Unmasking Deception: Empowering Deepfake Detection with Vision Transformer Network
With the development of image-generating technologies, significant progress has been made in the field of facial manipulation techniques. These techniques allow people to easily modify media information, such as videos and images, by substituting the identity or facial expression of one person with...
Saved in:
Published in | Mathematics (Basel) Vol. 11; no. 17; p. 3710 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the development of image-generating technologies, significant progress has been made in the field of facial manipulation techniques. These techniques allow people to easily modify media information, such as videos and images, by substituting the identity or facial expression of one person with the face of another. This has significantly increased the availability and accessibility of such tools and manipulated content termed ‘deepfakes’. Developing an accurate method for detecting fake images needs time to prevent their misuse and manipulation. This paper examines the capabilities of the Vision Transformer (ViT), i.e., extracting global features to detect deepfake images effectively. After conducting comprehensive experiments, our method demonstrates a high level of effectiveness, achieving a detection accuracy, precision, recall, and F1 rate of 99.5 to 100% for both the original and mixture data set. According to our existing understanding, this study is a research endeavor incorporating real-world applications, specifically examining Snapchat-filtered images. |
---|---|
AbstractList | With the development of image-generating technologies, significant progress has been made in the field of facial manipulation techniques. These techniques allow people to easily modify media information, such as videos and images, by substituting the identity or facial expression of one person with the face of another. This has significantly increased the availability and accessibility of such tools and manipulated content termed ‘deepfakes’. Developing an accurate method for detecting fake images needs time to prevent their misuse and manipulation. This paper examines the capabilities of the Vision Transformer (ViT), i.e., extracting global features to detect deepfake images effectively. After conducting comprehensive experiments, our method demonstrates a high level of effectiveness, achieving a detection accuracy, precision, recall, and F1 rate of 99.5 to 100% for both the original and mixture data set. According to our existing understanding, this study is a research endeavor incorporating real-world applications, specifically examining Snapchat-filtered images. |
Audience | Academic |
Author | Arshed, Muhammad Asad Alwadain, Ayed Faizan Ali, Rao Ibrahim, Muhammad Muneer, Amgad Mumtaz, Shahzad |
Author_xml | – sequence: 1 givenname: Muhammad Asad surname: Arshed fullname: Arshed, Muhammad Asad – sequence: 2 givenname: Ayed surname: Alwadain fullname: Alwadain, Ayed – sequence: 3 givenname: Rao orcidid: 0000-0003-0701-6761 surname: Faizan Ali fullname: Faizan Ali, Rao – sequence: 4 givenname: Shahzad orcidid: 0000-0003-2606-2405 surname: Mumtaz fullname: Mumtaz, Shahzad – sequence: 5 givenname: Muhammad orcidid: 0000-0001-5088-9571 surname: Ibrahim fullname: Ibrahim, Muhammad – sequence: 6 givenname: Amgad orcidid: 0000-0002-7157-3020 surname: Muneer fullname: Muneer, Amgad |
BookMark | eNptUV1LHDEUDaKgVd_6Awb62tV8TTLTN7G2FaSCaF_D3eRmze7OZJpElv77ZjsWpDR5yOGcew735r4jh2MckZD3jF4I0dPLAcozY0wLzegBOeGc64WuwuEbfEzOc17TenomOtmfkIencYC8CeOq-YwWpxLi-Km5Gaa4wzSzOHnYYAUF7V5udqE8Nz9C3uPHBGP2MQ2Ymu9YdjFtzsiRh23G89f3lDx9uXm8_ra4u_96e311t7CSqrIAxhTXymsmHXSdR94zWyXt2h6Y1N5LCqL1okPtl2optLCWupY57FonQJyS2znXRVibKYUB0i8TIZg_REwrA6kEu0WzBMstpVw4TSVwhE6hc6rtqFQ9b5c168OcNaX48wVzMev4ksbavuFdbZMq2fNadTFXraCGhtHHksDW63AItq7Dh8pfaSW50kK01cBng00x54Te2FBg_4nVGLaGUbPfnXm7u2r6-I_p72z_Lf8NFY6cVw |
CitedBy_id | crossref_primary_10_1108_K_04_2024_0914 crossref_primary_10_3390_computers13010031 crossref_primary_10_7717_peerj_cs_2181 crossref_primary_10_1007_s11042_024_19906_1 crossref_primary_10_1016_j_eswa_2024_123420 crossref_primary_10_3390_app131910980 crossref_primary_10_32604_cmc_2024_057213 crossref_primary_10_3390_bdcc8090119 |
Cites_doi | 10.1109/IJCNN48605.2020.9207034 10.1109/CVPR.2016.90 10.1109/WIFS.2018.8630787 10.3390/s20174807 10.1109/TPAMI.2020.2970919 10.1145/3512527.3531415 10.1109/CVPR.2017.243 10.1007/978-3-030-58452-8_13 10.1007/s00521-022-06902-5 10.1109/HST47167.2019.9033005 10.3390/math11040816 10.1109/ICCCA49541.2020.9250803 10.1007/s11042-023-15561-0 10.1109/ICASSP39728.2021.9414582 10.1016/j.neucom.2020.11.046 10.1109/HCCAI49649.2020.00015 10.1109/CVPR.2015.7298594 10.1109/SIU49456.2020.9302157 10.1007/s11042-021-10989-8 10.1109/TCSVT.2021.3133859 10.1109/IJCB48548.2020.9304909 10.1016/j.cviu.2022.103525 10.1109/CVPR46437.2021.00222 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math11173710 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_bac2c0023d704a2ea86edd658046925b A764267335 10_3390_math11173710 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c406t-a116276f714da88fe291cc407d59a147ff40a35f38e7fb6b373cc0d51de85d3a3 |
IEDL.DBID | BENPR |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:31:32 EDT 2025 Fri Jul 25 11:51:00 EDT 2025 Tue Jun 10 21:25:18 EDT 2025 Tue Jul 01 01:53:20 EDT 2025 Thu Apr 24 23:04:55 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-a116276f714da88fe291cc407d59a147ff40a35f38e7fb6b373cc0d51de85d3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0701-6761 0000-0003-2606-2405 0000-0001-5088-9571 0000-0002-7157-3020 |
OpenAccessLink | https://www.proquest.com/docview/2862706492?pq-origsite=%requestingapplication% |
PQID | 2862706492 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bac2c0023d704a2ea86edd658046925b proquest_journals_2862706492 gale_infotracacademiconefile_A764267335 crossref_citationtrail_10_3390_math11173710 crossref_primary_10_3390_math11173710 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Nguyen (ref_2) 2018; 223 ref_14 Yousaf (ref_35) 2022; 34 ref_13 ref_12 ref_34 ref_11 ref_33 ref_10 ref_32 ref_31 Karras (ref_30) 2020; 43 ref_19 ref_18 ref_16 ref_15 Zhang (ref_23) 2020; 436 ref_25 Goodfellow (ref_1) 2018; 10 Shelke (ref_20) 2022; 81 ref_24 ref_22 ref_21 ref_3 ref_29 ref_28 ref_27 ref_26 ref_9 ref_8 ref_5 ref_4 Yang (ref_17) 2021; 32 ref_7 ref_6 |
References_xml | – ident: ref_7 – ident: ref_28 – ident: ref_33 doi: 10.1109/IJCNN48605.2020.9207034 – volume: 10 start-page: 53 year: 2018 ident: ref_1 article-title: Generative adversarial nets publication-title: IEEE Signal Process. Mag. – ident: ref_8 doi: 10.1109/CVPR.2016.90 – ident: ref_13 doi: 10.1109/WIFS.2018.8630787 – ident: ref_32 – ident: ref_3 – ident: ref_24 – ident: ref_27 doi: 10.3390/s20174807 – volume: 43 start-page: 4217 year: 2020 ident: ref_30 article-title: A Style-Based Generator Architecture for Generative Adversarial Networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2970919 – ident: ref_19 doi: 10.1145/3512527.3531415 – ident: ref_9 doi: 10.1109/CVPR.2017.243 – ident: ref_26 doi: 10.1007/978-3-030-58452-8_13 – ident: ref_14 – volume: 34 start-page: 7991 year: 2022 ident: ref_35 article-title: Fake visual content detection using two-stream convolutional neural networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-06902-5 – ident: ref_11 doi: 10.1109/HST47167.2019.9033005 – ident: ref_22 doi: 10.3390/math11040816 – ident: ref_15 doi: 10.1109/ICCCA49541.2020.9250803 – ident: ref_6 – ident: ref_21 doi: 10.1007/s11042-023-15561-0 – ident: ref_25 – ident: ref_4 – ident: ref_31 – ident: ref_29 – ident: ref_34 doi: 10.1109/ICASSP39728.2021.9414582 – volume: 436 start-page: 260 year: 2020 ident: ref_23 article-title: CSART: Channel and spatial attention-guided residual learning for real-time object tracking publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.11.046 – ident: ref_5 doi: 10.1109/HCCAI49649.2020.00015 – ident: ref_10 doi: 10.1109/CVPR.2015.7298594 – ident: ref_12 doi: 10.1109/SIU49456.2020.9302157 – volume: 81 start-page: 22731 year: 2022 ident: ref_20 article-title: Multiple forgery detection and localization technique for digital video using PCT and NBAP publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-10989-8 – volume: 32 start-page: 4854 year: 2021 ident: ref_17 article-title: MSTA-Net: Forgery Detection by Generating Manipulation Trace Based on Multi-scale Self-texture Attention publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2021.3133859 – ident: ref_16 doi: 10.1109/IJCB48548.2020.9304909 – volume: 223 start-page: 103525 year: 2018 ident: ref_2 article-title: Deep learning for deepfakes creation and detection: A survey publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2022.103525 – ident: ref_18 doi: 10.1109/CVPR46437.2021.00222 |
SSID | ssj0000913849 |
Score | 2.2897677 |
Snippet | With the development of image-generating technologies, significant progress has been made in the field of facial manipulation techniques. These techniques... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 3710 |
SubjectTerms | Accuracy Artificial intelligence Deception Deep learning deepfake fine tuning Forgery Identification Image filters Image manipulation Literature reviews Machine learning Mathematics Methods pretrained Social networks Vision Transformer |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygvZQAxoIjYjnMOW4FWFRIdUIvYLD-FBA0VLf-fc5JWXSoWtsjx4NzlXtZ33xFySbnNhZMmdRm4NOcg0tKgXWXCA2RBmyLUANlhMRjnT2_ibWXUV8SENfTAjeBujbbMxsjiIMs181oW3jmMm7GwY8JE74sxb6WYqn1wSbnMywbpzrGuv8X87x3tGjjEZtmVGFRT9a9zyHWU6e-SnTY9TLrNsfbIhq_2yfbzklt1dkBextVEz-INd_LoW1DKXdKbTOO8s2bVT4P-8Pgwr4FWVRJvW5PXuo08GS1SVf-dDBsQ-CEZ93ujh0HaTkZILQbgeaopLRgUAWjutJTBs5JafAVOlJrmEEKeaS4Clx6CKQwHbm3mBHVeCsc1PyKb1Vflj0liXdAgBSulw9TJotNxNDCmMRWzBgrTITcLWSnb0obH6RWfCsuHKFm1KtkOuVrunjZ0GWv23UexL_dEkut6AVWvWtWrv1TfIddRaSqaIh7J6rajAD8sklqpLmBxVQDnokPOFnpVrY3OFMNiDjAjK9nJf5zmlGzFUfQN_uyMbM6_f_w5Jixzc1H_m79YBeiV priority: 102 providerName: Directory of Open Access Journals |
Title | Unmasking Deception: Empowering Deepfake Detection with Vision Transformer Network |
URI | https://www.proquest.com/docview/2862706492 https://doaj.org/article/bac2c0023d704a2ea86edd658046925b |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwELZ4XOCAdnmI8qhyAHFAEYkdZ5y9IGDbRUhUCFHELXL8AAlIS9v9_zuTuIULe4scH5yxZ-abyecZxo5SYTJpVRXbBGycCZBxUaFeJdIBJF5XuW8IsoP8epjdPMmnkHCbBlrl3CY2htqODOXIzzhCb0D_WfDz8UdMXaPo72poobHMVtEEKwy-Vi97g7v7RZaFql6qrGgZ7wLj-zPEgS-o3yCALs1-8UVNyf7vDHPjbfo_2EaAidFFu68_2ZKrN9n67aLG6nSL3Q_rdz2lTHf02wVyyq-o9z6mvmftqBt7_erwYdYQruqIsq7RY3OdPHqYQ1Y3iQYtGXybDfu9h6vrOHRIiA064lms0xSlkntIM6uV8o4XqcFXYGWh0wy8zxItpBfKga_ySoAwJrEytU5JK7TYYSv1qHa7LDLWa1CSF8oihDJofGzqOdcIyUwFedVhp3NZlSaUD6cuFm8lhhEk2fKrZDvseDF73JbN-GbeJYl9MYeKXTcDo8lzGXQH_bnhhsCFhSTT3GmVO2sROlFszyUu7YQ2rSSVxCUZHW4W4IdRcavyAjDIykEI2WEH830tg65Oy8-Ttff_1_tsjZrNtwyzA7Yym_x1hwhJZlWXLav-n244fd0msP8HrsrjZQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiKcIFPCBigNaddePtRcJoUIbUtrmgBLU29brB0htNyEJQvwpfiMz-wi9lFtvK9uyvOPxzOfxPABeZcJJ5U2V-FT7RAqtkqLCc5WqoHUabZXHxkF2nI-m8vOJOtmAP30sDLlV9jKxEdR-5shGvsMRemvUnwV_P_-RUNUoel3tS2i0bHEYfv_CK9vy3cEe7u8258P9ycdR0lUVSBwqr1ViswxnyqPOpLfGxMCLzGGX9qqwmdQxytQKFYUJOlZ5JbRwLvUq88EoL6zAeW_ATSlEQSfKDD-tbTqUY9PIovWvx_50B1Hnd5QmWmgK0b2k-ZoCAVepgUa3De_B3Q6Ust2Wi-7DRqgfwJ3jdUbX5UP4Mq0v7JLs6mwvdK4wb9n-xZyqrLWtYR7tWcCPVePeVTOy8bKvTfA6m_QAOSzYuHU9fwTTa6HcY9isZ3V4Asz5aLVRvDAeAZtDUeezyLlFAOgqnVcDeNPTqnRdsnKqmXFe4qWFKFtepuwAttej522SjivGfSCyr8dQau2mYbb4VnYnFdGD446gjNeptDxYkwfvEaiRJYErXNpr2rSSBAAuydkujgF_jFJplbsar3S5FkINYKvf17KTDMvyHx8__X_3S7g1mhwflUcH48NncJvK3Le-bVuwuVr8DM8RDK2qFw0HMji9bpb_C0khHT8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgUHYPlgYkHFDWx4zhBQmijrTYG1TStaG-e4w-QYGnXFiH-Nf467hKn28t421tkO5ZzPt_9fLkPgNcpN5mwRRXbRNo441LEZYXnKhFOysTrKveNg-wkP5hmn87E2Qb87WJhyK2yk4mNoLYzQzbyAUPoLVF_lmzgg1vE8XD8YX4ZUwUp-tPaldNoWeTI_fmN17fl-8Mh7vUuY-PR6ceDOFQYiA0qslWs0xRnzb1MM6uLwjtWpga7pBWlTjPpfZZoLjwvnPRVXnHJjUmsSK0rhOWa47x3YFPiG0kPNvdHk-OTtYWHMm4WWdl623NeJgPEoN9RtkguKWD3mh5sygXcpBQaTTd-CA8CRI32Wp56BBuufgz3v6zzuy6fwMm0vtBLsrJHQxccY95Fo4s51VxrW93c6x8OH1aNs1cdkcU3-tqEskenHVx2i2jSOqI_hemt0O4Z9OpZ7Z5DZKzXshCsLCzCN4OCz6aeMY1w0FQyr_rwtqOVMiF1OVXQ-KnwCkOUVdcp24fd9eh5m7LjhnH7RPb1GEq03TTMFt9UOLeIJQwzBGysTDLNnC5yZy3CNrIrMIFLe0Obpkgc4JKMDlEN-GGUWEvtSbzg5ZJz0Yftbl9VkBNLdcXVW__v3oG7yO7q8-Hk6AXco5r3raPbNvRWi1_uJSKjVfUqsGAE57fN9f8AJK0i0Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unmasking+Deception%3A+Empowering+Deepfake+Detection+with+Vision+Transformer+Network&rft.jtitle=Mathematics+%28Basel%29&rft.au=Arshed%2C+Muhammad+Asad&rft.au=Alwadain%2C+Ayed&rft.au=Rao%2C+Faizan+Ali&rft.au=Shahzad+Mumtaz&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=17&rft.spage=3710&rft_id=info:doi/10.3390%2Fmath11173710&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |