An integrated-molecular-beacon based multiple exponential strand displacement amplification strategy for ultrasensitive detection of DNA methyltransferase activity

DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 10; no. 8; pp. 2290 - 2297
Main Authors Cui, Yun-Xi, Feng, Xue-Nan, Wang, Ya-Xin, Pan, Hui-Yu, Pan, Hua, Kong, De-Ming
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 28.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10 −6 U mL −1 , which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis.
AbstractList DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10 U mL , which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis.
DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10 −6 U mL −1 , which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis.
An ultra-sensitive biosensor using only two DNA oligos to initiate multiple signal amplification cycles. DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10 –6 U mL –1 , which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis.
DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10−6 U mL−1, which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis.
DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10-6 U mL-1, which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis.DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10-6 U mL-1, which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis.
Author Pan, Hua
Pan, Hui-Yu
Wang, Ya-Xin
Kong, De-Ming
Cui, Yun-Xi
Feng, Xue-Nan
AuthorAffiliation b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China
a State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China . Email: kongdem@nankai.edu.cn ; Fax: +86-22-23502458
AuthorAffiliation_xml – name: a State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China . Email: kongdem@nankai.edu.cn ; Fax: +86-22-23502458
– name: b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China
Author_xml – sequence: 1
  givenname: Yun-Xi
  orcidid: 0000-0002-3830-3336
  surname: Cui
  fullname: Cui, Yun-Xi
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University
– sequence: 2
  givenname: Xue-Nan
  surname: Feng
  fullname: Feng, Xue-Nan
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University
– sequence: 3
  givenname: Ya-Xin
  surname: Wang
  fullname: Wang, Ya-Xin
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University
– sequence: 4
  givenname: Hui-Yu
  surname: Pan
  fullname: Pan, Hui-Yu
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University
– sequence: 5
  givenname: Hua
  surname: Pan
  fullname: Pan, Hua
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University
– sequence: 6
  givenname: De-Ming
  orcidid: 0000-0002-9216-8040
  surname: Kong
  fullname: Kong, De-Ming
  organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30881654$$D View this record in MEDLINE/PubMed
BookMark eNptkl1vFSEQhompsfXYG3-AIfGmMVmFZZfdvTE5OVo_0uiFek1YGFoaFlZgTzy_xz9aTr_URm4gzPO-zDDzFB344AGh55S8poQNbzb9tw1pKak_P0JHNWloxVs2HNyfa3KIjlO6JGUxRtu6e4IOGel7ytvmCP1ee2x9hvMoM-hqCg7U4mSsRpAqeDzKBBpPi8t2doDh11ye99lKh1OO0musbZqdVDCVayyn2Vljlcy2iPdEsd5hEyIuFrGY-WSz3QLWkEFdU8Hgd1_WeIJ8sdszPhnYk1iW-Nbm3TP02EiX4Ph2X6Efp--_bz5WZ18_fNqszyrVEJ4r2QxG68b0ozZUjbShXW-AspaOY69Vx0wrGQNJO0V0zVUnVd0BNwMd-DB2HVuhtze-8zJOoFUpKEon5mgnGXciSCv-jXh7Ic7DVnDWt7yjxeDk1iCGnwukLCabFDgnPYQliZoOjBMylEas0MsH6GVYoi_lFarn9UApqwv14u-M7lO5618ByA2gYkgpghHK5uvPLwlaJygR-ykRf6akSF49kNy5_ge-AgEQwkY
CitedBy_id crossref_primary_10_1021_acs_analchem_0c04501
crossref_primary_10_1039_D1CC01150B
crossref_primary_10_1038_s41598_023_42383_9
crossref_primary_10_1021_acs_analchem_4c05563
crossref_primary_10_1021_acssensors_0c02016
crossref_primary_10_1039_C9NR09979D
crossref_primary_10_1016_j_bios_2021_113446
crossref_primary_10_1007_s00604_024_06509_8
crossref_primary_10_1016_j_bios_2020_112271
crossref_primary_10_1016_j_aca_2023_341302
crossref_primary_10_1016_j_snb_2022_132480
crossref_primary_10_1016_j_bios_2019_111700
crossref_primary_10_1016_j_microc_2020_105775
crossref_primary_10_1021_acs_analchem_2c00037
crossref_primary_10_1166_jno_2021_3037
crossref_primary_10_1186_s12951_021_01149_z
crossref_primary_10_1007_s13205_023_03628_6
crossref_primary_10_1021_acsami_1c01525
crossref_primary_10_1016_j_trac_2023_116998
crossref_primary_10_1016_j_snb_2022_132524
crossref_primary_10_1039_D0SC03240A
crossref_primary_10_1016_j_saa_2023_123781
crossref_primary_10_1016_j_aca_2022_340266
crossref_primary_10_1038_s41598_021_83640_z
crossref_primary_10_1021_acs_analchem_4c05225
crossref_primary_10_1016_j_aca_2022_339914
crossref_primary_10_1021_acs_analchem_9b01557
crossref_primary_10_1002_advs_202104084
crossref_primary_10_1002_chem_202000099
crossref_primary_10_1039_C9NR04608A
crossref_primary_10_1021_acs_jafc_1c05780
crossref_primary_10_1039_C9CC03758F
crossref_primary_10_1039_D1CC00583A
crossref_primary_10_1039_D1SC00189B
crossref_primary_10_1016_j_snb_2021_130691
crossref_primary_10_1002_adbi_202300668
crossref_primary_10_1039_D4CC03087G
crossref_primary_10_1016_j_talanta_2019_120216
crossref_primary_10_1016_j_aca_2020_04_061
crossref_primary_10_1016_j_aca_2022_340732
crossref_primary_10_1016_j_bpj_2021_01_043
crossref_primary_10_1016_j_aca_2019_05_014
crossref_primary_10_1002_smll_202200983
crossref_primary_10_1016_j_bios_2021_113739
crossref_primary_10_1021_acscentsci_1c00277
crossref_primary_10_1021_acssensors_0c02665
crossref_primary_10_1016_j_aca_2020_11_043
crossref_primary_10_1016_j_snb_2025_137298
crossref_primary_10_1039_D0AN00008F
crossref_primary_10_1016_j_snb_2023_133655
crossref_primary_10_1039_C9AN01568J
crossref_primary_10_1016_j_bios_2022_114283
crossref_primary_10_1021_acsabm_1c00445
Cites_doi 10.1039/c3cc43353f
10.1016/j.aca.2016.11.003
10.1016/j.bios.2014.02.035
10.1038/nrc1045
10.1039/C8SC02215A
10.1002/cbic.201000195
10.1016/j.bios.2014.07.079
10.1021/ac4011292
10.1021/ac502845b
10.1039/C5AY03397G
10.1016/0165-022X(91)90077-A
10.1021/ac902670c
10.1039/C4CS00325J
10.1016/0378-4347(94)00327-0
10.1016/j.snb.2017.01.013
10.1016/j.aca.2016.03.028
10.1039/C8CC01764F
10.1093/nar/gkq047
10.1078/0344-0338-00436
10.1128/IAI.69.12.7197-7204.2001
10.1039/C7CC03736H
10.1038/35047554
10.1038/am.2014.84
10.1074/jbc.274.46.33002
10.1016/S0021-9258(18)49938-3
10.1128/jb.173.6.2068-2076.1991
10.1016/j.snb.2015.09.090
10.1016/j.talanta.2016.01.026
10.1016/0076-6879(94)36030-8
10.1016/S0065-230X(08)60702-2
10.1016/j.bios.2015.12.100
10.1002/ijc.21054
10.1021/acsami.7b17813
10.1021/acs.analchem.6b03163
10.1080/07357900802620794
10.1016/j.bios.2016.12.061
10.1126/science.284.5416.967
10.1097/PPO.0b013e31803c7245
10.1016/j.bios.2016.02.057
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
This journal is © The Royal Society of Chemistry 2019 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
– notice: This journal is © The Royal Society of Chemistry 2019 2019
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/C8SC05102J
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 2297
ExternalDocumentID PMC6385671
30881654
10_1039_C8SC05102J
Genre Journal Article
GroupedDBID 0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CITATION
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c406t-a49fdd4f8bdf1cb14178fe1351bb8dc73f5a33ea17c0d26c7ac27e6f91969b773
ISSN 2041-6520
IngestDate Thu Aug 21 13:13:02 EDT 2025
Tue Aug 05 11:27:49 EDT 2025
Mon Jul 14 10:33:51 EDT 2025
Mon Jul 21 05:51:20 EDT 2025
Tue Jul 01 03:46:25 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-a49fdd4f8bdf1cb14178fe1351bb8dc73f5a33ea17c0d26c7ac27e6f91969b773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9216-8040
0000-0002-3830-3336
OpenAccessLink http://dx.doi.org/10.1039/c8sc05102j
PMID 30881654
PQID 2186291132
PQPubID 2047492
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6385671
proquest_miscellaneous_2193600903
proquest_journals_2186291132
pubmed_primary_30881654
crossref_citationtrail_10_1039_C8SC05102J
crossref_primary_10_1039_C8SC05102J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-28
PublicationDateYYYYMMDD 2019-02-28
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-28
  day: 28
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Reik (C8SC05102J-(cit1)/*[position()=1]) 2001; 2
Elsinghorst (C8SC05102J-(cit40)/*[position()=1]) 1994; 236
Miyamoto (C8SC05102J-(cit9)/*[position()=1]) 2005; 116
Low (C8SC05102J-(cit11)/*[position()=1]) 2001; 69
Yao (C8SC05102J-(cit35)/*[position()=1]) 2018; 54
Adams (C8SC05102J-(cit17)/*[position()=1]) 1991; 22
Zhou (C8SC05102J-(cit30)/*[position()=1]) 2016; 223
Wang (C8SC05102J-(cit34)/*[position()=1]) 2018; 9
Xing (C8SC05102J-(cit31)/*[position()=1]) 2014; 86
Jurkowska (C8SC05102J-(cit2)/*[position()=1]) 2011; 12
Lennard (C8SC05102J-(cit16)/*[position()=1]) 1994; 661
Jiang (C8SC05102J-(cit19)/*[position()=1]) 2017; 949
Li (C8SC05102J-(cit22)/*[position()=1]) 2010; 82
Laird (C8SC05102J-(cit4)/*[position()=1]) 2003; 3
Zhao (C8SC05102J-(cit37)/*[position()=1]) 2014; 6
Zhao (C8SC05102J-(cit25)/*[position()=1]) 2015; 63
Hong (C8SC05102J-(cit24)/*[position()=1]) 2016; 152
Heithoff (C8SC05102J-(cit10)/*[position()=1]) 1999; 284
Jing (C8SC05102J-(cit26)/*[position()=1]) 2014; 58
Zeng (C8SC05102J-(cit21)/*[position()=1]) 2013; 85
Liu (C8SC05102J-(cit28)/*[position()=1]) 2016; 80
Vanaja (C8SC05102J-(cit7)/*[position()=1]) 2009; 27
Wood (C8SC05102J-(cit3)/*[position()=1]) 2010; 38
Baylin (C8SC05102J-(cit5)/*[position()=1]) 1998; 72
Huang (C8SC05102J-(cit20)/*[position()=1]) 2017; 91
Bi (C8SC05102J-(cit33)/*[position()=1]) 2013; 49
Chen (C8SC05102J-(cit38)/*[position()=1]) 2018; 10
Liu (C8SC05102J-(cit23)/*[position()=1]) 2016; 920
Kwok (C8SC05102J-(cit29)/*[position()=1]) 2015; 44
Esteller (C8SC05102J-(cit6)/*[position()=1]) 2001; 61
Pradhan (C8SC05102J-(cit13)/*[position()=1]) 1999; 274
Li (C8SC05102J-(cit32)/*[position()=1]) 2016; 81
Zhang (C8SC05102J-(cit27)/*[position()=1]) 2016; 88
Li (C8SC05102J-(cit39)/*[position()=1]) 2016; 8
Rebeck (C8SC05102J-(cit14)/*[position()=1]) 1991; 173
Boltze (C8SC05102J-(cit8)/*[position()=1]) 2003; 199
Cui (C8SC05102J-(cit18)/*[position()=1]) 2017; 244
Ma (C8SC05102J-(cit36)/*[position()=1]) 2017; 53
Som (C8SC05102J-(cit15)/*[position()=1]) 1991; 266
Brueckner (C8SC05102J-(cit12)/*[position()=1]) 2007; 13
References_xml – volume: 49
  start-page: 6906
  year: 2013
  ident: C8SC05102J-(cit33)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc43353f
– volume: 949
  start-page: 83
  year: 2017
  ident: C8SC05102J-(cit19)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.11.003
– volume: 58
  start-page: 40
  year: 2014
  ident: C8SC05102J-(cit26)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.02.035
– volume: 3
  start-page: 253
  year: 2003
  ident: C8SC05102J-(cit4)/*[position()=1]
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1045
– volume: 9
  start-page: 6053
  year: 2018
  ident: C8SC05102J-(cit34)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02215A
– volume: 12
  start-page: 206
  year: 2011
  ident: C8SC05102J-(cit2)/*[position()=1]
  publication-title: ChemBioChem
  doi: 10.1002/cbic.201000195
– volume: 63
  start-page: 458
  year: 2015
  ident: C8SC05102J-(cit25)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.07.079
– volume: 85
  start-page: 6143
  year: 2013
  ident: C8SC05102J-(cit21)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac4011292
– volume: 86
  start-page: 11269
  year: 2014
  ident: C8SC05102J-(cit31)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac502845b
– volume: 8
  start-page: 2771
  year: 2016
  ident: C8SC05102J-(cit39)/*[position()=1]
  publication-title: Anal. Methods
  doi: 10.1039/C5AY03397G
– volume: 22
  start-page: 19
  year: 1991
  ident: C8SC05102J-(cit17)/*[position()=1]
  publication-title: J. Biochem. Biophys. Methods
  doi: 10.1016/0165-022X(91)90077-A
– volume: 82
  start-page: 1935
  year: 2010
  ident: C8SC05102J-(cit22)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac902670c
– volume: 44
  start-page: 4228
  year: 2015
  ident: C8SC05102J-(cit29)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00325J
– volume: 661
  start-page: 25
  year: 1994
  ident: C8SC05102J-(cit16)/*[position()=1]
  publication-title: J. Chromatogr. B: Biomed. Sci. Appl.
  doi: 10.1016/0378-4347(94)00327-0
– volume: 244
  start-page: 599
  year: 2017
  ident: C8SC05102J-(cit18)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2017.01.013
– volume: 920
  start-page: 80
  year: 2016
  ident: C8SC05102J-(cit23)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.03.028
– volume: 54
  start-page: 4774
  year: 2018
  ident: C8SC05102J-(cit35)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC01764F
– volume: 38
  start-page: e107
  year: 2010
  ident: C8SC05102J-(cit3)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq047
– volume: 199
  start-page: 399
  year: 2003
  ident: C8SC05102J-(cit8)/*[position()=1]
  publication-title: Pathol., Res. Pract.
  doi: 10.1078/0344-0338-00436
– volume: 69
  start-page: 7197
  year: 2001
  ident: C8SC05102J-(cit11)/*[position()=1]
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.69.12.7197-7204.2001
– volume: 53
  start-page: 6868
  year: 2017
  ident: C8SC05102J-(cit36)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC03736H
– volume: 2
  start-page: 21
  year: 2001
  ident: C8SC05102J-(cit1)/*[position()=1]
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/35047554
– volume: 6
  start-page: e131
  year: 2014
  ident: C8SC05102J-(cit37)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2014.84
– volume: 274
  start-page: 33002
  year: 1999
  ident: C8SC05102J-(cit13)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.46.33002
– volume: 266
  start-page: 2937
  year: 1991
  ident: C8SC05102J-(cit15)/*[position()=1]
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)49938-3
– volume: 173
  start-page: 2068
  year: 1991
  ident: C8SC05102J-(cit14)/*[position()=1]
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.173.6.2068-2076.1991
– volume: 223
  start-page: 280
  year: 2016
  ident: C8SC05102J-(cit30)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2015.09.090
– volume: 152
  start-page: 228
  year: 2016
  ident: C8SC05102J-(cit24)/*[position()=1]
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.01.026
– volume: 236
  start-page: 405
  year: 1994
  ident: C8SC05102J-(cit40)/*[position()=1]
  publication-title: Methods Enzymol.
  doi: 10.1016/0076-6879(94)36030-8
– volume: 72
  start-page: 141
  year: 1998
  ident: C8SC05102J-(cit5)/*[position()=1]
  publication-title: Adv. Cancer Res.
  doi: 10.1016/S0065-230X(08)60702-2
– volume: 80
  start-page: 74
  year: 2016
  ident: C8SC05102J-(cit28)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.12.100
– volume: 116
  start-page: 407
  year: 2005
  ident: C8SC05102J-(cit9)/*[position()=1]
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.21054
– volume: 10
  start-page: 6887
  year: 2018
  ident: C8SC05102J-(cit38)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17813
– volume: 88
  start-page: 11108
  year: 2016
  ident: C8SC05102J-(cit27)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b03163
– volume: 61
  start-page: 3225
  year: 2001
  ident: C8SC05102J-(cit6)/*[position()=1]
  publication-title: Cancer Res.
– volume: 27
  start-page: 549
  year: 2009
  ident: C8SC05102J-(cit7)/*[position()=1]
  publication-title: Cancer Invest.
  doi: 10.1080/07357900802620794
– volume: 91
  start-page: 417
  year: 2017
  ident: C8SC05102J-(cit20)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.12.061
– volume: 284
  start-page: 967
  year: 1999
  ident: C8SC05102J-(cit10)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.284.5416.967
– volume: 13
  start-page: 17
  year: 2007
  ident: C8SC05102J-(cit12)/*[position()=1]
  publication-title: Cancer J.
  doi: 10.1097/PPO.0b013e31803c7245
– volume: 81
  start-page: 111
  year: 2016
  ident: C8SC05102J-(cit32)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.02.057
SSID ssj0000331527
Score 2.482013
Snippet DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification...
An ultra-sensitive biosensor using only two DNA oligos to initiate multiple signal amplification cycles. DNA methylation is a significant epigenetic mechanism...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2290
SubjectTerms Amplification
Chemistry
Deoxyribonucleic acid
DNA
DNA methylation
Enlargement
Fluorescence
Gene expression
Oligonucleotides
Substrates
Title An integrated-molecular-beacon based multiple exponential strand displacement amplification strategy for ultrasensitive detection of DNA methyltransferase activity
URI https://www.ncbi.nlm.nih.gov/pubmed/30881654
https://www.proquest.com/docview/2186291132
https://www.proquest.com/docview/2193600903
https://pubmed.ncbi.nlm.nih.gov/PMC6385671
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wAXxD-FZWUEF4QMSZwmzrEqu6pWS0HQQnqKYjsWRZCuto0EPAHvwYsydmInYVdo4RJV9mjSar6OZ8bzg9DThOW-pCokUcjBQfGZIgllEQkoFz4HE9Y3wZzX82i2DI_TcToY_OxkLVU7_kL8uLCu5H-kCmsgV10l-w-SdUxhAT6DfOEJEobnpWQ8Kdt2D5J8tZNuCdd6rnyuTyjZpgwW3043pU4OqktEdMRcrrcmKavONNfJ5aqJ4RkKYF3ncwKLM2BWbutMI1nsCmFNzVfziZlD_V3TgBFcaErTo0OPpegav645ga0l0jfItmasE5KYVibFYFWVJF23tmqtldKqIPMW0h-bePcqB1q3-rYO686qNVlV3cCGrqVyheJG_wVe6JNoHHg9Ze11QMm6mjeox46eOxI8qjuqCrYVWv8En9uDz172z99kR8uTk2xxmC6uoL0AHI5giPbefVimKxev8yhtJgC772W73dLkZcu-b9-cc1r-zL3tGDOLG-h644XgSQ2pm2hQlLfQ1akd_ncb_ZqU-C_QwgZa2EILd6CFa2jhLrRwD1rYQgsDtHAfWthBC28UBmjhc9DCFlp30PLocDGdkWaeBxFgNu5IHiZKylAxLpUvuB_6MVOFHhHJOZMipmqcU1rkfiw8GUQizkUQF5FKdAsnHsf0LhqW8GvuIxwJFnPYF0rHF2TOInA8gDsHfycPhTdCz6wUMtE0u9czV75kJumCJtmUvZ8aiR2P0BNHe1q3eLmQat8KM2tUwDbTA90CMBdoMEKP3TaISt-65WWxqTRNQsGrSDw6Qvdq2bvXUDjjdTnhCMU9VDgC3fy9v1OuP5km8HBujqPYf3CJ9z5E19r_1z4a7s6q4hGY0jt-YEJQBw3WfwMPCNjL
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated-molecular-beacon+based+multiple+exponential+strand+displacement+amplification+strategy+for+ultrasensitive+detection+of+DNA+methyltransferase+activity&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Cui%2C+Yun-Xi&rft.au=Feng%2C+Xue-Nan&rft.au=Wang%2C+Ya-Xin&rft.au=Pan%2C+Hui-Yu&rft.date=2019-02-28&rft.issn=2041-6520&rft.volume=10&rft.issue=8&rft.spage=2290&rft_id=info:doi/10.1039%2Fc8sc05102j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon