Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity
Integrated quantum photonic technologies are key for future applications in quantum information1,2, ultralow-power opto-electronics3 and sensing4. As individual quantum bits, nitrogen-vacancy centres in diamond are among the most promising solid-state systems identified to date, because of their lon...
Saved in:
Published in | Nature photonics Vol. 5; no. 5; pp. 301 - 305 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2011
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Integrated quantum photonic technologies are key for future applications in quantum information1,2, ultralow-power opto-electronics3 and sensing4. As individual quantum bits, nitrogen-vacancy centres in diamond are among the most promising solid-state systems identified to date, because of their long-lived electron and nuclear spin coherence, and capability for individual optical initialization, readout and information storage 5-9. The major outstanding hurdle lies in interconnecting many nitrogen vacancies for large-scale computation. One of the most promising approaches in this regard is to couple them to optical resonators, which can be further interconnected in a photonic network. Here10-12, we demonstrate coupling of the zero-phonon line of individual nitrogen vacancies to the modes of microring resonators fabricated in single-crystal diamond. Zero-phonon line enhancement by more than a factor of 10 is estimated from lifetime measurements. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics. © 2011 Macmillan Publishers Limited. All rights reserved. NRC publication: Yes |
---|---|
AbstractList | Integrated quantum photonic technologies are key for future applications in quantum information, ultralow-power opto-electronics and sensing. As individual quantum bits, nitrogen-vacancy centres in diamond are among the most promising solid-state systems identified to date, because of their long-lived electron and nuclear spin coherence, and capability for individual optical initialization, readout and information storage. The major outstanding hurdle lies in interconnecting many nitrogen vacancies for large-scale computation. One of the most promising approaches in this regard is to couple them to optical resonators, which can be further interconnected in a photonic network. Here, we demonstrate coupling of the zero-phonon line of individual nitrogen vacancies to the modes of microring resonators fabricated in single-crystal diamond. Zero-phonon line enhancement by more than a factor of 10 is estimated from lifetime measurements. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics. Integrated quantum photonic technologies are key for future applications in quantum information1,2, ultralow-power opto-electronics3 and sensing4. As individual quantum bits, nitrogen-vacancy centres in diamond are among the most promising solid-state systems identified to date, because of their long-lived electron and nuclear spin coherence, and capability for individual optical initialization, readout and information storage 5-9. The major outstanding hurdle lies in interconnecting many nitrogen vacancies for large-scale computation. One of the most promising approaches in this regard is to couple them to optical resonators, which can be further interconnected in a photonic network. Here10-12, we demonstrate coupling of the zero-phonon line of individual nitrogen vacancies to the modes of microring resonators fabricated in single-crystal diamond. Zero-phonon line enhancement by more than a factor of 10 is estimated from lifetime measurements. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics. © 2011 Macmillan Publishers Limited. All rights reserved. Integrated quantum photonic technologies are key for future applications in quantum information1, (O'Brien et al. in Nature Photon. 3:687, 2009), ultralow-power opto-electronics (Mabuchi in Phys. Rev. A 80:045802, 2009) and sensing (Balasubramanian in Nature 455:648, 2008). As individual quantum bits, nitrogen-vacancy centres in diamond are among the most promising solid-state systems identified to date, because of their long-lived electron and nuclear spin coherence and capability for individual optical initialization, readout and information storage (Jelezko in Phys. Rev. Lett. 93:130501, 2004, Balasubramanian in Nature Mater. 8:383, 2009, Santori in Phys. Rev. Lett. 97:247401, 2006, Buckley et al. in Science 330:1212, 2010, Gurudev Dutt in Science 316:1312, 2007). The major outstanding hurdle lies in interconnecting many nitrogen vacancies for large-scale computation. One of the most promising approaches in this regard is to couple them to optical resonators, which can be further interconnected in a photonic network (Cabrillo et al. in Phys. Rev. A 59:1025, 1999, Childress et al. in Phys. Rev. A 72:052330, 2005, Togan in Nature 466:730, 2010). Here, we demonstrate coupling of the zero-phonon line of individual nitrogen vacancies to the modes of microring resonators fabricated in single-crystal diamond. Zero-phonon line enhancement by more than a factor of 10 is estimated from lifetime measurements. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics. Scientists couple the zero-phonon line of individual nitrogen-vacancy centres to the modes of microring resonators fabricated in single-crystal diamond using standard semiconductor techniques, paving ways towards integrated diamond photonics. |
Author | Santori, Charles Beausoleil, Raymond G Fu, Kai-Mei C Faraon, Andrei Barclay, Paul E |
Author_xml | – sequence: 1 fullname: Faraon, Andrei – sequence: 2 fullname: Barclay, Paul E – sequence: 3 fullname: Santori, Charles – sequence: 4 fullname: Fu, Kai-Mei C – sequence: 5 fullname: Beausoleil, Raymond G |
BookMark | eNp9UE1r3DAQFSWB5qPnXk0vPXkjyZYtH0tom0IgUJpDTmI8lroKtrSVtIXk13e2DikEmovmQ-_NvHmn7CjEYBl7L_hG8EZfhN02lhg2kguxUfINOxF9O9StHpqj51yrt-w053vOVTNIecLuvtscA4RS2bCFgHaxlEdXla2tHm2KNY2lTZVdfM6eEpfiUkGFcY77VCHBk618oNbkYYlhqhB--_Jwzo4dzNm-e4pn7PbL5x-XV_X1zddvl5-ua2x5V2qNrhkn1SphcRiVs1SM0jUKeyVQYz8BIo7dKAcnGzcOYhL0L6GHjnOYmjP2cZ27S_HX3uZiSCnaeYZg4z4brYe27XQvCPnhBfKeTggkzuheik72TUugixWEKeacrDO75BdID0ZwczDaPBltDkYbJYmhXjDQFyjkVUng51d4fOVl2hB-2vRPzv8pVyslJEQIMMGzugie9ubijT8EQwiDfx9Y-2EHVEkhe5o2NH8AGH20dA |
CitedBy_id | crossref_primary_10_1557_s43579_023_00435_1 crossref_primary_10_1103_PhysRevLett_116_247402 crossref_primary_10_1038_srep35529 crossref_primary_10_1002_adom_201400189 crossref_primary_10_1002_qute_201900060 crossref_primary_10_1088_1742_6596_2595_1_012003 crossref_primary_10_1038_nphoton_2016_234 crossref_primary_10_1063_1_4978204 crossref_primary_10_1103_PhysRevApplied_6_011001 crossref_primary_10_1063_5_0042987 crossref_primary_10_1073_pnas_1305920110 crossref_primary_10_1364_JOSAB_33_000B35 crossref_primary_10_1002_adma_201103932 crossref_primary_10_1063_1_5030023 crossref_primary_10_1038_srep16444 crossref_primary_10_1364_OE_20_019545 crossref_primary_10_1143_JJAP_51_090110 crossref_primary_10_1364_OE_21_019387 crossref_primary_10_1021_acs_nanolett_5b01346 crossref_primary_10_1364_OE_419773 crossref_primary_10_1007_s10773_021_04878_x crossref_primary_10_1007_s11082_020_02701_1 crossref_primary_10_1063_5_0077045 crossref_primary_10_1088_0957_4484_23_17_175702 crossref_primary_10_1364_OE_20_008891 crossref_primary_10_1063_1_4804262 crossref_primary_10_1021_acsphotonics_1c00459 crossref_primary_10_1088_2040_8986_ab66cd crossref_primary_10_1002_adfm_202008149 crossref_primary_10_1007_s11433_022_1957_3 crossref_primary_10_1038_ncomms2201 crossref_primary_10_1088_1674_1056_ac785f crossref_primary_10_1088_1367_2630_13_9_093020 crossref_primary_10_1088_2515_7647_aaea7d crossref_primary_10_1088_1361_6455_aaf452 crossref_primary_10_1103_PhysRevX_14_041008 crossref_primary_10_1038_nphoton_2014_192 crossref_primary_10_1103_PhysRevB_95_214301 crossref_primary_10_1109_JPROC_2016_2561274 crossref_primary_10_1103_PhysRevLett_123_167403 crossref_primary_10_1515_nanoph_2020_0387 crossref_primary_10_1016_j_optmat_2012_09_020 crossref_primary_10_1126_sciadv_abo4538 crossref_primary_10_1021_nl300350r crossref_primary_10_1038_s42005_020_00412_3 crossref_primary_10_1088_1361_6463_ac276d crossref_primary_10_1038_nphoton_2011_63 crossref_primary_10_1002_qute_202100003 crossref_primary_10_1088_0957_4484_26_1_015501 crossref_primary_10_1364_OME_7_000513 crossref_primary_10_1063_5_0054629 crossref_primary_10_1103_PhysRevA_98_013848 crossref_primary_10_1088_0034_4885_75_12_126503 crossref_primary_10_1103_PhysRevA_89_040301 crossref_primary_10_1088_2633_4356_ac6f3e crossref_primary_10_1088_1367_2630_17_12_122003 crossref_primary_10_1103_PhysRevApplied_22_064015 crossref_primary_10_1364_OE_25_015572 crossref_primary_10_1016_j_jsamd_2016_04_008 crossref_primary_10_1007_s11128_016_1499_1 crossref_primary_10_1364_OE_25_013153 crossref_primary_10_1364_OPTICA_398628 crossref_primary_10_1063_1_4885469 crossref_primary_10_1103_PhysRevLett_121_153601 crossref_primary_10_1103_PhysRevLett_122_076101 crossref_primary_10_1038_nphoton_2011_54 crossref_primary_10_1063_1_4982168 crossref_primary_10_1063_1_4940715 crossref_primary_10_1002_inf2_12128 crossref_primary_10_1088_1367_2630_15_4_043017 crossref_primary_10_1021_acs_nanolett_7b04717 crossref_primary_10_1364_OL_44_002081 crossref_primary_10_1364_OL_42_003804 crossref_primary_10_1088_1367_2630_aa8085 crossref_primary_10_3389_fphy_2022_960078 crossref_primary_10_1063_1_3628463 crossref_primary_10_1103_PhysRevLett_123_146804 crossref_primary_10_1021_acs_nanolett_0c01771 crossref_primary_10_1103_PhysRevApplied_2_064011 crossref_primary_10_1038_srep35566 crossref_primary_10_1063_1_4862331 crossref_primary_10_1063_1_4961536 crossref_primary_10_1016_j_surfin_2021_101666 crossref_primary_10_1364_OE_20_010490 crossref_primary_10_1038_nphoton_2011_296 crossref_primary_10_1038_nature11577 crossref_primary_10_1103_PhysRevLett_108_043604 crossref_primary_10_1103_PhysRevA_88_063825 crossref_primary_10_1088_1555_6611_aa6992 crossref_primary_10_1002_lpor_201400178 crossref_primary_10_1103_PhysRevB_99_161203 crossref_primary_10_1021_acs_nanolett_2c00739 crossref_primary_10_1088_0256_307X_29_3_036103 crossref_primary_10_1002_adma_202000891 crossref_primary_10_1088_1367_2630_ab1144 crossref_primary_10_1007_s10773_014_2278_3 crossref_primary_10_1088_2058_9565_ab2819 crossref_primary_10_1007_s11433_019_9414_2 crossref_primary_10_1103_PhysRevB_97_205124 crossref_primary_10_7567_JJAP_51_090110 crossref_primary_10_3390_ma16227112 crossref_primary_10_1021_acs_nanolett_2c04890 crossref_primary_10_1002_pssa_201900233 crossref_primary_10_1364_JOSAB_387055 crossref_primary_10_1364_OE_19_022219 crossref_primary_10_1021_nl402174g crossref_primary_10_1021_nl302541e crossref_primary_10_1364_OE_433094 crossref_primary_10_1039_C8TC00097B crossref_primary_10_1557_mrs_2013_19 crossref_primary_10_1103_PhysRevA_91_032328 crossref_primary_10_1364_OE_381286 crossref_primary_10_1039_C9CP04415A crossref_primary_10_1103_PhysRevA_85_013833 crossref_primary_10_1002_pssa_201600656 crossref_primary_10_1103_PhysRevA_91_032324 crossref_primary_10_1021_acsnano_6b08412 crossref_primary_10_1103_PhysRevB_88_161403 crossref_primary_10_1103_PhysRevB_87_035308 crossref_primary_10_1103_PhysRevApplied_18_024041 crossref_primary_10_1002_adma_201301343 crossref_primary_10_1016_j_aop_2016_03_001 crossref_primary_10_1063_5_0051675 crossref_primary_10_1103_PhysRevLett_109_223902 crossref_primary_10_3390_mi9090437 crossref_primary_10_1063_1_4821917 crossref_primary_10_1364_OL_37_000539 crossref_primary_10_1063_1_4904909 crossref_primary_10_1364_OL_44_004056 crossref_primary_10_7498_aps_71_20211797 crossref_primary_10_1021_acs_nanolett_6b00974 crossref_primary_10_1364_OL_42_001788 crossref_primary_10_1016_j_giant_2024_100238 crossref_primary_10_1364_OE_387255 crossref_primary_10_1364_OE_405653 crossref_primary_10_1364_OL_43_003586 crossref_primary_10_1146_annurev_conmatphys_030212_184238 crossref_primary_10_1039_C8RA01859F crossref_primary_10_1126_science_aan0070 crossref_primary_10_1364_OME_9_004545 crossref_primary_10_1016_j_diamond_2021_108692 crossref_primary_10_1364_OE_23_002945 crossref_primary_10_1063_1_4823548 crossref_primary_10_1021_acsphotonics_6b00913 crossref_primary_10_1021_acsphotonics_0c00960 crossref_primary_10_1364_OE_24_028815 crossref_primary_10_1002_smll_202104805 crossref_primary_10_1364_OME_1_000576 crossref_primary_10_1016_j_jallcom_2022_166507 crossref_primary_10_1063_5_0157450 crossref_primary_10_1103_PhysRevLett_109_033604 crossref_primary_10_1063_5_0187661 crossref_primary_10_1038_srep35922 crossref_primary_10_1021_acsomega_8b00139 crossref_primary_10_1364_OPTICA_3_000963 crossref_primary_10_1021_acs_nanolett_3c01602 crossref_primary_10_1038_ncomms4328 crossref_primary_10_1021_acsnano_9b01668 crossref_primary_10_1002_adma_201201074 crossref_primary_10_1103_PhysRevLett_108_206401 crossref_primary_10_1021_acs_nanolett_9b01316 crossref_primary_10_1038_ncomms14000 crossref_primary_10_1364_OE_27_033051 crossref_primary_10_35848_1882_0786_abd868 crossref_primary_10_1021_acs_nanolett_5b05304 crossref_primary_10_1063_5_0161268 crossref_primary_10_1109_JSTQE_2018_2806079 crossref_primary_10_1038_srep12918 crossref_primary_10_1103_RevModPhys_94_041003 crossref_primary_10_1364_OE_21_032623 crossref_primary_10_1063_1_4948746 crossref_primary_10_1002_pssb_201248384 crossref_primary_10_1515_nanoph_2024_0300 crossref_primary_10_1007_s11706_022_0590_z crossref_primary_10_1016_j_optlastec_2012_09_033 crossref_primary_10_1021_acs_jpcc_9b06919 crossref_primary_10_1038_ncomms2710 crossref_primary_10_1103_PhysRevA_88_053812 crossref_primary_10_1021_acs_nanolett_7b00973 crossref_primary_10_1038_s43246_025_00770_x crossref_primary_10_1063_1_4955065 crossref_primary_10_1103_PhysRevX_13_011005 crossref_primary_10_1063_5_0001922 crossref_primary_10_1103_PhysRevB_90_081117 crossref_primary_10_1116_5_0011316 crossref_primary_10_1364_OE_21_011031 crossref_primary_10_1088_2040_8978_18_2_024002 crossref_primary_10_1103_PhysRevApplied_18_064011 crossref_primary_10_1063_1_4764548 crossref_primary_10_1021_acs_nanolett_1c01439 crossref_primary_10_1038_nphoton_2011_249 crossref_primary_10_1063_5_0056534 crossref_primary_10_1038_srep09619 crossref_primary_10_1038_micronano_2017_61 crossref_primary_10_1088_1367_2630_18_1_013015 crossref_primary_10_1007_s10701_013_9771_z crossref_primary_10_1103_PhysRevX_14_041055 crossref_primary_10_1021_acs_nanolett_7b05075 crossref_primary_10_1103_PhysRevLett_116_033603 crossref_primary_10_1364_AOP_376924 crossref_primary_10_1103_PhysRevApplied_15_024049 crossref_primary_10_1364_OE_25_016931 crossref_primary_10_1021_nl304682r crossref_primary_10_1038_ncomms9206 crossref_primary_10_3762_bjnano_4_33 crossref_primary_10_1063_1_5120120 crossref_primary_10_1364_OME_7_000111 crossref_primary_10_1103_PhysRevApplied_8_024026 crossref_primary_10_1021_nl3037454 crossref_primary_10_1364_OE_27_023396 crossref_primary_10_1016_j_optcom_2018_09_004 crossref_primary_10_1088_0034_4885_77_5_056503 crossref_primary_10_1103_PhysRevApplied_13_014036 crossref_primary_10_7566_JPSJ_83_094708 crossref_primary_10_1002_pssa_202300433 crossref_primary_10_1021_acs_nanolett_2c03151 crossref_primary_10_1103_PhysRevLett_114_017601 crossref_primary_10_1109_ACCESS_2019_2934408 crossref_primary_10_1021_acsanm_3c01047 crossref_primary_10_1007_s10773_013_1802_1 crossref_primary_10_1088_1367_2630_15_2_025010 crossref_primary_10_1126_sciadv_abn9573 crossref_primary_10_1021_acs_jpclett_4c03615 crossref_primary_10_1016_j_diamond_2012_12_008 crossref_primary_10_1088_1367_2630_15_2_025014 crossref_primary_10_1002_lpor_202200529 crossref_primary_10_1002_qute_201800061 crossref_primary_10_1103_PhysRevA_84_032124 crossref_primary_10_1364_OE_24_015429 crossref_primary_10_1364_OE_507325 crossref_primary_10_1038_srep11486 crossref_primary_10_1021_acsphotonics_0c00528 crossref_primary_10_1063_1_4992118 crossref_primary_10_1103_PhysRevB_100_094309 crossref_primary_10_1103_PhysRevA_107_023719 crossref_primary_10_1103_PhysRevResearch_5_013176 crossref_primary_10_1063_1_4892544 crossref_primary_10_1103_PhysRevA_89_060303 crossref_primary_10_1364_JOSAB_35_000423 crossref_primary_10_1515_nanoph_2021_0369 crossref_primary_10_1021_acsnano_7b00638 crossref_primary_10_1021_acsphotonics_7b00521 crossref_primary_10_1103_PhysRevA_104_063510 crossref_primary_10_1103_PhysRevX_4_031022 crossref_primary_10_1103_PhysRevApplied_22_064069 crossref_primary_10_1016_j_optcom_2016_05_054 crossref_primary_10_1021_acs_nanolett_8b04259 crossref_primary_10_1039_C5NR08348F crossref_primary_10_1016_j_apsusc_2024_159581 crossref_primary_10_1364_OPTICA_2_000924 crossref_primary_10_1063_1_4901105 crossref_primary_10_1038_s41578_018_0008_9 crossref_primary_10_1088_2040_8978_18_12_123002 crossref_primary_10_3390_ma16083274 crossref_primary_10_1038_nphoton_2014_72 crossref_primary_10_1021_acs_nanolett_5b03724 crossref_primary_10_1038_nphoton_2011_333 crossref_primary_10_1021_nl204449n crossref_primary_10_1002_pssa_201329282 crossref_primary_10_1063_1_4891224 crossref_primary_10_1088_0957_4484_23_1_015601 crossref_primary_10_1002_andp_201900578 crossref_primary_10_1103_PhysRevB_87_235319 crossref_primary_10_1002_lpor_201400453 crossref_primary_10_1103_PhysRevB_96_035146 crossref_primary_10_1016_j_pquantelec_2017_05_003 crossref_primary_10_1002_pssa_201200576 crossref_primary_10_1063_1_4940021 crossref_primary_10_1103_PhysRevA_91_021801 crossref_primary_10_1103_PhysRevLett_108_143601 crossref_primary_10_1103_PhysRevA_99_052330 crossref_primary_10_1364_OL_38_001304 crossref_primary_10_1038_ncomms6718 crossref_primary_10_1038_nnano_2016_68 crossref_primary_10_1063_1_4965987 crossref_primary_10_1103_PhysRevB_85_134107 crossref_primary_10_1038_nnano_2017_218 crossref_primary_10_1039_C7NR05675C crossref_primary_10_1016_j_diamond_2014_02_005 crossref_primary_10_1186_s43074_021_00043_z crossref_primary_10_1364_OE_19_016182 crossref_primary_10_1088_0256_307X_34_9_096101 crossref_primary_10_1063_5_0081577 crossref_primary_10_1088_2515_7647_ad9718 crossref_primary_10_1007_s10773_016_3188_3 crossref_primary_10_1103_PhysRevX_5_041051 crossref_primary_10_1002_qute_201900006 crossref_primary_10_1364_OE_19_017966 crossref_primary_10_1063_1_4869103 crossref_primary_10_1364_JOSAB_33_0000B5 crossref_primary_10_1364_OE_19_012825 crossref_primary_10_1088_2515_7647_aba171 crossref_primary_10_1088_1367_2630_18_8_083015 crossref_primary_10_1063_1_5053122 crossref_primary_10_1103_PhysRevA_85_052322 crossref_primary_10_1002_lpor_201200066 crossref_primary_10_3390_electronics12224616 crossref_primary_10_1109_JLT_2022_3210466 crossref_primary_10_1103_PhysRevLett_110_156402 crossref_primary_10_3390_ma16175849 crossref_primary_10_1038_nnano_2011_190 crossref_primary_10_1088_1555_6611_aaf90c crossref_primary_10_1364_OE_20_015628 crossref_primary_10_1063_1_4819339 crossref_primary_10_1063_5_0033507 crossref_primary_10_1088_2040_8986_ac6ad1 crossref_primary_10_3762_bjnano_9_12 crossref_primary_10_1063_1_4902562 crossref_primary_10_1103_PhysRevX_1_011007 crossref_primary_10_1364_JOSAB_33_000B65 crossref_primary_10_1038_ncomms4523 crossref_primary_10_1103_PhysRevX_7_031040 crossref_primary_10_1364_OPTICAQ_509233 crossref_primary_10_1016_j_chip_2023_100081 crossref_primary_10_1109_LPT_2017_2759727 crossref_primary_10_1142_S0219749923500211 crossref_primary_10_1002_qute_202100037 crossref_primary_10_1364_OME_7_001514 crossref_primary_10_1038_s41467_018_05117_4 crossref_primary_10_1103_PhysRevX_10_041025 crossref_primary_10_1364_OME_7_000785 crossref_primary_10_1103_PhysRevApplied_19_064057 crossref_primary_10_1103_PhysRevLett_107_266403 crossref_primary_10_1109_JLT_2016_2622620 crossref_primary_10_1038_nphoton_2015_58 crossref_primary_10_1088_1367_2630_aaec29 |
Cites_doi | 10.1126/science.1139831 10.1063/1.3499300 10.1364/OE.17.006465 10.1021/nl102066q 10.1038/nphoton.2009.229 10.1038/nphys1278 10.1116/1.2731327 10.1038/nature09256 10.1038/nmat2420 10.1103/PhysRev.69.37 10.1021/nl061342r 10.1103/PhysRevA.80.045802 10.1021/nl900384c 10.1088/1367-2630/11/11/113029 10.1126/science.1196436 10.1364/OE.17.008081 10.1063/1.3045950 10.1103/PhysRevLett.97.247401 10.1021/nl101662v 10.1088/0022-3719/7/20/019 10.1038/nature07278 10.1038/nchem.483 10.1021/nl8032944 10.1063/1.3262948 10.1103/PhysRevA.72.052330 10.1103/PhysRevLett.93.130501 10.1063/1.2813023 10.1088/0953-8984/18/21/S09 10.1103/PhysRevA.59.1025 10.1098/rspa.1976.0039 10.1063/1.2076435 10.1116/1.3520638 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2011 Copyright Nature Publishing Group May 2011 |
Copyright_xml | – notice: Springer Nature Limited 2011 – notice: Copyright Nature Publishing Group May 2011 |
DBID | -LJ GXV AAYXX CITATION 7QO 7SP 7U5 8FD 8FE 8FG 8FH AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ H8D HCIFZ L7M LK8 M7P P5Z P62 P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1038/nphoton.2011.52 |
DatabaseName | National Research Council Canada Archive CISTI Source CrossRef Biotechnology Research Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central (New) Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student Aerospace Database SciTech Premium Collection Advanced Technologies Database with Aerospace Biological Sciences Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Aerospace Database ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Sciences Physics |
EISSN | 1749-4893 |
EndPage | 305 |
ExternalDocumentID | 2376940811 10_1038_nphoton_2011_52 oai_cisti_icist_nrc_cnrc_ca_cistinparc_21272019 |
GroupedDBID | -LJ -~X 0R~ 123 29M 39C 4.4 70F 8FE 8FG 8FH 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABJNI ABLJU ABZEH ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFKRA AFRAH AFSHS AFWHJ AGAYW AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD ARAPS ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO CCPQU CS3 DU5 EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GXV HCIFZ HVGLF HZ~ I-F LK8 M7P NNMJJ O9- P2P P62 PHGZM PHGZT PQGLB PUEGO Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX CITATION 7QO 7SP 7U5 8FD AZQEC DWQXO FR3 GNUQQ H8D L7M P64 PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c406t-8cf3bd5451ec9b5febd5b2f35c751c8c7dacccb6b29f23fb91d1b2f2a7a600ad3 |
IEDL.DBID | BENPR |
ISSN | 1749-4885 |
IngestDate | Thu Jul 10 23:08:06 EDT 2025 Wed Jul 16 15:12:47 EDT 2025 Tue Jul 01 02:34:12 EDT 2025 Thu Apr 24 22:58:03 EDT 2025 Mon Jul 21 06:06:47 EDT 2025 Tue Sep 02 20:40:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-8cf3bd5451ec9b5febd5b2f35c751c8c7dacccb6b29f23fb91d1b2f2a7a600ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 872162734 |
PQPubID | 546300 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_889446871 proquest_journals_872162734 crossref_primary_10_1038_nphoton_2011_52 crossref_citationtrail_10_1038_nphoton_2011_52 springer_journals_10_1038_nphoton_2011_52 nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_21272019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-05-01 |
PublicationDateYYYYMMDD | 2011-05-01 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature photonics |
PublicationTitleAbbrev | Nature Photon |
PublicationYear | 2011 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Barclay P. E. (nphoton.2011.52-b20) 2009; 17 nphoton.2011.52-b1 Jelezko F. (nphoton.2011.52-b5) 2004; 93 Fu K.-M. C. (nphoton.2011.52-b17) 2008; 93 Tomljenovic-Hanic S. (nphoton.2011.52-b31) 2009; 17 Davies G. (nphoton.2011.52-b27) 1976; 348 Gurudev Dutt M. V. (nphoton.2011.52-b9) 2007; 316 Balasubramanian G. (nphoton.2011.52-b4) 2008; 455 Englund D. (nphoton.2011.52-b22) 2010; 10 Babinec T. M. (nphoton.2011.52-b15) 2011; 29 Buckley B. B. (nphoton.2011.52-b8) 2010; 330 Wang C. F. (nphoton.2011.52-b13) 2007; 25 Larsson M. (nphoton.2011.52-b16) 2009; 9 Schietinger S. (nphoton.2011.52-b24) 2009; 9 Davies G. (nphoton.2011.52-b29) 1974; 7 Togan E. (nphoton.2011.52-b12) 2010; 466 Balasubramanian G. (nphoton.2011.52-b6) 2009; 8 Childress L. (nphoton.2011.52-b11) 2005; 72 Siyushev P. (nphoton.2011.52-b30) 2009; 11 Greentree A. (nphoton.2011.52-b14) 2006; 18 Purcell E. M. (nphoton.2011.52-b25) 1946; 69 Park Y-S. (nphoton.2011.52-b21) 2006; 6 Barclay P. E. (nphoton.2011.52-b18) 2009; 95 Wang C. F. (nphoton.2011.52-b26) 2007; 91 Wolters J. (nphoton.2011.52-b19) 2010; 97 Santori C. (nphoton.2011.52-b7) 2006; 97 Mosor S. (nphoton.2011.52-b28) 2005; 87 Toyli D. M. (nphoton.2011.52-b32) 2010; 10 O'Brien J. L. (nphoton.2011.52-b2) 2009; 3 Cabrillo C. (nphoton.2011.52-b10) 1999; 59 Kolesov R. (nphoton.2011.52-b23) 2009; 5 Lanyon B. P. (nphoton.2011.52-b33) 2010; 2 Mabuchi H. (nphoton.2011.52-b3) 2009; 80 |
References_xml | – volume: 316 start-page: 1312 year: 2007 ident: nphoton.2011.52-b9 publication-title: Science doi: 10.1126/science.1139831 – volume: 97 start-page: 141108 year: 2010 ident: nphoton.2011.52-b19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3499300 – volume: 17 start-page: 6465 year: 2009 ident: nphoton.2011.52-b31 publication-title: Opt. Express doi: 10.1364/OE.17.006465 – volume: 10 start-page: 3168 year: 2010 ident: nphoton.2011.52-b32 publication-title: Nano Lett. doi: 10.1021/nl102066q – volume: 3 start-page: 687 year: 2009 ident: nphoton.2011.52-b2 publication-title: Nature Photon. doi: 10.1038/nphoton.2009.229 – volume: 5 start-page: 470 year: 2009 ident: nphoton.2011.52-b23 publication-title: Nature Phys. doi: 10.1038/nphys1278 – volume: 25 start-page: 730 year: 2007 ident: nphoton.2011.52-b13 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.2731327 – volume: 466 start-page: 730 year: 2010 ident: nphoton.2011.52-b12 publication-title: Nature doi: 10.1038/nature09256 – volume: 8 start-page: 383 year: 2009 ident: nphoton.2011.52-b6 publication-title: Nature Mater. doi: 10.1038/nmat2420 – volume: 69 start-page: 681 year: 1946 ident: nphoton.2011.52-b25 publication-title: Phys. Rev. doi: 10.1103/PhysRev.69.37 – volume: 6 start-page: 2075 year: 2006 ident: nphoton.2011.52-b21 publication-title: Nano Lett. doi: 10.1021/nl061342r – volume: 80 start-page: 045802 year: 2009 ident: nphoton.2011.52-b3 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.80.045802 – volume: 9 start-page: 1694 year: 2009 ident: nphoton.2011.52-b24 publication-title: Nano Lett. doi: 10.1021/nl900384c – volume: 11 start-page: 113029 year: 2009 ident: nphoton.2011.52-b30 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/11/113029 – volume: 330 start-page: 1212 year: 2010 ident: nphoton.2011.52-b8 publication-title: Science doi: 10.1126/science.1196436 – volume: 17 start-page: 8081 year: 2009 ident: nphoton.2011.52-b20 publication-title: Opt. Express doi: 10.1364/OE.17.008081 – volume: 93 start-page: 234107 year: 2008 ident: nphoton.2011.52-b17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3045950 – volume: 97 start-page: 247401 year: 2006 ident: nphoton.2011.52-b7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.247401 – volume: 10 start-page: 3922 year: 2010 ident: nphoton.2011.52-b22 publication-title: Nano Lett. doi: 10.1021/nl101662v – volume: 7 start-page: 3797 year: 1974 ident: nphoton.2011.52-b29 publication-title: J. Phys. C doi: 10.1088/0022-3719/7/20/019 – volume: 455 start-page: 648 year: 2008 ident: nphoton.2011.52-b4 publication-title: Nature doi: 10.1038/nature07278 – ident: nphoton.2011.52-b1 – volume: 2 start-page: 106 year: 2010 ident: nphoton.2011.52-b33 publication-title: Nature Chem. doi: 10.1038/nchem.483 – volume: 9 start-page: 1447 year: 2009 ident: nphoton.2011.52-b16 publication-title: Nano Lett. doi: 10.1021/nl8032944 – volume: 95 start-page: 191115 year: 2009 ident: nphoton.2011.52-b18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3262948 – volume: 72 start-page: 052330 year: 2005 ident: nphoton.2011.52-b11 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.72.052330 – volume: 93 start-page: 130501 year: 2004 ident: nphoton.2011.52-b5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.130501 – volume: 91 start-page: 201112 year: 2007 ident: nphoton.2011.52-b26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2813023 – volume: 18 start-page: S825 year: 2006 ident: nphoton.2011.52-b14 publication-title: J. Phys. Condens Matter doi: 10.1088/0953-8984/18/21/S09 – volume: 59 start-page: 1025 year: 1999 ident: nphoton.2011.52-b10 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.59.1025 – volume: 348 start-page: 285 year: 1976 ident: nphoton.2011.52-b27 publication-title: Proc. R. Soc. Lond. A doi: 10.1098/rspa.1976.0039 – volume: 87 start-page: 141105 year: 2005 ident: nphoton.2011.52-b28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2076435 – volume: 29 start-page: 010601 year: 2011 ident: nphoton.2011.52-b15 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.3520638 |
SSID | ssj0053922 |
Score | 2.5467525 |
Snippet | Integrated quantum photonic technologies are key for future applications in quantum information1,2, ultralow-power opto-electronics3 and sensing4. As... Integrated quantum photonic technologies are key for future applications in quantum information1, (O'Brien et al. in Nature Photon. 3:687, 2009),... Integrated quantum photonic technologies are key for future applications in quantum information, ultralow-power opto-electronics and sensing. As individual... |
SourceID | proquest crossref springer nrccanada |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 301 |
SubjectTerms | Applied and Technical Physics Devices Information storage Joining letter Networks Nitrogen Optical resonators Photonics Physics Physics and Astronomy Quantum Physics Semiconductors Vacancies |
Title | Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity |
URI | https://nrc-publications.canada.ca/eng/view/object/?id=d7f87902-36d2-437f-829d-5ff54af0c961 https://link.springer.com/article/10.1038/nphoton.2011.52 https://www.proquest.com/docview/872162734 https://www.proquest.com/docview/889446871 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZo9wCX8hahsPKBAxxC1068cU5oF7pUHCqEqFROlj221UpVsuzj0l_PTOIEFalcEiWZJI7HGX8ej79h7B3M6igKgSNVLSAvRaxyF2SZl5ESOwgvZ9BFW5zPzy7Kb5fqMsXmbFNY5WATO0PtWyAf-YkmlhniYvm0_p1T0iiaXE0ZNA7YBC2wxrHXZHl6_v3HYIoVdv6yXxFZ59hS1cDtU-iTZn3VIrrqSTyVvNMtPWw20MVc2Tu485-p0q4HWj1hRwk68kWv66fsQWiesccJRvL0k26fs1_kkqf4Fh6aK1IqOQB5GzliPX4bNm1O8ehtwynVGznLOK0x4ZYTgfV-w7t4zcCvGzyFrQe_3HOwlGPiBbtYnf78fJanDAo5YEe9yzXEwnkESSJA7VQMeOBkLBRUSoCGylsAcHMn6yiL6GrhBV6XtrIIhKwvXrJDLE94xbguC18rBRGUL6u5RTHwCB-Cm1cyzkTGPg4VaCDRi1OWixvTTXMX2qQaN1TjRsmMvR9vWPfMGveLLkaNjLLEiw1kB8017QxKGOg2tj_frNFUGGKwx8fUGTseNGnSb7o1Y6PKGB-vYt3TpIltQrtHEV3jiBmHlRn7MOj_7wPuKfDr_77smD3qPdMUNvmGHe42-_AWoc3OTdmBXn2dssli-WW5mqbm_AemSwDK |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXylOk5eEDSHAIXdvxJjkgVAHLlpaeWqmcjDO21UooWfYhBP-J_8hMHouKVG697GqTWScaj8efPeNvAJ7jqIxSS1qpFhLTTMY8rYLK0ixyYQfp1QjbbIvj8fQ0-3Rmzjbg93AWhtMqB5_YOmrfIO-R7xXMMsNcLG9n31MuGsXB1aGCRmcVh-HnD1qxLd4cvKfufaHU5MPJu2naFxVIkeauZVpg1JUn3CADlpWJgX5UKmqDuZFYYO4dIlbjSpVR6ViV0ku6r1zuCBs4r6ndG3Az07rkAVVMPg6O3xDUUN35yzKlcWEGJiFd7NWz84awXEcZatSlSXCrnmOb4eUuodx_ArPtfDe5A7d7oCr2O8u6CxuhvgfbPWgVvUtY3IcvHADgbBoR6nM2Id5uFE0UhCzFrzBvUs5-b2rBheV4a07wiRbhBNNlr-aizQ4N4qKmS2SrpGcv0HFFiwdwei2qfQib9D7hEYgi0740BiMan-VjR2LoCayEapyrOJIJvB4UaLEnM-eaGt9sG1TXhe01blnj1qgEXq7_MOt4PK4W3V_3yFqWWbiRva694C9LEhbbD9ddr2dkgpb58qmZMoHdoSdt7xQWdm3CCYj1XdI9h2hcHZoViRQlrc9pEZvAq6H__zZwxQvv_Pdhz2BrevL5yB4dHB_uwq1uT5wTNh_D5nK-Ck8IVC2rp60pC_h63WPnDwGpPPA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRceCPS8vABJDiEXTvxJjkgVGhXLUWrClGpnFxnbKuVULLdhxD8M_4dM3ksKlK59ZIoycSJxuPxN57xDMBLHBVBJpIs1VxinMqQxaVXaZwGLuwgnRphE20xHe8fp59O9MkG_O73wnBYZa8TG0XtauQ18mHOWWY4F8swdFERR7uT97OLmAtIsaO1r6bRSsih__mDrLfFu4Nd6upXSk32vn7cj7sCAzHSPLaMcwxJ6QhDSI9FqYOni1KFRGOmJeaYOYuI5bhURVBJKAvpJD1XNrOEE6xLqN0bsJmRUTQawOaHvenRl34a0AQ8VLsbs4hplOg-r1CSD6vZWU3Irk0gqtWlKfFWNccm3stewrz_uGmb2W9yD-50sFXstHJ2HzZ89QDudhBWdApi8RC-sTuAY2uEr85YoHjxUdRBEM4Uv_y8jjkWvq4El5njhTrB-1uEFZw8ezUXTayoF-cV3SLJJU47gZbrWzyC42th7mMY0P_4JyDyNHGF1hhQuzQbWyJDR9DFl-NMhZGM4G3PQINdanOusPHdNC72JDcdxw1z3GgVwev1C7M2q8fVpDvrHlnTck5uZB1szvlkiMJgc7Dt_WpGQmg4ez41U0Sw3fek6VTEwqwFOgKxfkq8Z4eNrXy9IpK8IGudTNoI3vT9_7eBK354678fewE3adyYzwfTw2243S6Qc_TmUxgs5yv_jBDWsnzeybKA0-sePn8AcaxCgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resonant+enhancement+of+the+zero-phonon+emission+from+a+colour+centre+in+a+diamond+cavity&rft.jtitle=Nature+photonics&rft.au=Faraon%2C+Andrei&rft.au=Barclay%2C+Paul+E&rft.au=Santori%2C+Charles&rft.au=Fu%2C+Kai-Mei+C&rft.date=2011-05-01&rft.issn=1749-4885&rft_id=info:doi/10.1038%2Fnphoton.2011.52&rft.externalDocID=oai_cisti_icist_nrc_cnrc_ca_cistinparc_21272019 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon |