Rheology of a dilute binary mixture of inertial suspension under simple shear flow
Abstract The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation. The effect of the surrounding viscous gas on the solid particles is accounted for by means of a deterministic viscous drag force plus a stocha...
Saved in:
Published in | Progress of theoretical and experimental physics Vol. 2023; no. 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-3911 2050-3911 |
DOI | 10.1093/ptep/ptad126 |
Cover
Loading…
Abstract | Abstract
The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation. The effect of the surrounding viscous gas on the solid particles is accounted for by means of a deterministic viscous drag force plus a stochastic Langevin-like term defined in terms of the environmental temperature Tenv. Grad’s moment method is employed to determine the temperature ratio and the pressure tensor in terms of the coefficients of restitution, concentration, the masses and diameters of the components of the mixture, and the environmental temperature. Analytical results are compared against event-driven Langevin simulations for mixtures of hard spheres with the same mass density m1/m2 = (σ(1)/σ(2))3, mi and σ(1) being the mass and diameter, respectively, of the species i. It is confirmed that the theoretical predictions agree with simulations of various size ratios σ(1)/σ(2) and for elastic and inelastic collisions in a wide range of parameter space. It is remarkable that the temperature ratio T1/T2 and the viscosity ratio η1/η2 (ηi being the partial contribution of the species i to the total shear viscosity η = η1 + η2) discontinuously change at a certain shear rate as the size ratio increases; this feature (which is expected to occur in the thermodynamic limit) cannot be completely captured by simulations due to the small system size. In addition, a Bhatnagar–Gross–Krook (BGK)-type kinetic model adapted to mixtures of inelastic hard spheres is exactly solved when Tenv is much smaller than the kinetic temperature T. A comparison between the velocity distribution functions obtained from Grad’s method, the BGK model, and simulations is carried out. |
---|---|
AbstractList | The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation. The effect of the surrounding viscous gas on the solid particles is accounted for by means of a deterministic viscous drag force plus a stochastic Langevin-like term defined in terms of the environmental temperature Tenv. Grad’s moment method is employed to determine the temperature ratio and the pressure tensor in terms of the coefficients of restitution, concentration, the masses and diameters of the components of the mixture, and the environmental temperature. Analytical results are compared against event-driven Langevin simulations for mixtures of hard spheres with the same mass density m1/m2 = (σ(1)/σ(2))3, mi and σ(1) being the mass and diameter, respectively, of the species i. It is confirmed that the theoretical predictions agree with simulations of various size ratios σ(1)/σ(2) and for elastic and inelastic collisions in a wide range of parameter space. It is remarkable that the temperature ratio T1/T2 and the viscosity ratio η1/η2 (ηi being the partial contribution of the species i to the total shear viscosity η = η1 + η2) discontinuously change at a certain shear rate as the size ratio increases; this feature (which is expected to occur in the thermodynamic limit) cannot be completely captured by simulations due to the small system size. In addition, a Bhatnagar–Gross–Krook (BGK)-type kinetic model adapted to mixtures of inelastic hard spheres is exactly solved when Tenv is much smaller than the kinetic temperature T. A comparison between the velocity distribution functions obtained from Grad’s method, the BGK model, and simulations is carried out. The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation. The effect of the surrounding viscous gas on the solid particles is accounted for by means of a deterministic viscous drag force plus a stochastic Langevin-like term defined in terms of the environmental temperature Tenv. Grad’s moment method is employed to determine the temperature ratio and the pressure tensor in terms of the coefficients of restitution, concentration, the masses and diameters of the components of the mixture, and the environmental temperature. Analytical results are compared against event-driven Langevin simulations for mixtures of hard spheres with the same mass density m1/m2 = (σ(1)/σ(2))3, mi and σ(1) being the mass and diameter, respectively, of the species i. It is confirmed that the theoretical predictions agree with simulations of various size ratios σ(1)/σ(2) and for elastic and inelastic collisions in a wide range of parameter space. It is remarkable that the temperature ratio T1/T2 and the viscosity ratio η1/η2 (ηi being the partial contribution of the species i to the total shear viscosity η = η1 + η2) discontinuously change at a certain shear rate as the size ratio increases; this feature (which is expected to occur in the thermodynamic limit) cannot be completely captured by simulations due to the small system size. In addition, a Bhatnagar–Gross–Krook (BGK)-type kinetic model adapted to mixtures of inelastic hard spheres is exactly solved when Tenv is much smaller than the kinetic temperature T. A comparison between the velocity distribution functions obtained from Grad’s method, the BGK model, and simulations is carried out. Abstract The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation. The effect of the surrounding viscous gas on the solid particles is accounted for by means of a deterministic viscous drag force plus a stochastic Langevin-like term defined in terms of the environmental temperature Tenv. Grad’s moment method is employed to determine the temperature ratio and the pressure tensor in terms of the coefficients of restitution, concentration, the masses and diameters of the components of the mixture, and the environmental temperature. Analytical results are compared against event-driven Langevin simulations for mixtures of hard spheres with the same mass density m1/m2 = (σ(1)/σ(2))3, mi and σ(1) being the mass and diameter, respectively, of the species i. It is confirmed that the theoretical predictions agree with simulations of various size ratios σ(1)/σ(2) and for elastic and inelastic collisions in a wide range of parameter space. It is remarkable that the temperature ratio T1/T2 and the viscosity ratio η1/η2 (ηi being the partial contribution of the species i to the total shear viscosity η = η1 + η2) discontinuously change at a certain shear rate as the size ratio increases; this feature (which is expected to occur in the thermodynamic limit) cannot be completely captured by simulations due to the small system size. In addition, a Bhatnagar–Gross–Krook (BGK)-type kinetic model adapted to mixtures of inelastic hard spheres is exactly solved when Tenv is much smaller than the kinetic temperature T. A comparison between the velocity distribution functions obtained from Grad’s method, the BGK model, and simulations is carried out. |
Author | Hayakawa, Hisao Garzó, Vicente Takada, Satoshi |
Author_xml | – sequence: 1 givenname: Satoshi orcidid: 0000-0002-2716-1846 surname: Takada fullname: Takada, Satoshi email: takada@go.tuat.ac.jp – sequence: 2 givenname: Hisao orcidid: 0000-0003-3462-5562 surname: Hayakawa fullname: Hayakawa, Hisao email: hisao@yukawa.kyoto-u.ac.jp – sequence: 3 givenname: Vicente orcidid: 0000-0001-6531-9328 surname: Garzó fullname: Garzó, Vicente email: vicenteg@unex.es |
BookMark | eNp9UE1Lw0AQXaSCtfbmD1jw4MXo7CbZbY5S_AJBKHoO02Rit6S7cXeD9t-b0h5E0Mu8gXnvDe-dspF1lhg7F3AtoEhvukjdMLAWUh2xsYQckrQQYvRjP2HTENYAIEBryMSYLRYrcq1733LXcOS1aftIfGks-i3fmK_Ye9qdjCUfDbY89KEjG4yzvLc1eR7MpmuJhxWh503rPs_YcYNtoOkBJ-zt_u51_pg8vzw8zW-fkyoDFRNU1ORYFUusB8y1qiRCo0FTpgRRJhtUStZFUUO6FKJWMwE5EmYzLTGtlumEXex9O-8-egqxXLve2-FlmQotskLmOhtYV3tW5V0Inpqy82YzpCsFlLviyl1x5aG4gS5_0SsTMQ5xo0fT_iW63Itc3_1v_w0CQoSq |
CitedBy_id | crossref_primary_10_1093_ptep_ptaf008 crossref_primary_10_1103_PhysRevE_109_064901 |
Cites_doi | 10.1088/1742-5468/2007/02/P02012 10.1103/PhysRevLett.88.194301 10.1007/978-3-030-04444-2 10.1088/1742-5468/2010/07/P07024 10.1103/PhysRevE.78.020301 10.1103/PhysRevE.106.064902 10.1146/annurev.fluid.33.1.619 10.1103/PhysRevE.101.012904 10.1017/S002211200200263X 10.1016/S0378-4371(99)00153-3 10.1038/nature10667 10.1103/PhysRevE.69.031308 10.1103/PhysRevLett.95.268302 10.1017/CBO9780511977978 10.1146/annurev-fluid-122316-045201 10.1103/PhysRevLett.114.098301 10.1103/PhysRevE.75.061306 10.1103/PhysRevE.69.061303 10.1017/jfm.2017.722 10.1093/ptep/ptz075 10.1039/D0SM01846E 10.1103/PhysRevE.70.061101 10.1209/0295-5075/94/50009 10.1063/1.1428324 10.1103/PhysRevE.83.051301 10.1017/jfm.2021.688 10.1051/epjconf/201714009003 10.1017/S0022112097006496 10.1103/PhysRevE.85.011302 10.1063/5.0134408 10.1103/PhysRevE.92.052205 10.1103/PhysRevE.97.022902 10.1038/nature17167 10.1016/S0378-4371(02)00786-0 10.1002/cpa.3160020403 10.1103/PhysRevLett.111.218301 10.1017/S0022112096007768 10.1017/jfm.2011.454 10.1088/0034-4885/77/4/046602 10.1103/PhysRevE.88.052201 10.1063/1.4798824 10.1103/PhysRevE.66.021308 10.1122/1.550017 10.1017/CBO9781139541008 10.1115/1.3172990 10.1017/jfm.2019.320 10.1103/PhysRevE.96.042903 10.1017/S0022112095002114 10.1088/1742-5468/2010/04/P04013 10.1122/1.5011353 10.1017/S0022112096002224 10.1209/epl/i2006-10143-4 10.1209/epl/i2003-00287-1 10.1103/PhysRevE.86.026709 10.1209/0295-5075/16/3/006 10.1103/PhysRevE.101.032905 10.1103/PhysRevE.102.022907 10.1098/rspa.2004.1420 10.1122/1.4942230 10.1122/1.4876935 10.7566/JPSJ.89.084803 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023 The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023 – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1093/ptep/ptad126 |
DatabaseName | Oxford Journals Open Access (Activated by CARLI) CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central (New) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2050-3911 |
ExternalDocumentID | 10_1093_ptep_ptad126 10.1093/ptep/ptad126 |
GroupedDBID | .I3 0R~ 4.4 5VS AAFWJ AAMVS AAPPN AAPXW AAVAP ABPTD ABXVV ACGFS ADHZD AENEX AENZO AFPKN AFULF AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC BAYMD BTTYL CIDKT D~K EBS EJD ER. GROUPED_DOAJ H13 IAO ISR KQ8 KSI M~E O9- OAWHX OJQWA OK1 PEELM RHF ROL ROX RXO TOX ~D7 88I AAYXX ABEJV ABGNP ABUWG AFKRA AMNDL AZQEC BENPR CCPQU CITATION DWQXO GNUQQ HCIFZ ITC M2P PHGZM PHGZT PIMPY 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c406t-a6ef5ac9badf5a576c2a0f707e461ee42fa662d99d03b11d68105aea4872a3cb3 |
IEDL.DBID | BENPR |
ISSN | 2050-3911 |
IngestDate | Mon Jun 30 12:21:26 EDT 2025 Tue Jul 01 02:09:16 EDT 2025 Thu Apr 24 23:02:24 EDT 2025 Wed Aug 28 03:17:33 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-a6ef5ac9badf5a576c2a0f707e461ee42fa662d99d03b11d68105aea4872a3cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3462-5562 0000-0001-6531-9328 0000-0002-2716-1846 |
OpenAccessLink | https://www.proquest.com/docview/3171492574?pq-origsite=%requestingapplication% |
PQID | 3171492574 |
PQPubID | 7121340 |
ParticipantIDs | proquest_journals_3171492574 crossref_primary_10_1093_ptep_ptad126 crossref_citationtrail_10_1093_ptep_ptad126 oup_primary_10_1093_ptep_ptad126 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Progress of theoretical and experimental physics |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Fall (2023111012270754800_bib52) 2015; 114 Pednekar (2023111012270754800_bib21) 2018; 62 Artoni (2023111012270754800_bib29) 2021; 17 Chamorro (2023111012270754800_bib11) 2015; 92 Gray (2023111012270754800_bib37) 2005; 461 Santos (2023111012270754800_bib59) 2004; 69 Otsuki (2023111012270754800_bib3) 2011; 83 Lootens (2023111012270754800_bib6) 2005; 95 Seto (2023111012270754800_bib4) 2013; 111 Menon (2023111012270754800_bib25) 1997; 28 Jing (2023111012270754800_bib42) 2021; 925 Scala (2023111012270754800_bib18) 2012; 86 Campbell (2023111012270754800_bib28) 1997; 348 Jenkins (2023111012270754800_bib35) 2002; 88 Hayakawa (2023111012270754800_bib13) 2019; 2019 Alam (2023111012270754800_bib43) 2003; 476 Liu (2023111012270754800_bib22) 2019; 871 Puri (2023111012270754800_bib34) 1999; 270 Montanero (2023111012270754800_bib47) 2002; 310 Andreotti (2023111012270754800_bib32) 2013 Garzó (2023111012270754800_bib50) 2010; 2010 Peters (2023111012270754800_bib53) 2016; 532 Vega Reyes (2023111012270754800_bib63) 2007; 75 Garzó (2023111012270754800_bib38) 2006; 75 Khalil (2023111012270754800_bib46) 2018; 97 Saha (2023111012270754800_bib14) 2017; 833 Brown (2023111012270754800_bib5) 2014; 77 Jenkins (2023111012270754800_bib33) 1987; 109 Lutsko (2023111012270754800_bib48) 2004; 70 Sarracino (2023111012270754800_bib44) 2010; 2010 Krishnan (2023111012270754800_bib19) 1996; 321 Grad (2023111012270754800_bib58) 1949; 2 Hsiau (2023111012270754800_bib30) 2002; 14 Takada (2023111012270754800_bib16) 2020; 102 Garzó (2023111012270754800_bib61) 2011; 94 Khalil (2023111012270754800_bib45) 2013; 88 Koch (2023111012270754800_bib8) 2001; 33 Tsao (2023111012270754800_bib9) 1995; 296 Garzó (2023111012270754800_bib23) 2019 Garzó (2023111012270754800_bib62) 2012; 85 Chamorro (2023111012270754800_bib49) 2023; 35 Gómez González (2023111012270754800_bib56) 2022; 106 Sangani (2023111012270754800_bib10) 1996; 313 Gómez González (2023111012270754800_bib55) 2020; 101 Gamonpilas (2023111012270754800_bib20) 2016; 60 Gray (2023111012270754800_bib41) 2018; 50 Garzó (2023111012270754800_bib26) 2002; 66 Bi (2023111012270754800_bib51) 2011; 480 Garzó (2023111012270754800_bib60) 2013; 25 Cwalina (2023111012270754800_bib7) 2004; 58 Sugimoto (2023111012270754800_bib17) 2020; 89 Garzó (2023111012270754800_bib39) 2008; 78 Marks (2023111012270754800_bib40) 2011; 690 Otsuki (2023111012270754800_bib54) 2020; 101 Hayakawa (2023111012270754800_bib12) 2017; 140 Garzó (2023111012270754800_bib27) 2007; 2007 Hayakawa (2023111012270754800_bib15) 2017; 96 Mewis (2023111012270754800_bib2) 2011 Utter (2023111012270754800_bib31) 2004; 69 Zik (2023111012270754800_bib24) 1991; 16 van Kampen (2023111012270754800_bib57) 2007 Trujillo (2023111012270754800_bib36) 2003; 64 Barnes (2023111012270754800_bib1) 1989; 33 |
References_xml | – volume: 2007 start-page: P02012 year: 2007 ident: 2023111012270754800_bib27 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2007/02/P02012 – volume: 88 start-page: 194301 year: 2002 ident: 2023111012270754800_bib35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.194301 – volume-title: Granular Gaseous Flows: A Kinetic Theory Approach to Granular Gaseous Flows year: 2019 ident: 2023111012270754800_bib23 doi: 10.1007/978-3-030-04444-2 – volume: 2010 start-page: P07024 year: 2010 ident: 2023111012270754800_bib50 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2010/07/P07024 – volume: 78 start-page: 020301(R) year: 2008 ident: 2023111012270754800_bib39 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.020301 – volume: 106 start-page: 064902 year: 2022 ident: 2023111012270754800_bib56 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.106.064902 – volume: 33 start-page: 619 year: 2001 ident: 2023111012270754800_bib8 publication-title: Ann. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.33.1.619 – volume: 101 start-page: 012904 year: 2020 ident: 2023111012270754800_bib55 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.012904 – volume: 476 start-page: 69 year: 2003 ident: 2023111012270754800_bib43 publication-title: J. Fluid Mech. doi: 10.1017/S002211200200263X – volume: 270 start-page: 115 year: 1999 ident: 2023111012270754800_bib34 publication-title: Physica A doi: 10.1016/S0378-4371(99)00153-3 – volume-title: Stochastic Processes in Physics and Chemistry year: 2007 ident: 2023111012270754800_bib57 – volume: 480 start-page: 355 year: 2011 ident: 2023111012270754800_bib51 publication-title: Nature doi: 10.1038/nature10667 – volume: 69 start-page: 031308 year: 2004 ident: 2023111012270754800_bib31 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.031308 – volume: 95 start-page: 268302 year: 2005 ident: 2023111012270754800_bib6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.268302 – volume-title: Colloidal Suspension Rheology year: 2011 ident: 2023111012270754800_bib2 doi: 10.1017/CBO9780511977978 – volume: 50 start-page: 407 year: 2018 ident: 2023111012270754800_bib41 publication-title: Ann. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122316-045201 – volume: 114 start-page: 098301 year: 2015 ident: 2023111012270754800_bib52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.098301 – volume: 75 start-page: 061306 year: 2007 ident: 2023111012270754800_bib63 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.75.061306 – volume: 69 start-page: 061303 year: 2004 ident: 2023111012270754800_bib59 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.061303 – volume: 833 start-page: 206 year: 2017 ident: 2023111012270754800_bib14 publication-title: J. Fluid. Mech. doi: 10.1017/jfm.2017.722 – volume: 2019 start-page: 083J01 year: 2019 ident: 2023111012270754800_bib13 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptz075 – volume: 17 start-page: 2596 year: 2021 ident: 2023111012270754800_bib29 publication-title: Soft Matter doi: 10.1039/D0SM01846E – volume: 70 start-page: 061101 year: 2004 ident: 2023111012270754800_bib48 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.061101 – volume: 94 start-page: 50009 year: 2011 ident: 2023111012270754800_bib61 publication-title: EPL doi: 10.1209/0295-5075/94/50009 – volume: 14 start-page: 612 year: 2002 ident: 2023111012270754800_bib30 publication-title: Phys. Fluids doi: 10.1063/1.1428324 – volume: 83 start-page: 051301 year: 2011 ident: 2023111012270754800_bib3 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.051301 – volume: 925 start-page: A29 year: 2021 ident: 2023111012270754800_bib42 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.688 – volume: 140 start-page: 09003 year: 2017 ident: 2023111012270754800_bib12 publication-title: EPJ Web Conf. doi: 10.1051/epjconf/201714009003 – volume: 348 start-page: 85 year: 1997 ident: 2023111012270754800_bib28 publication-title: J. Fluid Mech. doi: 10.1017/S0022112097006496 – volume: 85 start-page: 011302 year: 2012 ident: 2023111012270754800_bib62 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.011302 – volume: 35 start-page: 027121 year: 2023 ident: 2023111012270754800_bib49 publication-title: Phys. Fluids doi: 10.1063/5.0134408 – volume: 92 start-page: 052205 year: 2015 ident: 2023111012270754800_bib11 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.92.052205 – volume: 97 start-page: 022902 year: 2018 ident: 2023111012270754800_bib46 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.022902 – volume: 532 start-page: 214 year: 2016 ident: 2023111012270754800_bib53 publication-title: Nature doi: 10.1038/nature17167 – volume: 310 start-page: 17 year: 2002 ident: 2023111012270754800_bib47 publication-title: Physica A doi: 10.1016/S0378-4371(02)00786-0 – volume: 2 start-page: 331 year: 1949 ident: 2023111012270754800_bib58 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160020403 – volume: 111 start-page: 218301 year: 2013 ident: 2023111012270754800_bib4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.218301 – volume: 321 start-page: 371 year: 1996 ident: 2023111012270754800_bib19 publication-title: J. Fluid Mech. doi: 10.1017/S0022112096007768 – volume: 690 start-page: 499 year: 2011 ident: 2023111012270754800_bib40 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.454 – volume: 77 start-page: 040602 year: 2014 ident: 2023111012270754800_bib5 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/77/4/046602 – volume: 88 start-page: 052201 year: 2013 ident: 2023111012270754800_bib45 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.88.052201 – volume: 25 start-page: 043301 year: 2013 ident: 2023111012270754800_bib60 publication-title: Phys. Fluids doi: 10.1063/1.4798824 – volume: 66 start-page: 021308 year: 2002 ident: 2023111012270754800_bib26 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.66.021308 – volume: 33 start-page: 329 year: 1989 ident: 2023111012270754800_bib1 publication-title: J. Rheol. doi: 10.1122/1.550017 – volume: 28 start-page: 1220 year: 1997 ident: 2023111012270754800_bib25 publication-title: Science – volume-title: Granular Media: Between Fluid and Solid year: 2013 ident: 2023111012270754800_bib32 doi: 10.1017/CBO9781139541008 – volume: 109 start-page: 27 year: 1987 ident: 2023111012270754800_bib33 publication-title: J. Appl. Mech. doi: 10.1115/1.3172990 – volume: 871 start-page: 636 year: 2019 ident: 2023111012270754800_bib22 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.320 – volume: 96 start-page: 042903 year: 2017 ident: 2023111012270754800_bib15 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.042903 – volume: 296 start-page: 211 year: 1995 ident: 2023111012270754800_bib9 publication-title: J. Fluid Mech. doi: 10.1017/S0022112095002114 – volume: 2010 start-page: P04013 year: 2010 ident: 2023111012270754800_bib44 publication-title: J. Stat. Mech. doi: 10.1088/1742-5468/2010/04/P04013 – volume: 62 start-page: 513 year: 2018 ident: 2023111012270754800_bib21 publication-title: J. Rheol. doi: 10.1122/1.5011353 – volume: 313 start-page: 309 year: 1996 ident: 2023111012270754800_bib10 publication-title: J. Fluid Mech. doi: 10.1017/S0022112096002224 – volume: 75 start-page: 521 year: 2006 ident: 2023111012270754800_bib38 publication-title: Europhys. Lett. doi: 10.1209/epl/i2006-10143-4 – volume: 64 start-page: 190 year: 2003 ident: 2023111012270754800_bib36 publication-title: Europhys. Lett. doi: 10.1209/epl/i2003-00287-1 – volume: 86 start-page: 026709 year: 2012 ident: 2023111012270754800_bib18 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.026709 – volume: 16 start-page: 255 year: 1991 ident: 2023111012270754800_bib24 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/16/3/006 – volume: 101 start-page: 032905 year: 2020 ident: 2023111012270754800_bib54 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.101.032905 – volume: 102 start-page: 022907 year: 2020 ident: 2023111012270754800_bib16 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.102.022907 – volume: 461 start-page: 1447 year: 2005 ident: 2023111012270754800_bib37 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2004.1420 – volume: 60 start-page: 289 year: 2016 ident: 2023111012270754800_bib20 publication-title: J. Rheol. doi: 10.1122/1.4942230 – volume: 58 start-page: 949 year: 2004 ident: 2023111012270754800_bib7 publication-title: J. Rheol. doi: 10.1122/1.4876935 – volume: 89 start-page: 084803 year: 2020 ident: 2023111012270754800_bib17 publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.89.084803 |
SSID | ssj0001077041 |
Score | 2.2901545 |
Snippet | Abstract
The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation.... The rheology of a dilute binary mixture of inertial suspension under simple shear flow is analyzed in the context of the Boltzmann kinetic equation. The effect... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Rheology Simulation Viscosity |
Title | Rheology of a dilute binary mixture of inertial suspension under simple shear flow |
URI | https://www.proquest.com/docview/3171492574 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELagXVh4Iwql8gATipqH6zQTAtQKIVFQ1UrdIj9FpZKEJhXw7zknDoUBWJzBVoZ7-e58dx9C55RxEghOHM77rkOkT52Ieb7j0TAgQmlCy2r3hxG9m5L7WW9mE265LausbWJpqGUqTI68Gxik7ggEjFxlr45BjTKvqxZCYxM1wQT3Ifhq3gxGT-N1lsUNQ5d4tuIdovduVqgMFiY9M0_h2130o7-tNsjlLTPcRdvWPcTXFT_30IZK9tGOdRWxVcT8AI3HzyUk7wdONWZYzkGAFOZlcy1-mb-bdwGzZVr7QIcXOF_lmalVTxNs2saWOJ-bucA4N4jWWC_St0M0HQ4mt3eOhUdwBNzChcOo0j0mIs4kfCFuED5zdeiGilBPKeJrRqkvo0i6Afc8aSaP9ZhiEKL4DPgTHKFGkibqGGFfQFTGaSQ4Y0SrMIL_Kq39PlV9BUxsocuaULGws8MNhMUirt6wg9iQNbZkbaGLr9NZNTPjl3MYaP7PkXbNkNgqVx6vReHk7-1TtGXQ4avWwTZqFMuVOgMfouAdKyidMgaHdfI4-wSm7M4a |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dBegEKr8vahnFBE4nidzQFVPLUUWKEVSNxS27HVlZZNIIuAP9XfyEzilPZAe-ISH2xZyvizZ-x5fABfpdIiNloEWvfCQORcBqmKeBDJJBbGOiHraPfzgexfie_X3esZ-NXmwlBYZXsm1gd1Xhh6I9-Jiak7RYCJb-VtQKxR5F1tKTQaWJzapwe8slW7J4e4vlucHx9dHvQDzyoQGFRe00BJ67rKpFrl2KK5bbgKXRImVsjIWsGdkpLnaZqHsY6inAp2dZVVaNlzhb8V47zvYFbEeJXpwOz-0eBi-PKqEyZJKCIfYR-m8U45tSV-VB5R_YY_dN9f-XStAqi12vECzHlzlO01-PkIM3ayCPPeNGV-41dLMBz-rCmAn1jhmGL5CAFrma6TednN6JH8ENRFqYR4ZoxZdV-VFBtfTBilqd2xakR1iFlFDNrMjYuHT3D1JoL7DJ1JMbFfgHGDt0AtU6OVEs4mKc5rneM9aXsWQbMM262gMuNrlRNlxjhrfOZxRmLNvFiXYev36LKp0fHKOIYy_8-QtXZBMr-Zq-wFeiv_7t6E9_3L87Ps7GRwugofiJm-SVtcg8707t6uo_0y1RseNAx-vDVOnwF2KAoZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rheology+of+a+dilute+binary+mixture+of+inertial+suspension+under+simple+shear+flow&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Takada%2C+Satoshi&rft.au=Hayakawa%2C+Hisao&rft.au=Garz%C3%B3%2C+Vicente&rft.date=2023-11-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2023&rft.issue=11&rft_id=info:doi/10.1093%2Fptep%2Fptad126&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptad126 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |