Heterogeneous activation of persulfate by CuMgAl layered double oxide for catalytic degradation of sulfameter
In this study, a series of CuMgAl layered double oxides (CuMgAl-LDOs) were obtained via calcination of CuMgAl layered double hydroxides (CuMgAl-LDHs) synthesised via a co-precipitation method. The results show that CuMgAl-LDO can be prepared using an optimal Cu : Mg : Al molar ratio of 3 : 3 : 2, Na...
Saved in:
Published in | Green energy & environment Vol. 7; no. 1; pp. 105 - 115 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2022
KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, a series of CuMgAl layered double oxides (CuMgAl-LDOs) were obtained via calcination of CuMgAl layered double hydroxides (CuMgAl-LDHs) synthesised via a co-precipitation method. The results show that CuMgAl-LDO can be prepared using an optimal Cu : Mg : Al molar ratio of 3 : 3 : 2, NaOH : Na2CO3 molar ratio of 2 : 1, and calcination temperature of 600 °C. CuMgAl-LDO is a characteristic of mesoporous material with a lamellar structure and large specific surface area. The removal efficiency of sulfameter (SMD) based on CuMgAl-LDO/persulfate (PS) can reach > 98% over a wide range of initial SMD concentrations (5–20 mg L−1). The best removal efficiency of 99.49% was achieved within 120 min using 10 mg L−1 SMD, 0.3 g L−1 CuMgAl-LDO, and 0.7 mmol L−1 PS. Kinetic analysis showed that the degradation of SMD was in accordance with a quasi-first-order kinetic model. The stability of the CuMgAl-LDO catalyst was verified by the high SMD removal efficiency (> 97% within 120 min) observed after five recycling tests and low copper ion leaching concentration (0.89 mg L−1), which is below drinking water quality standard of 1.3 mg L−1 permittable in the U.S. Radical scavenging experiments suggest that SO4·− is the primary active species participating in the CuMgAl-LDO/PS system. Moreover, our mechanistic investigations based on the radical scavenging tests and X-ray photoelectron spectroscopy (XPS) results indicate that Cu(II)–Cu(III)–Cu(II) circulation is responsible for activating PS in the degradation of SMD and the degradation pathway for SMD was deduced. Accordingly, the results presented in this work demonstrate that CuMgAl-LDO may be an efficient and stable catalyst for the activation of PS during the degradation of organic pollutants.
CuMgAl-LDO/PS system exhibited an excellent catalytic performance for the degradation of SMD with low leaching of copper ion and high reusability, and activation of PS mechanism through electron transfer as Cu(II)–Cu(III)–Cu(II) was proposed. [Display omitted] |
---|---|
AbstractList | In this study, a series of CuMgAl layered double oxides (CuMgAl-LDOs) were obtained via calcination of CuMgAl layered double hydroxides (CuMgAl-LDHs) synthesised via a co-precipitation method. The results show that CuMgAl-LDO can be prepared using an optimal Cu : Mg : Al molar ratio of 3 : 3 : 2, NaOH : Na2CO3 molar ratio of 2 : 1, and calcination temperature of 600 °C. CuMgAl-LDO is a characteristic of mesoporous material with a lamellar structure and large specific surface area. The removal efficiency of sulfameter (SMD) based on CuMgAl-LDO/persulfate (PS) can reach > 98% over a wide range of initial SMD concentrations (5–20 mg L−1). The best removal efficiency of 99.49% was achieved within 120 min using 10 mg L−1 SMD, 0.3 g L−1 CuMgAl-LDO, and 0.7 mmol L−1 PS. Kinetic analysis showed that the degradation of SMD was in accordance with a quasi-first-order kinetic model. The stability of the CuMgAl-LDO catalyst was verified by the high SMD removal efficiency (> 97% within 120 min) observed after five recycling tests and low copper ion leaching concentration (0.89 mg L−1), which is below drinking water quality standard of 1.3 mg L−1 permittable in the U.S. Radical scavenging experiments suggest that SO4·− is the primary active species participating in the CuMgAl-LDO/PS system. Moreover, our mechanistic investigations based on the radical scavenging tests and X-ray photoelectron spectroscopy (XPS) results indicate that Cu(II)–Cu(III)–Cu(II) circulation is responsible for activating PS in the degradation of SMD and the degradation pathway for SMD was deduced. Accordingly, the results presented in this work demonstrate that CuMgAl-LDO may be an efficient and stable catalyst for the activation of PS during the degradation of organic pollutants.
CuMgAl-LDO/PS system exhibited an excellent catalytic performance for the degradation of SMD with low leaching of copper ion and high reusability, and activation of PS mechanism through electron transfer as Cu(II)–Cu(III)–Cu(II) was proposed. [Display omitted] In this study, a series of CuMgAl layered double oxides (CuMgAl-LDOs) were obtained via calcination of CuMgAl layered double hydroxides (CuMgAl-LDHs) synthesised via a co-precipitation method. The results show that CuMgAl-LDO can be prepared using an optimal Cu : Mg : Al molar ratio of 3 : 3 : 2, NaOH : Na2CO3 molar ratio of 2 : 1, and calcination temperature of 600 °C. CuMgAl-LDO is a characteristic of mesoporous material with a lamellar structure and large specific surface area. The removal efficiency of sulfameter (SMD) based on CuMgAl-LDO/persulfate (PS) can reach > 98% over a wide range of initial SMD concentrations (5–20 mg L−1). The best removal efficiency of 99.49% was achieved within 120 min using 10 mg L−1 SMD, 0.3 g L−1 CuMgAl-LDO, and 0.7 mmol L−1 PS. Kinetic analysis showed that the degradation of SMD was in accordance with a quasi-first-order kinetic model. The stability of the CuMgAl-LDO catalyst was verified by the high SMD removal efficiency (> 97% within 120 min) observed after five recycling tests and low copper ion leaching concentration (0.89 mg L−1), which is below drinking water quality standard of 1.3 mg L−1 permittable in the U.S. Radical scavenging experiments suggest that SO4·− is the primary active species participating in the CuMgAl-LDO/PS system. Moreover, our mechanistic investigations based on the radical scavenging tests and X-ray photoelectron spectroscopy (XPS) results indicate that Cu(II)–Cu(III)–Cu(II) circulation is responsible for activating PS in the degradation of SMD and the degradation pathway for SMD was deduced. Accordingly, the results presented in this work demonstrate that CuMgAl-LDO may be an efficient and stable catalyst for the activation of PS during the degradation of organic pollutants. |
Author | Jia, Qingzhu Wang, Qiang Yan, Fangyou Zhang, Hongmin |
Author_xml | – sequence: 1 givenname: Hongmin surname: Zhang fullname: Zhang, Hongmin organization: School of Marine and Environmental Science, Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin University of Science and Technology, 13St. 29, TEDA, Tianjin, 300457, China – sequence: 2 givenname: Qingzhu surname: Jia fullname: Jia, Qingzhu email: jiaqingzhu@tust.edu.cn organization: School of Marine and Environmental Science, Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin University of Science and Technology, 13St. 29, TEDA, Tianjin, 300457, China – sequence: 3 givenname: Fangyou surname: Yan fullname: Yan, Fangyou email: yanfangyou@tust.edu.cn organization: School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, 13St. 29, TEDA, Tianjin, 300457, China – sequence: 4 givenname: Qiang surname: Wang fullname: Wang, Qiang organization: School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, 13St. 29, TEDA, Tianjin, 300457, China |
BookMark | eNp9kcFu1DAQhi1UJErpA3DzC2wY23HsiFO1AlqpiAucrYk9jrzKxpXjrdi3J7sLCHHoySNL3ze__b9lV3OeibH3AhoBovuwa0aiRoKEBmwDoF-xa9l2dgNSm6t_5jfsdll2ACBb0QrdXrP9PVUqeaSZ8mHh6Gt6xpryzHPkT1SWwxSxEh-OfHv4Ot5NfMIjFQo85MMwEc8_UyAec-EeK07HmjwPNBYMfzVnx_605x17HXFa6Pb3ecN-fP70fXu_efz25WF797jxLXR1g2qwKlDUNnZd75UCEL1Qpht6IXsZZdBRxEENSomoCaWSqAzo1miDpuvVDXu4eEPGnXsqaY_l6DImd77IZXRY1qQTOWutV4MEYaxuhe-sHzT2JPpWWaMwri5zcfmSl6VQdD7V89tqwTQ5Ae5Ugtu5tQR3KsGBdWsJKyn-I_8keYn5eGFo_Z7nRMUtPtHsKaRCvq750wv0L-n3oWc |
CitedBy_id | crossref_primary_10_1016_j_gee_2024_03_001 crossref_primary_10_1016_j_jece_2025_115324 crossref_primary_10_1016_j_gee_2022_09_006 crossref_primary_10_1016_j_envres_2023_116534 crossref_primary_10_1016_j_jwpe_2024_105349 crossref_primary_10_1016_j_psep_2024_11_006 crossref_primary_10_1007_s10562_024_04827_3 crossref_primary_10_1016_j_cej_2022_140536 crossref_primary_10_1002_ajoc_202400350 crossref_primary_10_1016_j_psep_2024_07_082 crossref_primary_10_1016_j_gee_2024_09_006 crossref_primary_10_1016_j_seppur_2022_120925 crossref_primary_10_1080_09593330_2023_2237660 crossref_primary_10_1016_j_psep_2025_106947 crossref_primary_10_1016_j_jallcom_2023_170370 crossref_primary_10_1016_j_mcat_2023_113656 crossref_primary_10_1016_j_jwpe_2023_103895 crossref_primary_10_1021_acs_iecr_4c00671 crossref_primary_10_1039_D3NA00125C crossref_primary_10_1016_j_fuel_2023_129231 crossref_primary_10_1016_j_jwpe_2022_103110 crossref_primary_10_1016_j_jwpe_2024_106089 crossref_primary_10_1016_j_dwt_2024_100195 crossref_primary_10_1016_j_jwpe_2024_105014 crossref_primary_10_1016_j_ces_2024_120910 crossref_primary_10_1016_j_cherd_2024_11_024 crossref_primary_10_1016_j_colsurfa_2024_135784 crossref_primary_10_1016_j_gee_2022_07_006 crossref_primary_10_1016_j_cattod_2024_114771 |
Cites_doi | 10.1016/j.apcatb.2015.12.002 10.1021/es9035368 10.1016/j.gee.2018.11.003 10.1016/j.cej.2019.03.127 10.1016/j.cej.2012.11.093 10.1016/j.jhazmat.2016.09.070 10.1016/j.apcatb.2015.03.055 10.1016/j.chemosphere.2018.04.023 10.1016/j.gee.2018.11.001 10.1016/j.jhazmat.2017.05.007 10.1016/j.scitotenv.2015.11.139 10.1016/j.cej.2017.03.117 10.1016/j.scitotenv.2011.12.004 10.1016/j.cej.2017.07.155 10.1016/j.watres.2012.02.004 10.1016/j.apcata.2017.03.020 10.1038/s41598-017-06107-0 10.1016/j.cej.2013.07.053 10.1016/j.envint.2017.10.016 10.1016/j.jiec.2015.01.022 10.1016/j.chemosphere.2016.02.055 10.1016/j.apcatb.2013.09.017 10.1039/c3ta15350a 10.1016/j.gee.2018.05.001 10.1016/j.cej.2018.04.215 10.1016/j.jhazmat.2013.09.049 10.1016/j.cej.2018.09.111 10.1021/acs.est.5b00729 10.1016/j.jhazmat.2014.12.026 10.1080/10643380500326564 10.1016/j.apcatb.2015.07.024 10.1021/acs.est.6b05295 10.1016/j.cej.2017.10.097 10.1016/j.jhazmat.2015.06.003 10.1016/j.cej.2016.11.118 10.1016/j.apcatb.2018.06.044 10.1016/j.jhazmat.2010.01.091 10.1016/j.apsusc.2017.05.224 10.1016/j.apcatb.2016.04.043 10.1016/j.apcatb.2016.09.006 10.1021/acs.est.5b00623 10.1016/j.cej.2014.07.048 10.1016/j.jhazmat.2016.12.063 10.1016/j.cej.2015.05.121 10.1016/j.apcatb.2016.03.067 |
ContentType | Journal Article |
Copyright | 2020 Institute of Process Engineering, Chinese Academy of Sciences |
Copyright_xml | – notice: 2020 Institute of Process Engineering, Chinese Academy of Sciences |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.gee.2020.08.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2468-0257 |
EndPage | 115 |
ExternalDocumentID | oai_doaj_org_article_888c3b20178541c68cb5a9e1943873af 10_1016_j_gee_2020_08_005 S2468025720301333 |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ M41 NCXOZ OK1 ROL SSZ -03 -0C -SC -S~ 0R~ 5VR 92M 9D9 9DC AAYWO AAYXX ABJCF ACVFH ADCNI ADVLN AEUPX AFKRA AFPUW AFUIB AIGII AKBMS AKYEP ATCPS BENPR BGLVJ BHPHI CAJEC CCPQU CITATION HCIFZ M7S M~E PATMY PHGZM PHGZT PIMPY PTHSS PYCSY Q-- RT3 T8S U1F U1G U5C U5M |
ID | FETCH-LOGICAL-c406t-a3b83def58f669c3300191376b91292f2d5f1fb3b331f5ea232a37054757a7693 |
IEDL.DBID | DOA |
ISSN | 2468-0257 |
IngestDate | Wed Aug 27 00:01:58 EDT 2025 Tue Jul 01 02:20:49 EDT 2025 Thu Apr 24 23:04:33 EDT 2025 Wed May 17 01:23:30 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Reaction mechanism Heterogeneous catalysis Activated persulfate Sulfameter CuMgAl-LDO |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. https://www.elsevier.com/tdm/userlicense/1.0 http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-a3b83def58f669c3300191376b91292f2d5f1fb3b331f5ea232a37054757a7693 |
OpenAccessLink | https://doaj.org/article/888c3b20178541c68cb5a9e1943873af |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_888c3b20178541c68cb5a9e1943873af crossref_citationtrail_10_1016_j_gee_2020_08_005 crossref_primary_10_1016_j_gee_2020_08_005 elsevier_sciencedirect_doi_10_1016_j_gee_2020_08_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationTitle | Green energy & environment |
PublicationYear | 2022 |
Publisher | Elsevier B.V KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
References | Chen, Yan, Da, Qian, Lu, Chen (bib21) 2017; 538 Yan, Chen, Qian, Gao, Ouyang, Chen (bib36) 2017; 338 Jiao, Zhao, Li, Wang, Qu (bib9) 2019; 4 Duan, Su, Zhou, Sun, Suvorova, Odedairo, Zhu, Shao, Wang (bib13) 2016; 194 Gong, Chen, Yang, Luo, Yao, Wang, Wang, Wu, Li, Wang, Zeng (bib35) 2017; 321 Li, Duan (bib28) 2006; 37 Zhao, Niu, Zhang, Guo, Wen, Liang, Zeng (bib39) 2018; 204 Qiao, Ying, Singer, Zhu (bib4) 2018; 110 Gao, Mao, Luo, Wang, Xu, Xu (bib2) 2012; 46 Fang, Wu, Liu, Dionysiou, Deng, Zhou (bib10) 2017; 202 Deng, Shao, Gao, Tan, Zhou, Hu (bib29) 2013; 262 Xian, Zhang, Chang, Zhang, Zou, Li (bib30) 2019; 234 Hong, Peng, Zhao, Yan, Lai, Yao (bib22) 2019; 370 Zou, Tao, Mao, Wu (bib34) 2014; 257 Ma, Chen, Yang, Zhong, Shu, Yao, Xie, Li, Wang, Zeng (bib52) 2018; 227 Qin, Fang, Wang, Zhou (bib45) 2018; 348 Shan, Yan, Yang, Hao, Du (bib41) 2015; 299 Li, Guo, Huang, Jawad, Chen, Yang, Liu, Shen, Wang, Yin (bib49) 2017; 328 Monteagudo, Durán, González, Expósito (bib38) 2015; 176–177 Ngo, Sooknoi, Resasco (bib24) 2018; 237 Liang, Zhang, Huang, Hussain (bib37) 2013; 218 Yao, Zeng, Wang, Yao, Zeng, Wang, Yao, Zeng, Wang (bib50) 2017; 330 Park, Kwon, Kang, Jung (bib19) 2019; 4 Gao, Zhang, Li, Jin, Yao, Li, Hui (bib15) 2016; 185 Fan, Li, Evans, Duan (bib44) 2015; 45 Latiff, Kishimoto, Sharmin, Kita, Yanagihara, Nakagawa (bib27) 2017; 53 Ling, Wang, Peng (bib40) 2010; 178 Huang, Wu, Gong, Al (bib31) 2014; 2 Lei, Zhu, Zhu, Jiang, Le, Yu (bib42) 2017; 321 Hu, Long (bib12) 2016; 181 Liu, Shih, Sun, Wang (bib16) 2012; 416 Chen, Wu, Huang, Liu, Li, Zhu, Dang, Bi (bib23) 2019; 246 Ibekwe, Ma, Murinda, Reddy (bib3) 2016; 544 Ji, Dong, Kong, Lu (bib26) 2015; 285 Silva-Rackov, Lawal, Nfodzo, Vianna, Nascimento, Choi (bib11) 2016; 192 Zhang, Qian, Hong (bib51) 2017; 422 Lei, Chen, Tu, Yang, Chuh-Shun, Yao-Jen, Yao-Hui, Hui (bib17) 2015; 49 Feng, Liu, Wu, Zhou, Deng, Zhang, Shih (bib33) 2015; 280 Ji, Li, Wei, Jie (bib46) 2013; 231 Wang, Bai (bib8) 2017; 312 Jawad, Lang, Liao, Khan, Ifthikar, Lv, Long, Chen, Chen (bib18) 2018; 335 Ji, Kim, Kwon, Song (bib25) 2009; 40 Zhang, Ying, Pan, Liu, Zhao (bib1) 2015; 49 Pan, Li, Noonan, Fang, Wan, Yu, Wang (bib6) 2017; 51 Huo, Cao, Liu, Xu, Dong, Zhang, Dong (bib20) 2019; 4 Bing, Tong (bib5) 2010; 44 Lu, Sui, Yuan, Wang, Lv (bib48) 2019; 357 Hasan, Senger, Ryan, Culp, Gonzalezrodriguez, Coffer, Naumov (bib43) 2017; 7 Qi, Yu, Li, Xin, Luo, Wu, Chen, Yang, Zeng (bib32) 2015; 28 Wang, Zhao, Li, Fan, Zhao (bib47) 2014; 147 Pignatello, Oliveros, Mackay (bib7) 2006; 36 Matzek, Carter (bib14) 2016; 151 Hu (10.1016/j.gee.2020.08.005_bib12) 2016; 181 Wang (10.1016/j.gee.2020.08.005_bib8) 2017; 312 Monteagudo (10.1016/j.gee.2020.08.005_bib38) 2015; 176–177 Fan (10.1016/j.gee.2020.08.005_bib44) 2015; 45 Gao (10.1016/j.gee.2020.08.005_bib2) 2012; 46 Park (10.1016/j.gee.2020.08.005_bib19) 2019; 4 Qiao (10.1016/j.gee.2020.08.005_bib4) 2018; 110 Jawad (10.1016/j.gee.2020.08.005_bib18) 2018; 335 Bing (10.1016/j.gee.2020.08.005_bib5) 2010; 44 Wang (10.1016/j.gee.2020.08.005_bib47) 2014; 147 Hasan (10.1016/j.gee.2020.08.005_bib43) 2017; 7 Huang (10.1016/j.gee.2020.08.005_bib31) 2014; 2 Ma (10.1016/j.gee.2020.08.005_bib52) 2018; 227 Huo (10.1016/j.gee.2020.08.005_bib20) 2019; 4 Zhang (10.1016/j.gee.2020.08.005_bib1) 2015; 49 Li (10.1016/j.gee.2020.08.005_bib28) 2006; 37 Ji (10.1016/j.gee.2020.08.005_bib46) 2013; 231 Chen (10.1016/j.gee.2020.08.005_bib21) 2017; 538 Yao (10.1016/j.gee.2020.08.005_bib50) 2017; 330 Feng (10.1016/j.gee.2020.08.005_bib33) 2015; 280 Hong (10.1016/j.gee.2020.08.005_bib22) 2019; 370 Zou (10.1016/j.gee.2020.08.005_bib34) 2014; 257 Lei (10.1016/j.gee.2020.08.005_bib42) 2017; 321 Lei (10.1016/j.gee.2020.08.005_bib17) 2015; 49 Qin (10.1016/j.gee.2020.08.005_bib45) 2018; 348 Jiao (10.1016/j.gee.2020.08.005_bib9) 2019; 4 Ling (10.1016/j.gee.2020.08.005_bib40) 2010; 178 Silva-Rackov (10.1016/j.gee.2020.08.005_bib11) 2016; 192 Latiff (10.1016/j.gee.2020.08.005_bib27) 2017; 53 Duan (10.1016/j.gee.2020.08.005_bib13) 2016; 194 Gong (10.1016/j.gee.2020.08.005_bib35) 2017; 321 Gao (10.1016/j.gee.2020.08.005_bib15) 2016; 185 Pan (10.1016/j.gee.2020.08.005_bib6) 2017; 51 Ji (10.1016/j.gee.2020.08.005_bib26) 2015; 285 Fang (10.1016/j.gee.2020.08.005_bib10) 2017; 202 Qi (10.1016/j.gee.2020.08.005_bib32) 2015; 28 Pignatello (10.1016/j.gee.2020.08.005_bib7) 2006; 36 Yan (10.1016/j.gee.2020.08.005_bib36) 2017; 338 Zhao (10.1016/j.gee.2020.08.005_bib39) 2018; 204 Liu (10.1016/j.gee.2020.08.005_bib16) 2012; 416 Ibekwe (10.1016/j.gee.2020.08.005_bib3) 2016; 544 Shan (10.1016/j.gee.2020.08.005_bib41) 2015; 299 Ji (10.1016/j.gee.2020.08.005_bib25) 2009; 40 Zhang (10.1016/j.gee.2020.08.005_bib51) 2017; 422 Lu (10.1016/j.gee.2020.08.005_bib48) 2019; 357 Liang (10.1016/j.gee.2020.08.005_bib37) 2013; 218 Deng (10.1016/j.gee.2020.08.005_bib29) 2013; 262 Xian (10.1016/j.gee.2020.08.005_bib30) 2019; 234 Chen (10.1016/j.gee.2020.08.005_bib23) 2019; 246 Li (10.1016/j.gee.2020.08.005_bib49) 2017; 328 Ngo (10.1016/j.gee.2020.08.005_bib24) 2018; 237 Matzek (10.1016/j.gee.2020.08.005_bib14) 2016; 151 |
References_xml | – volume: 338 start-page: 372 year: 2017 ident: bib36 publication-title: J. Hazard Mater. – volume: 262 start-page: 836 year: 2013 end-page: 844 ident: bib29 publication-title: J. Hazard Mater. – volume: 544 start-page: 68 year: 2016 end-page: 76 ident: bib3 publication-title: Sci. Total Environ. – volume: 2 start-page: 5534 year: 2014 end-page: 5540 ident: bib31 publication-title: J. Mater. Chem. A – volume: 151 start-page: 178 year: 2016 end-page: 188 ident: bib14 publication-title: Chemosphere – volume: 280 start-page: 514 year: 2015 end-page: 524 ident: bib33 publication-title: Chem. Eng. J. – volume: 176–177 start-page: 120 year: 2015 end-page: 129 ident: bib38 publication-title: Appl. Catal. B Environ. – volume: 357 start-page: 140 year: 2019 end-page: 149 ident: bib48 publication-title: Chem. Eng. J. – volume: 7 start-page: 6411 year: 2017 ident: bib43 publication-title: Sci. Rep. – volume: 234 start-page: 265 year: 2019 end-page: 272 ident: bib30 publication-title: J. Environ. Manag. – volume: 416 start-page: 507 year: 2012 end-page: 512 ident: bib16 publication-title: Sci. Total Environ. – volume: 194 start-page: 7 year: 2016 end-page: 15 ident: bib13 publication-title: Appl. Catal. B Environ. – volume: 227 start-page: 406 year: 2018 end-page: 414 ident: bib52 publication-title: J. Environ. Manag. – volume: 40 start-page: 803 year: 2009 end-page: 807 ident: bib25 publication-title: Adv. Mater. – volume: 44 start-page: 3468 year: 2010 end-page: 3473 ident: bib5 publication-title: Environ. Sci. Technol. – volume: 330 start-page: 345 year: 2017 end-page: 354 ident: bib50 publication-title: Chem. Eng. J. – volume: 321 start-page: 801 year: 2017 end-page: 811 ident: bib42 publication-title: J. Hazard Mater. – volume: 231 start-page: 434 year: 2013 end-page: 440 ident: bib46 publication-title: Chem. Eng. J. – volume: 370 start-page: 354 year: 2019 end-page: 363 ident: bib22 publication-title: Chem. Eng. J. – volume: 45 start-page: 7040 year: 2015 end-page: 7066 ident: bib44 publication-title: Chem. Soc. Rev. – volume: 257 start-page: 36 year: 2014 end-page: 44 ident: bib34 publication-title: Chem. Eng. J. – volume: 49 start-page: 6772 year: 2015 end-page: 6782 ident: bib1 publication-title: Environ. Sci. Technol. – volume: 285 start-page: 491 year: 2015 end-page: 500 ident: bib26 publication-title: J. Hazard Mater. – volume: 218 start-page: 384 year: 2013 end-page: 391 ident: bib37 publication-title: Chem. Eng. J. – volume: 185 start-page: 22 year: 2016 end-page: 30 ident: bib15 publication-title: Appl. Catal. B Environ. – volume: 4 start-page: 270 year: 2019 end-page: 277 ident: bib20 publication-title: Green Energy Environ. – volume: 328 start-page: 56 year: 2017 end-page: 62 ident: bib49 publication-title: J. Hazard Mater. – volume: 312 start-page: 79 year: 2017 end-page: 98 ident: bib8 publication-title: Chem. Eng. J. – volume: 538 start-page: 19 year: 2017 end-page: 26 ident: bib21 publication-title: Appl. Catal. A – volume: 335 start-page: 548 year: 2018 end-page: 559 ident: bib18 publication-title: Chem. Eng. J. – volume: 181 start-page: 103 year: 2016 end-page: 117 ident: bib12 publication-title: Appl. Catal. B Environ. – volume: 4 start-page: 287 year: 2019 end-page: 292 ident: bib19 publication-title: Green Energy Environ. – volume: 46 start-page: 2355 year: 2012 end-page: 2364 ident: bib2 publication-title: Water Res. – volume: 178 start-page: 385 year: 2010 end-page: 389 ident: bib40 publication-title: J. Hazard Mater. – volume: 28 start-page: 54 year: 2015 end-page: 59 ident: bib32 publication-title: J. Ind. Eng. Chem. – volume: 422 start-page: 443 year: 2017 end-page: 451 ident: bib51 publication-title: Appl. Surf. Sci. – volume: 246 start-page: 164 year: 2019 end-page: 173 ident: bib23 publication-title: J. Environ. Manag. – volume: 53 start-page: 1 year: 2017 end-page: 4 ident: bib27 publication-title: IEEE Trans. Magn. – volume: 36 start-page: 1 year: 2006 end-page: 84 ident: bib7 publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 348 start-page: 526 year: 2018 end-page: 534 ident: bib45 publication-title: Chem. Eng. J. – volume: 49 start-page: 6838 year: 2015 end-page: 6845 ident: bib17 publication-title: Environ. Sci. Technol. – volume: 51 start-page: 5098 year: 2017 ident: bib6 publication-title: Environ. Sci. Technol. – volume: 4 start-page: 66 year: 2019 end-page: 74 ident: bib9 publication-title: Green Energy Environ. – volume: 110 start-page: 160 year: 2018 end-page: 172 ident: bib4 publication-title: Environ. Int. – volume: 202 start-page: 1 year: 2017 end-page: 11 ident: bib10 publication-title: Appl. Catal. B Environ. – volume: 321 start-page: 222 year: 2017 end-page: 232 ident: bib35 publication-title: Chem. Eng. J. – volume: 192 start-page: 253 year: 2016 end-page: 259 ident: bib11 publication-title: Appl. Catal. B Environ. – volume: 147 start-page: 534 year: 2014 end-page: 545 ident: bib47 publication-title: Appl. Catal. B Environ. – volume: 237 start-page: 835 year: 2018 end-page: 843 ident: bib24 publication-title: Appl. Catal. B Environ. – volume: 37 start-page: 193 year: 2006 end-page: 223 ident: bib28 publication-title: ChemInform – volume: 204 start-page: 11 year: 2018 end-page: 21 ident: bib39 publication-title: Chemosphere – volume: 299 start-page: 42 year: 2015 end-page: 49 ident: bib41 publication-title: J. Hazard Mater. – volume: 40 start-page: 803 year: 2009 ident: 10.1016/j.gee.2020.08.005_bib25 publication-title: Adv. Mater. – volume: 185 start-page: 22 year: 2016 ident: 10.1016/j.gee.2020.08.005_bib15 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.12.002 – volume: 44 start-page: 3468 year: 2010 ident: 10.1016/j.gee.2020.08.005_bib5 publication-title: Environ. Sci. Technol. doi: 10.1021/es9035368 – volume: 4 start-page: 287 year: 2019 ident: 10.1016/j.gee.2020.08.005_bib19 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2018.11.003 – volume: 370 start-page: 354 year: 2019 ident: 10.1016/j.gee.2020.08.005_bib22 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.03.127 – volume: 218 start-page: 384 year: 2013 ident: 10.1016/j.gee.2020.08.005_bib37 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.11.093 – volume: 321 start-page: 801 year: 2017 ident: 10.1016/j.gee.2020.08.005_bib42 publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.09.070 – volume: 176–177 start-page: 120 year: 2015 ident: 10.1016/j.gee.2020.08.005_bib38 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.03.055 – volume: 45 start-page: 7040 year: 2015 ident: 10.1016/j.gee.2020.08.005_bib44 publication-title: Chem. Soc. Rev. – volume: 204 start-page: 11 year: 2018 ident: 10.1016/j.gee.2020.08.005_bib39 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.04.023 – volume: 227 start-page: 406 year: 2018 ident: 10.1016/j.gee.2020.08.005_bib52 publication-title: J. Environ. Manag. – volume: 4 start-page: 270 year: 2019 ident: 10.1016/j.gee.2020.08.005_bib20 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2018.11.001 – volume: 246 start-page: 164 year: 2019 ident: 10.1016/j.gee.2020.08.005_bib23 publication-title: J. Environ. Manag. – volume: 338 start-page: 372 year: 2017 ident: 10.1016/j.gee.2020.08.005_bib36 publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2017.05.007 – volume: 544 start-page: 68 year: 2016 ident: 10.1016/j.gee.2020.08.005_bib3 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.11.139 – volume: 321 start-page: 222 year: 2017 ident: 10.1016/j.gee.2020.08.005_bib35 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.117 – volume: 416 start-page: 507 year: 2012 ident: 10.1016/j.gee.2020.08.005_bib16 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.12.004 – volume: 37 start-page: 193 year: 2006 ident: 10.1016/j.gee.2020.08.005_bib28 publication-title: ChemInform – volume: 330 start-page: 345 year: 2017 ident: 10.1016/j.gee.2020.08.005_bib50 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.155 – volume: 46 start-page: 2355 year: 2012 ident: 10.1016/j.gee.2020.08.005_bib2 publication-title: Water Res. doi: 10.1016/j.watres.2012.02.004 – volume: 538 start-page: 19 year: 2017 ident: 10.1016/j.gee.2020.08.005_bib21 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2017.03.020 – volume: 7 start-page: 6411 year: 2017 ident: 10.1016/j.gee.2020.08.005_bib43 publication-title: Sci. Rep. doi: 10.1038/s41598-017-06107-0 – volume: 231 start-page: 434 year: 2013 ident: 10.1016/j.gee.2020.08.005_bib46 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.07.053 – volume: 110 start-page: 160 year: 2018 ident: 10.1016/j.gee.2020.08.005_bib4 publication-title: Environ. Int. doi: 10.1016/j.envint.2017.10.016 – volume: 28 start-page: 54 year: 2015 ident: 10.1016/j.gee.2020.08.005_bib32 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2015.01.022 – volume: 151 start-page: 178 year: 2016 ident: 10.1016/j.gee.2020.08.005_bib14 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.02.055 – volume: 147 start-page: 534 year: 2014 ident: 10.1016/j.gee.2020.08.005_bib47 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2013.09.017 – volume: 2 start-page: 5534 year: 2014 ident: 10.1016/j.gee.2020.08.005_bib31 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta15350a – volume: 4 start-page: 66 year: 2019 ident: 10.1016/j.gee.2020.08.005_bib9 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2018.05.001 – volume: 348 start-page: 526 year: 2018 ident: 10.1016/j.gee.2020.08.005_bib45 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.215 – volume: 262 start-page: 836 year: 2013 ident: 10.1016/j.gee.2020.08.005_bib29 publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2013.09.049 – volume: 357 start-page: 140 year: 2019 ident: 10.1016/j.gee.2020.08.005_bib48 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.111 – volume: 49 start-page: 6772 year: 2015 ident: 10.1016/j.gee.2020.08.005_bib1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00729 – volume: 285 start-page: 491 year: 2015 ident: 10.1016/j.gee.2020.08.005_bib26 publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2014.12.026 – volume: 36 start-page: 1 year: 2006 ident: 10.1016/j.gee.2020.08.005_bib7 publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380500326564 – volume: 181 start-page: 103 year: 2016 ident: 10.1016/j.gee.2020.08.005_bib12 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.07.024 – volume: 51 start-page: 5098 year: 2017 ident: 10.1016/j.gee.2020.08.005_bib6 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05295 – volume: 335 start-page: 548 year: 2018 ident: 10.1016/j.gee.2020.08.005_bib18 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.097 – volume: 299 start-page: 42 year: 2015 ident: 10.1016/j.gee.2020.08.005_bib41 publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2015.06.003 – volume: 312 start-page: 79 year: 2017 ident: 10.1016/j.gee.2020.08.005_bib8 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.118 – volume: 237 start-page: 835 year: 2018 ident: 10.1016/j.gee.2020.08.005_bib24 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.06.044 – volume: 53 start-page: 1 year: 2017 ident: 10.1016/j.gee.2020.08.005_bib27 publication-title: IEEE Trans. Magn. – volume: 178 start-page: 385 year: 2010 ident: 10.1016/j.gee.2020.08.005_bib40 publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2010.01.091 – volume: 422 start-page: 443 year: 2017 ident: 10.1016/j.gee.2020.08.005_bib51 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.05.224 – volume: 194 start-page: 7 year: 2016 ident: 10.1016/j.gee.2020.08.005_bib13 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.04.043 – volume: 202 start-page: 1 year: 2017 ident: 10.1016/j.gee.2020.08.005_bib10 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.09.006 – volume: 49 start-page: 6838 year: 2015 ident: 10.1016/j.gee.2020.08.005_bib17 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00623 – volume: 257 start-page: 36 year: 2014 ident: 10.1016/j.gee.2020.08.005_bib34 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.07.048 – volume: 234 start-page: 265 year: 2019 ident: 10.1016/j.gee.2020.08.005_bib30 publication-title: J. Environ. Manag. – volume: 328 start-page: 56 year: 2017 ident: 10.1016/j.gee.2020.08.005_bib49 publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2016.12.063 – volume: 280 start-page: 514 year: 2015 ident: 10.1016/j.gee.2020.08.005_bib33 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.05.121 – volume: 192 start-page: 253 year: 2016 ident: 10.1016/j.gee.2020.08.005_bib11 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.03.067 |
SSID | ssj0002414154 |
Score | 2.385357 |
Snippet | In this study, a series of CuMgAl layered double oxides (CuMgAl-LDOs) were obtained via calcination of CuMgAl layered double hydroxides (CuMgAl-LDHs)... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 105 |
SubjectTerms | Activated persulfate CuMgAl-LDO Heterogeneous catalysis Reaction mechanism Sulfameter |
Title | Heterogeneous activation of persulfate by CuMgAl layered double oxide for catalytic degradation of sulfameter |
URI | https://dx.doi.org/10.1016/j.gee.2020.08.005 https://doaj.org/article/888c3b20178541c68cb5a9e1943873af |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La8MwDDajp-0w9mTdCx92GoQlcZzHsSsrZdCdVugtRH6UjrQpo4H1309y0pLLtsuuwZGCrFifbPkTYw-AGEMqIT1IQGOCEuA_B9Z6KgKtCmsAXG3O5C0eT6PXmZx1Wn1RTVhDD9wY7gkzNCUgdF3ko0DFqQJZZAZzb5EmorC0-mLM6yRTtAZjXMLIREfKIV0twsCe7I40XXHX3BBFZug7-k5qXdcJSo67vxObOvFmdMKOW6DIB80HnrIDszpjRx36wHO2HFMtS4UuYDB_53RFodlg5ZXla8R1dWkRSnLY8mE9mQ9KXhZb6s3JdVVDaXj1tdCGI2zlbhdni6q4JvYIvRfjZCxJzwWbjl7eh2OvbZ-AhvbjjVcISIU2VqY2jjMlBMG5ABcUyDDIhzbU0gYWBAgRWGkKxFaFSBDCJTIpqEXiJeutqpW5YlxFNhRKE_tbEhFpmI3DDMBGRvsoN-4zf2e_XLXc4tTiosx3RWQfOZo8J5Pn1PbSl332uH9l3RBr_Db4mSZlP5A4sd0D9JS89ZT8L0_ps2g3pXkLLxrYgKIWP-u-_g_dN-wwpHsTrtz7lvU2n7W5QzSzgXvnuN-uou8m |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+activation+of+persulfate+by+CuMgAl+layered+double+oxide+for+catalytic+degradation+of+sulfameter&rft.jtitle=Green+energy+%26+environment&rft.au=Hongmin+Zhang&rft.au=Qingzhu+Jia&rft.au=Fangyou+Yan&rft.au=Qiang+Wang&rft.date=2022-02-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.issn=2468-0257&rft.eissn=2468-0257&rft.volume=7&rft.issue=1&rft.spage=105&rft.epage=115&rft_id=info:doi/10.1016%2Fj.gee.2020.08.005&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_888c3b20178541c68cb5a9e1943873af |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-0257&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-0257&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-0257&client=summon |