Emergence of quantum correlations from interacting fibre-cavity polaritons

Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid 1 , subject to fascinating new physics and potential applications 2 – 6 . For instance, in the regime of large two-body interactions, pol...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 18; no. 3; pp. 213 - 218
Main Authors Muñoz-Matutano, Guillermo, Wood, Andrew, Johnsson, Mattias, Vidal, Xavier, Baragiola, Ben Q., Reinhard, Andreas, Lemaître, Aristide, Bloch, Jacqueline, Amo, Alberto, Nogues, Gilles, Besga, Benjamin, Richard, Maxime, Volz, Thomas
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid 1 , subject to fascinating new physics and potential applications 2 – 6 . For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field 7 – 9 . In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism 7 , our work opens up the prospect of eventually using polaritons to turn laser light into single photons. Two-photon correlation measurements in a resonantly excited fibre-cavity polariton system stay below the classical limit for zero time delay, suggesting quantum correlations between the polaritons.
AbstractList Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid1, subject to fascinating new physics and potential applications2–6. For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field7–9. In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism7, our work opens up the prospect of eventually using polaritons to turn laser light into single photons.Two-photon correlation measurements in a resonantly excited fibre-cavity polariton system stay below the classical limit for zero time delay, suggesting quantum correlations between the polaritons.
Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid1, subject to fascinating new physics and potential applications2-6. For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field7-9. In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism7, our work opens up the prospect of eventually using polaritons to turn laser light into single photons.Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid1, subject to fascinating new physics and potential applications2-6. For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field7-9. In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism7, our work opens up the prospect of eventually using polaritons to turn laser light into single photons.
Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid 1 , subject to fascinating new physics and potential applications 2 – 6 . For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field 7 – 9 . In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism 7 , our work opens up the prospect of eventually using polaritons to turn laser light into single photons. Two-photon correlation measurements in a resonantly excited fibre-cavity polariton system stay below the classical limit for zero time delay, suggesting quantum correlations between the polaritons.
Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid , subject to fascinating new physics and potential applications . For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field . In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism , our work opens up the prospect of eventually using polaritons to turn laser light into single photons.
Author Vidal, Xavier
Baragiola, Ben Q.
Muñoz-Matutano, Guillermo
Volz, Thomas
Wood, Andrew
Richard, Maxime
Nogues, Gilles
Amo, Alberto
Reinhard, Andreas
Besga, Benjamin
Johnsson, Mattias
Lemaître, Aristide
Bloch, Jacqueline
Author_xml – sequence: 1
  givenname: Guillermo
  orcidid: 0000-0002-8178-0808
  surname: Muñoz-Matutano
  fullname: Muñoz-Matutano, Guillermo
  email: guillermo.munozmatutano@mq.edu.au
  organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University
– sequence: 2
  givenname: Andrew
  surname: Wood
  fullname: Wood, Andrew
  organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University
– sequence: 3
  givenname: Mattias
  surname: Johnsson
  fullname: Johnsson, Mattias
  organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University
– sequence: 4
  givenname: Xavier
  orcidid: 0000-0001-8026-2016
  surname: Vidal
  fullname: Vidal, Xavier
  organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University
– sequence: 5
  givenname: Ben Q.
  orcidid: 0000-0003-3566-2955
  surname: Baragiola
  fullname: Baragiola, Ben Q.
  organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University, ARC Centre for Quantum Computation and Communication Technology, School of Science, RMIT University
– sequence: 6
  givenname: Andreas
  surname: Reinhard
  fullname: Reinhard, Andreas
  organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University
– sequence: 7
  givenname: Aristide
  orcidid: 0000-0003-1892-9726
  surname: Lemaître
  fullname: Lemaître, Aristide
  organization: Centre de Nanosciences et de Nanotechnologies, CNRS (C2N), Universities Paris-Sud and Paris-Saclay
– sequence: 8
  givenname: Jacqueline
  surname: Bloch
  fullname: Bloch, Jacqueline
  organization: Centre de Nanosciences et de Nanotechnologies, CNRS (C2N), Universities Paris-Sud and Paris-Saclay
– sequence: 9
  givenname: Alberto
  orcidid: 0000-0002-2508-8315
  surname: Amo
  fullname: Amo, Alberto
  organization: Univ. Lille, CNRS, UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules
– sequence: 10
  givenname: Gilles
  surname: Nogues
  fullname: Nogues, Gilles
  organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
– sequence: 11
  givenname: Benjamin
  surname: Besga
  fullname: Besga, Benjamin
  organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
– sequence: 12
  givenname: Maxime
  orcidid: 0000-0001-9596-2891
  surname: Richard
  fullname: Richard, Maxime
  organization: Department of Physics and Astronomy, Macquarie University, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
– sequence: 13
  givenname: Thomas
  orcidid: 0000-0001-9850-4992
  surname: Volz
  fullname: Volz, Thomas
  email: thomas.volz@mq.edu.au
  organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30783231$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02128140$$DView record in HAL
BookMark eNp9kUtr3DAUhUVJaR7tD-imGLppFm51ZdmylyGkeTDQTbsW15rrqYItTSQ5kPz6aupJAoF2pYv4zn2cc8wOnHfE2EfgX4FX7bcooW6qkkNXctFC-fiGHYFUTSmbhh_sawAhDtlxjLecC6jr5h07rLhqK1HBEbu5mChsyBkq_FDczejSPBXGh0AjJutdLIbgp8K6RAFNsm5TDLYPVBq8t-mh2PoRg00ZfM_eDjhG-rB_T9iv7xc_z6_K1Y_L6_OzVWkkb1LZmpq6DtdrIzuzRuKceoVSdcIA8VqQ7DlgT71UNfZCSk6K15IMVALbGqsTdrr0_Y2j3gY7YXjQHq2-Olvp3V8-M7sh-T1k9svCboO_mykmPdloaBzRkZ-jFtBKkKC4yOjnV-itn4PLl-yopsqIUJn6tKfmfqL18_wnRzMAC2CCjzHQ8IwA17vU9JKazqnpXWr6MWvUK42x6a_7KaAd_6sUizLmKW5D4WXpf4v-ALc1qvc
CitedBy_id crossref_primary_10_1038_s41467_021_22537_x
crossref_primary_10_1103_PhysRevB_104_245404
crossref_primary_10_1103_PhysRevLett_129_107401
crossref_primary_10_1103_PhysRevB_100_035306
crossref_primary_10_1002_adfm_202209241
crossref_primary_10_1002_qute_201900060
crossref_primary_10_1103_PhysRevLett_125_035301
crossref_primary_10_1103_PhysRevResearch_6_023033
crossref_primary_10_1364_OL_468546
crossref_primary_10_1103_PhysRevX_14_031022
crossref_primary_10_1021_jacs_3c11292
crossref_primary_10_1103_PhysRevA_101_063824
crossref_primary_10_1038_s41467_019_11886_3
crossref_primary_10_1103_PhysRevA_102_063305
crossref_primary_10_1103_PhysRevB_108_165411
crossref_primary_10_3788_CJL240815
crossref_primary_10_1103_PhysRevLett_127_033401
crossref_primary_10_1038_s42254_022_00464_0
crossref_primary_10_1002_qute_202000052
crossref_primary_10_1038_s41586_021_03228_5
crossref_primary_10_1103_PhysRevA_102_023526
crossref_primary_10_1002_qute_201900052
crossref_primary_10_1103_PhysRevResearch_5_043213
crossref_primary_10_1364_OME_492285
crossref_primary_10_1038_s41598_024_54543_6
crossref_primary_10_1103_PhysRevA_106_063303
crossref_primary_10_1002_qute_202400374
crossref_primary_10_1002_qute_202100053
crossref_primary_10_3390_ma17164127
crossref_primary_10_1103_PhysRevApplied_19_044008
crossref_primary_10_1103_PhysRevB_102_115310
crossref_primary_10_1103_PhysRevMaterials_8_L101002
crossref_primary_10_1021_acsphotonics_9b01300
crossref_primary_10_1038_s41567_023_02322_x
crossref_primary_10_1103_PhysRevResearch_4_L012020
crossref_primary_10_1103_PhysRevLett_125_067402
crossref_primary_10_21468_SciPostPhys_12_2_068
crossref_primary_10_1002_apxr_202200123
crossref_primary_10_1103_PhysRevB_107_165302
crossref_primary_10_1103_PhysRevLett_125_067403
crossref_primary_10_1038_s41563_021_01035_x
crossref_primary_10_1103_PhysRevB_104_085303
crossref_primary_10_1103_PhysRevLett_125_197402
crossref_primary_10_1103_PhysRevB_105_165424
crossref_primary_10_1103_PhysRevResearch_6_013299
crossref_primary_10_1103_PhysRevB_100_085301
crossref_primary_10_1103_PhysRevB_104_235436
crossref_primary_10_1073_pnas_2219208120
crossref_primary_10_1103_PhysRevLett_126_075302
crossref_primary_10_1038_s41563_019_0282_y
crossref_primary_10_1063_5_0121316
crossref_primary_10_1103_PhysRevB_105_075307
crossref_primary_10_1038_s41566_022_01019_6
crossref_primary_10_1038_s41467_024_45311_1
crossref_primary_10_1103_PhysRevLett_123_266401
crossref_primary_10_1021_acsphotonics_1c00128
crossref_primary_10_1038_s41566_024_01434_x
crossref_primary_10_1103_PhysRevApplied_16_024045
crossref_primary_10_1103_PhysRevA_110_063705
crossref_primary_10_1364_OE_493274
crossref_primary_10_1103_PhysRevX_13_041058
crossref_primary_10_1103_PhysRevLett_131_033607
crossref_primary_10_1103_PRXQuantum_2_030320
crossref_primary_10_3390_nano12152671
crossref_primary_10_1002_adfm_202313840
crossref_primary_10_1063_5_0007456
crossref_primary_10_1038_s41377_024_01382_9
crossref_primary_10_1002_chem_202303110
crossref_primary_10_1016_j_pquantelec_2022_100399
crossref_primary_10_1103_PhysRevB_105_224515
crossref_primary_10_1103_PhysRevB_103_195307
crossref_primary_10_1038_s41563_022_01230_4
crossref_primary_10_1038_s41467_023_39550_x
crossref_primary_10_1021_acs_nanolett_1c00283
crossref_primary_10_1103_PhysRevLett_126_197401
crossref_primary_10_1002_qute_202100078
crossref_primary_10_1038_s41566_023_01164_6
crossref_primary_10_1103_PhysRevLett_129_093603
crossref_primary_10_1103_PhysRevB_104_035304
crossref_primary_10_1103_PhysRevLett_123_013602
crossref_primary_10_1103_PhysRevB_107_125303
crossref_primary_10_1103_PhysRevB_104_134423
crossref_primary_10_1364_OME_383255
crossref_primary_10_1038_s41377_020_0324_x
crossref_primary_10_1038_s41467_021_24925_9
crossref_primary_10_1364_OL_44_003877
crossref_primary_10_1038_s41467_020_14702_5
crossref_primary_10_1002_adma_202106095
crossref_primary_10_1103_PhysRevLett_133_266602
crossref_primary_10_1063_5_0176692
crossref_primary_10_1103_PhysRevB_110_195435
crossref_primary_10_1515_nanoph_2020_0449
crossref_primary_10_1038_s41377_023_01268_2
crossref_primary_10_1021_acsnano_3c07993
crossref_primary_10_1103_PhysRevLett_129_066802
crossref_primary_10_1103_PhysRevB_103_195302
crossref_primary_10_1038_s41534_019_0149_8
crossref_primary_10_1103_PhysRevB_100_195301
crossref_primary_10_1038_s41377_020_00377_6
crossref_primary_10_1038_s42005_022_00810_9
crossref_primary_10_1038_s42254_022_00447_1
crossref_primary_10_1103_PhysRevLett_126_137401
crossref_primary_10_1103_PhysRevA_100_053813
crossref_primary_10_1557_s43577_024_00779_6
crossref_primary_10_1038_s43246_024_00481_9
crossref_primary_10_1038_s41567_020_0815_y
crossref_primary_10_1038_s41467_023_40894_7
crossref_primary_10_1038_s41467_020_17340_z
crossref_primary_10_1038_s41578_022_00440_1
crossref_primary_10_1103_PhysRevLett_126_017401
crossref_primary_10_1038_s41586_022_04726_w
crossref_primary_10_1103_PhysRevLett_134_076902
crossref_primary_10_1038_s41467_020_16656_0
crossref_primary_10_1103_PhysRevResearch_5_013154
crossref_primary_10_1364_OL_507084
crossref_primary_10_1063_5_0054896
crossref_primary_10_1021_acsnanoscienceau_1c00054
crossref_primary_10_1002_qute_202100163
crossref_primary_10_1038_s41467_019_14243_6
crossref_primary_10_1038_s41565_020_0750_1
crossref_primary_10_1063_5_0094645
crossref_primary_10_1103_PhysRevX_9_031010
crossref_primary_10_1103_PhysRevLett_128_087402
crossref_primary_10_1103_PhysRevLett_126_167401
crossref_primary_10_1038_s41377_022_00754_3
crossref_primary_10_1038_s41586_019_1356_3
crossref_primary_10_1038_s42005_024_01610_z
crossref_primary_10_1103_PhysRevApplied_21_014028
crossref_primary_10_1103_PhysRevB_108_125416
crossref_primary_10_1038_s41467_022_33940_3
crossref_primary_10_1063_5_0242014
crossref_primary_10_1103_PhysRevB_109_195432
crossref_primary_10_1038_s41563_019_0298_3
crossref_primary_10_1364_OME_492503
crossref_primary_10_1038_s41534_020_0244_x
crossref_primary_10_1103_PhysRevB_107_115431
crossref_primary_10_1103_PhysRevB_110_045125
crossref_primary_10_1103_PhysRevResearch_1_033120
crossref_primary_10_1002_lpor_201900279
crossref_primary_10_1103_PhysRevLett_132_133801
crossref_primary_10_1103_PhysRevB_110_075304
crossref_primary_10_1103_PhysRevLett_129_147402
crossref_primary_10_1038_s42254_023_00681_1
crossref_primary_10_1007_s00340_022_07835_6
Cites_doi 10.1103/RevModPhys.85.299
10.1103/PhysRevB.73.193306
10.1088/0034-4885/80/1/016401
10.1103/PhysRevApplied.3.014008
10.1103/PhysRevLett.106.243601
10.1038/nphoton.2010.79
10.1038/nphoton.2009.240
10.1103/PhysRevLett.120.035301
10.1038/nphoton.2009.230
10.1038/nmat4971
10.1038/nature03804
10.1016/j.chemphys.2005.06.045
10.1103/PhysRevLett.112.116402
10.1038/nphoton.2011.321
10.1103/PhysRevLett.116.066402
10.1103/PhysRevLett.95.253002
10.1103/PhysRevLett.106.126401
10.1038/nphys1364
10.1038/nphys1078
10.1103/PhysRevLett.119.097403
10.1103/PhysRevA.93.043833
10.1103/PhysRevLett.94.246401
10.1038/ncomms4260
10.1126/sciadv.aao6814
10.1103/PhysRevLett.103.033601
10.1063/1.2749862
10.1038/s41567-018-0071-6
10.1038/s41563-019-0282-y
10.1016/j.measurement.2019.01.079
ContentType Journal Article
Copyright Crown 2019
2019© Crown 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Crown 2019
– notice: 2019© Crown 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
1XC
DOI 10.1038/s41563-019-0281-z
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
ProQuest Health & Medical Collection
Proquest Medical Database
Science Database (subscription)
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1476-4660
EndPage 218
ExternalDocumentID oai_HAL_hal_02128140v1
30783231
10_1038_s41563_019_0281_z
Genre Comment
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NPM
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
1XC
NFIDA
ID FETCH-LOGICAL-c406t-8c5e99addc49cdae00eb7a4792c1e052e4b01abeb475ab2440e7054ec132a85a3
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Fri May 09 12:28:34 EDT 2025
Fri Jul 11 09:21:59 EDT 2025
Fri Jul 25 08:53:09 EDT 2025
Wed Feb 19 02:36:24 EST 2025
Tue Jul 01 02:13:59 EDT 2025
Thu Apr 24 22:51:52 EDT 2025
Fri Feb 21 02:38:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-8c5e99addc49cdae00eb7a4792c1e052e4b01abeb475ab2440e7054ec132a85a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Commentary-3
content type line 23
ORCID 0000-0002-8178-0808
0000-0001-9596-2891
0000-0001-8026-2016
0000-0003-1892-9726
0000-0001-9850-4992
0000-0003-3566-2955
0000-0002-2508-8315
PMID 30783231
PQID 2186302327
PQPubID 27576
PageCount 6
ParticipantIDs hal_primary_oai_HAL_hal_02128140v1
proquest_miscellaneous_2184141702
proquest_journals_2186302327
pubmed_primary_30783231
crossref_primary_10_1038_s41563_019_0281_z
crossref_citationtrail_10_1038_s41563_019_0281_z
springer_journals_10_1038_s41563_019_0281_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nature Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Besga (CR20) 2015; 3
Carusotto, Ciuti (CR1) 2013; 85
Faraon (CR16) 2008; 4
Hadfield (CR30) 2009; 3
Walker (CR18) 2017; 119
CR15
Noh, Angelakis (CR29) 2017; 80
Lang (CR13) 2011; 106
Baboux (CR4) 2016; 116
Boulier (CR8) 2014; 5
Birnbaum (CR12) 2005; 436
Cuevas (CR9) 2018; 4
Verger, Ciuti, Carusotto (CR7) 2006; 73
Dagvadorj (CR5) 2015; 5
Amo (CR11) 2010; 4
Amo (CR23) 2009; 5
Carusotto (CR27) 2009; 103
Jacqmin (CR3) 2014; 112
Reitzenstein (CR21) 2007; 90
Deveaud (CR19) 2005; 318
Ferrier (CR24) 2011; 106
Savasta, Stefano, Savona, Langbein (CR10) 2005; 94
CR25
Liebisch, Reinhard, Berman, Raithel (CR14) 2005; 95
CR22
Berloff (CR2) 2017; 16
Klembt, Stepanov, Klein, Minguzzi, Richard (CR6) 2018; 120
Casteels, Rota, Storme, Ciuti (CR26) 2016; 93
Miller (CR28) 2010; 4
Reinhard (CR17) 2012; 6
PM Walker (281_CR18) 2017; 119
S Reitzenstein (281_CR21) 2007; 90
S Savasta (281_CR10) 2005; 94
W Casteels (281_CR26) 2016; 93
281_CR25
281_CR22
F Baboux (281_CR4) 2016; 116
S Klembt (281_CR6) 2018; 120
A Amo (281_CR11) 2010; 4
DAB Miller (281_CR28) 2010; 4
TC Liebisch (281_CR14) 2005; 95
C Noh (281_CR29) 2017; 80
NG Berloff (281_CR2) 2017; 16
L Ferrier (281_CR24) 2011; 106
T Jacqmin (281_CR3) 2014; 112
B Deveaud (281_CR19) 2005; 318
281_CR15
A Reinhard (281_CR17) 2012; 6
T Boulier (281_CR8) 2014; 5
A Amo (281_CR23) 2009; 5
A Faraon (281_CR16) 2008; 4
I Carusotto (281_CR27) 2009; 103
RH Hadfield (281_CR30) 2009; 3
Aacute Cuevas (281_CR9) 2018; 4
KM Birnbaum (281_CR12) 2005; 436
G Dagvadorj (281_CR5) 2015; 5
C Lang (281_CR13) 2011; 106
B Besga (281_CR20) 2015; 3
I Carusotto (281_CR1) 2013; 85
A Verger (281_CR7) 2006; 73
30783230 - Nat Mater. 2019 Mar;18(3):219-222
30783232 - Nat Mater. 2019 Mar;18(3):200-201
References_xml – volume: 85
  start-page: 299
  year: 2013
  end-page: 366
  ident: CR1
  article-title: Quantum fluids of light
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.299
– volume: 73
  start-page: 193306
  year: 2006
  ident: CR7
  article-title: Polariton quantum blockade in a photonic dot
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.193306
– ident: CR22
– volume: 80
  start-page: 016401
  year: 2017
  ident: CR29
  article-title: Quantum simulations and many-body physics with light
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/80/1/016401
– volume: 3
  start-page: 014008
  year: 2015
  ident: CR20
  article-title: Polariton boxes in a tunable fiber cavity
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.3.014008
– volume: 106
  start-page: 243601
  year: 2011
  ident: CR13
  article-title: Observation of resonant photon blockade at microwave frequencies using correlation function measurements
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.243601
– volume: 4
  start-page: 361
  year: 2010
  end-page: 366
  ident: CR11
  article-title: Exciton-polariton spin switches
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2010.79
– volume: 4
  start-page: 3
  year: 2010
  end-page: 5
  ident: CR28
  article-title: Are optical transistors the logical next step?
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2009.240
– volume: 120
  start-page: 035301
  year: 2018
  ident: CR6
  article-title: Thermal decoherence of a nonequilibrium polariton quantum fluid
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.035301
– volume: 3
  start-page: 696
  year: 2009
  end-page: 705
  ident: CR30
  article-title: Single-photon detectors for optical quantum information applications
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2009.230
– volume: 16
  start-page: 1120
  year: 2017
  end-page: 1126
  ident: CR2
  article-title: Realizing the classical XY Hamiltonian in polariton simulators
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4971
– volume: 5
  start-page: 041028
  year: 2015
  ident: CR5
  article-title: Nonequilibrium phase transition in a two-dimensional driven open quantum system
  publication-title: Phys. Rev. X
– volume: 436
  start-page: 87
  year: 2005
  end-page: 90
  ident: CR12
  article-title: Photon blockade in an optical cavity with one trapped atom
  publication-title: Nature
  doi: 10.1038/nature03804
– volume: 318
  start-page: 104
  year: 2005
  end-page: 117
  ident: CR19
  article-title: Excitonic effects in the luminescence of quantum wells
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2005.06.045
– ident: CR25
– volume: 112
  start-page: 116402
  year: 2014
  ident: CR3
  article-title: Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.116402
– volume: 6
  start-page: 93
  year: 2012
  end-page: 96
  ident: CR17
  article-title: Strongly correlated photons on a chip
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2011.321
– volume: 116
  start-page: 066402
  year: 2016
  ident: CR4
  article-title: Bosonic condensation and disorder-induced localization in a flat band
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.066402
– volume: 95
  start-page: 253002
  year: 2005
  ident: CR14
  article-title: Atom counting statistics in ensembles of interacting Rydberg atoms
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.253002
– volume: 106
  start-page: 126401
  year: 2011
  ident: CR24
  article-title: Interactions in confined polariton condensates
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.126401
– volume: 5
  start-page: 805
  year: 2009
  end-page: 810
  ident: CR23
  article-title: Superfluidity of polaritons in semiconductor microcavities
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1364
– ident: CR15
– volume: 4
  start-page: 859
  year: 2008
  end-page: 863
  ident: CR16
  article-title: Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1078
– volume: 119
  start-page: 097403
  year: 2017
  ident: CR18
  article-title: Dark solitons in high velocity waveguide polariton fluids
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.097403
– volume: 93
  start-page: 043833
  year: 2016
  ident: CR26
  article-title: Probing photon correlations in the dark sites of geometrically frustrated cavity lattices
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.043833
– volume: 94
  start-page: 246401
  year: 2005
  ident: CR10
  article-title: Quantum complementarity of microcavity polaritons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.246401
– volume: 5
  year: 2014
  ident: CR8
  article-title: Polariton-generated intensity squeezing in semiconductor micropillars
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4260
– volume: 4
  start-page: eaao6814
  year: 2018
  ident: CR9
  article-title: First observation of the quantized exciton-polariton field and effect of interactions on a single polariton
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao6814
– volume: 103
  start-page: 033601
  year: 2009
  ident: CR27
  article-title: Fermionized photons in an array of driven dissipative nonlinear cavities
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.033601
– volume: 90
  start-page: 251109
  year: 2007
  ident: CR21
  article-title: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2749862
– volume: 116
  start-page: 066402
  year: 2016
  ident: 281_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.066402
– volume: 112
  start-page: 116402
  year: 2014
  ident: 281_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.116402
– ident: 281_CR15
  doi: 10.1038/s41567-018-0071-6
– volume: 4
  start-page: 859
  year: 2008
  ident: 281_CR16
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1078
– volume: 5
  year: 2014
  ident: 281_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4260
– volume: 436
  start-page: 87
  year: 2005
  ident: 281_CR12
  publication-title: Nature
  doi: 10.1038/nature03804
– volume: 119
  start-page: 097403
  year: 2017
  ident: 281_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.097403
– volume: 120
  start-page: 035301
  year: 2018
  ident: 281_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.035301
– volume: 4
  start-page: 361
  year: 2010
  ident: 281_CR11
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2010.79
– volume: 3
  start-page: 014008
  year: 2015
  ident: 281_CR20
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.3.014008
– volume: 93
  start-page: 043833
  year: 2016
  ident: 281_CR26
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.043833
– volume: 4
  start-page: 3
  year: 2010
  ident: 281_CR28
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2009.240
– ident: 281_CR25
  doi: 10.1038/s41563-019-0282-y
– volume: 85
  start-page: 299
  year: 2013
  ident: 281_CR1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.299
– volume: 106
  start-page: 126401
  year: 2011
  ident: 281_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.126401
– volume: 318
  start-page: 104
  year: 2005
  ident: 281_CR19
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2005.06.045
– volume: 6
  start-page: 93
  year: 2012
  ident: 281_CR17
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2011.321
– volume: 95
  start-page: 253002
  year: 2005
  ident: 281_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.253002
– volume: 73
  start-page: 193306
  year: 2006
  ident: 281_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.73.193306
– volume: 5
  start-page: 041028
  year: 2015
  ident: 281_CR5
  publication-title: Phys. Rev. X
– volume: 103
  start-page: 033601
  year: 2009
  ident: 281_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.033601
– volume: 94
  start-page: 246401
  year: 2005
  ident: 281_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.246401
– volume: 4
  start-page: eaao6814
  year: 2018
  ident: 281_CR9
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao6814
– volume: 106
  start-page: 243601
  year: 2011
  ident: 281_CR13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.243601
– volume: 90
  start-page: 251109
  year: 2007
  ident: 281_CR21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2749862
– volume: 5
  start-page: 805
  year: 2009
  ident: 281_CR23
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1364
– volume: 3
  start-page: 696
  year: 2009
  ident: 281_CR30
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2009.230
– volume: 80
  start-page: 016401
  year: 2017
  ident: 281_CR29
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/80/1/016401
– volume: 16
  start-page: 1120
  year: 2017
  ident: 281_CR2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4971
– ident: 281_CR22
  doi: 10.1016/j.measurement.2019.01.079
– reference: 30783232 - Nat Mater. 2019 Mar;18(3):200-201
– reference: 30783230 - Nat Mater. 2019 Mar;18(3):219-222
SSID ssj0021556
Score 2.651382
Snippet Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum...
SourceID hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 213
SubjectTerms 140/125
639/766/1130
639/766/119
639/766/400
639/766/483
Autocorrelation functions
Biomaterials
Chemistry and Materials Science
Condensed Matter
Condensed Matter Physics
Correlation
Emergence
Letter
Materials Science
Microcavities
Nanotechnology
Optical and Electronic Materials
Photons
Physics
Polaritons
Quantum Gases
Quantum Physics
Quantum theory
Title Emergence of quantum correlations from interacting fibre-cavity polaritons
URI https://link.springer.com/article/10.1038/s41563-019-0281-z
https://www.ncbi.nlm.nih.gov/pubmed/30783231
https://www.proquest.com/docview/2186302327
https://www.proquest.com/docview/2184141702
https://hal.science/hal-02128140
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6xuxc4IN4ElpVBnEDWxvErOaEWtVQrqBBipd4s2-vAAdIubTnsr2cmjxa0Yi-JlDiJM2N7Zjwz3wC8lgLNNSkjt0FbrgSaO6EOmptCqIDaXDIt2v6nuZmdq7OFXvQbbus-rHJYE9uF-mIZaY_8lGonUYGbwr5bXXKqGkXe1b6ExgEcEXQZhXTZxd7gQlnZZRdZw1GvKAavpixP12S4UCRRxVHCCn71j1w6-E5RkddVzmvu0lYKTe_B3V59ZKOO3_fhVmoewJ2_QAUfwtmkz6hMbFmzyy2SbvuTRarC0ce9McopYQQU0aZINd9YjUZz4tFTIQm2ImsXJ3qzfgTn08nX9zPeV0zgEQXzhpdRp6rCJSuqKl74lOcpWK9sVUSRcl0kFXLhQwrKah9QsufJos6WItqkvtRePobDZtmkp8CkiIX3yghTeRVqHZKSRifjQxC-NkUG-UAvF3s4capq8cO1bm1Zuo7EDknsiMTuKoM3u0dWHZbGTY1fIRN27QgFezb66OgaodITUNdvkcHxwCPXz72124-UDF7ubuOsIVeIb9Jy27ZRQgmb43886Xi7-5QkzyaqvRm8HZi9f_l_-_vs5q48h9tFO9hozB3D4ebXNr1AdWYTTtoxi8dy-uEEjkbT8XiO5_Fk_vnLH40o8xs
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615QAcEM8SKGAQXEBW41ceB4Qq6LJttz21Um_Gdh04QHbL7oLoj-I3MpNXQRW99Zo4jjMPz3wZzwzASyUQrikVeO5NzrVAuOMrb3gmhfbozcWsqba_f5CNj_TusTlegd99Lgwdq-z3xGajPpkG-ke-Sb2TqMGNzN_NTjl1jaLoat9CoxWLvfjrJ0K2-dudD8jfV1KOtg_fj3nXVYAHNF4LXgQTyxLVOugynLiYptHnTuelDCKmRkbtU-F89Do3zqP1S2OOfk0MiNtcYZzCeVfhmlaqJI0qRh8HgIe2uc1myjOOfozso6iq2JwTUKKTSyVHiy742T92cPULncK86OJeCM82Vm90G2517irbauXrDqzE-i7c_KuI4T3Y3e4yOCObVux0iaxafmOBun505-wY5bAwKkzRpGTVn1mFID3y4KhxBZsRusaNpZ7fh6MroeUDWKundXwITIkgndOZyEqnfWV81CozMXPeC1dlMoG0p5cNXfly6qLx1TZhdFXYlsQWSWyJxPYsgdfDI7O2dsdlg18gE4ZxVHV7vDWxdI2q4FNhsB8igY2eR7bT9bk9l8wEng-3UUsp9OLqOF02Y7TQIk_xO9Zb3g6vUhRJRTc7gTc9s88n_-96H12-lGdwfXy4P7GTnYO9x3BDNoJH8rcBa4vvy_gEXamFf9rIL4NPV60wfwCe4C0W
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH5qi4TggNgJFDAILiCrcbxNDghVtKPpQsWBSnMztuvAATJTZgZEfxq_jveyzIAqeus1cba3-L0vbwN4IQXCNSkjt0FbrgTCnVAFzU0hVEBvLpmm2_77IzM6VvtjPV6D330tDKVV9ntis1GfTCL9I9-i2Uk04AahetWlRXzYGb6dnnKaIEWR1n6cRisiB-nXT4Rvszd7O8jrl0Ux3P34bsS7CQM8oiGb80HUqSxRxaMq44lPeZ6C9cqWRRQp10VSIRc-pKCs9gEtYZ4s-jgpIobzA-0l3ncdrlipBemYHa_AHtrptrLJGo4-TdFHVOVga0agibKYSo7WXfCzf2zi-hfKyDzv7p4L1TYWcHgTbnSuK9tuZe0WrKX6Nlz_q6HhHdjf7ao5E5tU7HSBbFt8Y5EmgHQ5d4zqWRg1qWjKs-rPrELAnnj0NMSCTQlp4yZTz-7C8aXQ8h5s1JM6PQAmRSy8V0aY0qtQ6ZCUNDoZH4LwlSkyyHt6udi1MqeJGl9dE1KXA9eS2CGJHZHYnWXwannJtO3jcdHi58iE5TrqwD3aPnR0jDriU5OwHyKDzZ5HrtP7mVtJaQbPlqdRYykM4-s0WTRrlFDC5vgd91veLh8lKaqKLncGr3tmr27-3_d9ePGrPIWrqCrucO_o4BFcKxq5I_HbhI3590V6jF7VPDxpxJfBp8vWlz-QqTFD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+of+quantum+correlations+from+interacting+fibre-cavity+polaritons&rft.jtitle=Nature+materials&rft.au=Mu%C3%B1oz-Matutano%2C+Guillermo&rft.au=Wood%2C+Andrew&rft.au=Johnsson%2C+Mattias&rft.au=Vidal%2C+Xavier&rft.date=2019-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=18&rft.issue=3&rft.spage=213&rft.epage=218&rft_id=info:doi/10.1038%2Fs41563-019-0281-z&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02128140v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon