Fractional topological charge in lattice Abelian gauge theory
Abstract We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s constriction so that the cocycle condition contains $\mathbb {Z}_q$ elements (the ’t Hooft flux). The construction requires an admissibility condition o...
Saved in:
Published in | Progress of theoretical and experimental physics Vol. 2023; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-3911 2050-3911 |
DOI | 10.1093/ptep/ptad009 |
Cover
Loading…
Abstract | Abstract
We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s constriction so that the cocycle condition contains $\mathbb {Z}_q$ elements (the ’t Hooft flux). The construction requires an admissibility condition on lattice gauge field configurations. From the transition function so constructed, we have the fractional topological charge that is $\mathbb {Z}_q$ one-form gauge invariant and odd under the lattice time reversal transformation. Assuming a rescaling of the vacuum angle θ → qθ suggested from the Witten effect, our construction provides a lattice implementation of the mixed ’t Hooft anomaly between the $\mathbb {Z}_q$ one-form symmetry and the time reversal symmetry in the U(1) gauge theory with matter fields of charge $q\in 2\mathbb {Z}$ when θ = π, which was studied by Honda and Tanizaki [J. High Energy Phys. 12, 154 (2020)] in the continuum framework. |
---|---|
AbstractList | We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s constriction so that the cocycle condition contains $\mathbb {Z}_q$ elements (the ’t Hooft flux). The construction requires an admissibility condition on lattice gauge field configurations. From the transition function so constructed, we have the fractional topological charge that is $\mathbb {Z}_q$ one-form gauge invariant and odd under the lattice time reversal transformation. Assuming a rescaling of the vacuum angle θ → qθ suggested from the Witten effect, our construction provides a lattice implementation of the mixed ’t Hooft anomaly between the $\mathbb {Z}_q$ one-form symmetry and the time reversal symmetry in the U(1) gauge theory with matter fields of charge $q\in 2\mathbb {Z}$ when θ = π, which was studied by Honda and Tanizaki [J. High Energy Phys. 12, 154 (2020)] in the continuum framework. Abstract We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s constriction so that the cocycle condition contains $\mathbb {Z}_q$ elements (the ’t Hooft flux). The construction requires an admissibility condition on lattice gauge field configurations. From the transition function so constructed, we have the fractional topological charge that is $\mathbb {Z}_q$ one-form gauge invariant and odd under the lattice time reversal transformation. Assuming a rescaling of the vacuum angle θ → qθ suggested from the Witten effect, our construction provides a lattice implementation of the mixed ’t Hooft anomaly between the $\mathbb {Z}_q$ one-form symmetry and the time reversal symmetry in the U(1) gauge theory with matter fields of charge $q\in 2\mathbb {Z}$ when θ = π, which was studied by Honda and Tanizaki [J. High Energy Phys. 12, 154 (2020)] in the continuum framework. We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s constriction so that the cocycle condition contains $\mathbb {Z}_q$ elements (the ’t Hooft flux). The construction requires an admissibility condition on lattice gauge field configurations. From the transition function so constructed, we have the fractional topological charge that is $\mathbb {Z}_q$ one-form gauge invariant and odd under the lattice time reversal transformation. Assuming a rescaling of the vacuum angle θ → qθ suggested from the Witten effect, our construction provides a lattice implementation of the mixed ’t Hooft anomaly between the $\mathbb {Z}_q$ one-form symmetry and the time reversal symmetry in the U(1) gauge theory with matter fields of charge $q\in 2\mathbb {Z}$ when θ = π, which was studied by Honda and Tanizaki [J. High Energy Phys. 12, 154 (2020)] in the continuum framework. |
Author | Abe, Motokazu Suzuki, Hiroshi Morikawa, Okuto |
Author_xml | – sequence: 1 givenname: Motokazu surname: Abe fullname: Abe, Motokazu – sequence: 2 givenname: Okuto surname: Morikawa fullname: Morikawa, Okuto – sequence: 3 givenname: Hiroshi surname: Suzuki fullname: Suzuki, Hiroshi email: hsuzuki@phys.kyushu-u.ac.jp |
BookMark | eNp9kEFLw0AQhRepYK29-QMCHrwYnUk22e7BQylWhYIXPYfpZtJuidm42Rz6701pDyLoZebBvPcYvksxalzDQlwj3CPo9KEN3A6DSgB9JsYJZBCnGnH0Q1-IadftAABBKZA4Fo9LTyZY11AdBde62m2sGbTZkt9wZJuophCs4Wi-5tpSE22oHw5hy87vr8R5RXXH09OeiI_l0_viJV69Pb8u5qvYSMhDrKtqJsuSQKWKcqMMJCXLLAPDKFkBK7XOK5RJPtMzZE1pniZEDFWFSY4qnYibY2_r3VfPXSh2rvfDz12RokKpM4RscN0dXca7rvNcFa23n-T3BUJxYFQcGBUnRoM9-WU3NtCBRfBk679Ct8eQ69v_678BwKp7mQ |
CitedBy_id | crossref_primary_10_1007_JHEP07_2024_220 crossref_primary_10_1007_JHEP08_2023_118 crossref_primary_10_1103_PhysRevB_108_155104 crossref_primary_10_1140_epjc_s10052_023_11616_6 crossref_primary_10_1093_ptep_ptae075 crossref_primary_10_1103_PhysRevD_108_014506 crossref_primary_10_1093_ptep_ptae040 |
Cites_doi | 10.1016/0370-2693(79)90838-4 10.1007/JHEP05(2017)091 10.1103/PhysRevD.100.125016 10.1088/1126-6708/2009/08/084 10.1016/0550-3213(82)90464-3 10.1007/JHEP09(2017)137 10.1007/JHEP04(2014)001 10.1007/JHEP02(2015)172 10.1016/0550-3213(82)90463-1 10.1007/BF02029132 10.1016/S0550-3213(99)00115-7 10.1016/S0370-2693(98)00951-4 10.1007/JHEP12(2020)154 10.1016/S0550-3213(99)00213-8 10.1007/BF01403503 10.1007/JHEP05(2019)093 10.1016/S0550-3213(99)00706-3 10.1016/S0550-3213(98)00680-4 10.1016/S0550-3213(02)01123-9 10.1093/ptep/ptac042 10.1143/PTP.105.789 10.1007/BF02161414 10.1007/BF01211167 10.1007/JHEP06(2017)102 10.1007/JHEP04(2022)120 10.4310/ATMP.2014.v18.n5.a4 10.1088/0305-4470/26/8/019 10.1016/j.nuclphysb.2019.114616 10.1016/0550-3213(79)90595-9 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023 The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023 – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1093/ptep/ptad009 |
DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection (Oxford University Press) url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2050-3911 |
ExternalDocumentID | 10_1093_ptep_ptad009 10.1093/ptep/ptad009 |
GroupedDBID | .I3 0R~ 4.4 5VS 88I AAFWJ AAMVS AAPXW AAVAP ABEJV ABGNP ABPTD ABUWG ABXVV ACGFS ADHZD AENEX AENZO AFKRA AFPKN AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AZQEC BAYMD BENPR CCPQU CIDKT DWQXO D~K EBS EJD ER. GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ISR ITC KQ8 KSI M2P M~E O9- OAWHX OJQWA OK1 PEELM PIMPY ROL RXO TOX ~D7 AAYXX CITATION PHGZM PHGZT 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c406t-9ff84dda0737a6c7c02de4550ce14e70e77b6f14268981e9a3632aae0ff126173 |
IEDL.DBID | BENPR |
ISSN | 2050-3911 |
IngestDate | Mon Jun 30 12:26:21 EDT 2025 Tue Jul 01 02:09:15 EDT 2025 Thu Apr 24 23:13:16 EDT 2025 Wed Apr 02 07:03:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Funded by SCOAP3. SCOAP3 and OUP support the goals of the International Year of Basic Sciences for Sustainable Development This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-9ff84dda0737a6c7c02de4550ce14e70e77b6f14268981e9a3632aae0ff126173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3171495105?pq-origsite=%requestingapplication% |
PQID | 3171495105 |
PQPubID | 7121340 |
ParticipantIDs | proquest_journals_3171495105 crossref_primary_10_1093_ptep_ptad009 crossref_citationtrail_10_1093_ptep_ptad009 oup_primary_10_1093_ptep_ptad009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Progress of theoretical and experimental physics |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Hernández (2023030719423034800_) 1999; 552 Fodor (2023030719423034800_) 2009; 0908 McGreevy (2023030719423034800_) de Forcrand (2023030719423034800_) 2003; 651 Hidaka (2023030719423034800_) 2019; 100 Phillips (2023030719423034800_) 1990; 131 Anosova (2023030719423034800_) 2022; 2204 Sulejmanpasic (2023030719423034800_) 2019; 943 Dimakis (2023030719423034800_) 1993; 26 Phillips (2023030719423034800_) 1986; 103 Witten (2023030719423034800_) 1979; 86 Kitano (2023030719423034800_) 2017; 1709 Fujiwara (2023030719423034800_) 2001; 105 Lüscher (2023030719423034800_) 1999; 549 Itou (2023030719423034800_) 2019; 1905 t Hooft (2023030719423034800_) 1980; 59 Tanizaki (2023030719423034800_) 2017; 1706 Lüscher (2023030719423034800_) 1982; 85 Edwards (2023030719423034800_) 1998; 438 Honda (2023030719423034800_) 2020; 2012 van Baal (2023030719423034800_) 1982; 85 Kapustin (2023030719423034800_) 2014; 18 Gaiotto (2023030719423034800_) 2017; 1705 Tanizaki (2023030719423034800_) 2022; 2022 Gaiotto (2023030719423034800_) 2015; 1502 t Hooft (2023030719423034800_) 1979; 153 Cardy (2023030719423034800_) 1982; 205 Fujiwara (2023030719423034800_) 2000; 569 Córdova (2023030719423034800_) Lüscher (2023030719423034800_) 1999; 538 Kapustin (2023030719423034800_) 2014; 1404 |
References_xml | – volume: 86 start-page: 283 year: 1979 ident: 2023030719423034800_ publication-title: Phys. Lett. B doi: 10.1016/0370-2693(79)90838-4 – volume: 1705 start-page: 091 year: 2017 ident: 2023030719423034800_ publication-title: J. High Energy Phys. doi: 10.1007/JHEP05(2017)091 – volume: 100 start-page: 125016 year: 2019 ident: 2023030719423034800_ publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.125016 – volume: 0908 start-page: 084 year: 2009 ident: 2023030719423034800_ publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2009/08/084 – volume: 205 start-page: 17 year: 1982 ident: 2023030719423034800_ publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(82)90464-3 – volume: 1709 start-page: 137 year: 2017 ident: 2023030719423034800_ publication-title: J. High Energy Phys. doi: 10.1007/JHEP09(2017)137 – volume: 1404 start-page: 001 year: 2014 ident: 2023030719423034800_ publication-title: J. High Energy Phys. doi: 10.1007/JHEP04(2014)001 – volume: 59 start-page: 135 year: 1980 ident: 2023030719423034800_ publication-title: NATO Sci. Ser. B – volume: 1502 start-page: 172 year: 2015 ident: 2023030719423034800_ publication-title: J. High Energy Phys. doi: 10.1007/JHEP02(2015)172 – volume: 205 start-page: 1 year: 1982 ident: 2023030719423034800_ publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(82)90463-1 – volume: 85 start-page: 39 year: 1982 ident: 2023030719423034800_ publication-title: Commun. Math. Phys. doi: 10.1007/BF02029132 – volume: 549 start-page: 295 year: 1999 ident: 2023030719423034800_ publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(99)00115-7 – volume: 438 start-page: 96 year: 1998 ident: 2023030719423034800_ publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)00951-4 – volume: 2012 start-page: 154 year: 2020 ident: 2023030719423034800_ publication-title: J. High Energy Phys. doi: 10.1007/JHEP12(2020)154 – volume: 552 start-page: 363 year: 1999 ident: 2023030719423034800_ publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(99)00213-8 – volume: 85 start-page: 529 year: 1982 ident: 2023030719423034800_ publication-title: Commun. Math. Phys. doi: 10.1007/BF01403503 – volume: 1905 start-page: 093 year: 2019 ident: 2023030719423034800_ publication-title: J. High Energy Phys. doi: 10.1007/JHEP05(2019)093 – ident: 2023030719423034800_ – volume: 569 start-page: 643 year: 2000 ident: 2023030719423034800_ publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(99)00706-3 – volume: 538 start-page: 515 year: 1999 ident: 2023030719423034800_ publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(98)00680-4 – volume: 651 start-page: 125 year: 2003 ident: 2023030719423034800_ publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(02)01123-9 – volume: 2022 start-page: 04A108 year: 2022 ident: 2023030719423034800_ publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptac042 – volume: 105 start-page: 789 year: 2001 ident: 2023030719423034800_ publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.105.789 – volume: 131 start-page: 255 year: 1990 ident: 2023030719423034800_ publication-title: Commun. Math. Phys. doi: 10.1007/BF02161414 – ident: 2023030719423034800_ – volume: 103 start-page: 599 year: 1986 ident: 2023030719423034800_ publication-title: Commun. Math. Phys. doi: 10.1007/BF01211167 – volume: 1706 start-page: 102 year: 2017 ident: 2023030719423034800_ publication-title: J. High Energy Phys. doi: 10.1007/JHEP06(2017)102 – volume: 2204 start-page: 120 year: 2022 ident: 2023030719423034800_ publication-title: J. High Energy Phys. doi: 10.1007/JHEP04(2022)120 – volume: 18 start-page: 1233 year: 2014 ident: 2023030719423034800_ publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2014.v18.n5.a4 – volume: 26 start-page: 1927 year: 1993 ident: 2023030719423034800_ publication-title: J. Phys. A doi: 10.1088/0305-4470/26/8/019 – volume: 943 start-page: 114616 year: 2019 ident: 2023030719423034800_ publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2019.114616 – volume: 153 start-page: 141 year: 1979 ident: 2023030719423034800_ publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(79)90595-9 |
SSID | ssj0001077041 |
Score | 2.345418 |
Snippet | Abstract
We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s... We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s constriction so that... We construct a non-trivial $U(1)/\mathbb {Z}_q$ principal bundle on T4 from the compact U(1) lattice gauge field by generalizing Lüscher’s constriction so that... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Symmetry |
Title | Fractional topological charge in lattice Abelian gauge theory |
URI | https://www.proquest.com/docview/3171495105 |
Volume | 2023 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDI5gu3DhjRiMKQc4oWp9ZGl7QgNtmpAYCG3SbpWbJghp6grrDvx77DZjcAAuucQnJ_FnO7Y_xi6NkJH2lXQEUOoGhHQAYcMBKilMMebKKs7Ih7EcTcX9rDezCbelLatc28TKUGcLRTnybkBM3ZU7cFO8OcQaRb-rlkJjmzXRBEd4w5u3g_HT8ybL4oahKzxb8Y7Re7codYELZC7VIH7Doh_9bWuDXKHMcJ_tWveQ9-vzPGBbOj9ke9ZV5PYhLo8Yka2rOo3Hy5rngLTNq8FHmr_mfA4l1bXxfqopk8FfYIUbVd_ixzGbDgeTu5FjmRAchYBbOrExkcgywPcYglShcv1MUz-y0p7QoavDMJXGQ7SN4sjTMQQy8AG0a4xHI9eDE9bIF7k-ZRx6JlCZURGkBkMPEQuQJkYo842JIfJb7Hqtk0TZMeHEVjFP6u_qICENJlaDLXb1JV3U4zF-keOo3n9E2mvdJ_YdLZPNqZ_9vX3OdogIvq6nbrNG-b7SF-gulGnH3olOFW7jOnmcfQL01sRG |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VdoCFN6JQwAOdUEQSu3kMCBUoKtBWCLUSW3AcGyFVbaFBiD_Fb8SXOBQGYOqSxacM57O_u_PdfQCHinmBdIVnMY6pG848i2vYsDiWFMY65koyzshuz2sP2PV9474EH0UvDJZVFndidlEnY4E58mOKTN2ZO3A6ebaQNQpfVwsKjdwsbuT7mw7ZpidXF3p_66572eqfty3DKmAJDV6pFSoVsCTh2rZ97glf2G4isbdXSIdJ35a-H3vK0cgVhIEjQ0496nIubaUcHF9O9X8XoMKodhXKUDlr9W7vZlkd2_dt5pgKezukx5NUTvSHJzbWPH7Dvh_9dAUAZKh2uQrLxh0lzdx-1qAkR-uwYlxTYg7-dAOQ3F3kaUOS5rwKuLskG7QkydOIDHmKdXSkGUvMnJBH_qoXsj7J900YzEVHW1AejUdyGwhvKCoSJQIeKx3qsJBxT4UaOl2lQh64VTgqdBIJM5Yc2TGGUf48TiPUYGQ0WIX6l_QkH8fxixzR6v1HpFboPjLndhrNrGzn7-UDWGz3u52oc9W72YUlJKHPa7lrUE5fXuWedlXSeN_YB4GHeZvkJ6Es_n4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+topological+charge+in+lattice+Abelian+gauge+theory&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Abe%2C+Motokazu&rft.au=Morikawa%2C+Okuto&rft.au=Suzuki%2C+Hiroshi&rft.date=2023-02-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2023&rft.issue=2&rft_id=info:doi/10.1093%2Fptep%2Fptad009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptad009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |