Unmasking Deception: Empowering Deepfake Detection with Vision Transformer Network

With the development of image-generating technologies, significant progress has been made in the field of facial manipulation techniques. These techniques allow people to easily modify media information, such as videos and images, by substituting the identity or facial expression of one person with...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 11; no. 17; p. 3710
Main Authors Arshed, Muhammad Asad, Alwadain, Ayed, Faizan Ali, Rao, Mumtaz, Shahzad, Ibrahim, Muhammad, Muneer, Amgad
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the development of image-generating technologies, significant progress has been made in the field of facial manipulation techniques. These techniques allow people to easily modify media information, such as videos and images, by substituting the identity or facial expression of one person with the face of another. This has significantly increased the availability and accessibility of such tools and manipulated content termed ‘deepfakes’. Developing an accurate method for detecting fake images needs time to prevent their misuse and manipulation. This paper examines the capabilities of the Vision Transformer (ViT), i.e., extracting global features to detect deepfake images effectively. After conducting comprehensive experiments, our method demonstrates a high level of effectiveness, achieving a detection accuracy, precision, recall, and F1 rate of 99.5 to 100% for both the original and mixture data set. According to our existing understanding, this study is a research endeavor incorporating real-world applications, specifically examining Snapchat-filtered images.
AbstractList With the development of image-generating technologies, significant progress has been made in the field of facial manipulation techniques. These techniques allow people to easily modify media information, such as videos and images, by substituting the identity or facial expression of one person with the face of another. This has significantly increased the availability and accessibility of such tools and manipulated content termed ‘deepfakes’. Developing an accurate method for detecting fake images needs time to prevent their misuse and manipulation. This paper examines the capabilities of the Vision Transformer (ViT), i.e., extracting global features to detect deepfake images effectively. After conducting comprehensive experiments, our method demonstrates a high level of effectiveness, achieving a detection accuracy, precision, recall, and F1 rate of 99.5 to 100% for both the original and mixture data set. According to our existing understanding, this study is a research endeavor incorporating real-world applications, specifically examining Snapchat-filtered images.
Audience Academic
Author Arshed, Muhammad Asad
Alwadain, Ayed
Faizan Ali, Rao
Ibrahim, Muhammad
Muneer, Amgad
Mumtaz, Shahzad
Author_xml – sequence: 1
  givenname: Muhammad Asad
  surname: Arshed
  fullname: Arshed, Muhammad Asad
– sequence: 2
  givenname: Ayed
  surname: Alwadain
  fullname: Alwadain, Ayed
– sequence: 3
  givenname: Rao
  orcidid: 0000-0003-0701-6761
  surname: Faizan Ali
  fullname: Faizan Ali, Rao
– sequence: 4
  givenname: Shahzad
  orcidid: 0000-0003-2606-2405
  surname: Mumtaz
  fullname: Mumtaz, Shahzad
– sequence: 5
  givenname: Muhammad
  orcidid: 0000-0001-5088-9571
  surname: Ibrahim
  fullname: Ibrahim, Muhammad
– sequence: 6
  givenname: Amgad
  orcidid: 0000-0002-7157-3020
  surname: Muneer
  fullname: Muneer, Amgad
BookMark eNptUV1LHDEUDaKgVd_6Awb62tV8TTLTN7G2FaSCaF_D3eRmze7OZJpElv77ZjsWpDR5yOGcew735r4jh2MckZD3jF4I0dPLAcozY0wLzegBOeGc64WuwuEbfEzOc17TenomOtmfkIencYC8CeOq-YwWpxLi-Km5Gaa4wzSzOHnYYAUF7V5udqE8Nz9C3uPHBGP2MQ2Ymu9YdjFtzsiRh23G89f3lDx9uXm8_ra4u_96e311t7CSqrIAxhTXymsmHXSdR94zWyXt2h6Y1N5LCqL1okPtl2optLCWupY57FonQJyS2znXRVibKYUB0i8TIZg_REwrA6kEu0WzBMstpVw4TSVwhE6hc6rtqFQ9b5c168OcNaX48wVzMev4ksbavuFdbZMq2fNadTFXraCGhtHHksDW63AItq7Dh8pfaSW50kK01cBng00x54Te2FBg_4nVGLaGUbPfnXm7u2r6-I_p72z_Lf8NFY6cVw
CitedBy_id crossref_primary_10_1108_K_04_2024_0914
crossref_primary_10_3390_computers13010031
crossref_primary_10_7717_peerj_cs_2181
crossref_primary_10_1007_s11042_024_19906_1
crossref_primary_10_1016_j_eswa_2024_123420
crossref_primary_10_3390_app131910980
crossref_primary_10_32604_cmc_2024_057213
crossref_primary_10_3390_bdcc8090119
Cites_doi 10.1109/IJCNN48605.2020.9207034
10.1109/CVPR.2016.90
10.1109/WIFS.2018.8630787
10.3390/s20174807
10.1109/TPAMI.2020.2970919
10.1145/3512527.3531415
10.1109/CVPR.2017.243
10.1007/978-3-030-58452-8_13
10.1007/s00521-022-06902-5
10.1109/HST47167.2019.9033005
10.3390/math11040816
10.1109/ICCCA49541.2020.9250803
10.1007/s11042-023-15561-0
10.1109/ICASSP39728.2021.9414582
10.1016/j.neucom.2020.11.046
10.1109/HCCAI49649.2020.00015
10.1109/CVPR.2015.7298594
10.1109/SIU49456.2020.9302157
10.1007/s11042-021-10989-8
10.1109/TCSVT.2021.3133859
10.1109/IJCB48548.2020.9304909
10.1016/j.cviu.2022.103525
10.1109/CVPR46437.2021.00222
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math11173710
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_bac2c0023d704a2ea86edd658046925b
A764267335
10_3390_math11173710
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c406t-a116276f714da88fe291cc407d59a147ff40a35f38e7fb6b373cc0d51de85d3a3
IEDL.DBID BENPR
ISSN 2227-7390
IngestDate Wed Aug 27 01:31:32 EDT 2025
Fri Jul 25 11:51:00 EDT 2025
Tue Jun 10 21:25:18 EDT 2025
Tue Jul 01 01:53:20 EDT 2025
Thu Apr 24 23:04:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-a116276f714da88fe291cc407d59a147ff40a35f38e7fb6b373cc0d51de85d3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0701-6761
0000-0003-2606-2405
0000-0001-5088-9571
0000-0002-7157-3020
OpenAccessLink https://www.proquest.com/docview/2862706492?pq-origsite=%requestingapplication%
PQID 2862706492
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_bac2c0023d704a2ea86edd658046925b
proquest_journals_2862706492
gale_infotracacademiconefile_A764267335
crossref_citationtrail_10_3390_math11173710
crossref_primary_10_3390_math11173710
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Nguyen (ref_2) 2018; 223
ref_14
Yousaf (ref_35) 2022; 34
ref_13
ref_12
ref_34
ref_11
ref_33
ref_10
ref_32
ref_31
Karras (ref_30) 2020; 43
ref_19
ref_18
ref_16
ref_15
Zhang (ref_23) 2020; 436
ref_25
Goodfellow (ref_1) 2018; 10
Shelke (ref_20) 2022; 81
ref_24
ref_22
ref_21
ref_3
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
ref_5
ref_4
Yang (ref_17) 2021; 32
ref_7
ref_6
References_xml – ident: ref_7
– ident: ref_28
– ident: ref_33
  doi: 10.1109/IJCNN48605.2020.9207034
– volume: 10
  start-page: 53
  year: 2018
  ident: ref_1
  article-title: Generative adversarial nets
  publication-title: IEEE Signal Process. Mag.
– ident: ref_8
  doi: 10.1109/CVPR.2016.90
– ident: ref_13
  doi: 10.1109/WIFS.2018.8630787
– ident: ref_32
– ident: ref_3
– ident: ref_24
– ident: ref_27
  doi: 10.3390/s20174807
– volume: 43
  start-page: 4217
  year: 2020
  ident: ref_30
  article-title: A Style-Based Generator Architecture for Generative Adversarial Networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2970919
– ident: ref_19
  doi: 10.1145/3512527.3531415
– ident: ref_9
  doi: 10.1109/CVPR.2017.243
– ident: ref_26
  doi: 10.1007/978-3-030-58452-8_13
– ident: ref_14
– volume: 34
  start-page: 7991
  year: 2022
  ident: ref_35
  article-title: Fake visual content detection using two-stream convolutional neural networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-06902-5
– ident: ref_11
  doi: 10.1109/HST47167.2019.9033005
– ident: ref_22
  doi: 10.3390/math11040816
– ident: ref_15
  doi: 10.1109/ICCCA49541.2020.9250803
– ident: ref_6
– ident: ref_21
  doi: 10.1007/s11042-023-15561-0
– ident: ref_25
– ident: ref_4
– ident: ref_31
– ident: ref_29
– ident: ref_34
  doi: 10.1109/ICASSP39728.2021.9414582
– volume: 436
  start-page: 260
  year: 2020
  ident: ref_23
  article-title: CSART: Channel and spatial attention-guided residual learning for real-time object tracking
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.11.046
– ident: ref_5
  doi: 10.1109/HCCAI49649.2020.00015
– ident: ref_10
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_12
  doi: 10.1109/SIU49456.2020.9302157
– volume: 81
  start-page: 22731
  year: 2022
  ident: ref_20
  article-title: Multiple forgery detection and localization technique for digital video using PCT and NBAP
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-10989-8
– volume: 32
  start-page: 4854
  year: 2021
  ident: ref_17
  article-title: MSTA-Net: Forgery Detection by Generating Manipulation Trace Based on Multi-scale Self-texture Attention
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3133859
– ident: ref_16
  doi: 10.1109/IJCB48548.2020.9304909
– volume: 223
  start-page: 103525
  year: 2018
  ident: ref_2
  article-title: Deep learning for deepfakes creation and detection: A survey
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2022.103525
– ident: ref_18
  doi: 10.1109/CVPR46437.2021.00222
SSID ssj0000913849
Score 2.2897677
Snippet With the development of image-generating technologies, significant progress has been made in the field of facial manipulation techniques. These techniques...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 3710
SubjectTerms Accuracy
Artificial intelligence
Deception
Deep learning
deepfake
fine tuning
Forgery
Identification
Image filters
Image manipulation
Literature reviews
Machine learning
Mathematics
Methods
pretrained
Social networks
Vision Transformer
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygvZQAxoIjYjnMOW4FWFRIdUIvYLD-FBA0VLf-fc5JWXSoWtsjx4NzlXtZ33xFySbnNhZMmdRm4NOcg0tKgXWXCA2RBmyLUANlhMRjnT2_ibWXUV8SENfTAjeBujbbMxsjiIMs181oW3jmMm7GwY8JE74sxb6WYqn1wSbnMywbpzrGuv8X87x3tGjjEZtmVGFRT9a9zyHWU6e-SnTY9TLrNsfbIhq_2yfbzklt1dkBextVEz-INd_LoW1DKXdKbTOO8s2bVT4P-8Pgwr4FWVRJvW5PXuo08GS1SVf-dDBsQ-CEZ93ujh0HaTkZILQbgeaopLRgUAWjutJTBs5JafAVOlJrmEEKeaS4Clx6CKQwHbm3mBHVeCsc1PyKb1Vflj0liXdAgBSulw9TJotNxNDCmMRWzBgrTITcLWSnb0obH6RWfCsuHKFm1KtkOuVrunjZ0GWv23UexL_dEkut6AVWvWtWrv1TfIddRaSqaIh7J6rajAD8sklqpLmBxVQDnokPOFnpVrY3OFMNiDjAjK9nJf5zmlGzFUfQN_uyMbM6_f_w5Jixzc1H_m79YBeiV
  priority: 102
  providerName: Directory of Open Access Journals
Title Unmasking Deception: Empowering Deepfake Detection with Vision Transformer Network
URI https://www.proquest.com/docview/2862706492
https://doaj.org/article/bac2c0023d704a2ea86edd658046925b
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwELZ4XOCAdnmI8qhyAHFAEYkdZ5y9IGDbRUhUCFHELXL8AAlIS9v9_zuTuIULe4scH5yxZ-abyecZxo5SYTJpVRXbBGycCZBxUaFeJdIBJF5XuW8IsoP8epjdPMmnkHCbBlrl3CY2htqODOXIzzhCb0D_WfDz8UdMXaPo72poobHMVtEEKwy-Vi97g7v7RZaFql6qrGgZ7wLj-zPEgS-o3yCALs1-8UVNyf7vDHPjbfo_2EaAidFFu68_2ZKrN9n67aLG6nSL3Q_rdz2lTHf02wVyyq-o9z6mvmftqBt7_erwYdYQruqIsq7RY3OdPHqYQ1Y3iQYtGXybDfu9h6vrOHRIiA064lms0xSlkntIM6uV8o4XqcFXYGWh0wy8zxItpBfKga_ySoAwJrEytU5JK7TYYSv1qHa7LDLWa1CSF8oihDJofGzqOdcIyUwFedVhp3NZlSaUD6cuFm8lhhEk2fKrZDvseDF73JbN-GbeJYl9MYeKXTcDo8lzGXQH_bnhhsCFhSTT3GmVO2sROlFszyUu7YQ2rSSVxCUZHW4W4IdRcavyAjDIykEI2WEH830tg65Oy8-Ttff_1_tsjZrNtwyzA7Yym_x1hwhJZlWXLav-n244fd0msP8HrsrjZQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiKcIFPCBigNaddePtRcJoUIbUtrmgBLU29brB0htNyEJQvwpfiMz-wi9lFtvK9uyvOPxzOfxPABeZcJJ5U2V-FT7RAqtkqLCc5WqoHUabZXHxkF2nI-m8vOJOtmAP30sDLlV9jKxEdR-5shGvsMRemvUnwV_P_-RUNUoel3tS2i0bHEYfv_CK9vy3cEe7u8258P9ycdR0lUVSBwqr1ViswxnyqPOpLfGxMCLzGGX9qqwmdQxytQKFYUJOlZ5JbRwLvUq88EoL6zAeW_ATSlEQSfKDD-tbTqUY9PIovWvx_50B1Hnd5QmWmgK0b2k-ZoCAVepgUa3De_B3Q6Ust2Wi-7DRqgfwJ3jdUbX5UP4Mq0v7JLs6mwvdK4wb9n-xZyqrLWtYR7tWcCPVePeVTOy8bKvTfA6m_QAOSzYuHU9fwTTa6HcY9isZ3V4Asz5aLVRvDAeAZtDUeezyLlFAOgqnVcDeNPTqnRdsnKqmXFe4qWFKFtepuwAttej522SjivGfSCyr8dQau2mYbb4VnYnFdGD446gjNeptDxYkwfvEaiRJYErXNpr2rSSBAAuydkujgF_jFJplbsar3S5FkINYKvf17KTDMvyHx8__X_3S7g1mhwflUcH48NncJvK3Le-bVuwuVr8DM8RDK2qFw0HMji9bpb_C0khHT8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgUHYPlgYkHFDWx4zhBQmijrTYG1TStaG-e4w-QYGnXFiH-Nf467hKn28t421tkO5ZzPt_9fLkPgNcpN5mwRRXbRNo441LEZYXnKhFOysTrKveNg-wkP5hmn87E2Qb87WJhyK2yk4mNoLYzQzbyAUPoLVF_lmzgg1vE8XD8YX4ZUwUp-tPaldNoWeTI_fmN17fl-8Mh7vUuY-PR6ceDOFQYiA0qslWs0xRnzb1MM6uLwjtWpga7pBWlTjPpfZZoLjwvnPRVXnHJjUmsSK0rhOWa47x3YFPiG0kPNvdHk-OTtYWHMm4WWdl623NeJgPEoN9RtkguKWD3mh5sygXcpBQaTTd-CA8CRI32Wp56BBuufgz3v6zzuy6fwMm0vtBLsrJHQxccY95Fo4s51VxrW93c6x8OH1aNs1cdkcU3-tqEskenHVx2i2jSOqI_hemt0O4Z9OpZ7Z5DZKzXshCsLCzCN4OCz6aeMY1w0FQyr_rwtqOVMiF1OVXQ-KnwCkOUVdcp24fd9eh5m7LjhnH7RPb1GEq03TTMFt9UOLeIJQwzBGysTDLNnC5yZy3CNrIrMIFLe0Obpkgc4JKMDlEN-GGUWEvtSbzg5ZJz0Yftbl9VkBNLdcXVW__v3oG7yO7q8-Hk6AXco5r3raPbNvRWi1_uJSKjVfUqsGAE57fN9f8AJK0i0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unmasking+Deception%3A+Empowering+Deepfake+Detection+with+Vision+Transformer+Network&rft.jtitle=Mathematics+%28Basel%29&rft.au=Arshed%2C+Muhammad+Asad&rft.au=Alwadain%2C+Ayed&rft.au=Rao%2C+Faizan+Ali&rft.au=Shahzad+Mumtaz&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=17&rft.spage=3710&rft_id=info:doi/10.3390%2Fmath11173710&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon