A Graphical Model for Online Auditory Scene Modulation Using EEG Evidence for Attention
Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications, such as hearing aids and augmented/virtual environments. Specifically, noninvasively acquired electroencephalography (EEG) signals have been demonstr...
Saved in:
Published in | IEEE transactions on neural systems and rehabilitation engineering Vol. 25; no. 11; pp. 1970 - 1977 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1534-4320 1558-0210 1558-0210 |
DOI | 10.1109/TNSRE.2017.2712419 |
Cover
Loading…
Abstract | Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications, such as hearing aids and augmented/virtual environments. Specifically, noninvasively acquired electroencephalography (EEG) signals have been demonstrated to carry some evidence regarding, which of multiple synchronous speech waveforms the subject attends to. In this paper, we demonstrate that: 1) using data- and model-driven cross-correlation features yield competitive binary auditory attention classification results with at most 20 s of EEG from 16 channels or even a single well-positioned channel; 2) a model calibrated using equal-energy speech waveforms competing for attention could perform well on estimating attention in closed-loop unbalanced-energy speech waveform situations, where the speech amplitudes are modulated by the estimated attention posterior probability distribution; 3) such a model would perform even better if it is corrected (linearly, in this instance) based on EEG evidence dependence on speech weights in the mixture; and 4) calibrating a model based on population EEG could result in acceptable performance for new individuals/users; therefore, EEG-based auditory attention classifiers may generalize across individuals, leading to reduced or eliminated calibration time and effort. |
---|---|
AbstractList | Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications, such as hearing aids and augmented/virtual environments. Specifically, noninvasively acquired electroencephalography (EEG) signals have been demonstrated to carry some evidence regarding, which of multiple synchronous speech waveforms the subject attends to. In this paper, we demonstrate that: 1) using data- and model-driven cross-correlation features yield competitive binary auditory attention classification results with at most 20 s of EEG from 16 channels or even a single well-positioned channel; 2) a model calibrated using equal-energy speech waveforms competing for attention could perform well on estimating attention in closed-loop unbalanced-energy speech waveform situations, where the speech amplitudes are modulated by the estimated attention posterior probability distribution; 3) such a model would perform even better if it is corrected (linearly, in this instance) based on EEG evidence dependence on speech weights in the mixture; and 4) calibrating a model based on population EEG could result in acceptable performance for new individuals/users; therefore, EEG-based auditory attention classifiers may generalize across individuals, leading to reduced or eliminated calibration time and effort. Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications such as hearing aids and augmented/virtual environments. Specifically, noninvasively acquired electroencephalography (EEG) signals have been demonstrated to carry some evidence regarding which of multiple synchronous speech waveforms the subject attends to. In this paper we demonstrate that: (1) using data- and model-driven cross-correlation features yield competitive binary auditory attention classification results with at most 20 seconds of EEG from 16 channels or even a single well-positioned channel; (2) a model calibrated using equal-energy speech waveforms competing for attention could perform well on estimating attention in closed-loop unbalanced-energy speech waveform situations, where the speech amplitudes are modulated by the estimated attention posterior probability distribution; (3) such a model would perform even better if it is corrected (linearly, in this instance) based on EEG evidence dependency on speech weights in the mixture; (4) calibrating a model based on population EEG could result in acceptable performance for new individuals/users; therefore EEG-based auditory attention classifiers may generalize across individuals, leading to reduced or eliminated calibration time and effort. Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications, such as hearing aids and augmented/virtual environments. Specifically, noninvasively acquired electroencephalography (EEG) signals have been demonstrated to carry some evidence regarding, which of multiple synchronous speech waveforms the subject attends to. In this paper, we demonstrate that: 1) using data- and model-driven cross-correlation features yield competitive binary auditory attention classification results with at most 20 s of EEG from 16 channels or even a single well-positioned channel; 2) a model calibrated using equal-energy speech waveforms competing for attention could perform well on estimating attention in closed-loop unbalanced-energy speech waveform situations, where the speech amplitudes are modulated by the estimated attention posterior probability distribution; 3) such a model would perform even better if it is corrected (linearly, in this instance) based on EEG evidence dependence on speech weights in the mixture; and 4) calibrating a model based on population EEG could result in acceptable performance for new individuals/users; therefore, EEG-based auditory attention classifiers may generalize across individuals, leading to reduced or eliminated calibration time and effort.Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications, such as hearing aids and augmented/virtual environments. Specifically, noninvasively acquired electroencephalography (EEG) signals have been demonstrated to carry some evidence regarding, which of multiple synchronous speech waveforms the subject attends to. In this paper, we demonstrate that: 1) using data- and model-driven cross-correlation features yield competitive binary auditory attention classification results with at most 20 s of EEG from 16 channels or even a single well-positioned channel; 2) a model calibrated using equal-energy speech waveforms competing for attention could perform well on estimating attention in closed-loop unbalanced-energy speech waveform situations, where the speech amplitudes are modulated by the estimated attention posterior probability distribution; 3) such a model would perform even better if it is corrected (linearly, in this instance) based on EEG evidence dependence on speech weights in the mixture; and 4) calibrating a model based on population EEG could result in acceptable performance for new individuals/users; therefore, EEG-based auditory attention classifiers may generalize across individuals, leading to reduced or eliminated calibration time and effort. |
Author | Erdogmus, Deniz Moghadamfalahi, Mohammad Haghighi, Marzieh Akcakaya, Murat Shinn-Cunningham, Barbara G. |
Author_xml | – sequence: 1 givenname: Marzieh orcidid: 0000-0002-0867-8364 surname: Haghighi fullname: Haghighi, Marzieh email: haghighi@ece.neu.edu organization: Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA – sequence: 2 givenname: Mohammad surname: Moghadamfalahi fullname: Moghadamfalahi, Mohammad organization: Honeywell Laboratories, Plymouth, MN, USA – sequence: 3 givenname: Murat surname: Akcakaya fullname: Akcakaya, Murat organization: University of Pittsburgh, Pittsburgh, PA, USA – sequence: 4 givenname: Barbara G. surname: Shinn-Cunningham fullname: Shinn-Cunningham, Barbara G. organization: Boston University, Boston, MA, USA – sequence: 5 givenname: Deniz surname: Erdogmus fullname: Erdogmus, Deniz organization: Northeastern University, Boston, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28600256$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVJaR7NH2ihGLrpxlM9LXtTGII7DaQNNAlZCo18nShopIlkB_LvK89MhzSLriRxv3N17j3H6MAHDwh9IHhGCG6-Xv-6-t3OKCZyRiWhnDRv0BERoi4xJfhgujNeckbxITpO6QFnshLyHTqkdYUxFdURup0Xi6jX99ZoV_wMHbiiD7G49M56KOZjZ4cQn4srA_mZ66PTgw2-uEnW3xVtuyjaJ9uBN7DRzYcB_AS8R2977RKc7s4TdPO9vT77UV5cLs7P5hel4bgaSs1FL7jGTFSQPZNl0_SEAZENMwIzWIoamo51pJMEGy40o3W3lFJr2kkqgJ2gb9u-63G5gi7bHKJ2ah3tSsdnFbRV_1a8vVd34UmJqiYck9zgy65BDI8jpEGtbDLgnPYQxqRIg2s-7avJ6OdX6EMYo8_jZaqiLGfCqkx9eulob-XvzjNAt4CJIaUI_R4hWE3Bqk2wagpW7YLNovqVyNhhE0Weyrr_Sz9upRYA9n_JJk-PJfsDdmqvVg |
CODEN | ITNSB3 |
CitedBy_id | crossref_primary_10_1016_j_bbe_2018_08_007 crossref_primary_10_1111_ejn_14425 crossref_primary_10_1016_j_bspc_2022_103740 crossref_primary_10_1080_10447318_2024_2362486 crossref_primary_10_3389_fnins_2020_00603 crossref_primary_10_1142_S0129065720500112 |
Cites_doi | 10.1093/cercor/bhp124 10.3389/fnhum.2014.00311 10.1088/1741-2560/11/4/046015 10.3389/fnins.2012.00190 10.1016/j.neuron.2007.06.004 10.3389/fnhum.2016.00530 10.1016/j.neuroimage.2015.09.048 10.1109/MLSP.2016.7738810 10.1371/journal.pbio.1001251 10.1073/pnas.201400998 10.1016/j.tics.2008.02.003 10.1523/JNEUROSCI.3065-09.2009 10.1093/cercor/bht355 10.1016/j.heares.2013.06.010 10.1007/978-1-4612-2728-1_6 10.1152/jn.00297.2011 10.1109/TNSRE.2016.2571900 10.1016/j.heares.2014.07.009 10.1121/1.1907229 10.1523/JNEUROSCI.0187-08.2008 10.1523/ENEURO.0086-15.2015 10.1177/1084713808325306 10.1097/AUD.0b013e31816453dc 10.3758/s13414-015-0882-9 10.1088/1741-2560/12/4/046007 10.1523/JNEUROSCI.1065-13.2013 10.1038/nature11020 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
DOI | 10.1109/TNSRE.2017.2712419 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Neurosciences Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Occupational Therapy & Rehabilitation |
EISSN | 1558-0210 |
EndPage | 1977 |
ExternalDocumentID | PMC5681401 28600256 10_1109_TNSRE_2017_2712419 7940107 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: NSF grantid: CNS-1136027; CNS-1544895 funderid: 10.13039/100000144 – fundername: NSF grantid: IIS-1149570 funderid: 10.13039/100000145 – fundername: NIH grantid: R01DC009834 funderid: 10.13039/100000002 – fundername: NIDLRR grantid: 90RE5017-02-01 funderid: 10.13039/100006663 – fundername: NIDCD NIH HHS grantid: R01 DC013825 – fundername: NIDCD NIH HHS grantid: R01 DC009834 |
GroupedDBID | --- -~X 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACGFO ACGFS ACIWK ACPRK AENEX AETIX AFPKN AFRAH AGSQL AIBXA ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P GROUPED_DOAJ HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL OK1 P2P RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c406t-a45f54a0356e2101b99f13e1793c503eb58e9d3d1d710c45a328db77aa2d725e3 |
IEDL.DBID | RIE |
ISSN | 1534-4320 1558-0210 |
IngestDate | Thu Aug 21 18:45:56 EDT 2025 Fri Jul 11 02:40:15 EDT 2025 Fri Jul 25 05:15:30 EDT 2025 Mon Jul 21 06:05:41 EDT 2025 Thu Apr 24 23:09:09 EDT 2025 Tue Jul 01 00:43:16 EDT 2025 Wed Aug 27 02:22:00 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-a45f54a0356e2101b99f13e1793c503eb58e9d3d1d710c45a328db77aa2d725e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0867-8364 |
PMID | 28600256 |
PQID | 1962310936 |
PQPubID | 85423 |
PageCount | 8 |
ParticipantIDs | pubmed_primary_28600256 crossref_primary_10_1109_TNSRE_2017_2712419 ieee_primary_7940107 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5681401 proquest_journals_1962310936 proquest_miscellaneous_1908428609 crossref_citationtrail_10_1109_TNSRE_2017_2712419 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on neural systems and rehabilitation engineering |
PublicationTitleAbbrev | TNSRE |
PublicationTitleAlternate | IEEE Trans Neural Syst Rehabil Eng |
PublicationYear | 2017 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 haghighi (ref30) 2016 ref10 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref6 ref5 yost (ref3) 1997 bronkhorst (ref2) 2000; 86 |
References_xml | – ident: ref12 doi: 10.1093/cercor/bhp124 – ident: ref14 doi: 10.3389/fnhum.2014.00311 – ident: ref28 doi: 10.1088/1741-2560/11/4/046015 – ident: ref9 doi: 10.3389/fnins.2012.00190 – ident: ref18 doi: 10.1016/j.neuron.2007.06.004 – ident: ref8 doi: 10.3389/fnhum.2016.00530 – ident: ref27 doi: 10.1016/j.neuroimage.2015.09.048 – ident: ref29 doi: 10.1109/MLSP.2016.7738810 – ident: ref21 doi: 10.1371/journal.pbio.1001251 – ident: ref17 doi: 10.1073/pnas.201400998 – ident: ref6 doi: 10.1016/j.tics.2008.02.003 – ident: ref20 doi: 10.1523/JNEUROSCI.3065-09.2009 – ident: ref22 doi: 10.1093/cercor/bht355 – start-page: 329 year: 1997 ident: ref3 article-title: The cocktail party problem: Forty years later publication-title: Binaural and Spatial Hearing in Real and Virtual Environments – ident: ref13 doi: 10.1016/j.heares.2013.06.010 – ident: ref4 doi: 10.1007/978-1-4612-2728-1_6 – ident: ref24 doi: 10.1152/jn.00297.2011 – ident: ref26 doi: 10.1109/TNSRE.2016.2571900 – year: 2016 ident: ref30 publication-title: EEG-assisted modulation of sound sources in the auditory scene – ident: ref16 doi: 10.1016/j.heares.2014.07.009 – volume: 86 start-page: 117 year: 2000 ident: ref2 article-title: The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions publication-title: Acustica United with Acta Acustica – ident: ref1 doi: 10.1121/1.1907229 – ident: ref19 doi: 10.1523/JNEUROSCI.0187-08.2008 – ident: ref11 doi: 10.1523/ENEURO.0086-15.2015 – ident: ref7 doi: 10.1177/1084713808325306 – ident: ref15 doi: 10.1097/AUD.0b013e31816453dc – ident: ref5 doi: 10.3758/s13414-015-0882-9 – ident: ref23 doi: 10.1088/1741-2560/12/4/046007 – ident: ref10 doi: 10.1523/JNEUROSCI.1065-13.2013 – ident: ref25 doi: 10.1038/nature11020 |
SSID | ssj0017657 |
Score | 2.2480617 |
Snippet | Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications, such as... Recent findings indicate that brain interfaces have the potential to enable attention-guided auditory scene analysis and manipulation in applications such as... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1970 |
SubjectTerms | Adult Algorithms Attention Attention - physiology auditory attention detection Auditory Perception - physiology Brain brain interface Brain modeling Brain-Computer Interfaces Calibration Conditional probability Context modeling EEG Electroencephalography Energy consumption Female Graphical models Hearing aids Humans Interfaces Male Models, Neurological Modulation Online Systems Probability distribution Prosthesis Design Scene analysis Signal Processing, Computer-Assisted Speech Speech Perception Transfer, Psychology Virtual environments Waveforms Wavelet Analysis |
Title | A Graphical Model for Online Auditory Scene Modulation Using EEG Evidence for Attention |
URI | https://ieeexplore.ieee.org/document/7940107 https://www.ncbi.nlm.nih.gov/pubmed/28600256 https://www.proquest.com/docview/1962310936 https://www.proquest.com/docview/1908428609 https://pubmed.ncbi.nlm.nih.gov/PMC5681401 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLbanrjwKo9AQYMEXCDbZJ6Z4wptWyG1h3YreovycFVElUUle4Bfjz2TRN2qQtwizUNj2R7bGfszwHvpGPXN5Wnd2Jp_3SCpFBapLUyttadrU3KB8_GJPTrXXy_MxRZ8nmphEDEkn-GMP8Nbfrtq1vyrbJ9kh8IHtw3bJGaxVmt6MXA2oHqSAutUK5mNBTKZ31-enJ0uOIvLzaQje5YzVKgsbLD3G_YoNFi5z9e8mzJ5ywYdPILj8fQx9eTHbN3Xs-bPHWDH_yXvMTwcnFExj9LzBLawewofbgMPi2VEHRAfxekGpvcufJuLQ0a7Zi4Lbql2LcgBFhG7VMy52mN181ucES3I40OfMBGSFMRicSjGjqZh3bzvY-blMzg_WCy_HKVDm4a0IW-gTyttLo2uMmUsUgCZ195f5gpZ8xuTKaxNgb5Vbd6SN9NoUylZtLVzVSVbJw2q57DTrTp8CcI6X2WIXP6qKbA1hVM-QysbRVElSp9APjKrbAZ6uZXGdRlimcyXgdcl87oceJ3Ap2nNz4jg8c_Zu8yYaebAkwT2RpkoByX_VdLlxd6xVzaBd9MwqSe_uVQdrtY8Jys0yxrt_CKK0LT3KIIJuA3hmiYw9PfmSPf9KkCAM2wcHezV_ad9DQ-YplgyuQc7_c0a35Dv1Ndvg9L8BZ7gEa4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9RADLbacqAXXoUSKDBIwAWyTeaRyRxXaNsFuntot6K3KA-vQFRZVLIH-PXYk4e6VYW4RZqHxrI9tjP2Z4A30jLqm43DokwK_nWDpFKYhklqCq0dXZuSC5xn82R6rj9fmIst-DDUwiCiTz7DEX_6t_xqVa75V9khyQ6FD3Yb7pDd16at1hreDGzicT1JhXWolYz6EpnIHS7mZ6cTzuOyI2nJosUMFirTxFv8DYvkW6zc5m3eTJq8ZoWO7sOsP3-bfPJjtG6KUfnnBrTj_xL4AO517qgYt_LzELawfgRvr0MPi0WLOyDeidMNVO89-DoWx4x3zXwW3FTtUpALLFr0UjHmeo_V1W9xRrQgj3edwoRPUxCTybHoe5r6deOmaXMvH8P50WTxcRp2jRrCkvyBJsy1WRqdR8okSCFkXDi3jBWy7pcmUliYFF2lqrgif6bUJlcyrQpr81xWVhpUT2CnXtX4FERiXR4hcgGsptDWpFa5CBNZKoorUboA4p5ZWdnRy800LjMfzUQu87zOmNdZx-sA3g9rfrYYHv-cvceMGWZ2PAngoJeJrFPzXxldX-wfO5UE8HoYJgXlV5e8xtWa50SpZlmjnfdbERr27kUwALshXMMEBv_eHKm_f_Mg4AwcRwd7dvtpX8Hd6WJ2kp18mn95DrtMX1tAeQA7zdUaX5An1RQvvQL9BRCjFPs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Graphical+Model+for+Online+Auditory+Scene+Modulation+Using+EEG+Evidence+for+Attention&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Haghighi%2C+Marzieh&rft.au=Moghadamfalahi%2C+Mohammad&rft.au=Akcakaya%2C+Murat&rft.au=Shinn-Cunningham%2C+Barbara+G.&rft.date=2017-11-01&rft.issn=1534-4320&rft.eissn=1558-0210&rft.volume=25&rft.issue=11&rft.spage=1970&rft.epage=1977&rft_id=info:doi/10.1109%2FTNSRE.2017.2712419&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNSRE_2017_2712419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon |