An integrated-molecular-beacon based multiple exponential strand displacement amplification strategy for ultrasensitive detection of DNA methyltransferase activity
DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop...
Saved in:
Published in | Chemical science (Cambridge) Vol. 10; no. 8; pp. 2290 - 2297 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
28.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10
−6
U mL
−1
, which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis. |
---|---|
AbstractList | DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10
U mL
, which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis. DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10 −6 U mL −1 , which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis. An ultra-sensitive biosensor using only two DNA oligos to initiate multiple signal amplification cycles. DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10 –6 U mL –1 , which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis. DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10−6 U mL−1, which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis. DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10-6 U mL-1, which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis.DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification catalyzed by methyltransferase (MTase) plays important roles in the modulation of gene expression and other cellular activities. Herein, we develop a simple and sensitive biosensing platform for the detection of DNA MTase activity by using only two oligonucleotides. The fluorophore labeled molecular beacon (MB) can be methylated by MTase and subsequently cleaved by endonuclease DpnI at the stem, giving a shortened MB. The shortened MB can then hybridize with a primer DNA, initiating a cycle of strand displacement amplification (SDA) reactions. The obtained SDA products can unfold new MB and initiate another cycle of SDA reaction. Therefore, continuous enlargement of SDA and exponential amplification of the fluorescence signal are achieved. Because the triple functions of substrate, template and probe are elegantly integrated in one oligonucleotide, only two oligonucleotides are necessary for multiple amplification cycles, which not only reduces the complexity of the system, but also overcomes the laborious and cumbersome operation that is always a challenge in conventional methods. This platform exhibits an extremely low limit of detection of 3.3 × 10-6 U mL-1, which is the lowest to our knowledge. The proposed MTase-sensing platform was also demonstrated to perform well in a real-time monitoring mode, which can achieve a further simplified and high-throughput detection. The sensing strategy might be extended to the activity detection of other enzymes, thus showing great application potential in bioanalysis and clinical diagnosis. |
Author | Pan, Hua Pan, Hui-Yu Wang, Ya-Xin Kong, De-Ming Cui, Yun-Xi Feng, Xue-Nan |
AuthorAffiliation | b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China a State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China . Email: kongdem@nankai.edu.cn ; Fax: +86-22-23502458 |
AuthorAffiliation_xml | – name: a State Key Laboratory of Medicinal Chemical Biology , Tianjin Key Laboratory of Biosensing and Molecular Recognition , Research Centre for Analytical Sciences , College of Chemistry , Nankai University , Tianjin 300071 , P. R. China . Email: kongdem@nankai.edu.cn ; Fax: +86-22-23502458 – name: b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin , 300071 , P. R. China |
Author_xml | – sequence: 1 givenname: Yun-Xi orcidid: 0000-0002-3830-3336 surname: Cui fullname: Cui, Yun-Xi organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University – sequence: 2 givenname: Xue-Nan surname: Feng fullname: Feng, Xue-Nan organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University – sequence: 3 givenname: Ya-Xin surname: Wang fullname: Wang, Ya-Xin organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University – sequence: 4 givenname: Hui-Yu surname: Pan fullname: Pan, Hui-Yu organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University – sequence: 5 givenname: Hua surname: Pan fullname: Pan, Hua organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University – sequence: 6 givenname: De-Ming orcidid: 0000-0002-9216-8040 surname: Kong fullname: Kong, De-Ming organization: State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, Nankai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30881654$$D View this record in MEDLINE/PubMed |
BookMark | eNptkl1vFSEQhompsfXYG3-AIfGmMVmFZZfdvTE5OVo_0uiFek1YGFoaFlZgTzy_xz9aTr_URm4gzPO-zDDzFB344AGh55S8poQNbzb9tw1pKak_P0JHNWloxVs2HNyfa3KIjlO6JGUxRtu6e4IOGel7ytvmCP1ee2x9hvMoM-hqCg7U4mSsRpAqeDzKBBpPi8t2doDh11ye99lKh1OO0musbZqdVDCVayyn2Vljlcy2iPdEsd5hEyIuFrGY-WSz3QLWkEFdU8Hgd1_WeIJ8sdszPhnYk1iW-Nbm3TP02EiX4Ph2X6Efp--_bz5WZ18_fNqszyrVEJ4r2QxG68b0ozZUjbShXW-AspaOY69Vx0wrGQNJO0V0zVUnVd0BNwMd-DB2HVuhtze-8zJOoFUpKEon5mgnGXciSCv-jXh7Ic7DVnDWt7yjxeDk1iCGnwukLCabFDgnPYQliZoOjBMylEas0MsH6GVYoi_lFarn9UApqwv14u-M7lO5618ByA2gYkgpghHK5uvPLwlaJygR-ykRf6akSF49kNy5_ge-AgEQwkY |
CitedBy_id | crossref_primary_10_1021_acs_analchem_0c04501 crossref_primary_10_1039_D1CC01150B crossref_primary_10_1038_s41598_023_42383_9 crossref_primary_10_1021_acs_analchem_4c05563 crossref_primary_10_1021_acssensors_0c02016 crossref_primary_10_1039_C9NR09979D crossref_primary_10_1016_j_bios_2021_113446 crossref_primary_10_1007_s00604_024_06509_8 crossref_primary_10_1016_j_bios_2020_112271 crossref_primary_10_1016_j_aca_2023_341302 crossref_primary_10_1016_j_snb_2022_132480 crossref_primary_10_1016_j_bios_2019_111700 crossref_primary_10_1016_j_microc_2020_105775 crossref_primary_10_1021_acs_analchem_2c00037 crossref_primary_10_1166_jno_2021_3037 crossref_primary_10_1186_s12951_021_01149_z crossref_primary_10_1007_s13205_023_03628_6 crossref_primary_10_1021_acsami_1c01525 crossref_primary_10_1016_j_trac_2023_116998 crossref_primary_10_1016_j_snb_2022_132524 crossref_primary_10_1039_D0SC03240A crossref_primary_10_1016_j_saa_2023_123781 crossref_primary_10_1016_j_aca_2022_340266 crossref_primary_10_1038_s41598_021_83640_z crossref_primary_10_1021_acs_analchem_4c05225 crossref_primary_10_1016_j_aca_2022_339914 crossref_primary_10_1021_acs_analchem_9b01557 crossref_primary_10_1002_advs_202104084 crossref_primary_10_1002_chem_202000099 crossref_primary_10_1039_C9NR04608A crossref_primary_10_1021_acs_jafc_1c05780 crossref_primary_10_1039_C9CC03758F crossref_primary_10_1039_D1CC00583A crossref_primary_10_1039_D1SC00189B crossref_primary_10_1016_j_snb_2021_130691 crossref_primary_10_1002_adbi_202300668 crossref_primary_10_1039_D4CC03087G crossref_primary_10_1016_j_talanta_2019_120216 crossref_primary_10_1016_j_aca_2020_04_061 crossref_primary_10_1016_j_aca_2022_340732 crossref_primary_10_1016_j_bpj_2021_01_043 crossref_primary_10_1016_j_aca_2019_05_014 crossref_primary_10_1002_smll_202200983 crossref_primary_10_1016_j_bios_2021_113739 crossref_primary_10_1021_acscentsci_1c00277 crossref_primary_10_1021_acssensors_0c02665 crossref_primary_10_1016_j_aca_2020_11_043 crossref_primary_10_1016_j_snb_2025_137298 crossref_primary_10_1039_D0AN00008F crossref_primary_10_1016_j_snb_2023_133655 crossref_primary_10_1039_C9AN01568J crossref_primary_10_1016_j_bios_2022_114283 crossref_primary_10_1021_acsabm_1c00445 |
Cites_doi | 10.1039/c3cc43353f 10.1016/j.aca.2016.11.003 10.1016/j.bios.2014.02.035 10.1038/nrc1045 10.1039/C8SC02215A 10.1002/cbic.201000195 10.1016/j.bios.2014.07.079 10.1021/ac4011292 10.1021/ac502845b 10.1039/C5AY03397G 10.1016/0165-022X(91)90077-A 10.1021/ac902670c 10.1039/C4CS00325J 10.1016/0378-4347(94)00327-0 10.1016/j.snb.2017.01.013 10.1016/j.aca.2016.03.028 10.1039/C8CC01764F 10.1093/nar/gkq047 10.1078/0344-0338-00436 10.1128/IAI.69.12.7197-7204.2001 10.1039/C7CC03736H 10.1038/35047554 10.1038/am.2014.84 10.1074/jbc.274.46.33002 10.1016/S0021-9258(18)49938-3 10.1128/jb.173.6.2068-2076.1991 10.1016/j.snb.2015.09.090 10.1016/j.talanta.2016.01.026 10.1016/0076-6879(94)36030-8 10.1016/S0065-230X(08)60702-2 10.1016/j.bios.2015.12.100 10.1002/ijc.21054 10.1021/acsami.7b17813 10.1021/acs.analchem.6b03163 10.1080/07357900802620794 10.1016/j.bios.2016.12.061 10.1126/science.284.5416.967 10.1097/PPO.0b013e31803c7245 10.1016/j.bios.2016.02.057 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 This journal is © The Royal Society of Chemistry 2019 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 – notice: This journal is © The Royal Society of Chemistry 2019 2019 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/C8SC05102J |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 2297 |
ExternalDocumentID | PMC6385671 30881654 10_1039_C8SC05102J |
Genre | Journal Article |
GroupedDBID | 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K CITATION D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c406t-a49fdd4f8bdf1cb14178fe1351bb8dc73f5a33ea17c0d26c7ac27e6f91969b773 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 13:13:02 EDT 2025 Tue Aug 05 11:27:49 EDT 2025 Mon Jul 14 10:33:51 EDT 2025 Mon Jul 21 05:51:20 EDT 2025 Tue Jul 01 03:46:25 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c406t-a49fdd4f8bdf1cb14178fe1351bb8dc73f5a33ea17c0d26c7ac27e6f91969b773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9216-8040 0000-0002-3830-3336 |
OpenAccessLink | http://dx.doi.org/10.1039/c8sc05102j |
PMID | 30881654 |
PQID | 2186291132 |
PQPubID | 2047492 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6385671 proquest_miscellaneous_2193600903 proquest_journals_2186291132 pubmed_primary_30881654 crossref_citationtrail_10_1039_C8SC05102J crossref_primary_10_1039_C8SC05102J |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-28 |
PublicationDateYYYYMMDD | 2019-02-28 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Reik (C8SC05102J-(cit1)/*[position()=1]) 2001; 2 Elsinghorst (C8SC05102J-(cit40)/*[position()=1]) 1994; 236 Miyamoto (C8SC05102J-(cit9)/*[position()=1]) 2005; 116 Low (C8SC05102J-(cit11)/*[position()=1]) 2001; 69 Yao (C8SC05102J-(cit35)/*[position()=1]) 2018; 54 Adams (C8SC05102J-(cit17)/*[position()=1]) 1991; 22 Zhou (C8SC05102J-(cit30)/*[position()=1]) 2016; 223 Wang (C8SC05102J-(cit34)/*[position()=1]) 2018; 9 Xing (C8SC05102J-(cit31)/*[position()=1]) 2014; 86 Jurkowska (C8SC05102J-(cit2)/*[position()=1]) 2011; 12 Lennard (C8SC05102J-(cit16)/*[position()=1]) 1994; 661 Jiang (C8SC05102J-(cit19)/*[position()=1]) 2017; 949 Li (C8SC05102J-(cit22)/*[position()=1]) 2010; 82 Laird (C8SC05102J-(cit4)/*[position()=1]) 2003; 3 Zhao (C8SC05102J-(cit37)/*[position()=1]) 2014; 6 Zhao (C8SC05102J-(cit25)/*[position()=1]) 2015; 63 Hong (C8SC05102J-(cit24)/*[position()=1]) 2016; 152 Heithoff (C8SC05102J-(cit10)/*[position()=1]) 1999; 284 Jing (C8SC05102J-(cit26)/*[position()=1]) 2014; 58 Zeng (C8SC05102J-(cit21)/*[position()=1]) 2013; 85 Liu (C8SC05102J-(cit28)/*[position()=1]) 2016; 80 Vanaja (C8SC05102J-(cit7)/*[position()=1]) 2009; 27 Wood (C8SC05102J-(cit3)/*[position()=1]) 2010; 38 Baylin (C8SC05102J-(cit5)/*[position()=1]) 1998; 72 Huang (C8SC05102J-(cit20)/*[position()=1]) 2017; 91 Bi (C8SC05102J-(cit33)/*[position()=1]) 2013; 49 Chen (C8SC05102J-(cit38)/*[position()=1]) 2018; 10 Liu (C8SC05102J-(cit23)/*[position()=1]) 2016; 920 Kwok (C8SC05102J-(cit29)/*[position()=1]) 2015; 44 Esteller (C8SC05102J-(cit6)/*[position()=1]) 2001; 61 Pradhan (C8SC05102J-(cit13)/*[position()=1]) 1999; 274 Li (C8SC05102J-(cit32)/*[position()=1]) 2016; 81 Zhang (C8SC05102J-(cit27)/*[position()=1]) 2016; 88 Li (C8SC05102J-(cit39)/*[position()=1]) 2016; 8 Rebeck (C8SC05102J-(cit14)/*[position()=1]) 1991; 173 Boltze (C8SC05102J-(cit8)/*[position()=1]) 2003; 199 Cui (C8SC05102J-(cit18)/*[position()=1]) 2017; 244 Ma (C8SC05102J-(cit36)/*[position()=1]) 2017; 53 Som (C8SC05102J-(cit15)/*[position()=1]) 1991; 266 Brueckner (C8SC05102J-(cit12)/*[position()=1]) 2007; 13 |
References_xml | – volume: 49 start-page: 6906 year: 2013 ident: C8SC05102J-(cit33)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc43353f – volume: 949 start-page: 83 year: 2017 ident: C8SC05102J-(cit19)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.11.003 – volume: 58 start-page: 40 year: 2014 ident: C8SC05102J-(cit26)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.02.035 – volume: 3 start-page: 253 year: 2003 ident: C8SC05102J-(cit4)/*[position()=1] publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1045 – volume: 9 start-page: 6053 year: 2018 ident: C8SC05102J-(cit34)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C8SC02215A – volume: 12 start-page: 206 year: 2011 ident: C8SC05102J-(cit2)/*[position()=1] publication-title: ChemBioChem doi: 10.1002/cbic.201000195 – volume: 63 start-page: 458 year: 2015 ident: C8SC05102J-(cit25)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.07.079 – volume: 85 start-page: 6143 year: 2013 ident: C8SC05102J-(cit21)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac4011292 – volume: 86 start-page: 11269 year: 2014 ident: C8SC05102J-(cit31)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac502845b – volume: 8 start-page: 2771 year: 2016 ident: C8SC05102J-(cit39)/*[position()=1] publication-title: Anal. Methods doi: 10.1039/C5AY03397G – volume: 22 start-page: 19 year: 1991 ident: C8SC05102J-(cit17)/*[position()=1] publication-title: J. Biochem. Biophys. Methods doi: 10.1016/0165-022X(91)90077-A – volume: 82 start-page: 1935 year: 2010 ident: C8SC05102J-(cit22)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac902670c – volume: 44 start-page: 4228 year: 2015 ident: C8SC05102J-(cit29)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00325J – volume: 661 start-page: 25 year: 1994 ident: C8SC05102J-(cit16)/*[position()=1] publication-title: J. Chromatogr. B: Biomed. Sci. Appl. doi: 10.1016/0378-4347(94)00327-0 – volume: 244 start-page: 599 year: 2017 ident: C8SC05102J-(cit18)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2017.01.013 – volume: 920 start-page: 80 year: 2016 ident: C8SC05102J-(cit23)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2016.03.028 – volume: 54 start-page: 4774 year: 2018 ident: C8SC05102J-(cit35)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC01764F – volume: 38 start-page: e107 year: 2010 ident: C8SC05102J-(cit3)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq047 – volume: 199 start-page: 399 year: 2003 ident: C8SC05102J-(cit8)/*[position()=1] publication-title: Pathol., Res. Pract. doi: 10.1078/0344-0338-00436 – volume: 69 start-page: 7197 year: 2001 ident: C8SC05102J-(cit11)/*[position()=1] publication-title: Infect. Immun. doi: 10.1128/IAI.69.12.7197-7204.2001 – volume: 53 start-page: 6868 year: 2017 ident: C8SC05102J-(cit36)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C7CC03736H – volume: 2 start-page: 21 year: 2001 ident: C8SC05102J-(cit1)/*[position()=1] publication-title: Nat. Rev. Genet. doi: 10.1038/35047554 – volume: 6 start-page: e131 year: 2014 ident: C8SC05102J-(cit37)/*[position()=1] publication-title: NPG Asia Mater. doi: 10.1038/am.2014.84 – volume: 274 start-page: 33002 year: 1999 ident: C8SC05102J-(cit13)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.46.33002 – volume: 266 start-page: 2937 year: 1991 ident: C8SC05102J-(cit15)/*[position()=1] publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)49938-3 – volume: 173 start-page: 2068 year: 1991 ident: C8SC05102J-(cit14)/*[position()=1] publication-title: J. Bacteriol. doi: 10.1128/jb.173.6.2068-2076.1991 – volume: 223 start-page: 280 year: 2016 ident: C8SC05102J-(cit30)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2015.09.090 – volume: 152 start-page: 228 year: 2016 ident: C8SC05102J-(cit24)/*[position()=1] publication-title: Talanta doi: 10.1016/j.talanta.2016.01.026 – volume: 236 start-page: 405 year: 1994 ident: C8SC05102J-(cit40)/*[position()=1] publication-title: Methods Enzymol. doi: 10.1016/0076-6879(94)36030-8 – volume: 72 start-page: 141 year: 1998 ident: C8SC05102J-(cit5)/*[position()=1] publication-title: Adv. Cancer Res. doi: 10.1016/S0065-230X(08)60702-2 – volume: 80 start-page: 74 year: 2016 ident: C8SC05102J-(cit28)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.12.100 – volume: 116 start-page: 407 year: 2005 ident: C8SC05102J-(cit9)/*[position()=1] publication-title: Int. J. Cancer doi: 10.1002/ijc.21054 – volume: 10 start-page: 6887 year: 2018 ident: C8SC05102J-(cit38)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17813 – volume: 88 start-page: 11108 year: 2016 ident: C8SC05102J-(cit27)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b03163 – volume: 61 start-page: 3225 year: 2001 ident: C8SC05102J-(cit6)/*[position()=1] publication-title: Cancer Res. – volume: 27 start-page: 549 year: 2009 ident: C8SC05102J-(cit7)/*[position()=1] publication-title: Cancer Invest. doi: 10.1080/07357900802620794 – volume: 91 start-page: 417 year: 2017 ident: C8SC05102J-(cit20)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.12.061 – volume: 284 start-page: 967 year: 1999 ident: C8SC05102J-(cit10)/*[position()=1] publication-title: Science doi: 10.1126/science.284.5416.967 – volume: 13 start-page: 17 year: 2007 ident: C8SC05102J-(cit12)/*[position()=1] publication-title: Cancer J. doi: 10.1097/PPO.0b013e31803c7245 – volume: 81 start-page: 111 year: 2016 ident: C8SC05102J-(cit32)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.02.057 |
SSID | ssj0000331527 |
Score | 2.482013 |
Snippet | DNA methylation is a significant epigenetic mechanism involving processes of transferring a methyl group onto cytosine or adenine. Such DNA modification... An ultra-sensitive biosensor using only two DNA oligos to initiate multiple signal amplification cycles. DNA methylation is a significant epigenetic mechanism... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2290 |
SubjectTerms | Amplification Chemistry Deoxyribonucleic acid DNA DNA methylation Enlargement Fluorescence Gene expression Oligonucleotides Substrates |
Title | An integrated-molecular-beacon based multiple exponential strand displacement amplification strategy for ultrasensitive detection of DNA methyltransferase activity |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30881654 https://www.proquest.com/docview/2186291132 https://www.proquest.com/docview/2193600903 https://pubmed.ncbi.nlm.nih.gov/PMC6385671 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wAXxD-FZWUEF4QMSZwmzrEqu6pWS0HQQnqKYjsWRZCuto0EPAHvwYsydmInYVdo4RJV9mjSar6OZ8bzg9DThOW-pCokUcjBQfGZIgllEQkoFz4HE9Y3wZzX82i2DI_TcToY_OxkLVU7_kL8uLCu5H-kCmsgV10l-w-SdUxhAT6DfOEJEobnpWQ8Kdt2D5J8tZNuCdd6rnyuTyjZpgwW3043pU4OqktEdMRcrrcmKavONNfJ5aqJ4RkKYF3ncwKLM2BWbutMI1nsCmFNzVfziZlD_V3TgBFcaErTo0OPpegav645ga0l0jfItmasE5KYVibFYFWVJF23tmqtldKqIPMW0h-bePcqB1q3-rYO686qNVlV3cCGrqVyheJG_wVe6JNoHHg9Ze11QMm6mjeox46eOxI8qjuqCrYVWv8En9uDz172z99kR8uTk2xxmC6uoL0AHI5giPbefVimKxev8yhtJgC772W73dLkZcu-b9-cc1r-zL3tGDOLG-h644XgSQ2pm2hQlLfQ1akd_ncb_ZqU-C_QwgZa2EILd6CFa2jhLrRwD1rYQgsDtHAfWthBC28UBmjhc9DCFlp30PLocDGdkWaeBxFgNu5IHiZKylAxLpUvuB_6MVOFHhHJOZMipmqcU1rkfiw8GUQizkUQF5FKdAsnHsf0LhqW8GvuIxwJFnPYF0rHF2TOInA8gDsHfycPhTdCz6wUMtE0u9czV75kJumCJtmUvZ8aiR2P0BNHe1q3eLmQat8KM2tUwDbTA90CMBdoMEKP3TaISt-65WWxqTRNQsGrSDw6Qvdq2bvXUDjjdTnhCMU9VDgC3fy9v1OuP5km8HBujqPYf3CJ9z5E19r_1z4a7s6q4hGY0jt-YEJQBw3WfwMPCNjL |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated-molecular-beacon+based+multiple+exponential+strand+displacement+amplification+strategy+for+ultrasensitive+detection+of+DNA+methyltransferase+activity&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Cui%2C+Yun-Xi&rft.au=Feng%2C+Xue-Nan&rft.au=Wang%2C+Ya-Xin&rft.au=Pan%2C+Hui-Yu&rft.date=2019-02-28&rft.issn=2041-6520&rft.volume=10&rft.issue=8&rft.spage=2290&rft_id=info:doi/10.1039%2Fc8sc05102j&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |