160020403
10.1103/PhysRevLett.111.218301
10.1017/S0022112096007768
10.1017/jfm.2011.454
10.1088/0034-4885/77/4/046602
10.1103/PhysRevE.88.052201
10.1063/1.4798824
10.1103/PhysRevE.66.021308
10.1122/1.550017
10.1017/CBO9781139541008
10.1115/1.3172990
10.1017/jfm.2019.320
10.1103/PhysRevE.96.042903
10.1017/S0022112095002114
10.1088/1742-5468/2010/04/P04013
10.1122/1.5011353
10.1017/S0022112096002224
10.1209/epl/i2006-10143-4
10.1209/epl/i2003-00287-1
10.1103/PhysRevE.86.026709
10.1209/0295-5075/16/3/006
10.1103/PhysRevE.101.032905
10.1103/PhysRevE.102.022907
10.1098/rspa.2004.1420
10.1122/1.4942230
10.1122/1.4876935
10.7566/JPSJ.89.084803
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023
The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1093/ptep/ptad126
DatabaseName Oxford Journals Open Access (Activated by CARLI)
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central (New)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2050-3911
ExternalDocumentID 10_1093_ptep_ptad126
10.1093/ptep/ptad126
GroupedDBID .I3
0R~
4.4
5VS
AAFWJ
AAMVS
AAPPN
AAPXW
AAVAP
ABPTD
ABXVV
ACGFS
ADHZD
AENEX
AENZO
AFPKN
AFULF
AIBLX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
BAYMD
BTTYL
CIDKT
D~K
EBS
EJD
ER.
GROUPED_DOAJ
H13
IAO
ISR
KQ8
KSI
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
RHF
ROL
ROX
RXO
TOX
~D7
88I
AAYXX
ABEJV
ABGNP
ABUWG
AFKRA
AMNDL
AZQEC
BENPR
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
ITC
M2P
PHGZM
PHGZT
PIMPY
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-a6ef5ac9badf5a576c2a0f707e461ee42fa662d99d03b11d68105aea4872a3cb3
IEDL.DBID BENPR
ISSN 2050-3911
IngestDate Mon Jun 30 12:21:26 EDT 2025
Tue Jul 01 02:09:16 EDT 2025
Thu Apr 24 23:02:24 EDT 2025
Wed Aug 28 03:17:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-a6ef5ac9badf5a576c2a0f707e461ee42fa662d99d03b11d68105aea4872a3cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3462-5562
0000-0001-6531-9328
0000-0002-2716-1846
OpenAccessLink https://www.proquest.com/docview/3171492574?pq-origsite=%requestingapplication%
PQID 3171492574
PQPubID 7121340
ParticipantIDs proquest_journals_3171492574
crossref_primary_10_1093_ptep_ptad126
crossref_citationtrail_10_1093_ptep_ptad126
oup_primary_10_1093_ptep_ptad126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress of theoretical and experimental physics
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Fall (2023111012270754800_bib52) 2015; 114
Pednekar (2023111012270754800_bib21) 2018; 62
Artoni (2023111012270754800_bib29) 2021; 17
Chamorro (2023111012270754800_bib11) 2015; 92
Gray (2023111012270754800_bib37) 2005; 461
Santos (2023111012270754800_bib59) 2004; 69
Otsuki (2023111012270754800_bib3) 2011; 83
Lootens (2023111012270754800_bib6) 2005; 95
Seto (2023111012270754800_bib4) 2013; 111
Menon (2023111012270754800_bib25) 1997; 28
Jing (2023111012270754800_bib42) 2021; 925
Scala (2023111012270754800_bib18) 2012; 86
Campbell (2023111012270754800_bib28) 1997; 348
Jenkins (2023111012270754800_bib35) 2002; 88
Hayakawa (2023111012270754800_bib13) 2019; 2019
Alam (2023111012270754800_bib43) 2003; 476
Liu (2023111012270754800_bib22) 2019; 871
Puri (2023111012270754800_bib34) 1999; 270
Montanero (2023111012270754800_bib47) 2002; 310
Andreotti (2023111012270754800_bib32) 2013
Garzó (2023111012270754800_bib50) 2010; 2010
Peters (2023111012270754800_bib53) 2016; 532
Vega Reyes (2023111012270754800_bib63) 2007; 75
Garzó (2023111012270754800_bib38) 2006; 75
Khalil (2023111012270754800_bib46) 2018; 97
Saha (2023111012270754800_bib14) 2017; 833
Brown (2023111012270754800_bib5) 2014; 77
Jenkins (2023111012270754800_bib33) 1987; 109
Lutsko (2023111012270754800_bib48) 2004; 70
Sarracino (2023111012270754800_bib44) 2010; 2010
Krishnan (2023111012270754800_bib19) 1996; 321
Grad (2023111012270754800_bib58) 1949; 2
Hsiau (2023111012270754800_bib30) 2002; 14
Takada (2023111012270754800_bib16) 2020; 102
Garzó (2023111012270754800_bib61) 2011; 94
Khalil (2023111012270754800_bib45) 2013; 88
Koch (2023111012270754800_bib8) 2001; 33
Tsao (2023111012270754800_bib9) 1995; 296
Garzó (2023111012270754800_bib23) 2019
Garzó (2023111012270754800_bib62) 2012; 85
Chamorro (2023111012270754800_bib49) 2023; 35
Gómez González (2023111012270754800_bib56) 2022; 106
Sangani (2023111012270754800_bib10) 1996; 313
Gómez González (2023111012270754800_bib55) 2020; 101
Gamonpilas (2023111012270754800_bib20) 2016; 60
Gray (2023111012270754800_bib41) 2018; 50
Garzó (2023111012270754800_bib26) 2002; 66
Bi (2023111012270754800_bib51) 2011; 480
Garzó (2023111012270754800_bib60) 2013; 25
Cwalina (2023111012270754800_bib7) 2004; 58
Sugimoto (2023111012270754800_bib17) 2020; 89
Garzó (2023111012270754800_bib39) 2008; 78
Marks (2023111012270754800_bib40) 2011; 690
Otsuki (2023111012270754800_bib54) 2020; 101
Hayakawa (2023111012270754800_bib12) 2017; 140
Garzó (2023111012270754800_bib27) 2007; 2007
Hayakawa (2023111012270754800_bib15) 2017; 96
Mewis (2023111012270754800_bib2) 2011
Utter (2023111012270754800_bib31) 2004; 69
Zik (2023111012270754800_bib24) 1991; 16
van Kampen (2023111012270754800_bib57) 2007
Trujillo (2023111012270754800_bib36) 2003; 64
Barnes (2023111012270754800_bib1) 1989; 33
References_xml – volume: 2007
  start-page: P02012
  year: 2007
  ident: 2023111012270754800_bib27
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2007/02/P02012
– volume: 88
  start-page: 194301
  year: 2002
  ident: 2023111012270754800_bib35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.194301
– volume-title: Granular Gaseous Flows: A Kinetic Theory Approach to Granular Gaseous Flows
  year: 2019
  ident: 2023111012270754800_bib23
  doi: 10.1007/978-3-030-04444-2
– volume: 2010
  start-page: P07024
  year: 2010
  ident: 2023111012270754800_bib50
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2010/07/P07024
– volume: 78
  start-page: 020301(R)
  year: 2008
  ident: 2023111012270754800_bib39
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.020301
– volume: 106
  start-page: 064902
  year: 2022
  ident: 2023111012270754800_bib56
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.106.064902
– volume: 33
  start-page: 619
  year: 2001
  ident: 2023111012270754800_bib8
  publication-title: Ann. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.33.1.619
– volume: 101
  start-page: 012904
  year: 2020
  ident: 2023111012270754800_bib55
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.012904
– volume: 476
  start-page: 69
  year: 2003
  ident: 2023111012270754800_bib43
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211200200263X
– volume: 270
  start-page: 115
  year: 1999
  ident: 2023111012270754800_bib34
  publication-title: Physica A
  doi: 10.1016/S0378-4371(99)00153-3
– volume-title: Stochastic Processes in Physics and Chemistry
  year: 2007
  ident: 2023111012270754800_bib57
– volume: 480
  start-page: 355
  year: 2011
  ident: 2023111012270754800_bib51
  publication-title: Nature
  doi: 10.1038/nature10667
– volume: 69
  start-page: 031308
  year: 2004
  ident: 2023111012270754800_bib31
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.031308
– volume: 95
  start-page: 268302
  year: 2005
  ident: 2023111012270754800_bib6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.268302
– volume-title: Colloidal Suspension Rheology
  year: 2011
  ident: 2023111012270754800_bib2
  doi: 10.1017/CBO9780511977978
– volume: 50
  start-page: 407
  year: 2018
  ident: 2023111012270754800_bib41
  publication-title: Ann. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122316-045201
– volume: 114
  start-page: 098301
  year: 2015
  ident: 2023111012270754800_bib52
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.098301
– volume: 75
  start-page: 061306
  year: 2007
  ident: 2023111012270754800_bib63
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.75.061306
– volume: 69
  start-page: 061303
  year: 2004
  ident: 2023111012270754800_bib59
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.061303
– volume: 833
  start-page: 206
  year: 2017
  ident: 2023111012270754800_bib14
  publication-title: J. Fluid. Mech.
  doi: 10.1017/jfm.2017.722
– volume: 2019
  start-page: 083J01
  year: 2019
  ident: 2023111012270754800_bib13
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptz075
– volume: 17
  start-page: 2596
  year: 2021
  ident: 2023111012270754800_bib29
  publication-title: Soft Matter
  doi: 10.1039/D0SM01846E
– volume: 70
  start-page: 061101
  year: 2004
  ident: 2023111012270754800_bib48
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.061101
– volume: 94
  start-page: 50009
  year: 2011
  ident: 2023111012270754800_bib61
  publication-title: EPL
  doi: 10.1209/0295-5075/94/50009
– volume: 14
  start-page: 612
  year: 2002
  ident: 2023111012270754800_bib30
  publication-title: Phys. Fluids
  doi: 10.1063/1.1428324
– volume: 83
  start-page: 051301
  year: 2011
  ident: 2023111012270754800_bib3
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.051301
– volume: 925
  start-page: A29
  year: 2021
  ident: 2023111012270754800_bib42
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.688
– volume: 140
  start-page: 09003
  year: 2017
  ident: 2023111012270754800_bib12
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/201714009003
– volume: 348
  start-page: 85
  year: 1997
  ident: 2023111012270754800_bib28
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112097006496
– volume: 85
  start-page: 011302
  year: 2012
  ident: 2023111012270754800_bib62
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.011302
– volume: 35
  start-page: 027121
  year: 2023
  ident: 2023111012270754800_bib49
  publication-title: Phys. Fluids
  doi: 10.1063/5.0134408
– volume: 92
  start-page: 052205
  year: 2015
  ident: 2023111012270754800_bib11
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.052205
– volume: 97
  start-page: 022902
  year: 2018
  ident: 2023111012270754800_bib46
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.022902
– volume: 532
  start-page: 214
  year: 2016
  ident: 2023111012270754800_bib53
  publication-title: Nature
  doi: 10.1038/nature17167
– volume: 310
  start-page: 17
  year: 2002
  ident: 2023111012270754800_bib47
  publication-title: Physica A
  doi: 10.1016/S0378-4371(02)00786-0
– volume: 2
  start-page: 331
  year: 1949
  ident: 2023111012270754800_bib58
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160020403
– volume: 111
  start-page: 218301
  year: 2013
  ident: 2023111012270754800_bib4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.218301
– volume: 321
  start-page: 371
  year: 1996
  ident: 2023111012270754800_bib19
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112096007768
– volume: 690
  start-page: 499
  year: 2011
  ident: 2023111012270754800_bib40
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2011.454
– volume: 77
  start-page: 040602
  year: 2014
  ident: 2023111012270754800_bib5
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/77/4/046602
– volume: 88
  start-page: 052201
  year: 2013
  ident: 2023111012270754800_bib45
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.88.052201
– volume: 25
  start-page: 043301
  year: 2013
  ident: 2023111012270754800_bib60
  publication-title: Phys. Fluids
  doi: 10.1063/1.4798824
– volume: 66
  start-page: 021308
  year: 2002
  ident: 2023111012270754800_bib26
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.66.021308
– volume: 33
  start-page: 329
  year: 1989
  ident: 2023111012270754800_bib1
  publication-title: J. Rheol.
  doi: 10.1122/1.550017
– volume: 28
  start-page: 1220
  year: 1997
  ident: 2023111012270754800_bib25
  publication-title: Science
– volume-title: Granular Media: Between Fluid and Solid
  year: 2013
  ident: 2023111012270754800_bib32
  doi: 10.1017/CBO9781139541008
– volume: 109
  start-page: 27
  year: 1987
  ident: 2023111012270754800_bib33
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3172990
– volume: 871
  start-page: 636
  year: 2019
  ident: 2023111012270754800_bib22
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.320
– volume: 96
  start-page: 042903
  year: 2017
  ident: 2023111012270754800_bib15
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.042903
– volume: 296
  start-page: 211
  year: 1995
  ident: 2023111012270754800_bib9
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095002114
– volume: 2010
  start-page: P04013
  year: 2010
  ident: 2023111012270754800_bib44
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2010/04/P04013
– volume: 62
  start-page: 513
  year: 2018
  ident: 2023111012270754800_bib21
  publication-title: J. Rheol.
  doi: 10.1122/1.5011353
– volume: 313
  start-page: 309
  year: 1996
  ident: 2023111012270754800_bib10
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112096002224
– volume: 75
  start-page: 521
  year: 2006
  ident: 2023111012270754800_bib38
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2006-10143-4
– volume: 64
  start-page: 190
  year: 2003
  ident: 2023111012270754800_bib36
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i2003-00287-1
– volume: 86
  start-page: 026709
  year: 2012
  ident: 2023111012270754800_bib18
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.026709
– volume: 16
  start-page: 255
  year: 1991
  ident: 2023111012270754800_bib24
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/16/3/006
– volume: 101
  start-page: 032905
  year: 2020
  ident: 2023111012270754800_bib54
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.032905
– volume: 102
  start-page: 022907
  year: 2020
  ident: 2023111012270754800_bib16
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.102.022907
– volume: 461
  start-page: 1447
  year: 2005
  ident: 2023111012270754800_bib37
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2004.1420
– volume: 60
  start-page: 289
  year: 2016
  ident: 2023111012270754800_bib20
  publication-title: J. Rheol.
  doi: 10.1122/1.4942230
– volume: 58
  start-page: 949
  year: 2004
  ident: 2023111012270754800_bib7
  publication-title: J. Rheol.
  doi: 10.1122/1.4876935
– volume: 89
  start-page: 084803
  year: 2020
  ident: 2023111012270754800_bib17
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.89.084803
SSID ssj0001077041
Score 2.2901545
Snippet Abstract The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation....
The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation. The effect...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Rheology
Simulation
Viscosity
Title Rheology of a dilute binary mixture of inertial suspension under simple shear flow
URI https://www.proquest.com/docview/3171492574
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELagXVh4Iwql8gATipqH6zQTAtQKIVFQ1UrdIj9FpZKEJhXw7zknDoUBWJzBVoZ7-e58dx9C55RxEghOHM77rkOkT52Ieb7j0TAgQmlCy2r3hxG9m5L7WW9mE265LausbWJpqGUqTI68Gxik7ggEjFxlr45BjTKvqxZCYxM1wQT3Ifhq3gxGT-N1lsUNQ5d4tuIdovduVqgMFiY9M0_h2130o7-tNsjlLTPcRdvWPcTXFT_30IZK9tGOdRWxVcT8AI3HzyUk7wdONWZYzkGAFOZlcy1-mb-bdwGzZVr7QIcXOF_lmalVTxNs2saWOJ-bucA4N4jWWC_St0M0HQ4mt3eOhUdwBNzChcOo0j0mIs4kfCFuED5zdeiGilBPKeJrRqkvo0i6Afc8aSaP9ZhiEKL4DPgTHKFGkibqGGFfQFTGaSQ4Y0SrMIL_Kq39PlV9BUxsocuaULGws8MNhMUirt6wg9iQNbZkbaGLr9NZNTPjl3MYaP7PkXbNkNgqVx6vReHk7-1TtGXQ4avWwTZqFMuVOgMfouAdKyidMgaHdfI4-wSm7M4a
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dBegEKr8vahnFBE4nidzQFVPLUUWKEVSNxS27HVlZZNIIuAP9XfyEzilPZAe-ISH2xZyvizZ-x5fABfpdIiNloEWvfCQORcBqmKeBDJJBbGOiHraPfzgexfie_X3esZ-NXmwlBYZXsm1gd1Xhh6I9-Jiak7RYCJb-VtQKxR5F1tKTQaWJzapwe8slW7J4e4vlucHx9dHvQDzyoQGFRe00BJ67rKpFrl2KK5bbgKXRImVsjIWsGdkpLnaZqHsY6inAp2dZVVaNlzhb8V47zvYFbEeJXpwOz-0eBi-PKqEyZJKCIfYR-m8U45tSV-VB5R_YY_dN9f-XStAqi12vECzHlzlO01-PkIM3ayCPPeNGV-41dLMBz-rCmAn1jhmGL5CAFrma6TednN6JH8ENRFqYR4ZoxZdV-VFBtfTBilqd2xakR1iFlFDNrMjYuHT3D1JoL7DJ1JMbFfgHGDt0AtU6OVEs4mKc5rneM9aXsWQbMM262gMuNrlRNlxjhrfOZxRmLNvFiXYev36LKp0fHKOIYy_8-QtXZBMr-Zq-wFeiv_7t6E9_3L87Ps7GRwugofiJm-SVtcg8707t6uo_0y1RseNAx-vDVOnwF2KAoZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rheology+of+a+dilute+binary+mixture+of+inertial+suspension+under+simple+shear+flow&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Takada%2C+Satoshi&rft.au=Hayakawa%2C+Hisao&rft.au=Garz%C3%B3%2C+Vicente&rft.date=2023-11-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2023&rft.issue=11&rft_id=info:doi/10.1093%2Fptep%2Fptad126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptad126
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon