A Graphical Model for Online Auditory Scene Modulation Using EEG Evidence for Attention

Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications, such as hearing aids and augmented/virtual environments. Specifically, noninvasively acquired electroencephalography (EEG) signals have been demonstr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 25; no. 11; pp. 1970 - 1977
Main Authors Haghighi, Marzieh, Moghadamfalahi, Mohammad, Akcakaya, Murat, Shinn-Cunningham, Barbara G., Erdogmus, Deniz
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2017.2712419

Cover

Loading…
Abstract Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications, such as hearing aids and augmented/virtual environments. Specifically, noninvasively acquired electroencephalography (EEG) signals have been demonstrated to carry some evidence regarding, which of multiple synchronous speech waveforms the subject attends to. In this paper, we demonstrate that: 1) using data- and model-driven cross-correlation features yield competitive binary auditory attention classification results with at most 20 s of EEG from 16 channels or even a single well-positioned channel; 2) a model calibrated using equal-energy speech waveforms competing for attention could perform well on estimating attention in closed-loop unbalanced-energy speech waveform situations, where the speech amplitudes are modulated by the estimated attention posterior probability distribution; 3) such a model would perform even better if it is corrected (linearly, in this instance) based on EEG evidence dependence on speech weights in the mixture; and 4) calibrating a model based on population EEG could result in acceptable performance for new individuals/users; therefore, EEG-based auditory attention classifiers may generalize across individuals, leading to reduced or eliminated calibration time and effort.
AbstractList Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications, such as hearing aids and augmented/virtual environments. Specifically, noninvasively acquired electroencephalography (EEG) signals have been demonstrated to carry some evidence regarding, which of multiple synchronous speech waveforms the subject attends to. In this paper, we demonstrate that: 1) using data- and model-driven cross-correlation features yield competitive binary auditory attention classification results with at most 20 s of EEG from 16 channels or even a single well-positioned channel; 2) a model calibrated using equal-energy speech waveforms competing for attention could perform well on estimating attention in closed-loop unbalanced-energy speech waveform situations, where the speech amplitudes are modulated by the estimated attention posterior probability distribution; 3) such a model would perform even better if it is corrected (linearly, in this instance) based on EEG evidence dependence on speech weights in the mixture; and 4) calibrating a model based on population EEG could result in acceptable performance for new individuals/users; therefore, EEG-based auditory attention classifiers may generalize across individuals, leading to reduced or eliminated calibration time and effort.
Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications such as hearing aids and augmented/virtual environments. Specifically, noninvasively acquired electroencephalography (EEG) signals have been demonstrated to carry some evidence regarding which of multiple synchronous speech waveforms the subject attends to. In this paper we demonstrate that: (1) using data- and model-driven cross-correlation features yield competitive binary auditory attention classification results with at most 20 seconds of EEG from 16 channels or even a single well-positioned channel; (2) a model calibrated using equal-energy speech waveforms competing for attention could perform well on estimating attention in closed-loop unbalanced-energy speech waveform situations, where the speech amplitudes are modulated by the estimated attention posterior probability distribution; (3) such a model would perform even better if it is corrected (linearly, in this instance) based on EEG evidence dependency on speech weights in the mixture; (4) calibrating a model based on population EEG could result in acceptable performance for new individuals/users; therefore EEG-based auditory attention classifiers may generalize across individuals, leading to reduced or eliminated calibration time and effort.
Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications, such as hearing aids and augmented/virtual environments. Specifically, noninvasively acquired electroencephalography (EEG) signals have been demonstrated to carry some evidence regarding, which of multiple synchronous speech waveforms the subject attends to. In this paper, we demonstrate that: 1) using data- and model-driven cross-correlation features yield competitive binary auditory attention classification results with at most 20 s of EEG from 16 channels or even a single well-positioned channel; 2) a model calibrated using equal-energy speech waveforms competing for attention could perform well on estimating attention in closed-loop unbalanced-energy speech waveform situations, where the speech amplitudes are modulated by the estimated attention posterior probability distribution; 3) such a model would perform even better if it is corrected (linearly, in this instance) based on EEG evidence dependence on speech weights in the mixture; and 4) calibrating a model based on population EEG could result in acceptable performance for new individuals/users; therefore, EEG-based auditory attention classifiers may generalize across individuals, leading to reduced or eliminated calibration time and effort.Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications, such as hearing aids and augmented/virtual environments. Specifically, noninvasively acquired electroencephalography (EEG) signals have been demonstrated to carry some evidence regarding, which of multiple synchronous speech waveforms the subject attends to. In this paper, we demonstrate that: 1) using data- and model-driven cross-correlation features yield competitive binary auditory attention classification results with at most 20 s of EEG from 16 channels or even a single well-positioned channel; 2) a model calibrated using equal-energy speech waveforms competing for attention could perform well on estimating attention in closed-loop unbalanced-energy speech waveform situations, where the speech amplitudes are modulated by the estimated attention posterior probability distribution; 3) such a model would perform even better if it is corrected (linearly, in this instance) based on EEG evidence dependence on speech weights in the mixture; and 4) calibrating a model based on population EEG could result in acceptable performance for new individuals/users; therefore, EEG-based auditory attention classifiers may generalize across individuals, leading to reduced or eliminated calibration time and effort.
Author Erdogmus, Deniz
Moghadamfalahi, Mohammad
Haghighi, Marzieh
Akcakaya, Murat
Shinn-Cunningham, Barbara G.
Author_xml – sequence: 1
  givenname: Marzieh
  orcidid: 0000-0002-0867-8364
  surname: Haghighi
  fullname: Haghighi, Marzieh
  email: haghighi@ece.neu.edu
  organization: Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
– sequence: 2
  givenname: Mohammad
  surname: Moghadamfalahi
  fullname: Moghadamfalahi, Mohammad
  organization: Honeywell Laboratories, Plymouth, MN, USA
– sequence: 3
  givenname: Murat
  surname: Akcakaya
  fullname: Akcakaya, Murat
  organization: University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 4
  givenname: Barbara G.
  surname: Shinn-Cunningham
  fullname: Shinn-Cunningham, Barbara G.
  organization: Boston University, Boston, MA, USA
– sequence: 5
  givenname: Deniz
  surname: Erdogmus
  fullname: Erdogmus, Deniz
  organization: Northeastern University, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28600256$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJaR7NH2ihGLrpxlM9LXtTGII7DaQNNAlZCo18nShopIlkB_LvK89MhzSLriRxv3N17j3H6MAHDwh9IHhGCG6-Xv-6-t3OKCZyRiWhnDRv0BERoi4xJfhgujNeckbxITpO6QFnshLyHTqkdYUxFdURup0Xi6jX99ZoV_wMHbiiD7G49M56KOZjZ4cQn4srA_mZ66PTgw2-uEnW3xVtuyjaJ9uBN7DRzYcB_AS8R2977RKc7s4TdPO9vT77UV5cLs7P5hel4bgaSs1FL7jGTFSQPZNl0_SEAZENMwIzWIoamo51pJMEGy40o3W3lFJr2kkqgJ2gb9u-63G5gi7bHKJ2ah3tSsdnFbRV_1a8vVd34UmJqiYck9zgy65BDI8jpEGtbDLgnPYQxqRIg2s-7avJ6OdX6EMYo8_jZaqiLGfCqkx9eulob-XvzjNAt4CJIaUI_R4hWE3Bqk2wagpW7YLNovqVyNhhE0Weyrr_Sz9upRYA9n_JJk-PJfsDdmqvVg
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_bbe_2018_08_007
crossref_primary_10_1111_ejn_14425
crossref_primary_10_1016_j_bspc_2022_103740
crossref_primary_10_1080_10447318_2024_2362486
crossref_primary_10_3389_fnins_2020_00603
crossref_primary_10_1142_S0129065720500112
Cites_doi 10.1093/cercor/bhp124
10.3389/fnhum.2014.00311
10.1088/1741-2560/11/4/046015
10.3389/fnins.2012.00190
10.1016/j.neuron.2007.06.004
10.3389/fnhum.2016.00530
10.1016/j.neuroimage.2015.09.048
10.1109/MLSP.2016.7738810
10.1371/journal.pbio.1001251
10.1073/pnas.201400998
10.1016/j.tics.2008.02.003
10.1523/JNEUROSCI.3065-09.2009
10.1093/cercor/bht355
10.1016/j.heares.2013.06.010
10.1007/978-1-4612-2728-1_6
10.1152/jn.00297.2011
10.1109/TNSRE.2016.2571900
10.1016/j.heares.2014.07.009
10.1121/1.1907229
10.1523/JNEUROSCI.0187-08.2008
10.1523/ENEURO.0086-15.2015
10.1177/1084713808325306
10.1097/AUD.0b013e31816453dc
10.3758/s13414-015-0882-9
10.1088/1741-2560/12/4/046007
10.1523/JNEUROSCI.1065-13.2013
10.1038/nature11020
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TNSRE.2017.2712419
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 1977
ExternalDocumentID PMC5681401
28600256
10_1109_TNSRE_2017_2712419
7940107
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NSF
  grantid: CNS-1136027; CNS-1544895
  funderid: 10.13039/100000144
– fundername: NSF
  grantid: IIS-1149570
  funderid: 10.13039/100000145
– fundername: NIH
  grantid: R01DC009834
  funderid: 10.13039/100000002
– fundername: NIDLRR
  grantid: 90RE5017-02-01
  funderid: 10.13039/100006663
– fundername: NIDCD NIH HHS
  grantid: R01 DC013825
– fundername: NIDCD NIH HHS
  grantid: R01 DC009834
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c406t-a45f54a0356e2101b99f13e1793c503eb58e9d3d1d710c45a328db77aa2d725e3
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Thu Aug 21 18:45:56 EDT 2025
Fri Jul 11 02:40:15 EDT 2025
Fri Jul 25 05:15:30 EDT 2025
Mon Jul 21 06:05:41 EDT 2025
Thu Apr 24 23:09:09 EDT 2025
Tue Jul 01 00:43:16 EDT 2025
Wed Aug 27 02:22:00 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-a45f54a0356e2101b99f13e1793c503eb58e9d3d1d710c45a328db77aa2d725e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0867-8364
PMID 28600256
PQID 1962310936
PQPubID 85423
PageCount 8
ParticipantIDs pubmed_primary_28600256
crossref_primary_10_1109_TNSRE_2017_2712419
ieee_primary_7940107
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5681401
proquest_journals_1962310936
proquest_miscellaneous_1908428609
crossref_citationtrail_10_1109_TNSRE_2017_2712419
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-01
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2017
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
haghighi (ref30) 2016
ref10
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref6
ref5
yost (ref3) 1997
bronkhorst (ref2) 2000; 86
References_xml – ident: ref12
  doi: 10.1093/cercor/bhp124
– ident: ref14
  doi: 10.3389/fnhum.2014.00311
– ident: ref28
  doi: 10.1088/1741-2560/11/4/046015
– ident: ref9
  doi: 10.3389/fnins.2012.00190
– ident: ref18
  doi: 10.1016/j.neuron.2007.06.004
– ident: ref8
  doi: 10.3389/fnhum.2016.00530
– ident: ref27
  doi: 10.1016/j.neuroimage.2015.09.048
– ident: ref29
  doi: 10.1109/MLSP.2016.7738810
– ident: ref21
  doi: 10.1371/journal.pbio.1001251
– ident: ref17
  doi: 10.1073/pnas.201400998
– ident: ref6
  doi: 10.1016/j.tics.2008.02.003
– ident: ref20
  doi: 10.1523/JNEUROSCI.3065-09.2009
– ident: ref22
  doi: 10.1093/cercor/bht355
– start-page: 329
  year: 1997
  ident: ref3
  article-title: The cocktail party problem: Forty years later
  publication-title: Binaural and Spatial Hearing in Real and Virtual Environments
– ident: ref13
  doi: 10.1016/j.heares.2013.06.010
– ident: ref4
  doi: 10.1007/978-1-4612-2728-1_6
– ident: ref24
  doi: 10.1152/jn.00297.2011
– ident: ref26
  doi: 10.1109/TNSRE.2016.2571900
– year: 2016
  ident: ref30
  publication-title: EEG-assisted modulation of sound sources in the auditory scene
– ident: ref16
  doi: 10.1016/j.heares.2014.07.009
– volume: 86
  start-page: 117
  year: 2000
  ident: ref2
  article-title: The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions
  publication-title: Acustica United with Acta Acustica
– ident: ref1
  doi: 10.1121/1.1907229
– ident: ref19
  doi: 10.1523/JNEUROSCI.0187-08.2008
– ident: ref11
  doi: 10.1523/ENEURO.0086-15.2015
– ident: ref7
  doi: 10.1177/1084713808325306
– ident: ref15
  doi: 10.1097/AUD.0b013e31816453dc
– ident: ref5
  doi: 10.3758/s13414-015-0882-9
– ident: ref23
  doi: 10.1088/1741-2560/12/4/046007
– ident: ref10
  doi: 10.1523/JNEUROSCI.1065-13.2013
– ident: ref25
  doi: 10.1038/nature11020
SSID ssj0017657
Score 2.2480617
Snippet Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications, such as...
Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications such as...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1970
SubjectTerms Adult
Algorithms
Attention
Attention - physiology
auditory attention detection
Auditory Perception - physiology
Brain
brain interface
Brain modeling
Brain-Computer Interfaces
Calibration
Conditional probability
Context modeling
EEG
Electroencephalography
Energy consumption
Female
Graphical models
Hearing aids
Humans
Interfaces
Male
Models, Neurological
Modulation
Online Systems
Probability distribution
Prosthesis Design
Scene analysis
Signal Processing, Computer-Assisted
Speech
Speech Perception
Transfer, Psychology
Virtual environments
Waveforms
Wavelet Analysis
Title A Graphical Model for Online Auditory Scene Modulation Using EEG Evidence for Attention
URI https://ieeexplore.ieee.org/document/7940107
https://www.ncbi.nlm.nih.gov/pubmed/28600256
https://www.proquest.com/docview/1962310936
https://www.proquest.com/docview/1908428609
https://pubmed.ncbi.nlm.nih.gov/PMC5681401
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLbanrjwKo9AQYMEXCDbZJ6Z4wptWyG1h3YreovycFVElUUle4Bfjz2TRN2qQtwizUNj2R7bGfszwHvpGPXN5Wnd2Jp_3SCpFBapLUyttadrU3KB8_GJPTrXXy_MxRZ8nmphEDEkn-GMP8Nbfrtq1vyrbJ9kh8IHtw3bJGaxVmt6MXA2oHqSAutUK5mNBTKZ31-enJ0uOIvLzaQje5YzVKgsbLD3G_YoNFi5z9e8mzJ5ywYdPILj8fQx9eTHbN3Xs-bPHWDH_yXvMTwcnFExj9LzBLawewofbgMPi2VEHRAfxekGpvcufJuLQ0a7Zi4Lbql2LcgBFhG7VMy52mN181ucES3I40OfMBGSFMRicSjGjqZh3bzvY-blMzg_WCy_HKVDm4a0IW-gTyttLo2uMmUsUgCZ195f5gpZ8xuTKaxNgb5Vbd6SN9NoUylZtLVzVSVbJw2q57DTrTp8CcI6X2WIXP6qKbA1hVM-QysbRVElSp9APjKrbAZ6uZXGdRlimcyXgdcl87oceJ3Ap2nNz4jg8c_Zu8yYaebAkwT2RpkoByX_VdLlxd6xVzaBd9MwqSe_uVQdrtY8Jys0yxrt_CKK0LT3KIIJuA3hmiYw9PfmSPf9KkCAM2wcHezV_ad9DQ-YplgyuQc7_c0a35Dv1Ndvg9L8BZ7gEa4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLbacqAXXoUSKDBIwAWyTeaRyRxXaNsFuntot6K3KA-vQFRZVLIH-PXYk4e6VYW4RZqHxrI9tjP2Z4A30jLqm43DokwK_nWDpFKYhklqCq0dXZuSC5xn82R6rj9fmIst-DDUwiCiTz7DEX_6t_xqVa75V9khyQ6FD3Yb7pDd16at1hreDGzicT1JhXWolYz6EpnIHS7mZ6cTzuOyI2nJosUMFirTxFv8DYvkW6zc5m3eTJq8ZoWO7sOsP3-bfPJjtG6KUfnnBrTj_xL4AO517qgYt_LzELawfgRvr0MPi0WLOyDeidMNVO89-DoWx4x3zXwW3FTtUpALLFr0UjHmeo_V1W9xRrQgj3edwoRPUxCTybHoe5r6deOmaXMvH8P50WTxcRp2jRrCkvyBJsy1WRqdR8okSCFkXDi3jBWy7pcmUliYFF2lqrgif6bUJlcyrQpr81xWVhpUT2CnXtX4FERiXR4hcgGsptDWpFa5CBNZKoorUboA4p5ZWdnRy800LjMfzUQu87zOmNdZx-sA3g9rfrYYHv-cvceMGWZ2PAngoJeJrFPzXxldX-wfO5UE8HoYJgXlV5e8xtWa50SpZlmjnfdbERr27kUwALshXMMEBv_eHKm_f_Mg4AwcRwd7dvtpX8Hd6WJ2kp18mn95DrtMX1tAeQA7zdUaX5An1RQvvQL9BRCjFPs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Graphical+Model+for+Online+Auditory+Scene+Modulation+Using+EEG+Evidence+for+Attention&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Haghighi%2C+Marzieh&rft.au=Moghadamfalahi%2C+Mohammad&rft.au=Akcakaya%2C+Murat&rft.au=Shinn-Cunningham%2C+Barbara+G.&rft.date=2017-11-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=25&rft.issue=11&rft.spage=1970&rft.epage=1977&rft_id=info:doi/10.1109%2FTNSRE.2017.2712419&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2017_2712419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon