An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering
Residual distortion is a major technical challenge for laser powder bed fusion (LPBF) additive manufacturing (AM), since excessive distortion can cause build failure, cracks and loss in structural integrity. However, residual distortion can hardly be avoided due to the rapid heating and cooling inhe...
Saved in:
Published in | Additive manufacturing Vol. 28; pp. 406 - 418 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Residual distortion is a major technical challenge for laser powder bed fusion (LPBF) additive manufacturing (AM), since excessive distortion can cause build failure, cracks and loss in structural integrity. However, residual distortion can hardly be avoided due to the rapid heating and cooling inherent in this AM process. Thus, fast and accurate distortion prediction is an effective way to ensure manufacturability and build quality. This paper proposes a multiscale process modeling framework for efficiently and accurately simulating residual distortion and stress at the part-scale for the direct metal laser sintering (DMLS) process. In this framework, inherent strains are extracted from detailed process simulation of micro-scale model based on the recently proposed modified inherent strain model. The micro-scale detailed process simulation employs the actual parameters of the DMLS process such as laser power, velocity, and scanning path. Uniform but anisotropic strains are then applied to the part in a layer-by-layer fashion in a quasi-static equilibrium finite element analysis, in order to predict residual distortion/stress for the entire AM build. Using this approach, the total computational time can be significantly reduced from potentially days or weeks to a few hours for part-scale prediction. Effectiveness of this proposed framework is demonstrated by simulating a double cantilever beam and a canonical part with varying wall thicknesses and comparing with experimental measurements which show very good agreement. |
---|---|
AbstractList | Residual distortion is a major technical challenge for laser powder bed fusion (LPBF) additive manufacturing (AM), since excessive distortion can cause build failure, cracks and loss in structural integrity. However, residual distortion can hardly be avoided due to the rapid heating and cooling inherent in this AM process. Thus, fast and accurate distortion prediction is an effective way to ensure manufacturability and build quality. This paper proposes a multiscale process modeling framework for efficiently and accurately simulating residual distortion and stress at the part-scale for the direct metal laser sintering (DMLS) process. In this framework, inherent strains are extracted from detailed process simulation of micro-scale model based on the recently proposed modified inherent strain model. The micro-scale detailed process simulation employs the actual parameters of the DMLS process such as laser power, velocity, and scanning path. Uniform but anisotropic strains are then applied to the part in a layer-by-layer fashion in a quasi-static equilibrium finite element analysis, in order to predict residual distortion/stress for the entire AM build. Using this approach, the total computational time can be significantly reduced from potentially days or weeks to a few hours for part-scale prediction. Effectiveness of this proposed framework is demonstrated by simulating a double cantilever beam and a canonical part with varying wall thicknesses and comparing with experimental measurements which show very good agreement. |
Author | Liu, Jikai To, Albert C. Oskin, Jason Whitmore, Ryan Liang, Xuan Cheng, Lin Chen, Qian Hayduke, Devlin |
Author_xml | – sequence: 1 givenname: Qian surname: Chen fullname: Chen, Qian organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA – sequence: 2 givenname: Xuan surname: Liang fullname: Liang, Xuan organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA – sequence: 3 givenname: Devlin surname: Hayduke fullname: Hayduke, Devlin organization: Material Sciences Corporation, Horsham, PA, USA – sequence: 4 givenname: Jikai surname: Liu fullname: Liu, Jikai organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA – sequence: 5 givenname: Lin surname: Cheng fullname: Cheng, Lin organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA – sequence: 6 givenname: Jason surname: Oskin fullname: Oskin, Jason organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA – sequence: 7 givenname: Ryan surname: Whitmore fullname: Whitmore, Ryan organization: Material Sciences Corporation, Horsham, PA, USA – sequence: 8 givenname: Albert C. surname: To fullname: To, Albert C. email: albertto@pitt.edu organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA |
BookMark | eNqFkEtOwzAQhi1UJErpCdj4Agm2Y-exYFFVvCQkNrC2HHsCLolT2S6IC3BunLYrFrCakf7HaL5zNHOjA4QuKckpoeXVJlfGDCpnhDY5ETlh9ATNGaM8q2pKZse9Lgk_Q8sQNoQQKoqqqdkcfa8ctu4NPLiIQ_TKOtyqAAYPuz7aoFUPeBgN9Na94s6rAT5H_4670eNgk0fFSdgqH7OD2UOwZqd6bCCZhqSPbm831oOOeICYxD7dmBpcBJ8KLtBpp_oAy-NcoJfbm-f1ffb4dPewXj1mmpMyZg1nWpQtF7USvOAVE6IFo0RViZYJ3pGaFa2odKNJ11FVAyO6KsCUrSpUVfJigYpDr_ZjCB46ufV2UP5LUiInmnIj9zTlRFMSIRPNlGp-pbSN-8cmYP0_2etDFtJbHxa8DNqC03DAIc1o_8z_ADbOlsc |
CitedBy_id | crossref_primary_10_1108_RPJ_12_2020_0301 crossref_primary_10_1080_17452759_2024_2422394 crossref_primary_10_1016_j_matdes_2021_109659 crossref_primary_10_1088_1361_651X_ac35b8 crossref_primary_10_1115_1_4062259 crossref_primary_10_1109_TASE_2022_3204847 crossref_primary_10_1115_1_4066574 crossref_primary_10_1007_s00170_024_13994_x crossref_primary_10_1007_s00170_025_15274_8 crossref_primary_10_1007_s12540_022_01293_7 crossref_primary_10_1016_j_finel_2021_103528 crossref_primary_10_2464_jilm_72_234 crossref_primary_10_1007_s12289_024_01855_7 crossref_primary_10_1002_adem_202300489 crossref_primary_10_1016_j_jmrt_2022_02_054 crossref_primary_10_1080_09506608_2023_2169501 crossref_primary_10_1007_s40964_024_00780_0 crossref_primary_10_1080_17452759_2019_1708027 crossref_primary_10_1177_13621718241307465 crossref_primary_10_1007_s40684_024_00670_4 crossref_primary_10_1016_j_addma_2021_102257 crossref_primary_10_48084_etasr_5257 crossref_primary_10_1007_s40430_024_05319_6 crossref_primary_10_1063_5_0141316 crossref_primary_10_1080_17452759_2023_2169172 crossref_primary_10_1007_s00170_022_09766_0 crossref_primary_10_1002_gamm_202100015 crossref_primary_10_1016_j_finel_2021_103558 crossref_primary_10_1002_adem_202001203 crossref_primary_10_1007_s00158_023_03565_1 crossref_primary_10_3788_CJL221485 crossref_primary_10_5604_01_3001_0054_7283 crossref_primary_10_1108_RPJ_06_2020_0140 crossref_primary_10_1051_e3sconf_202345802023 crossref_primary_10_1088_1402_4896_aca184 crossref_primary_10_1080_17452759_2019_1647488 crossref_primary_10_63174_xdi_QFDD2795 crossref_primary_10_1115_1_4055734 crossref_primary_10_1007_s00170_023_12590_9 crossref_primary_10_1007_s12666_022_02666_7 crossref_primary_10_1177_09544089231205960 crossref_primary_10_1007_s10853_022_07046_6 crossref_primary_10_1007_s12289_022_01729_w crossref_primary_10_2351_7_0000550 crossref_primary_10_1016_j_cirpj_2023_08_005 crossref_primary_10_1016_j_addma_2024_104498 crossref_primary_10_1007_s12008_023_01560_w crossref_primary_10_3788_CJL240434 crossref_primary_10_1007_s00170_023_11427_9 crossref_primary_10_1016_j_procir_2022_10_017 crossref_primary_10_3389_fmats_2021_759669 crossref_primary_10_1002_srin_202000615 crossref_primary_10_1007_s40192_023_00292_9 crossref_primary_10_1016_j_cma_2020_113231 crossref_primary_10_1080_24725854_2020_1851824 crossref_primary_10_4028_www_scientific_net_KEM_871_65 crossref_primary_10_1108_RPJ_04_2024_0186 crossref_primary_10_1007_s00170_023_11264_w crossref_primary_10_1007_s10999_020_09494_x crossref_primary_10_1016_j_addma_2020_101091 crossref_primary_10_1002_nme_7378 crossref_primary_10_1007_s12206_022_0118_6 crossref_primary_10_1016_j_measurement_2020_107515 |
Cites_doi | 10.1007/s00466-014-1024-2 10.1108/13552540610707013 10.1016/j.matdes.2013.05.070 10.1115/1.2804892 10.1177/0954405414539494 10.1115/1.4030059 10.1007/s11740-009-0192-y 10.1002/(SICI)1097-0207(19990330)44:9<1301::AID-NME479>3.0.CO;2-K 10.1016/S1359-6454(01)00312-3 10.1115/1.4033662 10.2534/jjasnaoe1968.1975.138_499 10.1080/02726350490501682 10.1007/s11661-014-2722-2 10.1115/1.4032078 10.1016/j.commatsci.2016.10.003 10.1007/s11661-014-2549-x 10.1115/1.4040621 10.1115/1.4028539 10.1115/1.4038893 10.1108/13552549910251846 10.1016/j.matdes.2017.09.018 10.1115/1.2716740 10.1016/j.jmatprotec.2015.10.022 10.1007/s00170-015-6831-x 10.1007/BF02667333 10.1016/j.jmatprotec.2008.02.040 10.1115/1.4028669 10.1108/13552540210451732 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.addma.2019.05.021 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2214-7810 |
EndPage | 418 |
ExternalDocumentID | 10_1016_j_addma_2019_05_021 S2214860418310583 |
GroupedDBID | --M .~1 0R~ 1~. 4.4 457 4G. 7-5 8P~ AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN GBLVA KOM M41 O9- OAUVE PC. ROL SPC SPCBC SSM SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c406t-942c56b458a54347255beda5775b254f0823b57c9c0ff1a8e20c73ed6ba3a7643 |
IEDL.DBID | .~1 |
ISSN | 2214-8604 |
IngestDate | Tue Jul 01 01:46:58 EDT 2025 Thu Apr 24 22:55:59 EDT 2025 Fri Feb 23 02:34:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element analysis Direct metal laser sintering Inherent strain Thermal distortion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-942c56b458a54347255beda5775b254f0823b57c9c0ff1a8e20c73ed6ba3a7643 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1016_j_addma_2019_05_021 crossref_citationtrail_10_1016_j_addma_2019_05_021 elsevier_sciencedirect_doi_10_1016_j_addma_2019_05_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Additive manufacturing |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wu, Brown, Kumar, Gallegos, King (bib0010) 2014; 45 Hill, Nelson (bib0110) 1995; 318 Dai, Shaw (bib0030) 2002; 8 Beaman, Barlow, Bourell, Crawford, Marcus, McAlea (bib0175) 1997; 2061 Mercelis, Kruth (bib0005) 2006; 12 Liang, Cheng, Chen, Yang, To (bib0155) 2018; 23 Lindgren, Runnemalm, Näsström (bib0195) 1999; 44 Ahmed Hussein, Yan, Everson (bib0050) 2013; 52 Mukherjee, Zhang, DebRoy (bib0185) 2017; 126 Li, liu, Guo (bib0245) 2017 Peng, Go, Billo, Gong, Shankar, Gatrell, Budzinski, Ostiguy, Attardo, Tomonto (bib0055) 2016 Yang, Zhang, Cheng, Min, Chyu, To (bib0205) 2016; 12 Dai, Shaw (bib0025) 2001; 49 Li, Liu, Fang, Guo (bib0070) 2018; 140 Keller, Ploshikhin (bib0130) 2014 Sochalski-Kolbus, Payzant, Cornwell, Watkins, Babu, Dehoff, Lorenz, Ovchinnikova, Duty (bib0015) 2015; 46 Liu, Chen, Zhao, Xiong, To (bib0215) 2018 Pal, Patil, Kutty, Zeng, Moreland, Hicks, Beeler, Stucker (bib0100) 2016; 138 Denlinger, Srinivasan, EI-Wardany, Michaleris (bib0090) 2016; 11 An, Yuan, Dial, Spinelli, Stoica, Gao (bib0020) 2017; 135 Denlinger, Gouge, Irwin, Michaleris (bib0085) 2017; 16 Dong, Makradi, Ahzi, Remond (bib0170) 2009; 209 Gouge, Heigel, Michaleris, Palmer (bib0225) 2015; 79 Denlinger, Irwin, Michaleris (bib0080) 2014; 136 Heigel, Michaleris, Reutzel (bib0230) 2015; 5 Afazov, Denmark, Toralles, Holloway, Yaghi (bib0075) 2017; 17 Li, Wang, Michaleris (bib0200) 2018; 140 Goldak, Chakravarti, Bibby (bib0210) 1984; 15 Setien, Chiumenti, van der Veen, San Sebastian, Garciandía, Echeverría (bib0145) 2018 Cheng, Shrestha, Chou (bib0035) 2016; 12 Zhang, Michaleris, Marugabandhu (bib0120) 2007; 129 Hodge, Ferencz, Solberg (bib0240) 2014; 54 Denlinger, Heigel, Michaleris (bib0235) 2015; 229 Li, Fu, Guo, Fang (bib0065) 2016; 229 Liang, Chen, Cheng, Yang, To (bib0150) 2017 Dunbar, Denlinger, Gouge, Michaleris (bib0190) 2016; 12 Ueda, Fukuda, Nakacho, Endo (bib0105) 1975; 1975 Fu, Guo (bib0040) 2014; 136 Patil, Pal, Rafi, Zeng, Moreland, Hicks, Beeler, Stucker (bib0095) 2015; 137 Bugeda Miguel Cervera, Lombera (bib0180) 1999; 5 Cheng, Liang, Bai, Chen, Lemon, To (bib0125) 2019 Zaeh, Branner (bib0060) 2010; 4 Yuan, Ueda (bib0115) 1996; 118 Mills (bib0160) 2002 Sih, Barlow (bib0165) 2004; 22 Prabhakar, Sames, Dehoff, Babu (bib0045) 2015; 7 Alvarez, Ecenarro, Setien, Sebastian, Echeverria, Eciolaza (bib0140) 2016; 2 Bugatti, Semeraro (bib0135) 2018; 23 Irwin, Michaleris (bib0220) 2016; 138 Dunbar (10.1016/j.addma.2019.05.021_bib0190) 2016; 12 Mills (10.1016/j.addma.2019.05.021_bib0160) 2002 Wu (10.1016/j.addma.2019.05.021_bib0010) 2014; 45 Denlinger (10.1016/j.addma.2019.05.021_bib0090) 2016; 11 Mercelis (10.1016/j.addma.2019.05.021_bib0005) 2006; 12 Ahmed Hussein (10.1016/j.addma.2019.05.021_bib0050) 2013; 52 Patil (10.1016/j.addma.2019.05.021_bib0095) 2015; 137 Li (10.1016/j.addma.2019.05.021_bib0200) 2018; 140 Goldak (10.1016/j.addma.2019.05.021_bib0210) 1984; 15 Denlinger (10.1016/j.addma.2019.05.021_bib0085) 2017; 16 Liu (10.1016/j.addma.2019.05.021_bib0215) 2018 An (10.1016/j.addma.2019.05.021_bib0020) 2017; 135 Dai (10.1016/j.addma.2019.05.021_bib0025) 2001; 49 Yang (10.1016/j.addma.2019.05.021_bib0205) 2016; 12 Denlinger (10.1016/j.addma.2019.05.021_bib0080) 2014; 136 Bugatti (10.1016/j.addma.2019.05.021_bib0135) 2018; 23 Pal (10.1016/j.addma.2019.05.021_bib0100) 2016; 138 Sih (10.1016/j.addma.2019.05.021_bib0165) 2004; 22 Li (10.1016/j.addma.2019.05.021_bib0070) 2018; 140 Liang (10.1016/j.addma.2019.05.021_bib0150) 2017 Irwin (10.1016/j.addma.2019.05.021_bib0220) 2016; 138 Zhang (10.1016/j.addma.2019.05.021_bib0120) 2007; 129 Gouge (10.1016/j.addma.2019.05.021_bib0225) 2015; 79 Cheng (10.1016/j.addma.2019.05.021_bib0125) 2019 Prabhakar (10.1016/j.addma.2019.05.021_bib0045) 2015; 7 Mukherjee (10.1016/j.addma.2019.05.021_bib0185) 2017; 126 Keller (10.1016/j.addma.2019.05.021_bib0130) 2014 Beaman (10.1016/j.addma.2019.05.021_bib0175) 1997; 2061 Zaeh (10.1016/j.addma.2019.05.021_bib0060) 2010; 4 Fu (10.1016/j.addma.2019.05.021_bib0040) 2014; 136 Alvarez (10.1016/j.addma.2019.05.021_bib0140) 2016; 2 Setien (10.1016/j.addma.2019.05.021_bib0145) 2018 Hill (10.1016/j.addma.2019.05.021_bib0110) 1995; 318 Denlinger (10.1016/j.addma.2019.05.021_bib0235) 2015; 229 Dong (10.1016/j.addma.2019.05.021_bib0170) 2009; 209 Cheng (10.1016/j.addma.2019.05.021_bib0035) 2016; 12 Sochalski-Kolbus (10.1016/j.addma.2019.05.021_bib0015) 2015; 46 Afazov (10.1016/j.addma.2019.05.021_bib0075) 2017; 17 Li (10.1016/j.addma.2019.05.021_bib0065) 2016; 229 Dai (10.1016/j.addma.2019.05.021_bib0030) 2002; 8 Hodge (10.1016/j.addma.2019.05.021_bib0240) 2014; 54 Bugeda Miguel Cervera (10.1016/j.addma.2019.05.021_bib0180) 1999; 5 Ueda (10.1016/j.addma.2019.05.021_bib0105) 1975; 1975 Peng (10.1016/j.addma.2019.05.021_bib0055) 2016 Li (10.1016/j.addma.2019.05.021_bib0245) 2017 Liang (10.1016/j.addma.2019.05.021_bib0155) 2018; 23 Lindgren (10.1016/j.addma.2019.05.021_bib0195) 1999; 44 Yuan (10.1016/j.addma.2019.05.021_bib0115) 1996; 118 Heigel (10.1016/j.addma.2019.05.021_bib0230) 2015; 5 |
References_xml | – volume: 1975 start-page: 499 year: 1975 end-page: 507 ident: bib0105 article-title: A new measuring method of residual stresses with the aid of finite element method and reliability of estimated values publication-title: J. Soc. Nav. Archit. Jpn. – volume: 23 start-page: 471 year: 2018 end-page: 486 ident: bib0155 article-title: A modified method for estimating inherent strains from detailed process simulation for fast residual distortion prediction of single-walled structures fabricated by directed energy deposition publication-title: Addit. Manuf. – volume: 15 start-page: 299 year: 1984 end-page: 305 ident: bib0210 article-title: A new finite element model for welding heat sources publication-title: Metall. Mater. Trans. B – volume: 54 start-page: 33 year: 2014 end-page: 51 ident: bib0240 article-title: Implementation of a thermomechanical model for the simulation of selective laser melting publication-title: Comput. Mech. – volume: 16 start-page: 73 year: 2017 end-page: 80 ident: bib0085 article-title: Thermomechanical model development and in situ experimental validation of the Laser Powder-Bed Fusion process publication-title: Addit. Manuf. – volume: 318 start-page: 343 year: 1995 end-page: 352 ident: bib0110 article-title: The inherent strain method for residual stress determination and its application to a long welded joint publication-title: ASME-Publications-PVP – volume: 44 start-page: 1301 year: 1999 end-page: 1316 ident: bib0195 article-title: Simulation of multipass welding of a thick plate publication-title: Int. J. Numer. Methods Eng. – volume: 229 start-page: 1803 year: 2015 end-page: 1813 ident: bib0235 article-title: Residual stress and distortion modeling of electron beam direct manufacturing Ti-6Al-4V publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. – volume: 5 start-page: 21 year: 1999 end-page: 26 ident: bib0180 article-title: Numerical prediction of temperature and density distributions in selective laser sintering processes publication-title: Rapid Prototyp. J. – volume: 79 start-page: 307 year: 2015 end-page: 320 ident: bib0225 article-title: Modeling forced convection in the thermal simulation of laser cladding processes publication-title: Int. J. Adv. Manuf. Technol. – volume: 140 year: 2018 ident: bib0070 article-title: On the simulation scalability of predicting residual stress and distortion in selective laser melting publication-title: J. Manuf. Sci. Eng. – volume: 118 start-page: 229 year: 1996 end-page: 234 ident: bib0115 article-title: Prediction of residual stresses in welded T-and I-joints using inherent strains publication-title: J. Eng. Mater. Technol. Trans. ASME – volume: 137 year: 2015 ident: bib0095 article-title: A generalized feed forward dynamic adaptive mesh refinement and derefinement finite element framework for metal laser sintering—part I: formulation and algorithm development publication-title: J. Manuf. Sci. Eng. – volume: 138 year: 2016 ident: bib0100 article-title: A generalized feed-forward dynamic adaptive mesh refinement and derefinement finite-element framework for metal laser sintering—part II: nonlinear thermal simulations and validations publication-title: J. Manuf. Sci. Eng. – volume: 138 year: 2016 ident: bib0220 article-title: A line heat input model for additive manufacturing publication-title: J. Manuf. Sci. Eng. – volume: 11 start-page: 7 year: 2016 end-page: 15 ident: bib0090 article-title: Thermal modeling of Inconel 718 processed with powder bed fusion and experimental validation using in situ measurements publication-title: Addit. Manuf. – volume: 5 start-page: 9 year: 2015 end-page: 19 ident: bib0230 article-title: Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V publication-title: Addit. Manuf. – volume: 12 start-page: 169 year: 2016 end-page: 177 ident: bib0205 article-title: Finite element modeling and validation of thermomechanicalbehavior of Ti-6Al-4V in directed energy deposition additivemanufacturing publication-title: Addit. Manuf. – volume: 136 year: 2014 ident: bib0040 article-title: Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V publication-title: J. Manuf. Sci. Eng. – volume: 23 start-page: 329 year: 2018 end-page: 346 ident: bib0135 article-title: Limitations of the inherent strain method in simulating powder bed fusion processes publication-title: Addit. Manuf. – volume: 209 start-page: 700 year: 2009 end-page: 706 ident: bib0170 article-title: Three-dimensional transient finite element analysis of the selective laser sintering process publication-title: J. Mater. Process. Technol. – volume: 2061 start-page: 25 year: 1997 end-page: 49 ident: bib0175 publication-title: Solid Freeform Fabrication: a New Direction in Manufacturing – year: 2018 ident: bib0145 article-title: Empirical methodology to determine inherent strains in additive manufacturing publication-title: Comput. Math. With Appl. – volume: 12 start-page: 254 year: 2006 end-page: 265 ident: bib0005 article-title: Residual stresses in selective laser sintering and selective laser melting publication-title: Rapid Prototyp. J. – volume: 126 start-page: 360 year: 2017 end-page: 372 ident: bib0185 article-title: An improved prediction of residual stresses and distortion in additive manufacturing publication-title: Comput. Mater. Sci. – volume: 12 start-page: 240 year: 2016 end-page: 251 ident: bib0035 article-title: Stress and deformation evaluations of scanning strategy effect in selective laser melting publication-title: Addit. Manuf. – volume: 129 start-page: 1000 year: 2007 end-page: 1010 ident: bib0120 article-title: Evaluation of applied plastic strain methods for welding distortion prediction publication-title: J. Manuf. Sci. Eng. – year: 2016 ident: bib0055 article-title: Part-scale Model for Fast Prediction of Thermal Distortion in DMLS Additive Manufacturing; Part 2: A Quasi-Static Thermo-Mechanical Model – year: 2017 ident: bib0245 article-title: Efficient predictive model of part distortion and residual stress in selective laser melting publication-title: Proc. Solid Freeform Fabrication 2016 – volume: 12 start-page: 108 year: 2016 end-page: 120 ident: bib0190 article-title: Experimental validation of finite element modeling for laser powderbed fusion deformation publication-title: Addit. Manuf. – volume: 4 start-page: 35 year: 2010 end-page: 45 ident: bib0060 article-title: Investigations on residual stresses and deformations in selective laser melting publication-title: Prod. Eng. – volume: 135 start-page: 122 year: 2017 end-page: 132 ident: bib0020 article-title: Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing publication-title: Mater. Des. – volume: 49 start-page: 4171 year: 2001 end-page: 4181 ident: bib0025 article-title: Thermal and stress modeling of multi-material laser processing publication-title: Acta Mater. – volume: 7 start-page: 83 year: 2015 end-page: 91 ident: bib0045 article-title: Computational modeling of residual stress formation during the electron beam melting process for Inconel 718 publication-title: Addit. Manuf. – volume: 45 start-page: 6260 year: 2014 end-page: 6270 ident: bib0010 article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel publication-title: Metall. Mater. Trans. A – volume: 229 start-page: 703 year: 2016 end-page: 712 ident: bib0065 article-title: A multiscale modeling approach for fast prediction of part distortion in selective laser melting publication-title: J. Mater. Process. Technol. – year: 2019 ident: bib0125 article-title: On utilizing topology optimization to design support structure to prevent residual stress induced build failure in laser powder bed metal additive manufacturing publication-title: Addit. Manuf. – volume: 136 year: 2014 ident: bib0080 article-title: Thermomechanical modeling of additive manufacturing large parts publication-title: J. Manuf. Sci. Eng. – year: 2002 ident: bib0160 article-title: Recommended Values of Thermophysical Properties for Selected Commercial Alloys – volume: 140 year: 2018 ident: bib0200 article-title: An analytical computation of temperature field evolved in directed energy deposition publication-title: J. Manuf. Sci. Eng. – volume: 52 start-page: 638 year: 2013 end-page: 647 ident: bib0050 article-title: Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting publication-title: Mater. Des. – volume: 46 start-page: 1419 year: 2015 end-page: 1432 ident: bib0015 article-title: Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering publication-title: Metall. Mater. Trans. A – start-page: 1229 year: 2014 end-page: 1237 ident: bib0130 article-title: New method for fast predictions of residual stress and distortion of AM parts publication-title: Solid Freeform Fabrication Symposium – start-page: 749 year: 2018 end-page: 755 ident: bib0215 article-title: Quantitative texture prediction of epitaxial columnar grains in alloy 718 processed by additive manufacturing publication-title: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications – year: 2017 ident: bib0150 article-title: A modified inherent strain method for fast prediction of residual deformation in additive manufacturing of metal parts publication-title: 2017 Solid Freeform Fabrication Symposium Proceedings – volume: 22 start-page: 427 year: 2004 end-page: 440 ident: bib0165 article-title: The prediction of the emissivity and thermal conductivity of powder beds publication-title: Part. Sci. Technol. – volume: 17 start-page: 15 year: 2017 end-page: 22 ident: bib0075 article-title: Distortion prediction and compensation in selective laser melting publication-title: Addit. Manuf. – volume: 2 start-page: 39 year: 2016 end-page: 46 ident: bib0140 article-title: Computationally efficient distortion prediction in powder bed fusion additive manufacturing publication-title: Int. J. Eng. Res. Sci – volume: 8 start-page: 270 year: 2002 end-page: 276 ident: bib0030 article-title: Distortion minimization of laser-processed components through control of laser scanning patterns publication-title: Rapid Prototyp. J. – volume: 54 start-page: 33 year: 2014 ident: 10.1016/j.addma.2019.05.021_bib0240 article-title: Implementation of a thermomechanical model for the simulation of selective laser melting publication-title: Comput. Mech. doi: 10.1007/s00466-014-1024-2 – volume: 16 start-page: 73 year: 2017 ident: 10.1016/j.addma.2019.05.021_bib0085 article-title: Thermomechanical model development and in situ experimental validation of the Laser Powder-Bed Fusion process publication-title: Addit. Manuf. – year: 2019 ident: 10.1016/j.addma.2019.05.021_bib0125 article-title: On utilizing topology optimization to design support structure to prevent residual stress induced build failure in laser powder bed metal additive manufacturing publication-title: Addit. Manuf. – start-page: 1229 year: 2014 ident: 10.1016/j.addma.2019.05.021_bib0130 article-title: New method for fast predictions of residual stress and distortion of AM parts publication-title: Solid Freeform Fabrication Symposium – volume: 12 start-page: 254 year: 2006 ident: 10.1016/j.addma.2019.05.021_bib0005 article-title: Residual stresses in selective laser sintering and selective laser melting publication-title: Rapid Prototyp. J. doi: 10.1108/13552540610707013 – volume: 52 start-page: 638 year: 2013 ident: 10.1016/j.addma.2019.05.021_bib0050 article-title: Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.05.070 – volume: 23 start-page: 471 year: 2018 ident: 10.1016/j.addma.2019.05.021_bib0155 article-title: A modified method for estimating inherent strains from detailed process simulation for fast residual distortion prediction of single-walled structures fabricated by directed energy deposition publication-title: Addit. Manuf. – volume: 118 start-page: 229 year: 1996 ident: 10.1016/j.addma.2019.05.021_bib0115 article-title: Prediction of residual stresses in welded T-and I-joints using inherent strains publication-title: J. Eng. Mater. Technol. Trans. ASME doi: 10.1115/1.2804892 – volume: 229 start-page: 1803 year: 2015 ident: 10.1016/j.addma.2019.05.021_bib0235 article-title: Residual stress and distortion modeling of electron beam direct manufacturing Ti-6Al-4V publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. doi: 10.1177/0954405414539494 – volume: 5 start-page: 9 year: 2015 ident: 10.1016/j.addma.2019.05.021_bib0230 article-title: Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V publication-title: Addit. Manuf. – year: 2002 ident: 10.1016/j.addma.2019.05.021_bib0160 – year: 2017 ident: 10.1016/j.addma.2019.05.021_bib0245 article-title: Efficient predictive model of part distortion and residual stress in selective laser melting – volume: 12 start-page: 169 year: 2016 ident: 10.1016/j.addma.2019.05.021_bib0205 article-title: Finite element modeling and validation of thermomechanicalbehavior of Ti-6Al-4V in directed energy deposition additivemanufacturing publication-title: Addit. Manuf. – volume: 137 year: 2015 ident: 10.1016/j.addma.2019.05.021_bib0095 article-title: A generalized feed forward dynamic adaptive mesh refinement and derefinement finite element framework for metal laser sintering—part I: formulation and algorithm development publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4030059 – volume: 7 start-page: 83 year: 2015 ident: 10.1016/j.addma.2019.05.021_bib0045 article-title: Computational modeling of residual stress formation during the electron beam melting process for Inconel 718 publication-title: Addit. Manuf. – volume: 4 start-page: 35 year: 2010 ident: 10.1016/j.addma.2019.05.021_bib0060 article-title: Investigations on residual stresses and deformations in selective laser melting publication-title: Prod. Eng. doi: 10.1007/s11740-009-0192-y – volume: 44 start-page: 1301 year: 1999 ident: 10.1016/j.addma.2019.05.021_bib0195 article-title: Simulation of multipass welding of a thick plate publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/(SICI)1097-0207(19990330)44:9<1301::AID-NME479>3.0.CO;2-K – volume: 49 start-page: 4171 year: 2001 ident: 10.1016/j.addma.2019.05.021_bib0025 article-title: Thermal and stress modeling of multi-material laser processing publication-title: Acta Mater. doi: 10.1016/S1359-6454(01)00312-3 – volume: 2 start-page: 39 year: 2016 ident: 10.1016/j.addma.2019.05.021_bib0140 article-title: Computationally efficient distortion prediction in powder bed fusion additive manufacturing publication-title: Int. J. Eng. Res. Sci – volume: 138 year: 2016 ident: 10.1016/j.addma.2019.05.021_bib0220 article-title: A line heat input model for additive manufacturing publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4033662 – volume: 17 start-page: 15 year: 2017 ident: 10.1016/j.addma.2019.05.021_bib0075 article-title: Distortion prediction and compensation in selective laser melting publication-title: Addit. Manuf. – volume: 1975 start-page: 499 year: 1975 ident: 10.1016/j.addma.2019.05.021_bib0105 article-title: A new measuring method of residual stresses with the aid of finite element method and reliability of estimated values publication-title: J. Soc. Nav. Archit. Jpn. doi: 10.2534/jjasnaoe1968.1975.138_499 – volume: 22 start-page: 427 year: 2004 ident: 10.1016/j.addma.2019.05.021_bib0165 article-title: The prediction of the emissivity and thermal conductivity of powder beds publication-title: Part. Sci. Technol. doi: 10.1080/02726350490501682 – year: 2017 ident: 10.1016/j.addma.2019.05.021_bib0150 article-title: A modified inherent strain method for fast prediction of residual deformation in additive manufacturing of metal parts publication-title: 2017 Solid Freeform Fabrication Symposium Proceedings – volume: 46 start-page: 1419 year: 2015 ident: 10.1016/j.addma.2019.05.021_bib0015 article-title: Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-014-2722-2 – volume: 138 year: 2016 ident: 10.1016/j.addma.2019.05.021_bib0100 article-title: A generalized feed-forward dynamic adaptive mesh refinement and derefinement finite-element framework for metal laser sintering—part II: nonlinear thermal simulations and validations publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4032078 – volume: 126 start-page: 360 year: 2017 ident: 10.1016/j.addma.2019.05.021_bib0185 article-title: An improved prediction of residual stresses and distortion in additive manufacturing publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.10.003 – volume: 12 start-page: 108 year: 2016 ident: 10.1016/j.addma.2019.05.021_bib0190 article-title: Experimental validation of finite element modeling for laser powderbed fusion deformation publication-title: Addit. Manuf. – start-page: 749 year: 2018 ident: 10.1016/j.addma.2019.05.021_bib0215 article-title: Quantitative texture prediction of epitaxial columnar grains in alloy 718 processed by additive manufacturing publication-title: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications – volume: 12 start-page: 240 year: 2016 ident: 10.1016/j.addma.2019.05.021_bib0035 article-title: Stress and deformation evaluations of scanning strategy effect in selective laser melting publication-title: Addit. Manuf. – volume: 45 start-page: 6260 year: 2014 ident: 10.1016/j.addma.2019.05.021_bib0010 article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-014-2549-x – volume: 318 start-page: 343 year: 1995 ident: 10.1016/j.addma.2019.05.021_bib0110 article-title: The inherent strain method for residual stress determination and its application to a long welded joint publication-title: ASME-Publications-PVP – volume: 11 start-page: 7 year: 2016 ident: 10.1016/j.addma.2019.05.021_bib0090 article-title: Thermal modeling of Inconel 718 processed with powder bed fusion and experimental validation using in situ measurements publication-title: Addit. Manuf. – volume: 140 year: 2018 ident: 10.1016/j.addma.2019.05.021_bib0200 article-title: An analytical computation of temperature field evolved in directed energy deposition publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4040621 – volume: 136 year: 2014 ident: 10.1016/j.addma.2019.05.021_bib0040 article-title: Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4028539 – volume: 140 year: 2018 ident: 10.1016/j.addma.2019.05.021_bib0070 article-title: On the simulation scalability of predicting residual stress and distortion in selective laser melting publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4038893 – volume: 5 start-page: 21 year: 1999 ident: 10.1016/j.addma.2019.05.021_bib0180 article-title: Numerical prediction of temperature and density distributions in selective laser sintering processes publication-title: Rapid Prototyp. J. doi: 10.1108/13552549910251846 – volume: 2061 start-page: 25 year: 1997 ident: 10.1016/j.addma.2019.05.021_bib0175 – volume: 135 start-page: 122 year: 2017 ident: 10.1016/j.addma.2019.05.021_bib0020 article-title: Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.09.018 – year: 2016 ident: 10.1016/j.addma.2019.05.021_bib0055 – year: 2018 ident: 10.1016/j.addma.2019.05.021_bib0145 article-title: Empirical methodology to determine inherent strains in additive manufacturing publication-title: Comput. Math. With Appl. – volume: 129 start-page: 1000 year: 2007 ident: 10.1016/j.addma.2019.05.021_bib0120 article-title: Evaluation of applied plastic strain methods for welding distortion prediction publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.2716740 – volume: 229 start-page: 703 year: 2016 ident: 10.1016/j.addma.2019.05.021_bib0065 article-title: A multiscale modeling approach for fast prediction of part distortion in selective laser melting publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.10.022 – volume: 79 start-page: 307 year: 2015 ident: 10.1016/j.addma.2019.05.021_bib0225 article-title: Modeling forced convection in the thermal simulation of laser cladding processes publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-6831-x – volume: 15 start-page: 299 year: 1984 ident: 10.1016/j.addma.2019.05.021_bib0210 article-title: A new finite element model for welding heat sources publication-title: Metall. Mater. Trans. B doi: 10.1007/BF02667333 – volume: 23 start-page: 329 year: 2018 ident: 10.1016/j.addma.2019.05.021_bib0135 article-title: Limitations of the inherent strain method in simulating powder bed fusion processes publication-title: Addit. Manuf. – volume: 209 start-page: 700 year: 2009 ident: 10.1016/j.addma.2019.05.021_bib0170 article-title: Three-dimensional transient finite element analysis of the selective laser sintering process publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2008.02.040 – volume: 136 year: 2014 ident: 10.1016/j.addma.2019.05.021_bib0080 article-title: Thermomechanical modeling of additive manufacturing large parts publication-title: J. Manuf. Sci. Eng. doi: 10.1115/1.4028669 – volume: 8 start-page: 270 year: 2002 ident: 10.1016/j.addma.2019.05.021_bib0030 article-title: Distortion minimization of laser-processed components through control of laser scanning patterns publication-title: Rapid Prototyp. J. doi: 10.1108/13552540210451732 |
SSID | ssj0001537982 |
Score | 2.5574572 |
Snippet | Residual distortion is a major technical challenge for laser powder bed fusion (LPBF) additive manufacturing (AM), since excessive distortion can cause build... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 406 |
SubjectTerms | Direct metal laser sintering Finite element analysis Inherent strain Thermal distortion |
Title | An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering |
URI | https://dx.doi.org/10.1016/j.addma.2019.05.021 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwEhqndpyMVUVVQHSBSt0iO3ZEEA0VDSsjv5s7JylFQh0Yk9xZyX2OfZfcfUfIZRjFgZ9aAbFJaD1uWN9TARdepLUwJjXgKWE18sMkHE_53UzMWmTY1MJgWmW99ldrulut6zO92pq9RZ73HoOAYQclzrBXloiQ8ZNzibP8-pP9fGcRfRm7nlEo76FCQz7k0rzg_Xb8Qyx2DJ4B-3uDWtt0Rntkt_YW6aC6oX3SssUB2VnjEDwkX4OC5sUzVu2VdOk6PlDcmgx1uYJLwMBS1-8GxGnW5GJRcFbpMp-77l1wYQEP7VXCEIC7Ci1q7Kq00YlXpqJzCw47Ba_b4ggIDAxwRKajm6fh2KubK3gpwFJ6MQ9SEWouIoXVpRJCC22NElIKDUFjhn_gtJBpnPpZxlRkAVLZtybUqq8k-DHHpF28FfaE0IixVHFmkF6O20woqXQQat8IiKW0LzokaCyapDXzOJrjNWlSzF4SB0OCMCS-SACGDrlaKS0q4o3N4mEDVfJr_iSwNWxSPP2v4hnZxqMqGfCctMv3D3sBDkqpu24GdsnW4PZ-PPkGL1rnOg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKd4kwNHqjVt08dxQqCNPS6AxC1KmlQMsTKx8Rf43dhpy0NCHLg2cdT6S2O7tT8DnMdpFvi5FRibxNaLDA89FUTCS7UWxuQGPSWqRh5P4v59dPMgHlpw2dTCUFplffZXZ7o7resr3Vqb3fl02r0NAk4dlCJOvbJEGq5Ah9ipRBs6vcGwP_n61CLCJHNto0jEI5mGf8hleuEr7iiIeOZIPAP-u436ZneuN2GjdhhZr7qnLWjZchvWv9EI7sB7r2TT8pEK95Zs4Zo-MLJOhrl0wQXCYJlreYPTWdGkYzH0V9liOnMNvHBgjs_tVZMxBndFWszYz-pGN73SFptZ9NkZOt6WViBscIFduL--urvse3V_BS9HZJZeFgW5iHUkUkUFpglGF9oaJZJEaIwbC_oJp0WSZ7lfFFylFlFNQmtirUKVoCuzB-3ypbT7wFLOcxVxQwxzkS2ESpQOYu0bgeGU9sUBBI1GZV6Tj5M6nmWTZfYkHQySYJC-kAjDAVx8Cs0r7o2_p8cNVPLHFpJoHf4SPPyv4Bms9u_GIzkaTIZHsEYjVW7gMbSXr2_2BP2VpT6t9-MHHXXp6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inherent+strain+based+multiscale+modeling+framework+for+simulating+part-scale+residual+deformation+for+direct+metal+laser+sintering&rft.jtitle=Additive+manufacturing&rft.au=Chen%2C+Qian&rft.au=Liang%2C+Xuan&rft.au=Hayduke%2C+Devlin&rft.au=Liu%2C+Jikai&rft.date=2019-08-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=28&rft.spage=406&rft.epage=418&rft_id=info:doi/10.1016%2Fj.addma.2019.05.021&rft.externalDocID=S2214860418310583 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon |