An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering

Residual distortion is a major technical challenge for laser powder bed fusion (LPBF) additive manufacturing (AM), since excessive distortion can cause build failure, cracks and loss in structural integrity. However, residual distortion can hardly be avoided due to the rapid heating and cooling inhe...

Full description

Saved in:
Bibliographic Details
Published inAdditive manufacturing Vol. 28; pp. 406 - 418
Main Authors Chen, Qian, Liang, Xuan, Hayduke, Devlin, Liu, Jikai, Cheng, Lin, Oskin, Jason, Whitmore, Ryan, To, Albert C.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Residual distortion is a major technical challenge for laser powder bed fusion (LPBF) additive manufacturing (AM), since excessive distortion can cause build failure, cracks and loss in structural integrity. However, residual distortion can hardly be avoided due to the rapid heating and cooling inherent in this AM process. Thus, fast and accurate distortion prediction is an effective way to ensure manufacturability and build quality. This paper proposes a multiscale process modeling framework for efficiently and accurately simulating residual distortion and stress at the part-scale for the direct metal laser sintering (DMLS) process. In this framework, inherent strains are extracted from detailed process simulation of micro-scale model based on the recently proposed modified inherent strain model. The micro-scale detailed process simulation employs the actual parameters of the DMLS process such as laser power, velocity, and scanning path. Uniform but anisotropic strains are then applied to the part in a layer-by-layer fashion in a quasi-static equilibrium finite element analysis, in order to predict residual distortion/stress for the entire AM build. Using this approach, the total computational time can be significantly reduced from potentially days or weeks to a few hours for part-scale prediction. Effectiveness of this proposed framework is demonstrated by simulating a double cantilever beam and a canonical part with varying wall thicknesses and comparing with experimental measurements which show very good agreement.
AbstractList Residual distortion is a major technical challenge for laser powder bed fusion (LPBF) additive manufacturing (AM), since excessive distortion can cause build failure, cracks and loss in structural integrity. However, residual distortion can hardly be avoided due to the rapid heating and cooling inherent in this AM process. Thus, fast and accurate distortion prediction is an effective way to ensure manufacturability and build quality. This paper proposes a multiscale process modeling framework for efficiently and accurately simulating residual distortion and stress at the part-scale for the direct metal laser sintering (DMLS) process. In this framework, inherent strains are extracted from detailed process simulation of micro-scale model based on the recently proposed modified inherent strain model. The micro-scale detailed process simulation employs the actual parameters of the DMLS process such as laser power, velocity, and scanning path. Uniform but anisotropic strains are then applied to the part in a layer-by-layer fashion in a quasi-static equilibrium finite element analysis, in order to predict residual distortion/stress for the entire AM build. Using this approach, the total computational time can be significantly reduced from potentially days or weeks to a few hours for part-scale prediction. Effectiveness of this proposed framework is demonstrated by simulating a double cantilever beam and a canonical part with varying wall thicknesses and comparing with experimental measurements which show very good agreement.
Author Liu, Jikai
To, Albert C.
Oskin, Jason
Whitmore, Ryan
Liang, Xuan
Cheng, Lin
Chen, Qian
Hayduke, Devlin
Author_xml – sequence: 1
  givenname: Qian
  surname: Chen
  fullname: Chen, Qian
  organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 2
  givenname: Xuan
  surname: Liang
  fullname: Liang, Xuan
  organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 3
  givenname: Devlin
  surname: Hayduke
  fullname: Hayduke, Devlin
  organization: Material Sciences Corporation, Horsham, PA, USA
– sequence: 4
  givenname: Jikai
  surname: Liu
  fullname: Liu, Jikai
  organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 5
  givenname: Lin
  surname: Cheng
  fullname: Cheng, Lin
  organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 6
  givenname: Jason
  surname: Oskin
  fullname: Oskin, Jason
  organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
– sequence: 7
  givenname: Ryan
  surname: Whitmore
  fullname: Whitmore, Ryan
  organization: Material Sciences Corporation, Horsham, PA, USA
– sequence: 8
  givenname: Albert C.
  surname: To
  fullname: To, Albert C.
  email: albertto@pitt.edu
  organization: Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
BookMark eNqFkEtOwzAQhi1UJErpCdj4Agm2Y-exYFFVvCQkNrC2HHsCLolT2S6IC3BunLYrFrCakf7HaL5zNHOjA4QuKckpoeXVJlfGDCpnhDY5ETlh9ATNGaM8q2pKZse9Lgk_Q8sQNoQQKoqqqdkcfa8ctu4NPLiIQ_TKOtyqAAYPuz7aoFUPeBgN9Na94s6rAT5H_4670eNgk0fFSdgqH7OD2UOwZqd6bCCZhqSPbm831oOOeICYxD7dmBpcBJ8KLtBpp_oAy-NcoJfbm-f1ffb4dPewXj1mmpMyZg1nWpQtF7USvOAVE6IFo0RViZYJ3pGaFa2odKNJ11FVAyO6KsCUrSpUVfJigYpDr_ZjCB46ufV2UP5LUiInmnIj9zTlRFMSIRPNlGp-pbSN-8cmYP0_2etDFtJbHxa8DNqC03DAIc1o_8z_ADbOlsc
CitedBy_id crossref_primary_10_1108_RPJ_12_2020_0301
crossref_primary_10_1080_17452759_2024_2422394
crossref_primary_10_1016_j_matdes_2021_109659
crossref_primary_10_1088_1361_651X_ac35b8
crossref_primary_10_1115_1_4062259
crossref_primary_10_1109_TASE_2022_3204847
crossref_primary_10_1115_1_4066574
crossref_primary_10_1007_s00170_024_13994_x
crossref_primary_10_1007_s00170_025_15274_8
crossref_primary_10_1007_s12540_022_01293_7
crossref_primary_10_1016_j_finel_2021_103528
crossref_primary_10_2464_jilm_72_234
crossref_primary_10_1007_s12289_024_01855_7
crossref_primary_10_1002_adem_202300489
crossref_primary_10_1016_j_jmrt_2022_02_054
crossref_primary_10_1080_09506608_2023_2169501
crossref_primary_10_1007_s40964_024_00780_0
crossref_primary_10_1080_17452759_2019_1708027
crossref_primary_10_1177_13621718241307465
crossref_primary_10_1007_s40684_024_00670_4
crossref_primary_10_1016_j_addma_2021_102257
crossref_primary_10_48084_etasr_5257
crossref_primary_10_1007_s40430_024_05319_6
crossref_primary_10_1063_5_0141316
crossref_primary_10_1080_17452759_2023_2169172
crossref_primary_10_1007_s00170_022_09766_0
crossref_primary_10_1002_gamm_202100015
crossref_primary_10_1016_j_finel_2021_103558
crossref_primary_10_1002_adem_202001203
crossref_primary_10_1007_s00158_023_03565_1
crossref_primary_10_3788_CJL221485
crossref_primary_10_5604_01_3001_0054_7283
crossref_primary_10_1108_RPJ_06_2020_0140
crossref_primary_10_1051_e3sconf_202345802023
crossref_primary_10_1088_1402_4896_aca184
crossref_primary_10_1080_17452759_2019_1647488
crossref_primary_10_63174_xdi_QFDD2795
crossref_primary_10_1115_1_4055734
crossref_primary_10_1007_s00170_023_12590_9
crossref_primary_10_1007_s12666_022_02666_7
crossref_primary_10_1177_09544089231205960
crossref_primary_10_1007_s10853_022_07046_6
crossref_primary_10_1007_s12289_022_01729_w
crossref_primary_10_2351_7_0000550
crossref_primary_10_1016_j_cirpj_2023_08_005
crossref_primary_10_1016_j_addma_2024_104498
crossref_primary_10_1007_s12008_023_01560_w
crossref_primary_10_3788_CJL240434
crossref_primary_10_1007_s00170_023_11427_9
crossref_primary_10_1016_j_procir_2022_10_017
crossref_primary_10_3389_fmats_2021_759669
crossref_primary_10_1002_srin_202000615
crossref_primary_10_1007_s40192_023_00292_9
crossref_primary_10_1016_j_cma_2020_113231
crossref_primary_10_1080_24725854_2020_1851824
crossref_primary_10_4028_www_scientific_net_KEM_871_65
crossref_primary_10_1108_RPJ_04_2024_0186
crossref_primary_10_1007_s00170_023_11264_w
crossref_primary_10_1007_s10999_020_09494_x
crossref_primary_10_1016_j_addma_2020_101091
crossref_primary_10_1002_nme_7378
crossref_primary_10_1007_s12206_022_0118_6
crossref_primary_10_1016_j_measurement_2020_107515
Cites_doi 10.1007/s00466-014-1024-2
10.1108/13552540610707013
10.1016/j.matdes.2013.05.070
10.1115/1.2804892
10.1177/0954405414539494
10.1115/1.4030059
10.1007/s11740-009-0192-y
10.1002/(SICI)1097-0207(19990330)44:9<1301::AID-NME479>3.0.CO;2-K
10.1016/S1359-6454(01)00312-3
10.1115/1.4033662
10.2534/jjasnaoe1968.1975.138_499
10.1080/02726350490501682
10.1007/s11661-014-2722-2
10.1115/1.4032078
10.1016/j.commatsci.2016.10.003
10.1007/s11661-014-2549-x
10.1115/1.4040621
10.1115/1.4028539
10.1115/1.4038893
10.1108/13552549910251846
10.1016/j.matdes.2017.09.018
10.1115/1.2716740
10.1016/j.jmatprotec.2015.10.022
10.1007/s00170-015-6831-x
10.1007/BF02667333
10.1016/j.jmatprotec.2008.02.040
10.1115/1.4028669
10.1108/13552540210451732
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.addma.2019.05.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2214-7810
EndPage 418
ExternalDocumentID 10_1016_j_addma_2019_05_021
S2214860418310583
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
KOM
M41
O9-
OAUVE
PC.
ROL
SPC
SPCBC
SSM
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c406t-942c56b458a54347255beda5775b254f0823b57c9c0ff1a8e20c73ed6ba3a7643
IEDL.DBID .~1
ISSN 2214-8604
IngestDate Tue Jul 01 01:46:58 EDT 2025
Thu Apr 24 22:55:59 EDT 2025
Fri Feb 23 02:34:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Finite element analysis
Direct metal laser sintering
Inherent strain
Thermal distortion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-942c56b458a54347255beda5775b254f0823b57c9c0ff1a8e20c73ed6ba3a7643
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_addma_2019_05_021
crossref_citationtrail_10_1016_j_addma_2019_05_021
elsevier_sciencedirect_doi_10_1016_j_addma_2019_05_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Additive manufacturing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wu, Brown, Kumar, Gallegos, King (bib0010) 2014; 45
Hill, Nelson (bib0110) 1995; 318
Dai, Shaw (bib0030) 2002; 8
Beaman, Barlow, Bourell, Crawford, Marcus, McAlea (bib0175) 1997; 2061
Mercelis, Kruth (bib0005) 2006; 12
Liang, Cheng, Chen, Yang, To (bib0155) 2018; 23
Lindgren, Runnemalm, Näsström (bib0195) 1999; 44
Ahmed Hussein, Yan, Everson (bib0050) 2013; 52
Mukherjee, Zhang, DebRoy (bib0185) 2017; 126
Li, liu, Guo (bib0245) 2017
Peng, Go, Billo, Gong, Shankar, Gatrell, Budzinski, Ostiguy, Attardo, Tomonto (bib0055) 2016
Yang, Zhang, Cheng, Min, Chyu, To (bib0205) 2016; 12
Dai, Shaw (bib0025) 2001; 49
Li, Liu, Fang, Guo (bib0070) 2018; 140
Keller, Ploshikhin (bib0130) 2014
Sochalski-Kolbus, Payzant, Cornwell, Watkins, Babu, Dehoff, Lorenz, Ovchinnikova, Duty (bib0015) 2015; 46
Liu, Chen, Zhao, Xiong, To (bib0215) 2018
Pal, Patil, Kutty, Zeng, Moreland, Hicks, Beeler, Stucker (bib0100) 2016; 138
Denlinger, Srinivasan, EI-Wardany, Michaleris (bib0090) 2016; 11
An, Yuan, Dial, Spinelli, Stoica, Gao (bib0020) 2017; 135
Denlinger, Gouge, Irwin, Michaleris (bib0085) 2017; 16
Dong, Makradi, Ahzi, Remond (bib0170) 2009; 209
Gouge, Heigel, Michaleris, Palmer (bib0225) 2015; 79
Denlinger, Irwin, Michaleris (bib0080) 2014; 136
Heigel, Michaleris, Reutzel (bib0230) 2015; 5
Afazov, Denmark, Toralles, Holloway, Yaghi (bib0075) 2017; 17
Li, Wang, Michaleris (bib0200) 2018; 140
Goldak, Chakravarti, Bibby (bib0210) 1984; 15
Setien, Chiumenti, van der Veen, San Sebastian, Garciandía, Echeverría (bib0145) 2018
Cheng, Shrestha, Chou (bib0035) 2016; 12
Zhang, Michaleris, Marugabandhu (bib0120) 2007; 129
Hodge, Ferencz, Solberg (bib0240) 2014; 54
Denlinger, Heigel, Michaleris (bib0235) 2015; 229
Li, Fu, Guo, Fang (bib0065) 2016; 229
Liang, Chen, Cheng, Yang, To (bib0150) 2017
Dunbar, Denlinger, Gouge, Michaleris (bib0190) 2016; 12
Ueda, Fukuda, Nakacho, Endo (bib0105) 1975; 1975
Fu, Guo (bib0040) 2014; 136
Patil, Pal, Rafi, Zeng, Moreland, Hicks, Beeler, Stucker (bib0095) 2015; 137
Bugeda Miguel Cervera, Lombera (bib0180) 1999; 5
Cheng, Liang, Bai, Chen, Lemon, To (bib0125) 2019
Zaeh, Branner (bib0060) 2010; 4
Yuan, Ueda (bib0115) 1996; 118
Mills (bib0160) 2002
Sih, Barlow (bib0165) 2004; 22
Prabhakar, Sames, Dehoff, Babu (bib0045) 2015; 7
Alvarez, Ecenarro, Setien, Sebastian, Echeverria, Eciolaza (bib0140) 2016; 2
Bugatti, Semeraro (bib0135) 2018; 23
Irwin, Michaleris (bib0220) 2016; 138
Dunbar (10.1016/j.addma.2019.05.021_bib0190) 2016; 12
Mills (10.1016/j.addma.2019.05.021_bib0160) 2002
Wu (10.1016/j.addma.2019.05.021_bib0010) 2014; 45
Denlinger (10.1016/j.addma.2019.05.021_bib0090) 2016; 11
Mercelis (10.1016/j.addma.2019.05.021_bib0005) 2006; 12
Ahmed Hussein (10.1016/j.addma.2019.05.021_bib0050) 2013; 52
Patil (10.1016/j.addma.2019.05.021_bib0095) 2015; 137
Li (10.1016/j.addma.2019.05.021_bib0200) 2018; 140
Goldak (10.1016/j.addma.2019.05.021_bib0210) 1984; 15
Denlinger (10.1016/j.addma.2019.05.021_bib0085) 2017; 16
Liu (10.1016/j.addma.2019.05.021_bib0215) 2018
An (10.1016/j.addma.2019.05.021_bib0020) 2017; 135
Dai (10.1016/j.addma.2019.05.021_bib0025) 2001; 49
Yang (10.1016/j.addma.2019.05.021_bib0205) 2016; 12
Denlinger (10.1016/j.addma.2019.05.021_bib0080) 2014; 136
Bugatti (10.1016/j.addma.2019.05.021_bib0135) 2018; 23
Pal (10.1016/j.addma.2019.05.021_bib0100) 2016; 138
Sih (10.1016/j.addma.2019.05.021_bib0165) 2004; 22
Li (10.1016/j.addma.2019.05.021_bib0070) 2018; 140
Liang (10.1016/j.addma.2019.05.021_bib0150) 2017
Irwin (10.1016/j.addma.2019.05.021_bib0220) 2016; 138
Zhang (10.1016/j.addma.2019.05.021_bib0120) 2007; 129
Gouge (10.1016/j.addma.2019.05.021_bib0225) 2015; 79
Cheng (10.1016/j.addma.2019.05.021_bib0125) 2019
Prabhakar (10.1016/j.addma.2019.05.021_bib0045) 2015; 7
Mukherjee (10.1016/j.addma.2019.05.021_bib0185) 2017; 126
Keller (10.1016/j.addma.2019.05.021_bib0130) 2014
Beaman (10.1016/j.addma.2019.05.021_bib0175) 1997; 2061
Zaeh (10.1016/j.addma.2019.05.021_bib0060) 2010; 4
Fu (10.1016/j.addma.2019.05.021_bib0040) 2014; 136
Alvarez (10.1016/j.addma.2019.05.021_bib0140) 2016; 2
Setien (10.1016/j.addma.2019.05.021_bib0145) 2018
Hill (10.1016/j.addma.2019.05.021_bib0110) 1995; 318
Denlinger (10.1016/j.addma.2019.05.021_bib0235) 2015; 229
Dong (10.1016/j.addma.2019.05.021_bib0170) 2009; 209
Cheng (10.1016/j.addma.2019.05.021_bib0035) 2016; 12
Sochalski-Kolbus (10.1016/j.addma.2019.05.021_bib0015) 2015; 46
Afazov (10.1016/j.addma.2019.05.021_bib0075) 2017; 17
Li (10.1016/j.addma.2019.05.021_bib0065) 2016; 229
Dai (10.1016/j.addma.2019.05.021_bib0030) 2002; 8
Hodge (10.1016/j.addma.2019.05.021_bib0240) 2014; 54
Bugeda Miguel Cervera (10.1016/j.addma.2019.05.021_bib0180) 1999; 5
Ueda (10.1016/j.addma.2019.05.021_bib0105) 1975; 1975
Peng (10.1016/j.addma.2019.05.021_bib0055) 2016
Li (10.1016/j.addma.2019.05.021_bib0245) 2017
Liang (10.1016/j.addma.2019.05.021_bib0155) 2018; 23
Lindgren (10.1016/j.addma.2019.05.021_bib0195) 1999; 44
Yuan (10.1016/j.addma.2019.05.021_bib0115) 1996; 118
Heigel (10.1016/j.addma.2019.05.021_bib0230) 2015; 5
References_xml – volume: 1975
  start-page: 499
  year: 1975
  end-page: 507
  ident: bib0105
  article-title: A new measuring method of residual stresses with the aid of finite element method and reliability of estimated values
  publication-title: J. Soc. Nav. Archit. Jpn.
– volume: 23
  start-page: 471
  year: 2018
  end-page: 486
  ident: bib0155
  article-title: A modified method for estimating inherent strains from detailed process simulation for fast residual distortion prediction of single-walled structures fabricated by directed energy deposition
  publication-title: Addit. Manuf.
– volume: 15
  start-page: 299
  year: 1984
  end-page: 305
  ident: bib0210
  article-title: A new finite element model for welding heat sources
  publication-title: Metall. Mater. Trans. B
– volume: 54
  start-page: 33
  year: 2014
  end-page: 51
  ident: bib0240
  article-title: Implementation of a thermomechanical model for the simulation of selective laser melting
  publication-title: Comput. Mech.
– volume: 16
  start-page: 73
  year: 2017
  end-page: 80
  ident: bib0085
  article-title: Thermomechanical model development and in situ experimental validation of the Laser Powder-Bed Fusion process
  publication-title: Addit. Manuf.
– volume: 318
  start-page: 343
  year: 1995
  end-page: 352
  ident: bib0110
  article-title: The inherent strain method for residual stress determination and its application to a long welded joint
  publication-title: ASME-Publications-PVP
– volume: 44
  start-page: 1301
  year: 1999
  end-page: 1316
  ident: bib0195
  article-title: Simulation of multipass welding of a thick plate
  publication-title: Int. J. Numer. Methods Eng.
– volume: 229
  start-page: 1803
  year: 2015
  end-page: 1813
  ident: bib0235
  article-title: Residual stress and distortion modeling of electron beam direct manufacturing Ti-6Al-4V
  publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
– volume: 5
  start-page: 21
  year: 1999
  end-page: 26
  ident: bib0180
  article-title: Numerical prediction of temperature and density distributions in selective laser sintering processes
  publication-title: Rapid Prototyp. J.
– volume: 79
  start-page: 307
  year: 2015
  end-page: 320
  ident: bib0225
  article-title: Modeling forced convection in the thermal simulation of laser cladding processes
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 140
  year: 2018
  ident: bib0070
  article-title: On the simulation scalability of predicting residual stress and distortion in selective laser melting
  publication-title: J. Manuf. Sci. Eng.
– volume: 118
  start-page: 229
  year: 1996
  end-page: 234
  ident: bib0115
  article-title: Prediction of residual stresses in welded T-and I-joints using inherent strains
  publication-title: J. Eng. Mater. Technol. Trans. ASME
– volume: 137
  year: 2015
  ident: bib0095
  article-title: A generalized feed forward dynamic adaptive mesh refinement and derefinement finite element framework for metal laser sintering—part I: formulation and algorithm development
  publication-title: J. Manuf. Sci. Eng.
– volume: 138
  year: 2016
  ident: bib0100
  article-title: A generalized feed-forward dynamic adaptive mesh refinement and derefinement finite-element framework for metal laser sintering—part II: nonlinear thermal simulations and validations
  publication-title: J. Manuf. Sci. Eng.
– volume: 138
  year: 2016
  ident: bib0220
  article-title: A line heat input model for additive manufacturing
  publication-title: J. Manuf. Sci. Eng.
– volume: 11
  start-page: 7
  year: 2016
  end-page: 15
  ident: bib0090
  article-title: Thermal modeling of Inconel 718 processed with powder bed fusion and experimental validation using in situ measurements
  publication-title: Addit. Manuf.
– volume: 5
  start-page: 9
  year: 2015
  end-page: 19
  ident: bib0230
  article-title: Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V
  publication-title: Addit. Manuf.
– volume: 12
  start-page: 169
  year: 2016
  end-page: 177
  ident: bib0205
  article-title: Finite element modeling and validation of thermomechanicalbehavior of Ti-6Al-4V in directed energy deposition additivemanufacturing
  publication-title: Addit. Manuf.
– volume: 136
  year: 2014
  ident: bib0040
  article-title: Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V
  publication-title: J. Manuf. Sci. Eng.
– volume: 23
  start-page: 329
  year: 2018
  end-page: 346
  ident: bib0135
  article-title: Limitations of the inherent strain method in simulating powder bed fusion processes
  publication-title: Addit. Manuf.
– volume: 209
  start-page: 700
  year: 2009
  end-page: 706
  ident: bib0170
  article-title: Three-dimensional transient finite element analysis of the selective laser sintering process
  publication-title: J. Mater. Process. Technol.
– volume: 2061
  start-page: 25
  year: 1997
  end-page: 49
  ident: bib0175
  publication-title: Solid Freeform Fabrication: a New Direction in Manufacturing
– year: 2018
  ident: bib0145
  article-title: Empirical methodology to determine inherent strains in additive manufacturing
  publication-title: Comput. Math. With Appl.
– volume: 12
  start-page: 254
  year: 2006
  end-page: 265
  ident: bib0005
  article-title: Residual stresses in selective laser sintering and selective laser melting
  publication-title: Rapid Prototyp. J.
– volume: 126
  start-page: 360
  year: 2017
  end-page: 372
  ident: bib0185
  article-title: An improved prediction of residual stresses and distortion in additive manufacturing
  publication-title: Comput. Mater. Sci.
– volume: 12
  start-page: 240
  year: 2016
  end-page: 251
  ident: bib0035
  article-title: Stress and deformation evaluations of scanning strategy effect in selective laser melting
  publication-title: Addit. Manuf.
– volume: 129
  start-page: 1000
  year: 2007
  end-page: 1010
  ident: bib0120
  article-title: Evaluation of applied plastic strain methods for welding distortion prediction
  publication-title: J. Manuf. Sci. Eng.
– year: 2016
  ident: bib0055
  article-title: Part-scale Model for Fast Prediction of Thermal Distortion in DMLS Additive Manufacturing; Part 2: A Quasi-Static Thermo-Mechanical Model
– year: 2017
  ident: bib0245
  article-title: Efficient predictive model of part distortion and residual stress in selective laser melting
  publication-title: Proc. Solid Freeform Fabrication 2016
– volume: 12
  start-page: 108
  year: 2016
  end-page: 120
  ident: bib0190
  article-title: Experimental validation of finite element modeling for laser powderbed fusion deformation
  publication-title: Addit. Manuf.
– volume: 4
  start-page: 35
  year: 2010
  end-page: 45
  ident: bib0060
  article-title: Investigations on residual stresses and deformations in selective laser melting
  publication-title: Prod. Eng.
– volume: 135
  start-page: 122
  year: 2017
  end-page: 132
  ident: bib0020
  article-title: Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing
  publication-title: Mater. Des.
– volume: 49
  start-page: 4171
  year: 2001
  end-page: 4181
  ident: bib0025
  article-title: Thermal and stress modeling of multi-material laser processing
  publication-title: Acta Mater.
– volume: 7
  start-page: 83
  year: 2015
  end-page: 91
  ident: bib0045
  article-title: Computational modeling of residual stress formation during the electron beam melting process for Inconel 718
  publication-title: Addit. Manuf.
– volume: 45
  start-page: 6260
  year: 2014
  end-page: 6270
  ident: bib0010
  article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel
  publication-title: Metall. Mater. Trans. A
– volume: 229
  start-page: 703
  year: 2016
  end-page: 712
  ident: bib0065
  article-title: A multiscale modeling approach for fast prediction of part distortion in selective laser melting
  publication-title: J. Mater. Process. Technol.
– year: 2019
  ident: bib0125
  article-title: On utilizing topology optimization to design support structure to prevent residual stress induced build failure in laser powder bed metal additive manufacturing
  publication-title: Addit. Manuf.
– volume: 136
  year: 2014
  ident: bib0080
  article-title: Thermomechanical modeling of additive manufacturing large parts
  publication-title: J. Manuf. Sci. Eng.
– year: 2002
  ident: bib0160
  article-title: Recommended Values of Thermophysical Properties for Selected Commercial Alloys
– volume: 140
  year: 2018
  ident: bib0200
  article-title: An analytical computation of temperature field evolved in directed energy deposition
  publication-title: J. Manuf. Sci. Eng.
– volume: 52
  start-page: 638
  year: 2013
  end-page: 647
  ident: bib0050
  article-title: Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting
  publication-title: Mater. Des.
– volume: 46
  start-page: 1419
  year: 2015
  end-page: 1432
  ident: bib0015
  article-title: Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering
  publication-title: Metall. Mater. Trans. A
– start-page: 1229
  year: 2014
  end-page: 1237
  ident: bib0130
  article-title: New method for fast predictions of residual stress and distortion of AM parts
  publication-title: Solid Freeform Fabrication Symposium
– start-page: 749
  year: 2018
  end-page: 755
  ident: bib0215
  article-title: Quantitative texture prediction of epitaxial columnar grains in alloy 718 processed by additive manufacturing
  publication-title: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications
– year: 2017
  ident: bib0150
  article-title: A modified inherent strain method for fast prediction of residual deformation in additive manufacturing of metal parts
  publication-title: 2017 Solid Freeform Fabrication Symposium Proceedings
– volume: 22
  start-page: 427
  year: 2004
  end-page: 440
  ident: bib0165
  article-title: The prediction of the emissivity and thermal conductivity of powder beds
  publication-title: Part. Sci. Technol.
– volume: 17
  start-page: 15
  year: 2017
  end-page: 22
  ident: bib0075
  article-title: Distortion prediction and compensation in selective laser melting
  publication-title: Addit. Manuf.
– volume: 2
  start-page: 39
  year: 2016
  end-page: 46
  ident: bib0140
  article-title: Computationally efficient distortion prediction in powder bed fusion additive manufacturing
  publication-title: Int. J. Eng. Res. Sci
– volume: 8
  start-page: 270
  year: 2002
  end-page: 276
  ident: bib0030
  article-title: Distortion minimization of laser-processed components through control of laser scanning patterns
  publication-title: Rapid Prototyp. J.
– volume: 54
  start-page: 33
  year: 2014
  ident: 10.1016/j.addma.2019.05.021_bib0240
  article-title: Implementation of a thermomechanical model for the simulation of selective laser melting
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-014-1024-2
– volume: 16
  start-page: 73
  year: 2017
  ident: 10.1016/j.addma.2019.05.021_bib0085
  article-title: Thermomechanical model development and in situ experimental validation of the Laser Powder-Bed Fusion process
  publication-title: Addit. Manuf.
– year: 2019
  ident: 10.1016/j.addma.2019.05.021_bib0125
  article-title: On utilizing topology optimization to design support structure to prevent residual stress induced build failure in laser powder bed metal additive manufacturing
  publication-title: Addit. Manuf.
– start-page: 1229
  year: 2014
  ident: 10.1016/j.addma.2019.05.021_bib0130
  article-title: New method for fast predictions of residual stress and distortion of AM parts
  publication-title: Solid Freeform Fabrication Symposium
– volume: 12
  start-page: 254
  year: 2006
  ident: 10.1016/j.addma.2019.05.021_bib0005
  article-title: Residual stresses in selective laser sintering and selective laser melting
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552540610707013
– volume: 52
  start-page: 638
  year: 2013
  ident: 10.1016/j.addma.2019.05.021_bib0050
  article-title: Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.05.070
– volume: 23
  start-page: 471
  year: 2018
  ident: 10.1016/j.addma.2019.05.021_bib0155
  article-title: A modified method for estimating inherent strains from detailed process simulation for fast residual distortion prediction of single-walled structures fabricated by directed energy deposition
  publication-title: Addit. Manuf.
– volume: 118
  start-page: 229
  year: 1996
  ident: 10.1016/j.addma.2019.05.021_bib0115
  article-title: Prediction of residual stresses in welded T-and I-joints using inherent strains
  publication-title: J. Eng. Mater. Technol. Trans. ASME
  doi: 10.1115/1.2804892
– volume: 229
  start-page: 1803
  year: 2015
  ident: 10.1016/j.addma.2019.05.021_bib0235
  article-title: Residual stress and distortion modeling of electron beam direct manufacturing Ti-6Al-4V
  publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
  doi: 10.1177/0954405414539494
– volume: 5
  start-page: 9
  year: 2015
  ident: 10.1016/j.addma.2019.05.021_bib0230
  article-title: Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V
  publication-title: Addit. Manuf.
– year: 2002
  ident: 10.1016/j.addma.2019.05.021_bib0160
– year: 2017
  ident: 10.1016/j.addma.2019.05.021_bib0245
  article-title: Efficient predictive model of part distortion and residual stress in selective laser melting
– volume: 12
  start-page: 169
  year: 2016
  ident: 10.1016/j.addma.2019.05.021_bib0205
  article-title: Finite element modeling and validation of thermomechanicalbehavior of Ti-6Al-4V in directed energy deposition additivemanufacturing
  publication-title: Addit. Manuf.
– volume: 137
  year: 2015
  ident: 10.1016/j.addma.2019.05.021_bib0095
  article-title: A generalized feed forward dynamic adaptive mesh refinement and derefinement finite element framework for metal laser sintering—part I: formulation and algorithm development
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4030059
– volume: 7
  start-page: 83
  year: 2015
  ident: 10.1016/j.addma.2019.05.021_bib0045
  article-title: Computational modeling of residual stress formation during the electron beam melting process for Inconel 718
  publication-title: Addit. Manuf.
– volume: 4
  start-page: 35
  year: 2010
  ident: 10.1016/j.addma.2019.05.021_bib0060
  article-title: Investigations on residual stresses and deformations in selective laser melting
  publication-title: Prod. Eng.
  doi: 10.1007/s11740-009-0192-y
– volume: 44
  start-page: 1301
  year: 1999
  ident: 10.1016/j.addma.2019.05.021_bib0195
  article-title: Simulation of multipass welding of a thick plate
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19990330)44:9<1301::AID-NME479>3.0.CO;2-K
– volume: 49
  start-page: 4171
  year: 2001
  ident: 10.1016/j.addma.2019.05.021_bib0025
  article-title: Thermal and stress modeling of multi-material laser processing
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00312-3
– volume: 2
  start-page: 39
  year: 2016
  ident: 10.1016/j.addma.2019.05.021_bib0140
  article-title: Computationally efficient distortion prediction in powder bed fusion additive manufacturing
  publication-title: Int. J. Eng. Res. Sci
– volume: 138
  year: 2016
  ident: 10.1016/j.addma.2019.05.021_bib0220
  article-title: A line heat input model for additive manufacturing
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4033662
– volume: 17
  start-page: 15
  year: 2017
  ident: 10.1016/j.addma.2019.05.021_bib0075
  article-title: Distortion prediction and compensation in selective laser melting
  publication-title: Addit. Manuf.
– volume: 1975
  start-page: 499
  year: 1975
  ident: 10.1016/j.addma.2019.05.021_bib0105
  article-title: A new measuring method of residual stresses with the aid of finite element method and reliability of estimated values
  publication-title: J. Soc. Nav. Archit. Jpn.
  doi: 10.2534/jjasnaoe1968.1975.138_499
– volume: 22
  start-page: 427
  year: 2004
  ident: 10.1016/j.addma.2019.05.021_bib0165
  article-title: The prediction of the emissivity and thermal conductivity of powder beds
  publication-title: Part. Sci. Technol.
  doi: 10.1080/02726350490501682
– year: 2017
  ident: 10.1016/j.addma.2019.05.021_bib0150
  article-title: A modified inherent strain method for fast prediction of residual deformation in additive manufacturing of metal parts
  publication-title: 2017 Solid Freeform Fabrication Symposium Proceedings
– volume: 46
  start-page: 1419
  year: 2015
  ident: 10.1016/j.addma.2019.05.021_bib0015
  article-title: Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-014-2722-2
– volume: 138
  year: 2016
  ident: 10.1016/j.addma.2019.05.021_bib0100
  article-title: A generalized feed-forward dynamic adaptive mesh refinement and derefinement finite-element framework for metal laser sintering—part II: nonlinear thermal simulations and validations
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4032078
– volume: 126
  start-page: 360
  year: 2017
  ident: 10.1016/j.addma.2019.05.021_bib0185
  article-title: An improved prediction of residual stresses and distortion in additive manufacturing
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.10.003
– volume: 12
  start-page: 108
  year: 2016
  ident: 10.1016/j.addma.2019.05.021_bib0190
  article-title: Experimental validation of finite element modeling for laser powderbed fusion deformation
  publication-title: Addit. Manuf.
– start-page: 749
  year: 2018
  ident: 10.1016/j.addma.2019.05.021_bib0215
  article-title: Quantitative texture prediction of epitaxial columnar grains in alloy 718 processed by additive manufacturing
  publication-title: Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications
– volume: 12
  start-page: 240
  year: 2016
  ident: 10.1016/j.addma.2019.05.021_bib0035
  article-title: Stress and deformation evaluations of scanning strategy effect in selective laser melting
  publication-title: Addit. Manuf.
– volume: 45
  start-page: 6260
  year: 2014
  ident: 10.1016/j.addma.2019.05.021_bib0010
  article-title: An experimental investigation into additive manufacturing-induced residual stresses in 316L stainless steel
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-014-2549-x
– volume: 318
  start-page: 343
  year: 1995
  ident: 10.1016/j.addma.2019.05.021_bib0110
  article-title: The inherent strain method for residual stress determination and its application to a long welded joint
  publication-title: ASME-Publications-PVP
– volume: 11
  start-page: 7
  year: 2016
  ident: 10.1016/j.addma.2019.05.021_bib0090
  article-title: Thermal modeling of Inconel 718 processed with powder bed fusion and experimental validation using in situ measurements
  publication-title: Addit. Manuf.
– volume: 140
  year: 2018
  ident: 10.1016/j.addma.2019.05.021_bib0200
  article-title: An analytical computation of temperature field evolved in directed energy deposition
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4040621
– volume: 136
  year: 2014
  ident: 10.1016/j.addma.2019.05.021_bib0040
  article-title: Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4028539
– volume: 140
  year: 2018
  ident: 10.1016/j.addma.2019.05.021_bib0070
  article-title: On the simulation scalability of predicting residual stress and distortion in selective laser melting
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4038893
– volume: 5
  start-page: 21
  year: 1999
  ident: 10.1016/j.addma.2019.05.021_bib0180
  article-title: Numerical prediction of temperature and density distributions in selective laser sintering processes
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552549910251846
– volume: 2061
  start-page: 25
  year: 1997
  ident: 10.1016/j.addma.2019.05.021_bib0175
– volume: 135
  start-page: 122
  year: 2017
  ident: 10.1016/j.addma.2019.05.021_bib0020
  article-title: Neutron residual stress measurement and numerical modeling in a curved thin-walled structure by laser powder bed fusion additive manufacturing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.09.018
– year: 2016
  ident: 10.1016/j.addma.2019.05.021_bib0055
– year: 2018
  ident: 10.1016/j.addma.2019.05.021_bib0145
  article-title: Empirical methodology to determine inherent strains in additive manufacturing
  publication-title: Comput. Math. With Appl.
– volume: 129
  start-page: 1000
  year: 2007
  ident: 10.1016/j.addma.2019.05.021_bib0120
  article-title: Evaluation of applied plastic strain methods for welding distortion prediction
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.2716740
– volume: 229
  start-page: 703
  year: 2016
  ident: 10.1016/j.addma.2019.05.021_bib0065
  article-title: A multiscale modeling approach for fast prediction of part distortion in selective laser melting
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.10.022
– volume: 79
  start-page: 307
  year: 2015
  ident: 10.1016/j.addma.2019.05.021_bib0225
  article-title: Modeling forced convection in the thermal simulation of laser cladding processes
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-6831-x
– volume: 15
  start-page: 299
  year: 1984
  ident: 10.1016/j.addma.2019.05.021_bib0210
  article-title: A new finite element model for welding heat sources
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/BF02667333
– volume: 23
  start-page: 329
  year: 2018
  ident: 10.1016/j.addma.2019.05.021_bib0135
  article-title: Limitations of the inherent strain method in simulating powder bed fusion processes
  publication-title: Addit. Manuf.
– volume: 209
  start-page: 700
  year: 2009
  ident: 10.1016/j.addma.2019.05.021_bib0170
  article-title: Three-dimensional transient finite element analysis of the selective laser sintering process
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2008.02.040
– volume: 136
  year: 2014
  ident: 10.1016/j.addma.2019.05.021_bib0080
  article-title: Thermomechanical modeling of additive manufacturing large parts
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4028669
– volume: 8
  start-page: 270
  year: 2002
  ident: 10.1016/j.addma.2019.05.021_bib0030
  article-title: Distortion minimization of laser-processed components through control of laser scanning patterns
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/13552540210451732
SSID ssj0001537982
Score 2.5574572
Snippet Residual distortion is a major technical challenge for laser powder bed fusion (LPBF) additive manufacturing (AM), since excessive distortion can cause build...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 406
SubjectTerms Direct metal laser sintering
Finite element analysis
Inherent strain
Thermal distortion
Title An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering
URI https://dx.doi.org/10.1016/j.addma.2019.05.021
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwEhqndpyMVUVVQHSBSt0iO3ZEEA0VDSsjv5s7JylFQh0Yk9xZyX2OfZfcfUfIZRjFgZ9aAbFJaD1uWN9TARdepLUwJjXgKWE18sMkHE_53UzMWmTY1MJgWmW99ldrulut6zO92pq9RZ73HoOAYQclzrBXloiQ8ZNzibP8-pP9fGcRfRm7nlEo76FCQz7k0rzg_Xb8Qyx2DJ4B-3uDWtt0Rntkt_YW6aC6oX3SssUB2VnjEDwkX4OC5sUzVu2VdOk6PlDcmgx1uYJLwMBS1-8GxGnW5GJRcFbpMp-77l1wYQEP7VXCEIC7Ci1q7Kq00YlXpqJzCw47Ba_b4ggIDAxwRKajm6fh2KubK3gpwFJ6MQ9SEWouIoXVpRJCC22NElIKDUFjhn_gtJBpnPpZxlRkAVLZtybUqq8k-DHHpF28FfaE0IixVHFmkF6O20woqXQQat8IiKW0LzokaCyapDXzOJrjNWlSzF4SB0OCMCS-SACGDrlaKS0q4o3N4mEDVfJr_iSwNWxSPP2v4hnZxqMqGfCctMv3D3sBDkqpu24GdsnW4PZ-PPkGL1rnOg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbGdgAOiKd4kwNHqjVt08dxQqCNPS6AxC1KmlQMsTKx8Rf43dhpy0NCHLg2cdT6S2O7tT8DnMdpFvi5FRibxNaLDA89FUTCS7UWxuQGPSWqRh5P4v59dPMgHlpw2dTCUFplffZXZ7o7resr3Vqb3fl02r0NAk4dlCJOvbJEGq5Ah9ipRBs6vcGwP_n61CLCJHNto0jEI5mGf8hleuEr7iiIeOZIPAP-u436ZneuN2GjdhhZr7qnLWjZchvWv9EI7sB7r2TT8pEK95Zs4Zo-MLJOhrl0wQXCYJlreYPTWdGkYzH0V9liOnMNvHBgjs_tVZMxBndFWszYz-pGN73SFptZ9NkZOt6WViBscIFduL--urvse3V_BS9HZJZeFgW5iHUkUkUFpglGF9oaJZJEaIwbC_oJp0WSZ7lfFFylFlFNQmtirUKVoCuzB-3ypbT7wFLOcxVxQwxzkS2ESpQOYu0bgeGU9sUBBI1GZV6Tj5M6nmWTZfYkHQySYJC-kAjDAVx8Cs0r7o2_p8cNVPLHFpJoHf4SPPyv4Bms9u_GIzkaTIZHsEYjVW7gMbSXr2_2BP2VpT6t9-MHHXXp6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inherent+strain+based+multiscale+modeling+framework+for+simulating+part-scale+residual+deformation+for+direct+metal+laser+sintering&rft.jtitle=Additive+manufacturing&rft.au=Chen%2C+Qian&rft.au=Liang%2C+Xuan&rft.au=Hayduke%2C+Devlin&rft.au=Liu%2C+Jikai&rft.date=2019-08-01&rft.pub=Elsevier+B.V&rft.issn=2214-8604&rft.eissn=2214-7810&rft.volume=28&rft.spage=406&rft.epage=418&rft_id=info:doi/10.1016%2Fj.addma.2019.05.021&rft.externalDocID=S2214860418310583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-8604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-8604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-8604&client=summon