ANSYS Creep-Fatigue Assessment tool for EUROFER97 components
•Creep-Fatigue Assessment (CFA) tool to identify EUROFER97 damage of complex 3D geometry.•CFA tool based on creep-fatigue rules of ASME BPVC.•Integrated in ANSYS MAPDL and Workbench as a post-processing tool.•Identification of the most critical region in the component. The damage caused by creep-fat...
Saved in:
Published in | Nuclear materials and energy Vol. 9; no. C; pp. 535 - 538 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2016
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Creep-Fatigue Assessment (CFA) tool to identify EUROFER97 damage of complex 3D geometry.•CFA tool based on creep-fatigue rules of ASME BPVC.•Integrated in ANSYS MAPDL and Workbench as a post-processing tool.•Identification of the most critical region in the component.
The damage caused by creep-fatigue is an important factor for materials at high temperatures. For in-vessel components of fusion reactors the material EUROFER97 is a candidate for structural application where it is subjected to irradiation and cyclic thermo-mechanical loads. To be able to evaluate fusion reactor components reliably, creep-fatigue damage has to be taken into account. In the frame of Engineering Data and Design Integration (EDDI) in EUROfusion Technology Work Programme rapid and easy design evaluation is very important to predict the critical regions under typical fusion reactor loading conditions. The presented Creep-Fatigue Assessment (CFA) tool is based on the creep-fatigue rules in ASME Boiler Pressure Vessel Code (BPVC) Section 3 Division 1 Subsection NH which was adapted to the material EUROFER97 and developed for ANSYS. The CFA tool uses the local stress, maximum elastic strain range and temperature from the elastic analysis of the component performed with ANSYS. For the assessment design fatigue and stress to rupture curves of EUROFER97 as well as isochronous stress vs. strain curves determined by a constitutive model considering irradiation influence are used to deal with creep-fatigue damage. As a result allowable number of cycles based on creep-fatigue damage interaction under given hold times and irradiation rates is obtained. This tool can be coupled with ANSYS MAPDL and ANSYS Workbench utilizing MAPDL script files. |
---|---|
AbstractList | •Creep-Fatigue Assessment (CFA) tool to identify EUROFER97 damage of complex 3D geometry.•CFA tool based on creep-fatigue rules of ASME BPVC.•Integrated in ANSYS MAPDL and Workbench as a post-processing tool.•Identification of the most critical region in the component.
The damage caused by creep-fatigue is an important factor for materials at high temperatures. For in-vessel components of fusion reactors the material EUROFER97 is a candidate for structural application where it is subjected to irradiation and cyclic thermo-mechanical loads. To be able to evaluate fusion reactor components reliably, creep-fatigue damage has to be taken into account. In the frame of Engineering Data and Design Integration (EDDI) in EUROfusion Technology Work Programme rapid and easy design evaluation is very important to predict the critical regions under typical fusion reactor loading conditions. The presented Creep-Fatigue Assessment (CFA) tool is based on the creep-fatigue rules in ASME Boiler Pressure Vessel Code (BPVC) Section 3 Division 1 Subsection NH which was adapted to the material EUROFER97 and developed for ANSYS. The CFA tool uses the local stress, maximum elastic strain range and temperature from the elastic analysis of the component performed with ANSYS. For the assessment design fatigue and stress to rupture curves of EUROFER97 as well as isochronous stress vs. strain curves determined by a constitutive model considering irradiation influence are used to deal with creep-fatigue damage. As a result allowable number of cycles based on creep-fatigue damage interaction under given hold times and irradiation rates is obtained. This tool can be coupled with ANSYS MAPDL and ANSYS Workbench utilizing MAPDL script files. The damage caused by creep-fatigue is an important factor for materials at high temperatures. For in-vessel components of fusion reactors the material EUROFER97 is a candidate for structural application where it is subjected to irradiation and cyclic thermo-mechanical loads. To be able to evaluate fusion reactor components reliably, creep-fatigue damage has to be taken into account. In the frame of Engineering Data and Design Integration (EDDI) in EUROfusion Technology Work Programme rapid and easy design evaluation is very important to predict the critical regions under typical fusion reactor loading conditions. The presented Creep-Fatigue Assessment (CFA) tool is based on the creep-fatigue rules in ASME Boiler Pressure Vessel Code (BPVC) Section 3 Division 1 Subsection NH which was adapted to the material EUROFER97 and developed for ANSYS. The CFA tool uses the local stress, maximum elastic strain range and temperature from the elastic analysis of the component performed with ANSYS. For the assessment design fatigue and stress to rupture curves of EUROFER97 as well as isochronous stress vs. strain curves determined by a constitutive model considering irradiation influence are used to deal with creep-fatigue damage. As a result allowable number of cycles based on creep-fatigue damage interaction under given hold times and irradiation rates is obtained. This tool can be coupled with ANSYS MAPDL and ANSYS Workbench utilizing MAPDL script files. |
Author | Aktaa, J. Mahler, M. Özkan, F. |
Author_xml | – sequence: 1 givenname: M. surname: Mahler fullname: Mahler, M. email: Michael.Mahler@kit.edu – sequence: 2 givenname: F. surname: Özkan fullname: Özkan, F. – sequence: 3 givenname: J. surname: Aktaa fullname: Aktaa, J. |
BookMark | eNp9kMFKAzEQhoMoqLUP4G1fYNdJNtk06KWUVgVRsPbgKWSzE9mluynJKvj2plbEk6f5Geb_ZuY_J8eDH5CQSwoFBVpddcXQY8GSLEAUQOUROWOlYDmVih7_0adkGmMHAFSxGePlGbmZP65f19kiIO7ylRnbt3fM5jFijD0OYzZ6v82cD9ly8_y0Wj4rmVnf79L-YYwX5MSZbcTpT52QzWr5srjLH55u7xfzh9xyqMbcgKJYGRCCCdE4rGs-s6rmJWUlOgHAm8pWPI0xpah06CQ2VEmupOE1q8sJuT9wG286vQttb8Kn9qbV3w0f3rQJY2u3qHklJOOKSRSMO5BKmZkQ6DiUDcwUSyx6YNngYwzofnkU9D5N3emUpt6nqUHolGbyXB88mJ78aDHoaFscLDZtQDumK9p_3F8a5nst |
CitedBy_id | crossref_primary_10_1016_j_fusengdes_2018_02_012 crossref_primary_10_1016_j_fusengdes_2023_113426 crossref_primary_10_1080_00295450_2024_2310902 crossref_primary_10_1016_j_nme_2018_03_001 crossref_primary_10_3390_ma12203367 |
Cites_doi | 10.1016/j.fusengdes.2011.02.067 10.1016/j.proeng.2013.03.258 10.1016/S0920-3796(02)00178-3 10.1016/j.fusengdes.2015.08.002 10.1016/j.fusengdes.2006.03.002 10.1016/j.jnucmat.2010.12.295 |
ContentType | Journal Article |
Copyright | 2016 |
Copyright_xml | – notice: 2016 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.nme.2016.05.017 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-1791 |
EndPage | 538 |
ExternalDocumentID | oai_doaj_org_article_465724927e524f0799a855ef403d0892 10_1016_j_nme_2016_05_017 S235217911530020X |
GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYXX ADVLN AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c406t-a091e6a055255dfebb48c9b43123ef5004d6c64a0929917fef7ed197497a4b2b3 |
IEDL.DBID | DOA |
ISSN | 2352-1791 |
IngestDate | Tue Oct 22 15:14:14 EDT 2024 Thu Sep 26 19:34:35 EDT 2024 Wed May 17 00:07:56 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | EUROFER97 ASME BPVC Creep damage Fatigue damage |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-a091e6a055255dfebb48c9b43123ef5004d6c64a0929917fef7ed197497a4b2b3 |
OpenAccessLink | https://doaj.org/article/465724927e524f0799a855ef403d0892 |
PageCount | 4 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_465724927e524f0799a855ef403d0892 crossref_primary_10_1016_j_nme_2016_05_017 elsevier_sciencedirect_doi_10_1016_j_nme_2016_05_017 |
PublicationCentury | 2000 |
PublicationDate | December 2016 2016-12-00 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
PublicationDecade | 2010 |
PublicationTitle | Nuclear materials and energy |
PublicationYear | 2016 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Aktaa, Weick, Walter (bib0009) 2007 Aktaa, Petersen (bib0011) 2011; 417 Özkan, Aktaa (bib0006) 2013 Tavassoli (bib0003) 2013; 55 Afcen, RCCMRx Code 2012, 2012. Lindau, Möslang, Schirra (bib0004) 2002; 61–62 Özkan, Aktaa (bib0008) 2014 Cismondi, Kecskes, Aiello (bib0007) 2011; 86 Aktaa, Schmitt (bib0010) 2006; 81 Tavassoli (bib0012) 2004 ASME, Boiler Presssure and Vessel Code, Section III, Division 1, Subsection NH, Appendix T, 2004. Özkan, Aktaa (bib0005) 2015; 100 Aktaa (10.1016/j.nme.2016.05.017_bib0010) 2006; 81 Aktaa (10.1016/j.nme.2016.05.017_bib0011) 2011; 417 Lindau (10.1016/j.nme.2016.05.017_bib0004) 2002; 61–62 Özkan (10.1016/j.nme.2016.05.017_bib0006) 2013 Cismondi (10.1016/j.nme.2016.05.017_bib0007) 2011; 86 Aktaa (10.1016/j.nme.2016.05.017_bib0009) 2007 Tavassoli (10.1016/j.nme.2016.05.017_bib0012) 2004 Özkan (10.1016/j.nme.2016.05.017_bib0005) 2015; 100 Özkan (10.1016/j.nme.2016.05.017_bib0008) 2014 10.1016/j.nme.2016.05.017_bib0001 10.1016/j.nme.2016.05.017_bib0002 Tavassoli (10.1016/j.nme.2016.05.017_bib0003) 2013; 55 |
References_xml | – volume: 55 start-page: 300 year: 2013 end-page: 308 ident: bib0003 article-title: Eurofer steel, development to full code qualification publication-title: Procedia Eng. contributor: fullname: Tavassoli – volume: 61–62 start-page: 659 year: 2002 end-page: 664 ident: bib0004 article-title: Thermal and mechanical behaviour of reduced-activation ferritic-martensitic steel EUROFER publication-title: Fusion Eng. Design contributor: fullname: Schirra – volume: 86 start-page: 2228 year: 2011 end-page: 2232 ident: bib0007 article-title: HCPB TBM thermo mechanical design: assessment with respect codes and standards and DEMO relevancy publication-title: Fusion Eng. Des. contributor: fullname: Aiello – volume: 81 start-page: 2221 year: 2006 end-page: 2231 ident: bib0010 article-title: High temperature deformation and damage behavior of RAFM steels under low cycle fatigue loading: experiments and modeling publication-title: Fusion Eng. Des. contributor: fullname: Schmitt – year: 2014 ident: bib0008 article-title: Creep fatigue assessment macro in MAPDL for EUROFER publication-title: SOFT-2014 Poster ID P2.124 San Sebastian, Spain contributor: fullname: Aktaa – year: 2007 ident: bib0009 publication-title: High Temperature Creep-Fatigue Structural Design Criteria for Fusion Components Built from EUROFER 97, FZKA 7309 Forschungszentrum Karlsruhe contributor: fullname: Walter – year: 2013 ident: bib0006 article-title: Creep-fatigue design rules for EUROFER97 publication-title: ICFRM-16 Poster ID 16-170 Beijing, China contributor: fullname: Aktaa – volume: 100 start-page: 536 year: 2015 end-page: 540 ident: bib0005 article-title: Creep fatigue assessment for EUROFER components publication-title: Fusion Eng. Des. contributor: fullname: Aktaa – volume: 417 start-page: 1123 year: 2011 end-page: 1126 ident: bib0011 article-title: Modeling the constitutive behavior of RAFM steels under irradiation conditions publication-title: J. Nuclear Mater. contributor: fullname: Petersen – year: 2004 ident: bib0012 article-title: Fusion Demo Interim Structural Design Criteria (DISDC) contributor: fullname: Tavassoli – volume: 86 start-page: 2228 year: 2011 ident: 10.1016/j.nme.2016.05.017_bib0007 article-title: HCPB TBM thermo mechanical design: assessment with respect codes and standards and DEMO relevancy publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2011.02.067 contributor: fullname: Cismondi – ident: 10.1016/j.nme.2016.05.017_bib0001 – volume: 55 start-page: 300 year: 2013 ident: 10.1016/j.nme.2016.05.017_bib0003 article-title: Eurofer steel, development to full code qualification publication-title: Procedia Eng. doi: 10.1016/j.proeng.2013.03.258 contributor: fullname: Tavassoli – volume: 61–62 start-page: 659 year: 2002 ident: 10.1016/j.nme.2016.05.017_bib0004 article-title: Thermal and mechanical behaviour of reduced-activation ferritic-martensitic steel EUROFER publication-title: Fusion Eng. Design doi: 10.1016/S0920-3796(02)00178-3 contributor: fullname: Lindau – year: 2004 ident: 10.1016/j.nme.2016.05.017_bib0012 contributor: fullname: Tavassoli – year: 2013 ident: 10.1016/j.nme.2016.05.017_bib0006 article-title: Creep-fatigue design rules for EUROFER97 contributor: fullname: Özkan – year: 2007 ident: 10.1016/j.nme.2016.05.017_bib0009 publication-title: High Temperature Creep-Fatigue Structural Design Criteria for Fusion Components Built from EUROFER 97, FZKA 7309 Forschungszentrum Karlsruhe contributor: fullname: Aktaa – ident: 10.1016/j.nme.2016.05.017_bib0002 – volume: 100 start-page: 536 year: 2015 ident: 10.1016/j.nme.2016.05.017_bib0005 article-title: Creep fatigue assessment for EUROFER components publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2015.08.002 contributor: fullname: Özkan – year: 2014 ident: 10.1016/j.nme.2016.05.017_bib0008 article-title: Creep fatigue assessment macro in MAPDL for EUROFER contributor: fullname: Özkan – volume: 81 start-page: 2221 year: 2006 ident: 10.1016/j.nme.2016.05.017_bib0010 article-title: High temperature deformation and damage behavior of RAFM steels under low cycle fatigue loading: experiments and modeling publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2006.03.002 contributor: fullname: Aktaa – volume: 417 start-page: 1123 year: 2011 ident: 10.1016/j.nme.2016.05.017_bib0011 article-title: Modeling the constitutive behavior of RAFM steels under irradiation conditions publication-title: J. Nuclear Mater. doi: 10.1016/j.jnucmat.2010.12.295 contributor: fullname: Aktaa |
SSID | ssj0001928243 |
Score | 2.06952 |
Snippet | •Creep-Fatigue Assessment (CFA) tool to identify EUROFER97 damage of complex 3D geometry.•CFA tool based on creep-fatigue rules of ASME BPVC.•Integrated in... The damage caused by creep-fatigue is an important factor for materials at high temperatures. For in-vessel components of fusion reactors the material... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 535 |
SubjectTerms | ASME BPVC Creep damage EUROFER97 Fatigue damage |
Title | ANSYS Creep-Fatigue Assessment tool for EUROFER97 components |
URI | https://dx.doi.org/10.1016/j.nme.2016.05.017 https://doaj.org/article/465724927e524f0799a855ef403d0892 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA0yL15EUXH-GD14Eor9kR8NeJljRQQnOAfTS2jSr-LQbozu__dL0456EC9eS8hXXkLe-9rHCyFXUWIijkocmxzGfQqi8LMkpD6efEZzaZj7dPE44fcz-jBn885VX9YT5uKBHXA3lDNhU-0EsIgWgZAySxiDggZxHiTSnb6B7DRTC6dbkqi2zEWoMOoMzvaXZm3uKr9sRGbIXWqn-EFKdXZ_h5s6fJMekP1GKHpD94KHZAfKI3I7nExfp95oDbDyUwT1fQPecBuu6VXL5aeHMtSzBr10_CyFZz3jy9LaJY7JLB2_jO795v4D3yDNVn6GXA48CxjiyPICtKaJkRopP4qhYLi9c244xWGIbCgKKATkITYIUmRURzo-Ib0SK5wSD3IOmotYGg5UFzThRuuAQc4QJyFYn1y3AKiVi7lQrf9roRAtZdFSAVOIVp_cWYi2A21Cdf0A100166b-Wrc-oS3AqiF7R-I41cfvtc_-o_Y52bNTOlfKBelV6w1corao9KDeRgOyOxnNn96-AWXBxck |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ANSYS+Creep-Fatigue+Assessment+tool+for+EUROFER97+components&rft.jtitle=Nuclear+materials+and+energy&rft.au=Mahler%2C+M.&rft.au=%C3%96zkan%2C+F.&rft.au=Aktaa%2C+J.&rft.date=2016-12-01&rft.pub=Elsevier+Ltd&rft.issn=2352-1791&rft.eissn=2352-1791&rft.volume=9&rft.spage=535&rft.epage=538&rft_id=info:doi/10.1016%2Fj.nme.2016.05.017&rft.externalDocID=S235217911530020X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-1791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-1791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-1791&client=summon |