Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction
Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos describes certain nonlinear dynamical systems that have a very sensitive dependence on initial conditions. Chaotic systems are always deterministic and may be very simple, yet they produce completely unpredictable and di...
Saved in:
Published in | Systems (Basel) Vol. 4; no. 4; p. 37 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos describes certain nonlinear dynamical systems that have a very sensitive dependence on initial conditions. Chaotic systems are always deterministic and may be very simple, yet they produce completely unpredictable and divergent behavior. Systems of nonlinear equations are difficult to solve analytically, and scientists have relied heavily on visual and qualitative approaches to discover and analyze the dynamics of nonlinearity. Indeed, few fields have drawn as heavily from visualization methods for their seminal innovations: from strange attractors, to bifurcation diagrams, to cobweb plots, to phase diagrams and embedding. Although the social sciences are increasingly studying these types of systems, seminal concepts remain murky or loosely adopted. This article has three aims. First, it argues for several visualization methods to critically analyze and understand the behavior of nonlinear dynamical systems. Second, it uses these visualizations to introduce the foundations of nonlinear dynamics, chaos, fractals, self-similarity and the limits of prediction. Finally, it presents Pynamical, an open-source Python package to easily visualize and explore nonlinear dynamical systems’ behavior. |
---|---|
AbstractList | Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos describes certain nonlinear dynamical systems that have a very sensitive dependence on initial conditions. Chaotic systems are always deterministic and may be very simple, yet they produce completely unpredictable and divergent behavior. Systems of nonlinear equations are difficult to solve analytically, and scientists have relied heavily on visual and qualitative approaches to discover and analyze the dynamics of nonlinearity. Indeed, few fields have drawn as heavily from visualization methods for their seminal innovations: from strange attractors, to bifurcation diagrams, to cobweb plots, to phase diagrams and embedding. Although the social sciences are increasingly studying these types of systems, seminal concepts remain murky or loosely adopted. This article has three aims. First, it argues for several visualization methods to critically analyze and understand the behavior of nonlinear dynamical systems. Second, it uses these visualizations to introduce the foundations of nonlinear dynamics, chaos, fractals, self-similarity and the limits of prediction. Finally, it presents Pynamical, an open-source Python package to easily visualize and explore nonlinear dynamical systems' behavior. |
Author | Boeing, Geoff |
Author_xml | – sequence: 1 givenname: Geoff orcidid: 0000-0003-1851-6411 surname: Boeing fullname: Boeing, Geoff |
BookMark | eNp1kc9vFCEUxyemJtbaq2cSLx6cFgaGAW_N1mqTjZqseiVv-WHZMFCBPcx_L9vVpDaRCy-Pz_eT8N7L7iSmaLvuNcEXlEp8WZZS7VwYZhjT6Vl3OuBJ9kKO7ORR_aI7L2WH25GECs5Ou_mHL3sI6CpCWIovKDn0OcXgo4WMrpcIs9ftfXP0v0erO0jlHbrJoCuEVm1scP3Gzz5A9nVBEA2qdxatW6s--L5ma7yuPsVX3XPXQvb8z33Wfb_58G31qV9_-Xi7ulr3mmFee2m0MRNzWFNL7GitI27SeovJYICP48Q5k3rEWmDjOKNOSkFGYo0kbOu0oWfd7dFrEuzUffYz5EUl8OqhkfJPBbl6HawagBIHoPkWHBN63DLKx4FTqkEQJ11zvT267nP6tbelqtkXbUOAaNO-KCIExgMfCG3omyfoLu1zm-yBGsXA2URlo9iR0jmVkq1T2lc4jKdm8EERrA4rVf-utMUunsT-_us_gd-HYafY |
CitedBy_id | crossref_primary_10_1016_j_chaos_2023_113217 crossref_primary_10_1134_S1067413622060157 crossref_primary_10_1140_epjp_s13360_023_03900_x crossref_primary_10_3390_app10020451 crossref_primary_10_3934_dcdsb_2020191 crossref_primary_10_4000_activites_5522 crossref_primary_10_1016_j_icheatmasstransfer_2020_105080 crossref_primary_10_1063_5_0017826 crossref_primary_10_1016_j_cmpb_2023_107941 crossref_primary_10_1142_S0219477524500627 crossref_primary_10_1590_1980_220x_reeusp_2021_0553pt crossref_primary_10_3354_meps13515 crossref_primary_10_1007_s10765_018_2442_8 crossref_primary_10_1016_j_heliyon_2024_e26495 crossref_primary_10_3390_jpm12081303 crossref_primary_10_1088_1742_6596_1437_1_012093 crossref_primary_10_1109_TCSVT_2019_2892178 crossref_primary_10_1002_mma_9503 crossref_primary_10_21468_SciPostPhysCore_6_1_016 crossref_primary_10_3390_ma12172701 crossref_primary_10_1016_j_diamond_2018_11_016 crossref_primary_10_1016_j_ejcon_2019_01_001 crossref_primary_10_1299_jtst_2020jtst0001 crossref_primary_10_1007_s11042_019_08310_9 crossref_primary_10_1016_j_csi_2024_103890 crossref_primary_10_3390_math10224229 crossref_primary_10_1007_s13204_023_02893_4 crossref_primary_10_1016_j_pnucene_2019_103134 crossref_primary_10_1186_s12916_020_01563_4 crossref_primary_10_1016_j_physa_2018_08_101 crossref_primary_10_1007_s00366_020_01051_6 crossref_primary_10_1007_s11071_020_05668_6 crossref_primary_10_1115_1_4042199 crossref_primary_10_2139_ssrn_2939933 crossref_primary_10_1098_rsos_201100 crossref_primary_10_1016_j_earscirev_2018_01_008 crossref_primary_10_1142_S0218127417300324 crossref_primary_10_3390_e22070734 crossref_primary_10_1016_j_molstruc_2018_09_060 crossref_primary_10_1142_S0218127419500123 crossref_primary_10_4000_laboreal_16776 crossref_primary_10_1007_s11042_020_09111_1 crossref_primary_10_1080_23311908_2020_1729592 crossref_primary_10_1088_1402_4896_ad5474 crossref_primary_10_12677_OJNS_2022_106122 crossref_primary_10_21105_jose_00015 crossref_primary_10_3390_math7100877 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121534 crossref_primary_10_1080_10236198_2023_2194452 crossref_primary_10_1080_00213624_2023_2170145 crossref_primary_10_1590_1983_80422018264272 crossref_primary_10_1080_10095020_2022_2125836 crossref_primary_10_1080_19361610_2019_1646553 crossref_primary_10_1016_j_nxmate_2023_100080 crossref_primary_10_1109_LSP_2019_2929713 crossref_primary_10_1016_j_ccr_2024_215721 crossref_primary_10_1016_j_inat_2020_101088 crossref_primary_10_3390_en11010106 crossref_primary_10_1177_0309133317714972 crossref_primary_10_3390_math7010007 crossref_primary_10_3390_math8122131 crossref_primary_10_4236_jamp_2019_75077 crossref_primary_10_1016_j_cnsns_2017_10_013 crossref_primary_10_1016_j_ijleo_2021_167779 crossref_primary_10_1007_s11786_018_0386_9 crossref_primary_10_1016_j_atmosenv_2024_120865 crossref_primary_10_1080_00273171_2021_1994848 crossref_primary_10_1007_s11071_018_4470_0 crossref_primary_10_1007_s13351_023_3001_1 crossref_primary_10_1029_2023JD039011 crossref_primary_10_1007_s11042_019_08352_z crossref_primary_10_2174_1386207324666210713114755 crossref_primary_10_1007_s40747_022_00769_8 crossref_primary_10_3390_en12020277 crossref_primary_10_1109_TIA_2017_2782207 crossref_primary_10_1016_j_physa_2019_121405 crossref_primary_10_1093_teamat_hraa003 crossref_primary_10_3389_fnins_2020_534619 crossref_primary_10_1057_s41289_018_0072_1 crossref_primary_10_1109_ACCESS_2021_3104353 crossref_primary_10_1016_j_jisa_2019_02_001 crossref_primary_10_1016_j_leaqua_2019_07_002 crossref_primary_10_1142_S021812742550004X crossref_primary_10_3390_s24154978 crossref_primary_10_5194_essd_12_741_2020 crossref_primary_10_1016_j_chaos_2022_111994 crossref_primary_10_1007_s13042_019_00924_7 crossref_primary_10_34256_famr2413 crossref_primary_10_22331_q_2022_09_22_818 crossref_primary_10_1017_S0033291718002064 crossref_primary_10_1088_1742_6596_1069_1_012135 crossref_primary_10_2139_ssrn_2958923 crossref_primary_10_1016_j_jisa_2020_102509 crossref_primary_10_1080_13540602_2020_1745174 crossref_primary_10_3390_f11010056 crossref_primary_10_1016_j_talanta_2018_10_102 crossref_primary_10_3390_math11020305 crossref_primary_10_1016_j_chaos_2017_08_038 crossref_primary_10_3390_ijerph16193660 crossref_primary_10_3390_urbansci2030076 crossref_primary_10_4236_psych_2024_159089 crossref_primary_10_1007_s11071_020_05956_1 crossref_primary_10_3389_fpsyg_2021_735534 crossref_primary_10_3390_ijerph16173136 crossref_primary_10_3390_systems6030030 crossref_primary_10_1109_ACCESS_2019_2921003 crossref_primary_10_1109_TNB_2021_3072047 crossref_primary_10_1145_2974026 crossref_primary_10_1016_j_chaos_2020_110493 crossref_primary_10_1111_coin_12405 crossref_primary_10_1140_epjp_s13360_023_04231_7 crossref_primary_10_1007_s00477_023_02539_5 crossref_primary_10_1098_rsos_172181 crossref_primary_10_1109_JIOT_2020_2974839 crossref_primary_10_1016_j_chaos_2021_111521 crossref_primary_10_3103_S0027131421010041 crossref_primary_10_1080_1354750X_2018_1463563 crossref_primary_10_1007_s11071_018_4208_z crossref_primary_10_1007_s40430_017_0955_x crossref_primary_10_1115_1_4042792 crossref_primary_10_1016_j_future_2018_05_058 crossref_primary_10_1590_1980_220x_reeusp_2021_0553en crossref_primary_10_1080_17437199_2022_2146598 crossref_primary_10_1016_j_apenergy_2023_122478 crossref_primary_10_1155_2018_2535409 crossref_primary_10_3390_math7100955 crossref_primary_10_1007_s40725_020_00110_x crossref_primary_10_1016_j_chaos_2017_06_019 crossref_primary_10_61186_ijrr_22_2_411 crossref_primary_10_1080_03057267_2020_1757244 crossref_primary_10_1007_s11042_024_20469_4 crossref_primary_10_1016_j_chaos_2018_09_025 crossref_primary_10_1109_ACCESS_2019_2942632 crossref_primary_10_3390_sym11020140 crossref_primary_10_3390_w11122587 crossref_primary_10_1016_j_childyouth_2019_104677 crossref_primary_10_1080_00207144_2020_1799380 crossref_primary_10_1088_1742_6596_1136_1_012029 crossref_primary_10_1142_S0218348X22500232 crossref_primary_10_1371_journal_pone_0247458 crossref_primary_10_3280_IPN2020_002001 crossref_primary_10_1093_bioinformatics_btx736 crossref_primary_10_1177_1176935118799754 crossref_primary_10_1016_j_sigpro_2021_108045 crossref_primary_10_1016_j_applthermaleng_2018_04_133 crossref_primary_10_1016_j_jbiomech_2020_109718 crossref_primary_10_3389_fpsyg_2019_02213 crossref_primary_10_1177_0142331219879267 crossref_primary_10_1007_s11128_021_03138_5 crossref_primary_10_2478_rmzmag_2019_0006 crossref_primary_10_1016_j_est_2019_101184 crossref_primary_10_1016_j_ijrobp_2021_06_015 crossref_primary_10_1016_j_enconman_2021_114112 crossref_primary_10_14324_111_444_ucloe_000006 crossref_primary_10_1051_matecconf_201713204027 crossref_primary_10_3390_sym11030351 crossref_primary_10_1016_j_swevo_2018_01_002 crossref_primary_10_1016_j_asr_2018_01_036 crossref_primary_10_1038_s41598_019_56851_8 crossref_primary_10_1093_mnras_staa2084 crossref_primary_10_1007_s11071_020_05540_7 crossref_primary_10_1111_nyas_14419 crossref_primary_10_3390_systems6040035 crossref_primary_10_1016_j_ijnonlinmec_2017_10_010 crossref_primary_10_1080_19361610_2021_1875798 crossref_primary_10_3390_atmos13050746 crossref_primary_10_3390_math9131541 crossref_primary_10_1016_j_jtcvs_2018_11_087 crossref_primary_10_3390_mi12010031 crossref_primary_10_1016_j_cageo_2017_03_004 crossref_primary_10_1142_S0218127418501250 crossref_primary_10_3390_pr7010042 crossref_primary_10_1016_j_ijhydene_2024_03_142 crossref_primary_10_1016_j_isatra_2021_01_046 crossref_primary_10_1016_j_icheatmasstransfer_2018_03_025 crossref_primary_10_3390_fractalfract8100560 crossref_primary_10_1007_s11042_020_10179_y crossref_primary_10_3724_j_1006_8775_2023_034 crossref_primary_10_1007_s12008_018_0507_3 |
Cites_doi | 10.1016/0098-3004(86)90047-6 10.1007/978-3-642-24544-2 10.1007/BF01608556 10.1007/BF01646553 10.1109/ICCSA.2008.7 10.1068/b38124 10.7551/mitpress/9399.001.0001 10.1126/science.156.3775.636 10.1007/978-3-540-48625-1 10.1103/PhysRevE.86.036209 10.1155/S1026022699000151 10.1080/13658810210137013 10.1016/0167-2789(83)90125-2 10.1161/01.CIR.101.1.47 10.1103/PhysRevLett.45.712 10.1038/35023206 10.1007/BF01020332 10.1063/1.3156832 10.1007/978-1-4612-2150-0 10.1136/jech.2006.054254 10.1038/261459a0 10.1177/1473095206061022 10.1126/science.238.4827.632 10.1016/j.cnsns.2011.06.014 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1007/3-540-32023-7 10.1088/1751-8113/46/25/254009 10.14445/22315381/IJETT-V13P256 10.1063/1.4927643 10.4324/9780203773895 10.1080/00029890.1975.11994008 10.1016/j.envsoft.2005.12.018 10.4324/9780203864302 10.1126/science.186.4164.645 10.1016/j.amc.2011.05.079 10.1068/b2617 10.1063/1.4922973 10.1119/1.13295 10.1057/palgrave.ivs.9500082 10.4172/2155-9880.1000346 10.1080/01944369108975471 10.1016/j.chaos.2006.05.018 10.1364/JOSAA.7.001055 10.1016/0167-2789(83)90112-4 10.1142/S0218127415300116 10.1002/9780471740360 10.1007/978-81-322-2556-0 10.1016/0167-2789(85)90011-9 10.1007/s11071-013-1065-7 10.1103/PhysRevLett.50.346 10.3998/mpub.14623 10.1007/s00004-008-0088-8 10.1146/annurev.es.24.110193.000245 10.1007/BFb0091903 10.1016/j.autneu.2013.05.004 10.1063/1.4917289 10.1016/j.arcontrol.2009.01.002 10.1016/j.chaos.2006.07.051 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2016 |
Copyright_xml | – notice: Copyright MDPI AG 2016 |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3390/systems4040037 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - NZ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Business |
EISSN | 2079-8954 |
EndPage | 37 |
ExternalDocumentID | oai_doaj_org_article_2a31faac6baf48c5b43652633ca81f9f 4301187391 10_3390_systems4040037 |
GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IPNFZ K6V K7- KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQQKQ PROAC RIG RNS 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c406t-9dcdd74f0c3e1e5eef1f7ccb012da65576649c50c80df643f998151ed914bfcd3 |
IEDL.DBID | DOA |
ISSN | 2079-8954 |
IngestDate | Wed Aug 27 01:22:28 EDT 2025 Fri Jul 11 02:14:42 EDT 2025 Mon Jul 14 08:12:35 EDT 2025 Tue Jul 01 01:28:36 EDT 2025 Thu Apr 24 23:09:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-9dcdd74f0c3e1e5eef1f7ccb012da65576649c50c80df643f998151ed914bfcd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1851-6411 |
OpenAccessLink | https://doaj.org/article/2a31faac6baf48c5b43652633ca81f9f |
PQID | 1858264739 |
PQPubID | 2032325 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2a31faac6baf48c5b43652633ca81f9f proquest_miscellaneous_1880026213 proquest_journals_1858264739 crossref_citationtrail_10_3390_systems4040037 crossref_primary_10_3390_systems4040037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Systems (Basel) |
PublicationYear | 2016 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Chen (ref_16) 2008; 35 Shilnikov (ref_46) 2002; 3 Hoshi (ref_5) 2013; 177 ref_58 ref_57 ref_12 ref_11 ref_10 Mandelbrot (ref_56) 1967; 156 Benguigui (ref_14) 2000; 27 Li (ref_42) 2011; 218 ref_19 Cartwright (ref_24) 1991; 57 Wolf (ref_67) 1985; 16 Alpigini (ref_28) 2004; 3 Singh (ref_4) 2012; 17 Oxley (ref_21) 2007; 22 May (ref_32) 1976; 261 ref_60 Feigenbaum (ref_52) 1983; 7 ref_25 ref_69 ref_68 ref_66 ref_20 Farmer (ref_54) 1983; 7 Rickles (ref_2) 2007; 61 (ref_53) 1976; 50 ref_29 Stewart (ref_38) 2000; 406 Hunt (ref_70) 2015; 25 ref_27 ref_26 Sprott (ref_65) 2015; 25 Chen (ref_17) 2008; 36 Grassberger (ref_55) 1983; 50 Huikuri (ref_59) 2000; 101 Feigenbaum (ref_51) 1978; 19 Sander (ref_64) 2015; 25 ref_34 Babbs (ref_6) 2014; 5 (ref_18) 2009; 33 Ostwald (ref_23) 2013; 40 ref_30 Kekre (ref_62) 2014; 13 Glass (ref_7) 2009; 19 ref_39 ref_37 Ruelle (ref_45) 1971; 20 Shen (ref_15) 2002; 16 Packard (ref_33) 1980; 45 Hastings (ref_1) 1993; 24 Theiler (ref_61) 1990; 7 Batty (ref_13) 1999; 3 May (ref_41) 1974; 186 Wu (ref_49) 2014; 75 Kantz (ref_71) 2013; 46 Chettiparamb (ref_36) 2006; 5 Hamouche (ref_22) 2009; 11 Li (ref_50) 1975; 82 ref_44 ref_43 ref_40 Grebogi (ref_47) 1987; 238 Suetani (ref_3) 2012; 86 ref_48 Clarke (ref_63) 1986; 12 ref_9 ref_8 Bradley (ref_35) 2015; 25 Lorenz (ref_31) 1963; 20 |
References_xml | – volume: 12 start-page: 713 year: 1986 ident: ref_63 article-title: Computation of the Fractal Dimension of Topographic Surfaces Using the Triangular Prism Surface Area Method publication-title: Comput. Geosci. doi: 10.1016/0098-3004(86)90047-6 – ident: ref_9 – ident: ref_26 doi: 10.1007/978-3-642-24544-2 – volume: 50 start-page: 69 year: 1976 ident: ref_53 article-title: A Two-Dimensional Mapping with a Strange Attractor publication-title: Commun. Math. Phys. doi: 10.1007/BF01608556 – volume: 20 start-page: 167 year: 1971 ident: ref_45 article-title: On the Nature of Turbulence publication-title: Commun. Math. Phys. doi: 10.1007/BF01646553 – ident: ref_37 doi: 10.1109/ICCSA.2008.7 – volume: 40 start-page: 644 year: 2013 ident: ref_23 article-title: The Fractal Analysis of Architecture: Calibrating the Box-Counting Method Using Scaling Coefficient and Grid Disposition Variables publication-title: Environ. Plan B doi: 10.1068/b38124 – ident: ref_27 doi: 10.7551/mitpress/9399.001.0001 – volume: 156 start-page: 636 year: 1967 ident: ref_56 article-title: How Long Is the Coast of Britain? publication-title: Science doi: 10.1126/science.156.3775.636 – ident: ref_34 doi: 10.1007/978-3-540-48625-1 – ident: ref_39 – volume: 86 start-page: 036209 year: 2012 ident: ref_3 article-title: Manifold Learning Approach for Chaos in the Dripping Faucet publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.036209 – volume: 3 start-page: 109 year: 1999 ident: ref_13 article-title: Self-Organized Criticality and Urban Development publication-title: Discret. Dyn. Nat. Soc. doi: 10.1155/S1026022699000151 – volume: 16 start-page: 419 year: 2002 ident: ref_15 article-title: Fractal Dimension and Fractal Growth of Urbanized Areas publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810210137013 – volume: 7 start-page: 153 year: 1983 ident: ref_54 article-title: The Dimension of Chaotic Attractors publication-title: Phys. Nonlinear Phenom. doi: 10.1016/0167-2789(83)90125-2 – volume: 101 start-page: 47 year: 2000 ident: ref_59 article-title: Diamond Study Group. Fractal Correlation Properties of RR Interval Dynamics and Mortality in Patients with Depressed Left Ventricular Function after an Acute Myocardial Infarction publication-title: Circulation doi: 10.1161/01.CIR.101.1.47 – volume: 45 start-page: 712 year: 1980 ident: ref_33 article-title: Geometry from a Time Series publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.712 – volume: 406 start-page: 948 year: 2000 ident: ref_38 article-title: The Lorenz Attractor Exists publication-title: Nature doi: 10.1038/35023206 – volume: 19 start-page: 25 year: 1978 ident: ref_51 article-title: Quantitative Universality for a Class of Nonlinear Transformations publication-title: J. Stat. Phys. doi: 10.1007/BF01020332 – volume: 3 start-page: 349 year: 2002 ident: ref_46 article-title: Bifurcations and Strange Attractors publication-title: Proc. Int. Congr. Math. – volume: 19 start-page: 028501 year: 2009 ident: ref_7 article-title: Introduction to Controversial Topics in Nonlinear Science: Is the Normal Heart Rate Chaotic? publication-title: Chaos doi: 10.1063/1.3156832 – ident: ref_8 – ident: ref_58 doi: 10.1007/978-1-4612-2150-0 – volume: 61 start-page: 933 year: 2007 ident: ref_2 article-title: A Simple Guide to Chaos and Complexity publication-title: J. Epidemiol. Commun. Health doi: 10.1136/jech.2006.054254 – ident: ref_48 – ident: ref_69 – volume: 261 start-page: 459 year: 1976 ident: ref_32 article-title: Simple Mathematical Models with Very Complicated Dynamics publication-title: Nature doi: 10.1038/261459a0 – volume: 5 start-page: 71 year: 2006 ident: ref_36 article-title: Metaphors in Complexity Theory and Planning publication-title: Plan Theory doi: 10.1177/1473095206061022 – volume: 238 start-page: 632 year: 1987 ident: ref_47 article-title: Chaos, Strange Attractors, and Fractal Basin Boundaries in Nonlinear Dynamics publication-title: Science doi: 10.1126/science.238.4827.632 – volume: 17 start-page: 521 year: 2012 ident: ref_4 article-title: A New Iterative Approach to Fractal Models publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.06.014 – volume: 20 start-page: 130 year: 1963 ident: ref_31 article-title: Deterministic Nonperiodic Flow publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – ident: ref_43 doi: 10.1007/3-540-32023-7 – volume: 46 start-page: 254009 year: 2013 ident: ref_71 article-title: The Problem of Spurious Lyapunov Exponents in Time Series Analysis and Its Solution by Covariant Lyapunov Vectors publication-title: J. Phys. Math. Theor. doi: 10.1088/1751-8113/46/25/254009 – volume: 13 start-page: 281 year: 2014 ident: ref_62 article-title: A Study of Period Doubling in Logistic Map for Shift Parameter publication-title: Int. J. Eng. Trends Technol. doi: 10.14445/22315381/IJETT-V13P256 – volume: 25 start-page: 083101 year: 2015 ident: ref_65 article-title: Classifying and Quantifying Basins of Attraction publication-title: Chaos doi: 10.1063/1.4927643 – ident: ref_10 doi: 10.4324/9780203773895 – volume: 82 start-page: 985 year: 1975 ident: ref_50 article-title: Period Three Implies Chaos publication-title: Am. Math. Mon. doi: 10.1080/00029890.1975.11994008 – volume: 22 start-page: 580 year: 2007 ident: ref_21 article-title: Economics on the Edge of Chaos: Some Pitfalls of Linearizing Complex Systems publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2005.12.018 – ident: ref_25 doi: 10.4324/9780203864302 – volume: 186 start-page: 645 year: 1974 ident: ref_41 article-title: Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos publication-title: Science doi: 10.1126/science.186.4164.645 – volume: 218 start-page: 157 year: 2011 ident: ref_42 article-title: Optimal Harvesting Policy for Stochastic Logistic Population Model publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2011.05.079 – volume: 27 start-page: 507 year: 2000 ident: ref_14 article-title: When and Where is a City Fractal? publication-title: Environ. Plan. B doi: 10.1068/b2617 – volume: 25 start-page: 097618 year: 2015 ident: ref_70 article-title: Defining Chaos publication-title: Chaos doi: 10.1063/1.4922973 – ident: ref_30 – ident: ref_57 doi: 10.1119/1.13295 – volume: 3 start-page: 271 year: 2004 ident: ref_28 article-title: Dynamical System Visualization and Analysis via Performance Maps publication-title: Inf. Vis. doi: 10.1057/palgrave.ivs.9500082 – volume: 5 start-page: 2 year: 2014 ident: ref_6 article-title: Initiation of Ventricular Fibrillation by a Single Ectopic Beat in Three Dimensional Numerical Models of Ischemic Heart Disease: Abrupt Transition to Chaos publication-title: J. Clin. Exp. Cardiol. doi: 10.4172/2155-9880.1000346 – volume: 57 start-page: 44 year: 1991 ident: ref_24 article-title: Planning and Chaos Theory publication-title: J. Am. Plan. Assoc. doi: 10.1080/01944369108975471 – volume: 35 start-page: 85 year: 2008 ident: ref_16 article-title: Scaling Laws and Indications of Self-Organized Criticality in Urban Systems publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.05.018 – ident: ref_40 – volume: 7 start-page: 1055 year: 1990 ident: ref_61 article-title: Estimating Fractal Dimension publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.7.001055 – volume: 7 start-page: 16 year: 1983 ident: ref_52 article-title: Universal Behavior in Nonlinear Systems publication-title: Phys. Nonlinear Phenom. doi: 10.1016/0167-2789(83)90112-4 – ident: ref_44 – volume: 25 start-page: 1530011 year: 2015 ident: ref_64 article-title: The Many Facets of Chaos publication-title: Int. J. Bifurc. Chaos doi: 10.1142/S0218127415300116 – ident: ref_68 doi: 10.1002/9780471740360 – ident: ref_29 doi: 10.1007/978-81-322-2556-0 – volume: 16 start-page: 285 year: 1985 ident: ref_67 article-title: Determining Lyapunov Exponents from a Time Series publication-title: Phys. Nonlinear Phenom. doi: 10.1016/0167-2789(85)90011-9 – volume: 75 start-page: 283 year: 2014 ident: ref_49 article-title: Discrete Fractional Logistic Map and Its Chaos publication-title: Nonlinear Dyn. doi: 10.1007/s11071-013-1065-7 – volume: 50 start-page: 346 year: 1983 ident: ref_55 article-title: Characterization of Strange Attractors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.346 – ident: ref_11 doi: 10.3998/mpub.14623 – ident: ref_20 doi: 10.3998/mpub.14623 – ident: ref_12 – volume: 11 start-page: 217 year: 2009 ident: ref_22 article-title: Can Chaos Theory Explain Complexity In Urban Fabric? Applications in Traditional Muslim Settlements publication-title: Nexus Netw. J. doi: 10.1007/s00004-008-0088-8 – volume: 24 start-page: 1 year: 1993 ident: ref_1 article-title: Chaos in Ecology: Is Mother Nature a Strange Attractor? publication-title: Annu. Rev. Ecol. Syst. doi: 10.1146/annurev.es.24.110193.000245 – ident: ref_60 doi: 10.1007/BFb0091903 – volume: 177 start-page: 271 year: 2013 ident: ref_5 article-title: Poincaré Plot Indexes of Heart Rate Variability: Relationships with Other Nonlinear Variables publication-title: Auton. Neurosci. doi: 10.1016/j.autneu.2013.05.004 – volume: 25 start-page: 097610 year: 2015 ident: ref_35 article-title: Nonlinear Time-Series Analysis Revisited publication-title: Chaos doi: 10.1063/1.4917289 – volume: 33 start-page: 89 year: 2009 ident: ref_18 article-title: Chaos in Economics and Finance publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2009.01.002 – ident: ref_19 – ident: ref_66 doi: 10.3998/mpub.14623 – volume: 36 start-page: 1305 year: 2008 ident: ref_17 article-title: Nonlinear Dynamics and Chaos in a Fractional-Order Financial System publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.07.051 |
SSID | ssj0000913864 |
Score | 2.4884784 |
Snippet | Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos describes certain nonlinear dynamical systems that have a very sensitive... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 37 |
SubjectTerms | attractor bifurcation chaos Chaos theory Dynamical systems fractal Fractal analysis Fractals logistic map Nonlinear dynamics Nonlinearity prediction python Self-similarity Visualization |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB61QarKoaKUipRQuVIlLlhkY6933QsCmgj1ECEoiNvK60cbCXZpNvn_zOw6gQq1V3vkg-f1jR_fAHw1mSwzlXmOATLjMteOmzSkXHmXa0VfQcuW7XOqzq_lj9v0Nh64NfFZ5SomtoHa1ZbOyI8wryASlpnQxw9_OHWNotvV2ELjNWxgCM7zHmycjqcXl-tTFmK9zJXs2BoF1vdHHUFyI8l4qfn5s2zUkva_iMltoplswbuIENlJp9L38MpX2_Bm9UB9GzafUQh-gPubWbMk8UguwurAph39hZmz712_eZyPzOTf2NlvUzeHbEK_o9D0DtmVvwv8anY_wxoXITkzlWOICln79ald72JOtzmkwR24nox_np3z2EKBW8zUC66ddS6TYWiFT3zqfUhCZm2JackZlWKxoaS26dDmQxcQnASsvhADeKcTWQbrxEfoVXXld4ElupR-mAXjHa7tpbFaB4_1o9CONNsHvtrKwkZ-cWpzcVdgnUFbX_y99X04WMs_dMwa_5Q8Jc2spYgRux2o57-K6GDFyIgkGGNVaYLMbVpKodKREsKaPAk69GGw0msR3bQpnoyqD1_W0-hgdGtiKl8vSYYwtRol4tP_l9iDt4imVPfWZQC9xXzp9xGxLMrP0SwfAda27wc priority: 102 providerName: ProQuest |
Title | Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction |
URI | https://www.proquest.com/docview/1858264739 https://www.proquest.com/docview/1880026213 https://doaj.org/article/2a31faac6baf48c5b43652633ca81f9f |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEB7SBEJ7KM2LuEmNCoVcLOK1tNpVb40bN-RgQhyH3BatHsSQrIMf_z8zq7VxCSWXXleDEKPRzPex0jcAP0wmy0xlnmOCzLjMteMmDSlX3uVa0VPQslb7HKqrsbx-SB82Wn3RnbAoDxwdd94zIgnGWFWaIHObllKotKeEsCZPgg6UfbHmbZCpOgfrRORKRpVGgbz-PAojzyUFLTU936hCtVj_m1xcF5jBF_jcIEP2K65oD7Z8tQ-7q4vp-_BpQzrwAJ7vJ_MlmTeiImwa2DDKXpgZ-x37zON4o0j-k_UfzXTeYQN6FYUh12Ej_xT4aPI8QW6LUJyZyjFEg6x-8lTPdzOjvzi0c4cwHlze9a940zqBW6zQC66ddS6ToWuFT3zqfUhCZm2J5cgZlSLJUFLbtGvzrgsISgKyLqz93ulElsE6cQTb1bTyx8ASXUrfzYLxDuf20litg0feKLSjHW0BX7mysI2uOLW3eCqQX5Dri79d34Kztf1LVNT4p-UF7czaipSw6w8YH0UTH8V78dGC09W-Fs3xnBcIUpBWyUzoFnxfD-PBor8lpvLTJdkQlla9RHz9H-s4gY-ItVS8CXMK24vZ0n9DPLMo2_AhH_xpw87F5fDmtl0H8isLTflR |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkE5ICggFgoYCcSlVpPYcWIkhKBl2dKyQmqLeguOH2WldlM2u0L8KX4jM3ksRQhuvcajOdgz883Enm8AnplMlpnKPMcAmXGZa8dNGlKuvMu1olbQsmH7HKvRkfxwnB6vwM--F4aeVfYxsQnUrrL0j3wLcQUzYZkJ_fr8G6epUXS72o_QaM1iz__4jiVb_Wp3B8_3eZIM3x1uj3g3VYBbBK851846l8kQWeFjn3of4pBZW2KkdkalmH8rqW0a2TxyAfE6YEGCsOidjmUZrBOo9wpclQKRnDrTh--X_3SIYzNXsuWGxPVoq6VjriW5Co1av4B9zYiAvxCggbXhLbjZ5aPsTWtAt2HFT9fhWv8cfh1uXCAsvANnnyf1gsQ7KhNWBTZuyTbMjO200-1xveNBf8m2v5qq3mRD6sVCQ99kB_408IPJ2QQraiwAmJk6hjkoaxqtGn2fZnR3RPZyF44uZWvvweq0mvr7wGJdSh9lwXiHur00VuvgsVoV2pEdDYD3W1nYjs2chmqcFljV0NYXf279AF4s5c9bHo9_Sr6lk1lKEf9286GanRSdOxeJEXEwxqrSBJnbtJRCpYkSwpo8DjoMYKM_16ILCnXx24QH8HS5jO5MdzRm6qsFyVAGr5JYPPi_iidwfXT4cb_Y3x3vPYQ1zONU-8pmA1bns4V_hLnSvHzcGCiDL5ftEb8AxvMr9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFYo-iFbFa6uuoPjScEl2s8kKIrbXo7VyHNZK39LNfuhBm9T7QPzX_OucycdZEX3ra3aYh9n5zM78BuCFTkWRytQF6CDTQGTKBjrxSSCdzZSkUdCiRvscy8NT8f4sOVuDn90sDLVVdj6xdtS2MvSPfIBxBTNhkXI18G1bxGQ4env1LaANUvTS2q3TaFTk2P34juXb_M3REO_6ZRyPDj7tHwbthoHAYCBbBMoaa1PhQ8Nd5BLnfORTYwr02lbLBHNxKZRJQpOF1mPs9licYIh0VkWi8MZy5HsL1lOqinqwvncwnnxc_eEhxM1MigYpknMVDhpw5rkgw6HF69ciYb0w4K94UAe50T2422an7F2jTvdhzZWbsNE1x2_CnWvwhQ_g8vN0viTyFtiEVZ6NG-gNPWPDZtc9nreo6K_Z_lddzXfZiCazUO132Ym78MHJ9HKK9TWWA0yXlmFGyuqxq5rfZEYvSaQ9D-H0RoT7CHplVbrHwCJVCBemXjuLvJ3QRinvsHblypJW9SHoRJmbFtucVmxc5FjjkOjzP0Xfh1cr-qsG1eOflHt0MysqQuOuP1SzL3lr3HmseeS1NrLQXmQmKQSXSSw5NzqLvPJ92OnuNW9dxDz_rdB9eL46RuOmFxtdumpJNJTPyzjiW_9n8Qw20BryD0fj4224jUmdbFpudqC3mC3dE0ycFsXTVkMZnN-0UfwCUJAxiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Analysis+of+Nonlinear+Dynamical+Systems%3A+Chaos%2C+Fractals%2C+Self-Similarity+and+the+Limits+of+Prediction&rft.jtitle=Systems+%28Basel%29&rft.au=Boeing%2C+Geoff&rft.date=2016-12-01&rft.issn=2079-8954&rft.eissn=2079-8954&rft.volume=4&rft.issue=4&rft.spage=37&rft_id=info:doi/10.3390%2Fsystems4040037&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_systems4040037 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-8954&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-8954&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-8954&client=summon |