Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity

Integrated quantum photonic technologies are key for future applications in quantum information1,2, ultralow-power opto-electronics3 and sensing4. As individual quantum bits, nitrogen-vacancy centres in diamond are among the most promising solid-state systems identified to date, because of their lon...

Full description

Saved in:
Bibliographic Details
Published inNature photonics Vol. 5; no. 5; pp. 301 - 305
Main Authors Faraon, Andrei, Barclay, Paul E, Santori, Charles, Fu, Kai-Mei C, Beausoleil, Raymond G
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2011
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Integrated quantum photonic technologies are key for future applications in quantum information1,2, ultralow-power opto-electronics3 and sensing4. As individual quantum bits, nitrogen-vacancy centres in diamond are among the most promising solid-state systems identified to date, because of their long-lived electron and nuclear spin coherence, and capability for individual optical initialization, readout and information storage 5-9. The major outstanding hurdle lies in interconnecting many nitrogen vacancies for large-scale computation. One of the most promising approaches in this regard is to couple them to optical resonators, which can be further interconnected in a photonic network. Here10-12, we demonstrate coupling of the zero-phonon line of individual nitrogen vacancies to the modes of microring resonators fabricated in single-crystal diamond. Zero-phonon line enhancement by more than a factor of 10 is estimated from lifetime measurements. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics. © 2011 Macmillan Publishers Limited. All rights reserved.
NRC publication: Yes
AbstractList Integrated quantum photonic technologies are key for future applications in quantum information, ultralow-power opto-electronics and sensing. As individual quantum bits, nitrogen-vacancy centres in diamond are among the most promising solid-state systems identified to date, because of their long-lived electron and nuclear spin coherence, and capability for individual optical initialization, readout and information storage. The major outstanding hurdle lies in interconnecting many nitrogen vacancies for large-scale computation. One of the most promising approaches in this regard is to couple them to optical resonators, which can be further interconnected in a photonic network. Here, we demonstrate coupling of the zero-phonon line of individual nitrogen vacancies to the modes of microring resonators fabricated in single-crystal diamond. Zero-phonon line enhancement by more than a factor of 10 is estimated from lifetime measurements. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics.
Integrated quantum photonic technologies are key for future applications in quantum information1,2, ultralow-power opto-electronics3 and sensing4. As individual quantum bits, nitrogen-vacancy centres in diamond are among the most promising solid-state systems identified to date, because of their long-lived electron and nuclear spin coherence, and capability for individual optical initialization, readout and information storage 5-9. The major outstanding hurdle lies in interconnecting many nitrogen vacancies for large-scale computation. One of the most promising approaches in this regard is to couple them to optical resonators, which can be further interconnected in a photonic network. Here10-12, we demonstrate coupling of the zero-phonon line of individual nitrogen vacancies to the modes of microring resonators fabricated in single-crystal diamond. Zero-phonon line enhancement by more than a factor of 10 is estimated from lifetime measurements. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics. © 2011 Macmillan Publishers Limited. All rights reserved.
Integrated quantum photonic technologies are key for future applications in quantum information1, (O'Brien et al. in Nature Photon. 3:687, 2009), ultralow-power opto-electronics (Mabuchi in Phys. Rev. A 80:045802, 2009) and sensing (Balasubramanian in Nature 455:648, 2008). As individual quantum bits, nitrogen-vacancy centres in diamond are among the most promising solid-state systems identified to date, because of their long-lived electron and nuclear spin coherence and capability for individual optical initialization, readout and information storage (Jelezko in Phys. Rev. Lett. 93:130501, 2004, Balasubramanian in Nature Mater. 8:383, 2009, Santori in Phys. Rev. Lett. 97:247401, 2006, Buckley et al. in Science 330:1212, 2010, Gurudev Dutt in Science 316:1312, 2007). The major outstanding hurdle lies in interconnecting many nitrogen vacancies for large-scale computation. One of the most promising approaches in this regard is to couple them to optical resonators, which can be further interconnected in a photonic network (Cabrillo et al. in Phys. Rev. A 59:1025, 1999, Childress et al. in Phys. Rev. A 72:052330, 2005, Togan in Nature 466:730, 2010). Here, we demonstrate coupling of the zero-phonon line of individual nitrogen vacancies to the modes of microring resonators fabricated in single-crystal diamond. Zero-phonon line enhancement by more than a factor of 10 is estimated from lifetime measurements. The devices are fabricated using standard semiconductor techniques and off-the-shelf materials, thus enabling integrated diamond photonics. Scientists couple the zero-phonon line of individual nitrogen-vacancy centres to the modes of microring resonators fabricated in single-crystal diamond using standard semiconductor techniques, paving ways towards integrated diamond photonics.
Author Santori, Charles
Beausoleil, Raymond G
Fu, Kai-Mei C
Faraon, Andrei
Barclay, Paul E
Author_xml – sequence: 1
  fullname: Faraon, Andrei
– sequence: 2
  fullname: Barclay, Paul E
– sequence: 3
  fullname: Santori, Charles
– sequence: 4
  fullname: Fu, Kai-Mei C
– sequence: 5
  fullname: Beausoleil, Raymond G
BookMark eNp9UE1r3DAQFSWB5qPnXk0vPXkjyZYtH0tom0IgUJpDTmI8lroKtrSVtIXk13e2DikEmovmQ-_NvHmn7CjEYBl7L_hG8EZfhN02lhg2kguxUfINOxF9O9StHpqj51yrt-w053vOVTNIecLuvtscA4RS2bCFgHaxlEdXla2tHm2KNY2lTZVdfM6eEpfiUkGFcY77VCHBk618oNbkYYlhqhB--_Jwzo4dzNm-e4pn7PbL5x-XV_X1zddvl5-ua2x5V2qNrhkn1SphcRiVs1SM0jUKeyVQYz8BIo7dKAcnGzcOYhL0L6GHjnOYmjP2cZ27S_HX3uZiSCnaeYZg4z4brYe27XQvCPnhBfKeTggkzuheik72TUugixWEKeacrDO75BdID0ZwczDaPBltDkYbJYmhXjDQFyjkVUng51d4fOVl2hB-2vRPzv8pVyslJEQIMMGzugie9ubijT8EQwiDfx9Y-2EHVEkhe5o2NH8AGH20dA
CitedBy_id crossref_primary_10_1557_s43579_023_00435_1
crossref_primary_10_1103_PhysRevLett_116_247402
crossref_primary_10_1038_srep35529
crossref_primary_10_1002_adom_201400189
crossref_primary_10_1002_qute_201900060
crossref_primary_10_1088_1742_6596_2595_1_012003
crossref_primary_10_1038_nphoton_2016_234
crossref_primary_10_1063_1_4978204
crossref_primary_10_1103_PhysRevApplied_6_011001
crossref_primary_10_1063_5_0042987
crossref_primary_10_1073_pnas_1305920110
crossref_primary_10_1364_JOSAB_33_000B35
crossref_primary_10_1002_adma_201103932
crossref_primary_10_1063_1_5030023
crossref_primary_10_1038_srep16444
crossref_primary_10_1364_OE_20_019545
crossref_primary_10_1143_JJAP_51_090110
crossref_primary_10_1364_OE_21_019387
crossref_primary_10_1021_acs_nanolett_5b01346
crossref_primary_10_1364_OE_419773
crossref_primary_10_1007_s10773_021_04878_x
crossref_primary_10_1007_s11082_020_02701_1
crossref_primary_10_1063_5_0077045
crossref_primary_10_1088_0957_4484_23_17_175702
crossref_primary_10_1364_OE_20_008891
crossref_primary_10_1063_1_4804262
crossref_primary_10_1021_acsphotonics_1c00459
crossref_primary_10_1088_2040_8986_ab66cd
crossref_primary_10_1002_adfm_202008149
crossref_primary_10_1007_s11433_022_1957_3
crossref_primary_10_1038_ncomms2201
crossref_primary_10_1088_1674_1056_ac785f
crossref_primary_10_1088_1367_2630_13_9_093020
crossref_primary_10_1088_2515_7647_aaea7d
crossref_primary_10_1088_1361_6455_aaf452
crossref_primary_10_1103_PhysRevX_14_041008
crossref_primary_10_1038_nphoton_2014_192
crossref_primary_10_1103_PhysRevB_95_214301
crossref_primary_10_1109_JPROC_2016_2561274
crossref_primary_10_1103_PhysRevLett_123_167403
crossref_primary_10_1515_nanoph_2020_0387
crossref_primary_10_1016_j_optmat_2012_09_020
crossref_primary_10_1126_sciadv_abo4538
crossref_primary_10_1021_nl300350r
crossref_primary_10_1038_s42005_020_00412_3
crossref_primary_10_1088_1361_6463_ac276d
crossref_primary_10_1038_nphoton_2011_63
crossref_primary_10_1002_qute_202100003
crossref_primary_10_1088_0957_4484_26_1_015501
crossref_primary_10_1364_OME_7_000513
crossref_primary_10_1063_5_0054629
crossref_primary_10_1103_PhysRevA_98_013848
crossref_primary_10_1088_0034_4885_75_12_126503
crossref_primary_10_1103_PhysRevA_89_040301
crossref_primary_10_1088_2633_4356_ac6f3e
crossref_primary_10_1088_1367_2630_17_12_122003
crossref_primary_10_1103_PhysRevApplied_22_064015
crossref_primary_10_1364_OE_25_015572
crossref_primary_10_1016_j_jsamd_2016_04_008
crossref_primary_10_1007_s11128_016_1499_1
crossref_primary_10_1364_OE_25_013153
crossref_primary_10_1364_OPTICA_398628
crossref_primary_10_1063_1_4885469
crossref_primary_10_1103_PhysRevLett_121_153601
crossref_primary_10_1103_PhysRevLett_122_076101
crossref_primary_10_1038_nphoton_2011_54
crossref_primary_10_1063_1_4982168
crossref_primary_10_1063_1_4940715
crossref_primary_10_1002_inf2_12128
crossref_primary_10_1088_1367_2630_15_4_043017
crossref_primary_10_1021_acs_nanolett_7b04717
crossref_primary_10_1364_OL_44_002081
crossref_primary_10_1364_OL_42_003804
crossref_primary_10_1088_1367_2630_aa8085
crossref_primary_10_3389_fphy_2022_960078
crossref_primary_10_1063_1_3628463
crossref_primary_10_1103_PhysRevLett_123_146804
crossref_primary_10_1021_acs_nanolett_0c01771
crossref_primary_10_1103_PhysRevApplied_2_064011
crossref_primary_10_1038_srep35566
crossref_primary_10_1063_1_4862331
crossref_primary_10_1063_1_4961536
crossref_primary_10_1016_j_surfin_2021_101666
crossref_primary_10_1364_OE_20_010490
crossref_primary_10_1038_nphoton_2011_296
crossref_primary_10_1038_nature11577
crossref_primary_10_1103_PhysRevLett_108_043604
crossref_primary_10_1103_PhysRevA_88_063825
crossref_primary_10_1088_1555_6611_aa6992
crossref_primary_10_1002_lpor_201400178
crossref_primary_10_1103_PhysRevB_99_161203
crossref_primary_10_1021_acs_nanolett_2c00739
crossref_primary_10_1088_0256_307X_29_3_036103
crossref_primary_10_1002_adma_202000891
crossref_primary_10_1088_1367_2630_ab1144
crossref_primary_10_1007_s10773_014_2278_3
crossref_primary_10_1088_2058_9565_ab2819
crossref_primary_10_1007_s11433_019_9414_2
crossref_primary_10_1103_PhysRevB_97_205124
crossref_primary_10_7567_JJAP_51_090110
crossref_primary_10_3390_ma16227112
crossref_primary_10_1021_acs_nanolett_2c04890
crossref_primary_10_1002_pssa_201900233
crossref_primary_10_1364_JOSAB_387055
crossref_primary_10_1364_OE_19_022219
crossref_primary_10_1021_nl402174g
crossref_primary_10_1021_nl302541e
crossref_primary_10_1364_OE_433094
crossref_primary_10_1039_C8TC00097B
crossref_primary_10_1557_mrs_2013_19
crossref_primary_10_1103_PhysRevA_91_032328
crossref_primary_10_1364_OE_381286
crossref_primary_10_1039_C9CP04415A
crossref_primary_10_1103_PhysRevA_85_013833
crossref_primary_10_1002_pssa_201600656
crossref_primary_10_1103_PhysRevA_91_032324
crossref_primary_10_1021_acsnano_6b08412
crossref_primary_10_1103_PhysRevB_88_161403
crossref_primary_10_1103_PhysRevB_87_035308
crossref_primary_10_1103_PhysRevApplied_18_024041
crossref_primary_10_1002_adma_201301343
crossref_primary_10_1016_j_aop_2016_03_001
crossref_primary_10_1063_5_0051675
crossref_primary_10_1103_PhysRevLett_109_223902
crossref_primary_10_3390_mi9090437
crossref_primary_10_1063_1_4821917
crossref_primary_10_1364_OL_37_000539
crossref_primary_10_1063_1_4904909
crossref_primary_10_1364_OL_44_004056
crossref_primary_10_7498_aps_71_20211797
crossref_primary_10_1021_acs_nanolett_6b00974
crossref_primary_10_1364_OL_42_001788
crossref_primary_10_1016_j_giant_2024_100238
crossref_primary_10_1364_OE_387255
crossref_primary_10_1364_OE_405653
crossref_primary_10_1364_OL_43_003586
crossref_primary_10_1146_annurev_conmatphys_030212_184238
crossref_primary_10_1039_C8RA01859F
crossref_primary_10_1126_science_aan0070
crossref_primary_10_1364_OME_9_004545
crossref_primary_10_1016_j_diamond_2021_108692
crossref_primary_10_1364_OE_23_002945
crossref_primary_10_1063_1_4823548
crossref_primary_10_1021_acsphotonics_6b00913
crossref_primary_10_1021_acsphotonics_0c00960
crossref_primary_10_1364_OE_24_028815
crossref_primary_10_1002_smll_202104805
crossref_primary_10_1364_OME_1_000576
crossref_primary_10_1016_j_jallcom_2022_166507
crossref_primary_10_1063_5_0157450
crossref_primary_10_1103_PhysRevLett_109_033604
crossref_primary_10_1063_5_0187661
crossref_primary_10_1038_srep35922
crossref_primary_10_1021_acsomega_8b00139
crossref_primary_10_1364_OPTICA_3_000963
crossref_primary_10_1021_acs_nanolett_3c01602
crossref_primary_10_1038_ncomms4328
crossref_primary_10_1021_acsnano_9b01668
crossref_primary_10_1002_adma_201201074
crossref_primary_10_1103_PhysRevLett_108_206401
crossref_primary_10_1021_acs_nanolett_9b01316
crossref_primary_10_1038_ncomms14000
crossref_primary_10_1364_OE_27_033051
crossref_primary_10_35848_1882_0786_abd868
crossref_primary_10_1021_acs_nanolett_5b05304
crossref_primary_10_1063_5_0161268
crossref_primary_10_1109_JSTQE_2018_2806079
crossref_primary_10_1038_srep12918
crossref_primary_10_1103_RevModPhys_94_041003
crossref_primary_10_1364_OE_21_032623
crossref_primary_10_1063_1_4948746
crossref_primary_10_1002_pssb_201248384
crossref_primary_10_1515_nanoph_2024_0300
crossref_primary_10_1007_s11706_022_0590_z
crossref_primary_10_1016_j_optlastec_2012_09_033
crossref_primary_10_1021_acs_jpcc_9b06919
crossref_primary_10_1038_ncomms2710
crossref_primary_10_1103_PhysRevA_88_053812
crossref_primary_10_1021_acs_nanolett_7b00973
crossref_primary_10_1038_s43246_025_00770_x
crossref_primary_10_1063_1_4955065
crossref_primary_10_1103_PhysRevX_13_011005
crossref_primary_10_1063_5_0001922
crossref_primary_10_1103_PhysRevB_90_081117
crossref_primary_10_1116_5_0011316
crossref_primary_10_1364_OE_21_011031
crossref_primary_10_1088_2040_8978_18_2_024002
crossref_primary_10_1103_PhysRevApplied_18_064011
crossref_primary_10_1063_1_4764548
crossref_primary_10_1021_acs_nanolett_1c01439
crossref_primary_10_1038_nphoton_2011_249
crossref_primary_10_1063_5_0056534
crossref_primary_10_1038_srep09619
crossref_primary_10_1038_micronano_2017_61
crossref_primary_10_1088_1367_2630_18_1_013015
crossref_primary_10_1007_s10701_013_9771_z
crossref_primary_10_1103_PhysRevX_14_041055
crossref_primary_10_1021_acs_nanolett_7b05075
crossref_primary_10_1103_PhysRevLett_116_033603
crossref_primary_10_1364_AOP_376924
crossref_primary_10_1103_PhysRevApplied_15_024049
crossref_primary_10_1364_OE_25_016931
crossref_primary_10_1021_nl304682r
crossref_primary_10_1038_ncomms9206
crossref_primary_10_3762_bjnano_4_33
crossref_primary_10_1063_1_5120120
crossref_primary_10_1364_OME_7_000111
crossref_primary_10_1103_PhysRevApplied_8_024026
crossref_primary_10_1021_nl3037454
crossref_primary_10_1364_OE_27_023396
crossref_primary_10_1016_j_optcom_2018_09_004
crossref_primary_10_1088_0034_4885_77_5_056503
crossref_primary_10_1103_PhysRevApplied_13_014036
crossref_primary_10_7566_JPSJ_83_094708
crossref_primary_10_1002_pssa_202300433
crossref_primary_10_1021_acs_nanolett_2c03151
crossref_primary_10_1103_PhysRevLett_114_017601
crossref_primary_10_1109_ACCESS_2019_2934408
crossref_primary_10_1021_acsanm_3c01047
crossref_primary_10_1007_s10773_013_1802_1
crossref_primary_10_1088_1367_2630_15_2_025010
crossref_primary_10_1126_sciadv_abn9573
crossref_primary_10_1021_acs_jpclett_4c03615
crossref_primary_10_1016_j_diamond_2012_12_008
crossref_primary_10_1088_1367_2630_15_2_025014
crossref_primary_10_1002_lpor_202200529
crossref_primary_10_1002_qute_201800061
crossref_primary_10_1103_PhysRevA_84_032124
crossref_primary_10_1364_OE_24_015429
crossref_primary_10_1364_OE_507325
crossref_primary_10_1038_srep11486
crossref_primary_10_1021_acsphotonics_0c00528
crossref_primary_10_1063_1_4992118
crossref_primary_10_1103_PhysRevB_100_094309
crossref_primary_10_1103_PhysRevA_107_023719
crossref_primary_10_1103_PhysRevResearch_5_013176
crossref_primary_10_1063_1_4892544
crossref_primary_10_1103_PhysRevA_89_060303
crossref_primary_10_1364_JOSAB_35_000423
crossref_primary_10_1515_nanoph_2021_0369
crossref_primary_10_1021_acsnano_7b00638
crossref_primary_10_1021_acsphotonics_7b00521
crossref_primary_10_1103_PhysRevA_104_063510
crossref_primary_10_1103_PhysRevX_4_031022
crossref_primary_10_1103_PhysRevApplied_22_064069
crossref_primary_10_1016_j_optcom_2016_05_054
crossref_primary_10_1021_acs_nanolett_8b04259
crossref_primary_10_1039_C5NR08348F
crossref_primary_10_1016_j_apsusc_2024_159581
crossref_primary_10_1364_OPTICA_2_000924
crossref_primary_10_1063_1_4901105
crossref_primary_10_1038_s41578_018_0008_9
crossref_primary_10_1088_2040_8978_18_12_123002
crossref_primary_10_3390_ma16083274
crossref_primary_10_1038_nphoton_2014_72
crossref_primary_10_1021_acs_nanolett_5b03724
crossref_primary_10_1038_nphoton_2011_333
crossref_primary_10_1021_nl204449n
crossref_primary_10_1002_pssa_201329282
crossref_primary_10_1063_1_4891224
crossref_primary_10_1088_0957_4484_23_1_015601
crossref_primary_10_1002_andp_201900578
crossref_primary_10_1103_PhysRevB_87_235319
crossref_primary_10_1002_lpor_201400453
crossref_primary_10_1103_PhysRevB_96_035146
crossref_primary_10_1016_j_pquantelec_2017_05_003
crossref_primary_10_1002_pssa_201200576
crossref_primary_10_1063_1_4940021
crossref_primary_10_1103_PhysRevA_91_021801
crossref_primary_10_1103_PhysRevLett_108_143601
crossref_primary_10_1103_PhysRevA_99_052330
crossref_primary_10_1364_OL_38_001304
crossref_primary_10_1038_ncomms6718
crossref_primary_10_1038_nnano_2016_68
crossref_primary_10_1063_1_4965987
crossref_primary_10_1103_PhysRevB_85_134107
crossref_primary_10_1038_nnano_2017_218
crossref_primary_10_1039_C7NR05675C
crossref_primary_10_1016_j_diamond_2014_02_005
crossref_primary_10_1186_s43074_021_00043_z
crossref_primary_10_1364_OE_19_016182
crossref_primary_10_1088_0256_307X_34_9_096101
crossref_primary_10_1063_5_0081577
crossref_primary_10_1088_2515_7647_ad9718
crossref_primary_10_1007_s10773_016_3188_3
crossref_primary_10_1103_PhysRevX_5_041051
crossref_primary_10_1002_qute_201900006
crossref_primary_10_1364_OE_19_017966
crossref_primary_10_1063_1_4869103
crossref_primary_10_1364_JOSAB_33_0000B5
crossref_primary_10_1364_OE_19_012825
crossref_primary_10_1088_2515_7647_aba171
crossref_primary_10_1088_1367_2630_18_8_083015
crossref_primary_10_1063_1_5053122
crossref_primary_10_1103_PhysRevA_85_052322
crossref_primary_10_1002_lpor_201200066
crossref_primary_10_3390_electronics12224616
crossref_primary_10_1109_JLT_2022_3210466
crossref_primary_10_1103_PhysRevLett_110_156402
crossref_primary_10_3390_ma16175849
crossref_primary_10_1038_nnano_2011_190
crossref_primary_10_1088_1555_6611_aaf90c
crossref_primary_10_1364_OE_20_015628
crossref_primary_10_1063_1_4819339
crossref_primary_10_1063_5_0033507
crossref_primary_10_1088_2040_8986_ac6ad1
crossref_primary_10_3762_bjnano_9_12
crossref_primary_10_1063_1_4902562
crossref_primary_10_1103_PhysRevX_1_011007
crossref_primary_10_1364_JOSAB_33_000B65
crossref_primary_10_1038_ncomms4523
crossref_primary_10_1103_PhysRevX_7_031040
crossref_primary_10_1364_OPTICAQ_509233
crossref_primary_10_1016_j_chip_2023_100081
crossref_primary_10_1109_LPT_2017_2759727
crossref_primary_10_1142_S0219749923500211
crossref_primary_10_1002_qute_202100037
crossref_primary_10_1364_OME_7_001514
crossref_primary_10_1038_s41467_018_05117_4
crossref_primary_10_1103_PhysRevX_10_041025
crossref_primary_10_1364_OME_7_000785
crossref_primary_10_1103_PhysRevApplied_19_064057
crossref_primary_10_1103_PhysRevLett_107_266403
crossref_primary_10_1109_JLT_2016_2622620
crossref_primary_10_1038_nphoton_2015_58
crossref_primary_10_1088_1367_2630_aaec29
Cites_doi 10.1126/science.1139831
10.1063/1.3499300
10.1364/OE.17.006465
10.1021/nl102066q
10.1038/nphoton.2009.229
10.1038/nphys1278
10.1116/1.2731327
10.1038/nature09256
10.1038/nmat2420
10.1103/PhysRev.69.37
10.1021/nl061342r
10.1103/PhysRevA.80.045802
10.1021/nl900384c
10.1088/1367-2630/11/11/113029
10.1126/science.1196436
10.1364/OE.17.008081
10.1063/1.3045950
10.1103/PhysRevLett.97.247401
10.1021/nl101662v
10.1088/0022-3719/7/20/019
10.1038/nature07278
10.1038/nchem.483
10.1021/nl8032944
10.1063/1.3262948
10.1103/PhysRevA.72.052330
10.1103/PhysRevLett.93.130501
10.1063/1.2813023
10.1088/0953-8984/18/21/S09
10.1103/PhysRevA.59.1025
10.1098/rspa.1976.0039
10.1063/1.2076435
10.1116/1.3520638
ContentType Journal Article
Copyright Springer Nature Limited 2011
Copyright Nature Publishing Group May 2011
Copyright_xml – notice: Springer Nature Limited 2011
– notice: Copyright Nature Publishing Group May 2011
DBID -LJ
GXV
AAYXX
CITATION
7QO
7SP
7U5
8FD
8FE
8FG
8FH
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
H8D
HCIFZ
L7M
LK8
M7P
P5Z
P62
P64
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1038/nphoton.2011.52
DatabaseName National Research Council Canada Archive
CISTI Source
CrossRef
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central (New)
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
Aerospace Database
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Biological Sciences
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Aerospace Database

ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Sciences
Physics
EISSN 1749-4893
EndPage 305
ExternalDocumentID 2376940811
10_1038_nphoton_2011_52
oai_cisti_icist_nrc_cnrc_ca_cistinparc_21272019
GroupedDBID -LJ
-~X
0R~
123
29M
39C
4.4
70F
8FE
8FG
8FH
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABJNI
ABLJU
ABZEH
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFKRA
AFRAH
AFSHS
AFWHJ
AGAYW
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
ARAPS
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
CCPQU
CS3
DU5
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GXV
HCIFZ
HVGLF
HZ~
I-F
LK8
M7P
NNMJJ
O9-
P2P
P62
PHGZM
PHGZT
PQGLB
PUEGO
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
CITATION
7QO
7SP
7U5
8FD
AZQEC
DWQXO
FR3
GNUQQ
H8D
L7M
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c406t-8cf3bd5451ec9b5febd5b2f35c751c8c7dacccb6b29f23fb91d1b2f2a7a600ad3
IEDL.DBID BENPR
ISSN 1749-4885
IngestDate Thu Jul 10 23:08:06 EDT 2025
Wed Jul 16 15:12:47 EDT 2025
Tue Jul 01 02:34:12 EDT 2025
Thu Apr 24 22:58:03 EDT 2025
Mon Jul 21 06:06:47 EDT 2025
Tue Sep 02 20:40:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-8cf3bd5451ec9b5febd5b2f35c751c8c7dacccb6b29f23fb91d1b2f2a7a600ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 872162734
PQPubID 546300
PageCount 5
ParticipantIDs proquest_miscellaneous_889446871
proquest_journals_872162734
crossref_primary_10_1038_nphoton_2011_52
crossref_citationtrail_10_1038_nphoton_2011_52
springer_journals_10_1038_nphoton_2011_52
nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_21272019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-05-01
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature photonics
PublicationTitleAbbrev Nature Photon
PublicationYear 2011
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Barclay P. E. (nphoton.2011.52-b20) 2009; 17
nphoton.2011.52-b1
Jelezko F. (nphoton.2011.52-b5) 2004; 93
Fu K.-M. C. (nphoton.2011.52-b17) 2008; 93
Tomljenovic-Hanic S. (nphoton.2011.52-b31) 2009; 17
Davies G. (nphoton.2011.52-b27) 1976; 348
Gurudev Dutt M. V. (nphoton.2011.52-b9) 2007; 316
Balasubramanian G. (nphoton.2011.52-b4) 2008; 455
Englund D. (nphoton.2011.52-b22) 2010; 10
Babinec T. M. (nphoton.2011.52-b15) 2011; 29
Buckley B. B. (nphoton.2011.52-b8) 2010; 330
Wang C. F. (nphoton.2011.52-b13) 2007; 25
Larsson M. (nphoton.2011.52-b16) 2009; 9
Schietinger S. (nphoton.2011.52-b24) 2009; 9
Davies G. (nphoton.2011.52-b29) 1974; 7
Togan E. (nphoton.2011.52-b12) 2010; 466
Balasubramanian G. (nphoton.2011.52-b6) 2009; 8
Childress L. (nphoton.2011.52-b11) 2005; 72
Siyushev P. (nphoton.2011.52-b30) 2009; 11
Greentree A. (nphoton.2011.52-b14) 2006; 18
Purcell E. M. (nphoton.2011.52-b25) 1946; 69
Park Y-S. (nphoton.2011.52-b21) 2006; 6
Barclay P. E. (nphoton.2011.52-b18) 2009; 95
Wang C. F. (nphoton.2011.52-b26) 2007; 91
Wolters J. (nphoton.2011.52-b19) 2010; 97
Santori C. (nphoton.2011.52-b7) 2006; 97
Mosor S. (nphoton.2011.52-b28) 2005; 87
Toyli D. M. (nphoton.2011.52-b32) 2010; 10
O'Brien J. L. (nphoton.2011.52-b2) 2009; 3
Cabrillo C. (nphoton.2011.52-b10) 1999; 59
Kolesov R. (nphoton.2011.52-b23) 2009; 5
Lanyon B. P. (nphoton.2011.52-b33) 2010; 2
Mabuchi H. (nphoton.2011.52-b3) 2009; 80
References_xml – volume: 316
  start-page: 1312
  year: 2007
  ident: nphoton.2011.52-b9
  publication-title: Science
  doi: 10.1126/science.1139831
– volume: 97
  start-page: 141108
  year: 2010
  ident: nphoton.2011.52-b19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3499300
– volume: 17
  start-page: 6465
  year: 2009
  ident: nphoton.2011.52-b31
  publication-title: Opt. Express
  doi: 10.1364/OE.17.006465
– volume: 10
  start-page: 3168
  year: 2010
  ident: nphoton.2011.52-b32
  publication-title: Nano Lett.
  doi: 10.1021/nl102066q
– volume: 3
  start-page: 687
  year: 2009
  ident: nphoton.2011.52-b2
  publication-title: Nature Photon.
  doi: 10.1038/nphoton.2009.229
– volume: 5
  start-page: 470
  year: 2009
  ident: nphoton.2011.52-b23
  publication-title: Nature Phys.
  doi: 10.1038/nphys1278
– volume: 25
  start-page: 730
  year: 2007
  ident: nphoton.2011.52-b13
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.2731327
– volume: 466
  start-page: 730
  year: 2010
  ident: nphoton.2011.52-b12
  publication-title: Nature
  doi: 10.1038/nature09256
– volume: 8
  start-page: 383
  year: 2009
  ident: nphoton.2011.52-b6
  publication-title: Nature Mater.
  doi: 10.1038/nmat2420
– volume: 69
  start-page: 681
  year: 1946
  ident: nphoton.2011.52-b25
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.69.37
– volume: 6
  start-page: 2075
  year: 2006
  ident: nphoton.2011.52-b21
  publication-title: Nano Lett.
  doi: 10.1021/nl061342r
– volume: 80
  start-page: 045802
  year: 2009
  ident: nphoton.2011.52-b3
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.80.045802
– volume: 9
  start-page: 1694
  year: 2009
  ident: nphoton.2011.52-b24
  publication-title: Nano Lett.
  doi: 10.1021/nl900384c
– volume: 11
  start-page: 113029
  year: 2009
  ident: nphoton.2011.52-b30
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/11/113029
– volume: 330
  start-page: 1212
  year: 2010
  ident: nphoton.2011.52-b8
  publication-title: Science
  doi: 10.1126/science.1196436
– volume: 17
  start-page: 8081
  year: 2009
  ident: nphoton.2011.52-b20
  publication-title: Opt. Express
  doi: 10.1364/OE.17.008081
– volume: 93
  start-page: 234107
  year: 2008
  ident: nphoton.2011.52-b17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3045950
– volume: 97
  start-page: 247401
  year: 2006
  ident: nphoton.2011.52-b7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.247401
– volume: 10
  start-page: 3922
  year: 2010
  ident: nphoton.2011.52-b22
  publication-title: Nano Lett.
  doi: 10.1021/nl101662v
– volume: 7
  start-page: 3797
  year: 1974
  ident: nphoton.2011.52-b29
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/7/20/019
– volume: 455
  start-page: 648
  year: 2008
  ident: nphoton.2011.52-b4
  publication-title: Nature
  doi: 10.1038/nature07278
– ident: nphoton.2011.52-b1
– volume: 2
  start-page: 106
  year: 2010
  ident: nphoton.2011.52-b33
  publication-title: Nature Chem.
  doi: 10.1038/nchem.483
– volume: 9
  start-page: 1447
  year: 2009
  ident: nphoton.2011.52-b16
  publication-title: Nano Lett.
  doi: 10.1021/nl8032944
– volume: 95
  start-page: 191115
  year: 2009
  ident: nphoton.2011.52-b18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3262948
– volume: 72
  start-page: 052330
  year: 2005
  ident: nphoton.2011.52-b11
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.72.052330
– volume: 93
  start-page: 130501
  year: 2004
  ident: nphoton.2011.52-b5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.130501
– volume: 91
  start-page: 201112
  year: 2007
  ident: nphoton.2011.52-b26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2813023
– volume: 18
  start-page: S825
  year: 2006
  ident: nphoton.2011.52-b14
  publication-title: J. Phys. Condens Matter
  doi: 10.1088/0953-8984/18/21/S09
– volume: 59
  start-page: 1025
  year: 1999
  ident: nphoton.2011.52-b10
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.59.1025
– volume: 348
  start-page: 285
  year: 1976
  ident: nphoton.2011.52-b27
  publication-title: Proc. R. Soc. Lond. A
  doi: 10.1098/rspa.1976.0039
– volume: 87
  start-page: 141105
  year: 2005
  ident: nphoton.2011.52-b28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2076435
– volume: 29
  start-page: 010601
  year: 2011
  ident: nphoton.2011.52-b15
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.3520638
SSID ssj0053922
Score 2.5467525
Snippet Integrated quantum photonic technologies are key for future applications in quantum information1,2, ultralow-power opto-electronics3 and sensing4. As...
Integrated quantum photonic technologies are key for future applications in quantum information1, (O'Brien et al. in Nature Photon. 3:687, 2009),...
Integrated quantum photonic technologies are key for future applications in quantum information, ultralow-power opto-electronics and sensing. As individual...
SourceID proquest
crossref
springer
nrccanada
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 301
SubjectTerms Applied and Technical Physics
Devices
Information storage
Joining
letter
Networks
Nitrogen
Optical resonators
Photonics
Physics
Physics and Astronomy
Quantum Physics
Semiconductors
Vacancies
Title Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity
URI https://nrc-publications.canada.ca/eng/view/object/?id=d7f87902-36d2-437f-829d-5ff54af0c961
https://link.springer.com/article/10.1038/nphoton.2011.52
https://www.proquest.com/docview/872162734
https://www.proquest.com/docview/889446871
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZo9wCX8hahsPKBAxxC1068cU5oF7pUHCqEqFROlj221UpVsuzj0l_PTOIEFalcEiWZJI7HGX8ej79h7B3M6igKgSNVLSAvRaxyF2SZl5ESOwgvZ9BFW5zPzy7Kb5fqMsXmbFNY5WATO0PtWyAf-YkmlhniYvm0_p1T0iiaXE0ZNA7YBC2wxrHXZHl6_v3HYIoVdv6yXxFZ59hS1cDtU-iTZn3VIrrqSTyVvNMtPWw20MVc2Tu485-p0q4HWj1hRwk68kWv66fsQWiesccJRvL0k26fs1_kkqf4Fh6aK1IqOQB5GzliPX4bNm1O8ehtwynVGznLOK0x4ZYTgfV-w7t4zcCvGzyFrQe_3HOwlGPiBbtYnf78fJanDAo5YEe9yzXEwnkESSJA7VQMeOBkLBRUSoCGylsAcHMn6yiL6GrhBV6XtrIIhKwvXrJDLE94xbguC18rBRGUL6u5RTHwCB-Cm1cyzkTGPg4VaCDRi1OWixvTTXMX2qQaN1TjRsmMvR9vWPfMGveLLkaNjLLEiw1kB8017QxKGOg2tj_frNFUGGKwx8fUGTseNGnSb7o1Y6PKGB-vYt3TpIltQrtHEV3jiBmHlRn7MOj_7wPuKfDr_77smD3qPdMUNvmGHe42-_AWoc3OTdmBXn2dssli-WW5mqbm_AemSwDK
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXylOk5eEDSHAIXdvxJjkgVAHLlpaeWqmcjDO21UooWfYhBP-J_8hMHouKVG697GqTWScaj8efPeNvAJ7jqIxSS1qpFhLTTMY8rYLK0ixyYQfp1QjbbIvj8fQ0-3Rmzjbg93AWhtMqB5_YOmrfIO-R7xXMMsNcLG9n31MuGsXB1aGCRmcVh-HnD1qxLd4cvKfufaHU5MPJu2naFxVIkeauZVpg1JUn3CADlpWJgX5UKmqDuZFYYO4dIlbjSpVR6ViV0ku6r1zuCBs4r6ndG3Az07rkAVVMPg6O3xDUUN35yzKlcWEGJiFd7NWz84awXEcZatSlSXCrnmOb4eUuodx_ArPtfDe5A7d7oCr2O8u6CxuhvgfbPWgVvUtY3IcvHADgbBoR6nM2Id5uFE0UhCzFrzBvUs5-b2rBheV4a07wiRbhBNNlr-aizQ4N4qKmS2SrpGcv0HFFiwdwei2qfQib9D7hEYgi0740BiMan-VjR2LoCayEapyrOJIJvB4UaLEnM-eaGt9sG1TXhe01blnj1qgEXq7_MOt4PK4W3V_3yFqWWbiRva694C9LEhbbD9ddr2dkgpb58qmZMoHdoSdt7xQWdm3CCYj1XdI9h2hcHZoViRQlrc9pEZvAq6H__zZwxQvv_Pdhz2BrevL5yB4dHB_uwq1uT5wTNh_D5nK-Ck8IVC2rp60pC_h63WPnDwGpPPA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRceCPS8vABJDiEXTvxJjkgVGhXLUWrClGpnFxnbKuVULLdhxD8M_4dM3ksKlK59ZIoycSJxuPxN57xDMBLHBVBJpIs1VxinMqQxaVXaZwGLuwgnRphE20xHe8fp59O9MkG_O73wnBYZa8TG0XtauQ18mHOWWY4F8swdFERR7uT97OLmAtIsaO1r6bRSsih__mDrLfFu4Nd6upXSk32vn7cj7sCAzHSPLaMcwxJ6QhDSI9FqYOni1KFRGOmJeaYOYuI5bhURVBJKAvpJD1XNrOEE6xLqN0bsJmRUTQawOaHvenRl34a0AQ8VLsbs4hplOg-r1CSD6vZWU3Irk0gqtWlKfFWNccm3stewrz_uGmb2W9yD-50sFXstHJ2HzZ89QDudhBWdApi8RC-sTuAY2uEr85YoHjxUdRBEM4Uv_y8jjkWvq4El5njhTrB-1uEFZw8ezUXTayoF-cV3SLJJU47gZbrWzyC42th7mMY0P_4JyDyNHGF1hhQuzQbWyJDR9DFl-NMhZGM4G3PQINdanOusPHdNC72JDcdxw1z3GgVwev1C7M2q8fVpDvrHlnTck5uZB1szvlkiMJgc7Dt_WpGQmg4ez41U0Sw3fek6VTEwqwFOgKxfkq8Z4eNrXy9IpK8IGudTNoI3vT9_7eBK354678fewE3adyYzwfTw2243S6Qc_TmUxgs5yv_jBDWsnzeybKA0-sePn8AcaxCgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resonant+enhancement+of+the+zero-phonon+emission+from+a+colour+centre+in+a+diamond+cavity&rft.jtitle=Nature+photonics&rft.au=Faraon%2C+Andrei&rft.au=Barclay%2C+Paul+E&rft.au=Santori%2C+Charles&rft.au=Fu%2C+Kai-Mei+C&rft.date=2011-05-01&rft.issn=1749-4885&rft_id=info:doi/10.1038%2Fnphoton.2011.52&rft.externalDocID=oai_cisti_icist_nrc_cnrc_ca_cistinparc_21272019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1749-4885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1749-4885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1749-4885&client=summon