Fractional topological charge in lattice Abelian gauge theory

Abstract We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s constriction so that the cocycle condition contains $\mathbb {Z}_q$ elements (the ’t Hooft flux). The construction requires an admissibility condition o...

Full description

Saved in:
Bibliographic Details
Published inProgress of theoretical and experimental physics Vol. 2023; no. 2
Main Authors Abe, Motokazu, Morikawa, Okuto, Suzuki, Hiroshi
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.02.2023
Subjects
Online AccessGet full text
ISSN2050-3911
2050-3911
DOI10.1093/ptep/ptad009

Cover

Loading…
Abstract Abstract We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s constriction so that the cocycle condition contains $\mathbb {Z}_q$ elements (the ’t Hooft flux). The construction requires an admissibility condition on lattice gauge field configurations. From the transition function so constructed, we have the fractional topological charge that is $\mathbb {Z}_q$ one-form gauge invariant and odd under the lattice time reversal transformation. Assuming a rescaling of the vacuum angle θ → qθ suggested from the Witten effect, our construction provides a lattice implementation of the mixed ’t Hooft anomaly between the $\mathbb {Z}_q$ one-form symmetry and the time reversal symmetry in the U(1) gauge theory with matter fields of charge $q\in 2\mathbb {Z}$ when θ = π, which was studied by Honda and Tanizaki [J. High Energy Phys. 12, 154 (2020)] in the continuum framework.
AbstractList We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s constriction so that the cocycle condition contains $\mathbb {Z}_q$ elements (the ’t Hooft flux). The construction requires an admissibility condition on lattice gauge field configurations. From the transition function so constructed, we have the fractional topological charge that is $\mathbb {Z}_q$ one-form gauge invariant and odd under the lattice time reversal transformation. Assuming a rescaling of the vacuum angle θ → qθ suggested from the Witten effect, our construction provides a lattice implementation of the mixed ’t Hooft anomaly between the $\mathbb {Z}_q$ one-form symmetry and the time reversal symmetry in the U(1) gauge theory with matter fields of charge $q\in 2\mathbb {Z}$ when θ = π, which was studied by Honda and Tanizaki [J. High Energy Phys. 12, 154 (2020)] in the continuum framework.
Abstract We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s constriction so that the cocycle condition contains $\mathbb {Z}_q$ elements (the ’t Hooft flux). The construction requires an admissibility condition on lattice gauge field configurations. From the transition function so constructed, we have the fractional topological charge that is $\mathbb {Z}_q$ one-form gauge invariant and odd under the lattice time reversal transformation. Assuming a rescaling of the vacuum angle θ → qθ suggested from the Witten effect, our construction provides a lattice implementation of the mixed ’t Hooft anomaly between the $\mathbb {Z}_q$ one-form symmetry and the time reversal symmetry in the U(1) gauge theory with matter fields of charge $q\in 2\mathbb {Z}$ when θ = π, which was studied by Honda and Tanizaki [J. High Energy Phys. 12, 154 (2020)] in the continuum framework.
We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s constriction so that the cocycle condition contains $\mathbb {Z}_q$ elements (the ’t Hooft flux). The construction requires an admissibility condition on lattice gauge field configurations. From the transition function so constructed, we have the fractional topological charge that is $\mathbb {Z}_q$ one-form gauge invariant and odd under the lattice time reversal transformation. Assuming a rescaling of the vacuum angle θ → qθ suggested from the Witten effect, our construction provides a lattice implementation of the mixed ’t Hooft anomaly between the $\mathbb {Z}_q$ one-form symmetry and the time reversal symmetry in the U(1) gauge theory with matter fields of charge $q\in 2\mathbb {Z}$ when θ = π, which was studied by Honda and Tanizaki [J. High Energy Phys. 12, 154 (2020)] in the continuum framework.
Author Abe, Motokazu
Suzuki, Hiroshi
Morikawa, Okuto
Author_xml – sequence: 1
  givenname: Motokazu
  surname: Abe
  fullname: Abe, Motokazu
– sequence: 2
  givenname: Okuto
  surname: Morikawa
  fullname: Morikawa, Okuto
– sequence: 3
  givenname: Hiroshi
  surname: Suzuki
  fullname: Suzuki, Hiroshi
  email: hsuzuki@phys.kyushu-u.ac.jp
BookMark eNp9kEFLw0AQhRepYK29-QMCHrwYnUk22e7BQylWhYIXPYfpZtJuidm42Rz6701pDyLoZebBvPcYvksxalzDQlwj3CPo9KEN3A6DSgB9JsYJZBCnGnH0Q1-IadftAABBKZA4Fo9LTyZY11AdBde62m2sGbTZkt9wZJuophCs4Wi-5tpSE22oHw5hy87vr8R5RXXH09OeiI_l0_viJV69Pb8u5qvYSMhDrKtqJsuSQKWKcqMMJCXLLAPDKFkBK7XOK5RJPtMzZE1pniZEDFWFSY4qnYibY2_r3VfPXSh2rvfDz12RokKpM4RscN0dXca7rvNcFa23n-T3BUJxYFQcGBUnRoM9-WU3NtCBRfBk679Ct8eQ69v_678BwKp7mQ
CitedBy_id crossref_primary_10_1007_JHEP07_2024_220
crossref_primary_10_1007_JHEP08_2023_118
crossref_primary_10_1103_PhysRevB_108_155104
crossref_primary_10_1140_epjc_s10052_023_11616_6
crossref_primary_10_1093_ptep_ptae075
crossref_primary_10_1103_PhysRevD_108_014506
crossref_primary_10_1093_ptep_ptae040
Cites_doi 10.1016/0370-2693(79)90838-4
10.1007/JHEP05(2017)091
10.1103/PhysRevD.100.125016
10.1088/1126-6708/2009/08/084
10.1016/0550-3213(82)90464-3
10.1007/JHEP09(2017)137
10.1007/JHEP04(2014)001
10.1007/JHEP02(2015)172
10.1016/0550-3213(82)90463-1
10.1007/BF02029132
10.1016/S0550-3213(99)00115-7
10.1016/S0370-2693(98)00951-4
10.1007/JHEP12(2020)154
10.1016/S0550-3213(99)00213-8
10.1007/BF01403503
10.1007/JHEP05(2019)093
10.1016/S0550-3213(99)00706-3
10.1016/S0550-3213(98)00680-4
10.1016/S0550-3213(02)01123-9
10.1093/ptep/ptac042
10.1143/PTP.105.789
10.1007/BF02161414
10.1007/BF01211167
10.1007/JHEP06(2017)102
10.1007/JHEP04(2022)120
10.4310/ATMP.2014.v18.n5.a4
10.1088/0305-4470/26/8/019
10.1016/j.nuclphysb.2019.114616
10.1016/0550-3213(79)90595-9
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023
The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1093/ptep/ptad009
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection (Oxford University Press)
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2050-3911
ExternalDocumentID 10_1093_ptep_ptad009
10.1093/ptep/ptad009
GroupedDBID .I3
0R~
4.4
5VS
88I
AAFWJ
AAMVS
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABUWG
ABXVV
ACGFS
ADHZD
AENEX
AENZO
AFKRA
AFPKN
AIBLX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AZQEC
BAYMD
BENPR
CCPQU
CIDKT
DWQXO
D~K
EBS
EJD
ER.
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ISR
ITC
KQ8
KSI
M2P
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
PIMPY
ROL
RXO
TOX
~D7
AAYXX
CITATION
PHGZM
PHGZT
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-9ff84dda0737a6c7c02de4550ce14e70e77b6f14268981e9a3632aae0ff126173
IEDL.DBID BENPR
ISSN 2050-3911
IngestDate Mon Jun 30 12:26:21 EDT 2025
Tue Jul 01 02:09:15 EDT 2025
Thu Apr 24 23:13:16 EDT 2025
Wed Apr 02 07:03:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Funded by SCOAP3. SCOAP3 and OUP support the goals of the International Year of Basic Sciences for Sustainable Development
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-9ff84dda0737a6c7c02de4550ce14e70e77b6f14268981e9a3632aae0ff126173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3171495105?pq-origsite=%requestingapplication%
PQID 3171495105
PQPubID 7121340
ParticipantIDs proquest_journals_3171495105
crossref_primary_10_1093_ptep_ptad009
crossref_citationtrail_10_1093_ptep_ptad009
oup_primary_10_1093_ptep_ptad009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress of theoretical and experimental physics
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hernández (2023030719423034800_) 1999; 552
Fodor (2023030719423034800_) 2009; 0908
McGreevy (2023030719423034800_)
de Forcrand (2023030719423034800_) 2003; 651
Hidaka (2023030719423034800_) 2019; 100
Phillips (2023030719423034800_) 1990; 131
Anosova (2023030719423034800_) 2022; 2204
Sulejmanpasic (2023030719423034800_) 2019; 943
Dimakis (2023030719423034800_) 1993; 26
Phillips (2023030719423034800_) 1986; 103
Witten (2023030719423034800_) 1979; 86
Kitano (2023030719423034800_) 2017; 1709
Fujiwara (2023030719423034800_) 2001; 105
Lüscher (2023030719423034800_) 1999; 549
Itou (2023030719423034800_) 2019; 1905
t Hooft (2023030719423034800_) 1980; 59
Tanizaki (2023030719423034800_) 2017; 1706
Lüscher (2023030719423034800_) 1982; 85
Edwards (2023030719423034800_) 1998; 438
Honda (2023030719423034800_) 2020; 2012
van Baal (2023030719423034800_) 1982; 85
Kapustin (2023030719423034800_) 2014; 18
Gaiotto (2023030719423034800_) 2017; 1705
Tanizaki (2023030719423034800_) 2022; 2022
Gaiotto (2023030719423034800_) 2015; 1502
t Hooft (2023030719423034800_) 1979; 153
Cardy (2023030719423034800_) 1982; 205
Fujiwara (2023030719423034800_) 2000; 569
Córdova (2023030719423034800_)
Lüscher (2023030719423034800_) 1999; 538
Kapustin (2023030719423034800_) 2014; 1404
References_xml – volume: 86
  start-page: 283
  year: 1979
  ident: 2023030719423034800_
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(79)90838-4
– volume: 1705
  start-page: 091
  year: 2017
  ident: 2023030719423034800_
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP05(2017)091
– volume: 100
  start-page: 125016
  year: 2019
  ident: 2023030719423034800_
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.125016
– volume: 0908
  start-page: 084
  year: 2009
  ident: 2023030719423034800_
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2009/08/084
– volume: 205
  start-page: 17
  year: 1982
  ident: 2023030719423034800_
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(82)90464-3
– volume: 1709
  start-page: 137
  year: 2017
  ident: 2023030719423034800_
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP09(2017)137
– volume: 1404
  start-page: 001
  year: 2014
  ident: 2023030719423034800_
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP04(2014)001
– volume: 59
  start-page: 135
  year: 1980
  ident: 2023030719423034800_
  publication-title: NATO Sci. Ser. B
– volume: 1502
  start-page: 172
  year: 2015
  ident: 2023030719423034800_
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP02(2015)172
– volume: 205
  start-page: 1
  year: 1982
  ident: 2023030719423034800_
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(82)90463-1
– volume: 85
  start-page: 39
  year: 1982
  ident: 2023030719423034800_
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02029132
– volume: 549
  start-page: 295
  year: 1999
  ident: 2023030719423034800_
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(99)00115-7
– volume: 438
  start-page: 96
  year: 1998
  ident: 2023030719423034800_
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)00951-4
– volume: 2012
  start-page: 154
  year: 2020
  ident: 2023030719423034800_
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP12(2020)154
– volume: 552
  start-page: 363
  year: 1999
  ident: 2023030719423034800_
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(99)00213-8
– volume: 85
  start-page: 529
  year: 1982
  ident: 2023030719423034800_
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01403503
– volume: 1905
  start-page: 093
  year: 2019
  ident: 2023030719423034800_
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP05(2019)093
– ident: 2023030719423034800_
– volume: 569
  start-page: 643
  year: 2000
  ident: 2023030719423034800_
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(99)00706-3
– volume: 538
  start-page: 515
  year: 1999
  ident: 2023030719423034800_
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(98)00680-4
– volume: 651
  start-page: 125
  year: 2003
  ident: 2023030719423034800_
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(02)01123-9
– volume: 2022
  start-page: 04A108
  year: 2022
  ident: 2023030719423034800_
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptac042
– volume: 105
  start-page: 789
  year: 2001
  ident: 2023030719423034800_
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.105.789
– volume: 131
  start-page: 255
  year: 1990
  ident: 2023030719423034800_
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF02161414
– ident: 2023030719423034800_
– volume: 103
  start-page: 599
  year: 1986
  ident: 2023030719423034800_
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01211167
– volume: 1706
  start-page: 102
  year: 2017
  ident: 2023030719423034800_
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP06(2017)102
– volume: 2204
  start-page: 120
  year: 2022
  ident: 2023030719423034800_
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP04(2022)120
– volume: 18
  start-page: 1233
  year: 2014
  ident: 2023030719423034800_
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2014.v18.n5.a4
– volume: 26
  start-page: 1927
  year: 1993
  ident: 2023030719423034800_
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/26/8/019
– volume: 943
  start-page: 114616
  year: 2019
  ident: 2023030719423034800_
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2019.114616
– volume: 153
  start-page: 141
  year: 1979
  ident: 2023030719423034800_
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(79)90595-9
SSID ssj0001077041
Score 2.345418
Snippet Abstract We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s...
We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s constriction so that...
We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s constriction so that...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Symmetry
Title Fractional topological charge in lattice Abelian gauge theory
URI https://www.proquest.com/docview/3171495105
Volume 2023
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDI5gu3DhjRiMKQc4oWp9ZGl7QgNtmpAYCG3SbpWbJghp6grrDvx77DZjcAAuucQnJ_FnO7Y_xi6NkJH2lXQEUOoGhHQAYcMBKilMMebKKs7Ih7EcTcX9rDezCbelLatc28TKUGcLRTnybkBM3ZU7cFO8OcQaRb-rlkJjmzXRBEd4w5u3g_HT8ybL4oahKzxb8Y7Re7codYELZC7VIH7Doh_9bWuDXKHMcJ_tWveQ9-vzPGBbOj9ke9ZV5PYhLo8Yka2rOo3Hy5rngLTNq8FHmr_mfA4l1bXxfqopk8FfYIUbVd_ixzGbDgeTu5FjmRAchYBbOrExkcgywPcYglShcv1MUz-y0p7QoavDMJXGQ7SN4sjTMQQy8AG0a4xHI9eDE9bIF7k-ZRx6JlCZURGkBkMPEQuQJkYo842JIfJb7Hqtk0TZMeHEVjFP6u_qICENJlaDLXb1JV3U4zF-keOo3n9E2mvdJ_YdLZPNqZ_9vX3OdogIvq6nbrNG-b7SF-gulGnH3olOFW7jOnmcfQL01sRG
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VdoCFN6JQwAOdUEQSu3kMCBUoKtBWCLUSW3AcGyFVbaFBiD_Fb8SXOBQGYOqSxacM57O_u_PdfQCHinmBdIVnMY6pG848i2vYsDiWFMY65koyzshuz2sP2PV9474EH0UvDJZVFndidlEnY4E58mOKTN2ZO3A6ebaQNQpfVwsKjdwsbuT7mw7ZpidXF3p_66572eqfty3DKmAJDV6pFSoVsCTh2rZ97glf2G4isbdXSIdJ35a-H3vK0cgVhIEjQ0496nIubaUcHF9O9X8XoMKodhXKUDlr9W7vZlkd2_dt5pgKezukx5NUTvSHJzbWPH7Dvh_9dAUAZKh2uQrLxh0lzdx-1qAkR-uwYlxTYg7-dAOQ3F3kaUOS5rwKuLskG7QkydOIDHmKdXSkGUvMnJBH_qoXsj7J900YzEVHW1AejUdyGwhvKCoSJQIeKx3qsJBxT4UaOl2lQh64VTgqdBIJM5Yc2TGGUf48TiPUYGQ0WIX6l_QkH8fxixzR6v1HpFboPjLndhrNrGzn7-UDWGz3u52oc9W72YUlJKHPa7lrUE5fXuWedlXSeN_YB4GHeZvkJ6Es_n4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+topological+charge+in+lattice+Abelian+gauge+theory&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Abe%2C+Motokazu&rft.au=Morikawa%2C+Okuto&rft.au=Suzuki%2C+Hiroshi&rft.date=2023-02-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2023&rft.issue=2&rft_id=info:doi/10.1093%2Fptep%2Fptad009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptad009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon