Emergence of quantum correlations from interacting fibre-cavity polaritons
Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid 1 , subject to fascinating new physics and potential applications 2 – 6 . For instance, in the regime of large two-body interactions, pol...
Saved in:
Published in | Nature materials Vol. 18; no. 3; pp. 213 - 218 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid
1
, subject to fascinating new physics and potential applications
2
–
6
. For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field
7
–
9
. In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism
7
, our work opens up the prospect of eventually using polaritons to turn laser light into single photons.
Two-photon correlation measurements in a resonantly excited fibre-cavity polariton system stay below the classical limit for zero time delay, suggesting quantum correlations between the polaritons. |
---|---|
AbstractList | Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid1, subject to fascinating new physics and potential applications2–6. For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field7–9. In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism7, our work opens up the prospect of eventually using polaritons to turn laser light into single photons.Two-photon correlation measurements in a resonantly excited fibre-cavity polariton system stay below the classical limit for zero time delay, suggesting quantum correlations between the polaritons. Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid1, subject to fascinating new physics and potential applications2-6. For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field7-9. In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism7, our work opens up the prospect of eventually using polaritons to turn laser light into single photons.Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid1, subject to fascinating new physics and potential applications2-6. For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field7-9. In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism7, our work opens up the prospect of eventually using polaritons to turn laser light into single photons. Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid 1 , subject to fascinating new physics and potential applications 2 – 6 . For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field 7 – 9 . In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism 7 , our work opens up the prospect of eventually using polaritons to turn laser light into single photons. Two-photon correlation measurements in a resonantly excited fibre-cavity polariton system stay below the classical limit for zero time delay, suggesting quantum correlations between the polaritons. Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum fluid , subject to fascinating new physics and potential applications . For instance, in the regime of large two-body interactions, polaritons can be used to manipulate the quantum properties of a light field . In this work, we report on the emergence of quantum correlations in laser light transmitted through a fibre-cavity polariton system. We observe a dispersive shape of the autocorrelation function around the polariton resonance that indicates the onset of this regime. The weak amplitude of these correlations indicates a state that still remains far from a low-photon-number state. Nonetheless, given the underlying physical mechanism , our work opens up the prospect of eventually using polaritons to turn laser light into single photons. |
Author | Vidal, Xavier Baragiola, Ben Q. Muñoz-Matutano, Guillermo Volz, Thomas Wood, Andrew Richard, Maxime Nogues, Gilles Amo, Alberto Reinhard, Andreas Besga, Benjamin Johnsson, Mattias Lemaître, Aristide Bloch, Jacqueline |
Author_xml | – sequence: 1 givenname: Guillermo orcidid: 0000-0002-8178-0808 surname: Muñoz-Matutano fullname: Muñoz-Matutano, Guillermo email: guillermo.munozmatutano@mq.edu.au organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University – sequence: 2 givenname: Andrew surname: Wood fullname: Wood, Andrew organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University – sequence: 3 givenname: Mattias surname: Johnsson fullname: Johnsson, Mattias organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University – sequence: 4 givenname: Xavier orcidid: 0000-0001-8026-2016 surname: Vidal fullname: Vidal, Xavier organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University – sequence: 5 givenname: Ben Q. orcidid: 0000-0003-3566-2955 surname: Baragiola fullname: Baragiola, Ben Q. organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University, ARC Centre for Quantum Computation and Communication Technology, School of Science, RMIT University – sequence: 6 givenname: Andreas surname: Reinhard fullname: Reinhard, Andreas organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University – sequence: 7 givenname: Aristide orcidid: 0000-0003-1892-9726 surname: Lemaître fullname: Lemaître, Aristide organization: Centre de Nanosciences et de Nanotechnologies, CNRS (C2N), Universities Paris-Sud and Paris-Saclay – sequence: 8 givenname: Jacqueline surname: Bloch fullname: Bloch, Jacqueline organization: Centre de Nanosciences et de Nanotechnologies, CNRS (C2N), Universities Paris-Sud and Paris-Saclay – sequence: 9 givenname: Alberto orcidid: 0000-0002-2508-8315 surname: Amo fullname: Amo, Alberto organization: Univ. Lille, CNRS, UMR 8523, PhLAM - Physique des Lasers Atomes et Molécules – sequence: 10 givenname: Gilles surname: Nogues fullname: Nogues, Gilles organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel – sequence: 11 givenname: Benjamin surname: Besga fullname: Besga, Benjamin organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel – sequence: 12 givenname: Maxime orcidid: 0000-0001-9596-2891 surname: Richard fullname: Richard, Maxime organization: Department of Physics and Astronomy, Macquarie University, Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel – sequence: 13 givenname: Thomas orcidid: 0000-0001-9850-4992 surname: Volz fullname: Volz, Thomas email: thomas.volz@mq.edu.au organization: Department of Physics and Astronomy, Macquarie University, ARC Centre of Excellence for Engineered Quantum Systems, Macquarie University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30783231$$D View this record in MEDLINE/PubMed https://hal.science/hal-02128140$$DView record in HAL |
BookMark | eNp9kUtr3DAUhUVJaR7tD-imGLppFm51ZdmylyGkeTDQTbsW15rrqYItTSQ5kPz6aupJAoF2pYv4zn2cc8wOnHfE2EfgX4FX7bcooW6qkkNXctFC-fiGHYFUTSmbhh_sawAhDtlxjLecC6jr5h07rLhqK1HBEbu5mChsyBkq_FDczejSPBXGh0AjJutdLIbgp8K6RAFNsm5TDLYPVBq8t-mh2PoRg00ZfM_eDjhG-rB_T9iv7xc_z6_K1Y_L6_OzVWkkb1LZmpq6DtdrIzuzRuKceoVSdcIA8VqQ7DlgT71UNfZCSk6K15IMVALbGqsTdrr0_Y2j3gY7YXjQHq2-Olvp3V8-M7sh-T1k9svCboO_mykmPdloaBzRkZ-jFtBKkKC4yOjnV-itn4PLl-yopsqIUJn6tKfmfqL18_wnRzMAC2CCjzHQ8IwA17vU9JKazqnpXWr6MWvUK42x6a_7KaAd_6sUizLmKW5D4WXpf4v-ALc1qvc |
CitedBy_id | crossref_primary_10_1038_s41467_021_22537_x crossref_primary_10_1103_PhysRevB_104_245404 crossref_primary_10_1103_PhysRevLett_129_107401 crossref_primary_10_1103_PhysRevB_100_035306 crossref_primary_10_1002_adfm_202209241 crossref_primary_10_1002_qute_201900060 crossref_primary_10_1103_PhysRevLett_125_035301 crossref_primary_10_1103_PhysRevResearch_6_023033 crossref_primary_10_1364_OL_468546 crossref_primary_10_1103_PhysRevX_14_031022 crossref_primary_10_1021_jacs_3c11292 crossref_primary_10_1103_PhysRevA_101_063824 crossref_primary_10_1038_s41467_019_11886_3 crossref_primary_10_1103_PhysRevA_102_063305 crossref_primary_10_1103_PhysRevB_108_165411 crossref_primary_10_3788_CJL240815 crossref_primary_10_1103_PhysRevLett_127_033401 crossref_primary_10_1038_s42254_022_00464_0 crossref_primary_10_1002_qute_202000052 crossref_primary_10_1038_s41586_021_03228_5 crossref_primary_10_1103_PhysRevA_102_023526 crossref_primary_10_1002_qute_201900052 crossref_primary_10_1103_PhysRevResearch_5_043213 crossref_primary_10_1364_OME_492285 crossref_primary_10_1038_s41598_024_54543_6 crossref_primary_10_1103_PhysRevA_106_063303 crossref_primary_10_1002_qute_202400374 crossref_primary_10_1002_qute_202100053 crossref_primary_10_3390_ma17164127 crossref_primary_10_1103_PhysRevApplied_19_044008 crossref_primary_10_1103_PhysRevB_102_115310 crossref_primary_10_1103_PhysRevMaterials_8_L101002 crossref_primary_10_1021_acsphotonics_9b01300 crossref_primary_10_1038_s41567_023_02322_x crossref_primary_10_1103_PhysRevResearch_4_L012020 crossref_primary_10_1103_PhysRevLett_125_067402 crossref_primary_10_21468_SciPostPhys_12_2_068 crossref_primary_10_1002_apxr_202200123 crossref_primary_10_1103_PhysRevB_107_165302 crossref_primary_10_1103_PhysRevLett_125_067403 crossref_primary_10_1038_s41563_021_01035_x crossref_primary_10_1103_PhysRevB_104_085303 crossref_primary_10_1103_PhysRevLett_125_197402 crossref_primary_10_1103_PhysRevB_105_165424 crossref_primary_10_1103_PhysRevResearch_6_013299 crossref_primary_10_1103_PhysRevB_100_085301 crossref_primary_10_1103_PhysRevB_104_235436 crossref_primary_10_1073_pnas_2219208120 crossref_primary_10_1103_PhysRevLett_126_075302 crossref_primary_10_1038_s41563_019_0282_y crossref_primary_10_1063_5_0121316 crossref_primary_10_1103_PhysRevB_105_075307 crossref_primary_10_1038_s41566_022_01019_6 crossref_primary_10_1038_s41467_024_45311_1 crossref_primary_10_1103_PhysRevLett_123_266401 crossref_primary_10_1021_acsphotonics_1c00128 crossref_primary_10_1038_s41566_024_01434_x crossref_primary_10_1103_PhysRevApplied_16_024045 crossref_primary_10_1103_PhysRevA_110_063705 crossref_primary_10_1364_OE_493274 crossref_primary_10_1103_PhysRevX_13_041058 crossref_primary_10_1103_PhysRevLett_131_033607 crossref_primary_10_1103_PRXQuantum_2_030320 crossref_primary_10_3390_nano12152671 crossref_primary_10_1002_adfm_202313840 crossref_primary_10_1063_5_0007456 crossref_primary_10_1038_s41377_024_01382_9 crossref_primary_10_1002_chem_202303110 crossref_primary_10_1016_j_pquantelec_2022_100399 crossref_primary_10_1103_PhysRevB_105_224515 crossref_primary_10_1103_PhysRevB_103_195307 crossref_primary_10_1038_s41563_022_01230_4 crossref_primary_10_1038_s41467_023_39550_x crossref_primary_10_1021_acs_nanolett_1c00283 crossref_primary_10_1103_PhysRevLett_126_197401 crossref_primary_10_1002_qute_202100078 crossref_primary_10_1038_s41566_023_01164_6 crossref_primary_10_1103_PhysRevLett_129_093603 crossref_primary_10_1103_PhysRevB_104_035304 crossref_primary_10_1103_PhysRevLett_123_013602 crossref_primary_10_1103_PhysRevB_107_125303 crossref_primary_10_1103_PhysRevB_104_134423 crossref_primary_10_1364_OME_383255 crossref_primary_10_1038_s41377_020_0324_x crossref_primary_10_1038_s41467_021_24925_9 crossref_primary_10_1364_OL_44_003877 crossref_primary_10_1038_s41467_020_14702_5 crossref_primary_10_1002_adma_202106095 crossref_primary_10_1103_PhysRevLett_133_266602 crossref_primary_10_1063_5_0176692 crossref_primary_10_1103_PhysRevB_110_195435 crossref_primary_10_1515_nanoph_2020_0449 crossref_primary_10_1038_s41377_023_01268_2 crossref_primary_10_1021_acsnano_3c07993 crossref_primary_10_1103_PhysRevLett_129_066802 crossref_primary_10_1103_PhysRevB_103_195302 crossref_primary_10_1038_s41534_019_0149_8 crossref_primary_10_1103_PhysRevB_100_195301 crossref_primary_10_1038_s41377_020_00377_6 crossref_primary_10_1038_s42005_022_00810_9 crossref_primary_10_1038_s42254_022_00447_1 crossref_primary_10_1103_PhysRevLett_126_137401 crossref_primary_10_1103_PhysRevA_100_053813 crossref_primary_10_1557_s43577_024_00779_6 crossref_primary_10_1038_s43246_024_00481_9 crossref_primary_10_1038_s41567_020_0815_y crossref_primary_10_1038_s41467_023_40894_7 crossref_primary_10_1038_s41467_020_17340_z crossref_primary_10_1038_s41578_022_00440_1 crossref_primary_10_1103_PhysRevLett_126_017401 crossref_primary_10_1038_s41586_022_04726_w crossref_primary_10_1103_PhysRevLett_134_076902 crossref_primary_10_1038_s41467_020_16656_0 crossref_primary_10_1103_PhysRevResearch_5_013154 crossref_primary_10_1364_OL_507084 crossref_primary_10_1063_5_0054896 crossref_primary_10_1021_acsnanoscienceau_1c00054 crossref_primary_10_1002_qute_202100163 crossref_primary_10_1038_s41467_019_14243_6 crossref_primary_10_1038_s41565_020_0750_1 crossref_primary_10_1063_5_0094645 crossref_primary_10_1103_PhysRevX_9_031010 crossref_primary_10_1103_PhysRevLett_128_087402 crossref_primary_10_1103_PhysRevLett_126_167401 crossref_primary_10_1038_s41377_022_00754_3 crossref_primary_10_1038_s41586_019_1356_3 crossref_primary_10_1038_s42005_024_01610_z crossref_primary_10_1103_PhysRevApplied_21_014028 crossref_primary_10_1103_PhysRevB_108_125416 crossref_primary_10_1038_s41467_022_33940_3 crossref_primary_10_1063_5_0242014 crossref_primary_10_1103_PhysRevB_109_195432 crossref_primary_10_1038_s41563_019_0298_3 crossref_primary_10_1364_OME_492503 crossref_primary_10_1038_s41534_020_0244_x crossref_primary_10_1103_PhysRevB_107_115431 crossref_primary_10_1103_PhysRevB_110_045125 crossref_primary_10_1103_PhysRevResearch_1_033120 crossref_primary_10_1002_lpor_201900279 crossref_primary_10_1103_PhysRevLett_132_133801 crossref_primary_10_1103_PhysRevB_110_075304 crossref_primary_10_1103_PhysRevLett_129_147402 crossref_primary_10_1038_s42254_023_00681_1 crossref_primary_10_1007_s00340_022_07835_6 |
Cites_doi | 10.1103/RevModPhys.85.299 10.1103/PhysRevB.73.193306 10.1088/0034-4885/80/1/016401 10.1103/PhysRevApplied.3.014008 10.1103/PhysRevLett.106.243601 10.1038/nphoton.2010.79 10.1038/nphoton.2009.240 10.1103/PhysRevLett.120.035301 10.1038/nphoton.2009.230 10.1038/nmat4971 10.1038/nature03804 10.1016/j.chemphys.2005.06.045 10.1103/PhysRevLett.112.116402 10.1038/nphoton.2011.321 10.1103/PhysRevLett.116.066402 10.1103/PhysRevLett.95.253002 10.1103/PhysRevLett.106.126401 10.1038/nphys1364 10.1038/nphys1078 10.1103/PhysRevLett.119.097403 10.1103/PhysRevA.93.043833 10.1103/PhysRevLett.94.246401 10.1038/ncomms4260 10.1126/sciadv.aao6814 10.1103/PhysRevLett.103.033601 10.1063/1.2749862 10.1038/s41567-018-0071-6 10.1038/s41563-019-0282-y 10.1016/j.measurement.2019.01.079 |
ContentType | Journal Article |
Copyright | Crown 2019 2019© Crown 2019 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Crown 2019 – notice: 2019© Crown 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 1XC |
DOI | 10.1038/s41563-019-0281-z |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection ProQuest Health & Medical Collection Proquest Medical Database Science Database (subscription) Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1476-4660 |
EndPage | 218 |
ExternalDocumentID | oai_HAL_hal_02128140v1 30783231 10_1038_s41563_019_0281_z |
Genre | Comment Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NPM 7SR 7XB 8BQ 8FD 8FK JG9 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 1XC NFIDA |
ID | FETCH-LOGICAL-c406t-8c5e99addc49cdae00eb7a4792c1e052e4b01abeb475ab2440e7054ec132a85a3 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Fri May 09 12:28:34 EDT 2025 Fri Jul 11 09:21:59 EDT 2025 Fri Jul 25 08:53:09 EDT 2025 Wed Feb 19 02:36:24 EST 2025 Tue Jul 01 02:13:59 EDT 2025 Thu Apr 24 22:51:52 EDT 2025 Fri Feb 21 02:38:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-8c5e99addc49cdae00eb7a4792c1e052e4b01abeb475ab2440e7054ec132a85a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Commentary-3 content type line 23 |
ORCID | 0000-0002-8178-0808 0000-0001-9596-2891 0000-0001-8026-2016 0000-0003-1892-9726 0000-0001-9850-4992 0000-0003-3566-2955 0000-0002-2508-8315 |
PMID | 30783231 |
PQID | 2186302327 |
PQPubID | 27576 |
PageCount | 6 |
ParticipantIDs | hal_primary_oai_HAL_hal_02128140v1 proquest_miscellaneous_2184141702 proquest_journals_2186302327 pubmed_primary_30783231 crossref_primary_10_1038_s41563_019_0281_z crossref_citationtrail_10_1038_s41563_019_0281_z springer_journals_10_1038_s41563_019_0281_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nature Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Besga (CR20) 2015; 3 Carusotto, Ciuti (CR1) 2013; 85 Faraon (CR16) 2008; 4 Hadfield (CR30) 2009; 3 Walker (CR18) 2017; 119 CR15 Noh, Angelakis (CR29) 2017; 80 Lang (CR13) 2011; 106 Baboux (CR4) 2016; 116 Boulier (CR8) 2014; 5 Birnbaum (CR12) 2005; 436 Cuevas (CR9) 2018; 4 Verger, Ciuti, Carusotto (CR7) 2006; 73 Dagvadorj (CR5) 2015; 5 Amo (CR11) 2010; 4 Amo (CR23) 2009; 5 Carusotto (CR27) 2009; 103 Jacqmin (CR3) 2014; 112 Reitzenstein (CR21) 2007; 90 Deveaud (CR19) 2005; 318 Ferrier (CR24) 2011; 106 Savasta, Stefano, Savona, Langbein (CR10) 2005; 94 CR25 Liebisch, Reinhard, Berman, Raithel (CR14) 2005; 95 CR22 Berloff (CR2) 2017; 16 Klembt, Stepanov, Klein, Minguzzi, Richard (CR6) 2018; 120 Casteels, Rota, Storme, Ciuti (CR26) 2016; 93 Miller (CR28) 2010; 4 Reinhard (CR17) 2012; 6 PM Walker (281_CR18) 2017; 119 S Reitzenstein (281_CR21) 2007; 90 S Savasta (281_CR10) 2005; 94 W Casteels (281_CR26) 2016; 93 281_CR25 281_CR22 F Baboux (281_CR4) 2016; 116 S Klembt (281_CR6) 2018; 120 A Amo (281_CR11) 2010; 4 DAB Miller (281_CR28) 2010; 4 TC Liebisch (281_CR14) 2005; 95 C Noh (281_CR29) 2017; 80 NG Berloff (281_CR2) 2017; 16 L Ferrier (281_CR24) 2011; 106 T Jacqmin (281_CR3) 2014; 112 B Deveaud (281_CR19) 2005; 318 281_CR15 A Reinhard (281_CR17) 2012; 6 T Boulier (281_CR8) 2014; 5 A Amo (281_CR23) 2009; 5 A Faraon (281_CR16) 2008; 4 I Carusotto (281_CR27) 2009; 103 RH Hadfield (281_CR30) 2009; 3 Aacute Cuevas (281_CR9) 2018; 4 KM Birnbaum (281_CR12) 2005; 436 G Dagvadorj (281_CR5) 2015; 5 C Lang (281_CR13) 2011; 106 B Besga (281_CR20) 2015; 3 I Carusotto (281_CR1) 2013; 85 A Verger (281_CR7) 2006; 73 30783230 - Nat Mater. 2019 Mar;18(3):219-222 30783232 - Nat Mater. 2019 Mar;18(3):200-201 |
References_xml | – volume: 85 start-page: 299 year: 2013 end-page: 366 ident: CR1 article-title: Quantum fluids of light publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.299 – volume: 73 start-page: 193306 year: 2006 ident: CR7 article-title: Polariton quantum blockade in a photonic dot publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.193306 – ident: CR22 – volume: 80 start-page: 016401 year: 2017 ident: CR29 article-title: Quantum simulations and many-body physics with light publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/80/1/016401 – volume: 3 start-page: 014008 year: 2015 ident: CR20 article-title: Polariton boxes in a tunable fiber cavity publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.3.014008 – volume: 106 start-page: 243601 year: 2011 ident: CR13 article-title: Observation of resonant photon blockade at microwave frequencies using correlation function measurements publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.243601 – volume: 4 start-page: 361 year: 2010 end-page: 366 ident: CR11 article-title: Exciton-polariton spin switches publication-title: Nat. Photon. doi: 10.1038/nphoton.2010.79 – volume: 4 start-page: 3 year: 2010 end-page: 5 ident: CR28 article-title: Are optical transistors the logical next step? publication-title: Nat. Photon. doi: 10.1038/nphoton.2009.240 – volume: 120 start-page: 035301 year: 2018 ident: CR6 article-title: Thermal decoherence of a nonequilibrium polariton quantum fluid publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.035301 – volume: 3 start-page: 696 year: 2009 end-page: 705 ident: CR30 article-title: Single-photon detectors for optical quantum information applications publication-title: Nat. Photon. doi: 10.1038/nphoton.2009.230 – volume: 16 start-page: 1120 year: 2017 end-page: 1126 ident: CR2 article-title: Realizing the classical XY Hamiltonian in polariton simulators publication-title: Nat. Mater. doi: 10.1038/nmat4971 – volume: 5 start-page: 041028 year: 2015 ident: CR5 article-title: Nonequilibrium phase transition in a two-dimensional driven open quantum system publication-title: Phys. Rev. X – volume: 436 start-page: 87 year: 2005 end-page: 90 ident: CR12 article-title: Photon blockade in an optical cavity with one trapped atom publication-title: Nature doi: 10.1038/nature03804 – volume: 318 start-page: 104 year: 2005 end-page: 117 ident: CR19 article-title: Excitonic effects in the luminescence of quantum wells publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2005.06.045 – ident: CR25 – volume: 112 start-page: 116402 year: 2014 ident: CR3 article-title: Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.116402 – volume: 6 start-page: 93 year: 2012 end-page: 96 ident: CR17 article-title: Strongly correlated photons on a chip publication-title: Nat. Photon. doi: 10.1038/nphoton.2011.321 – volume: 116 start-page: 066402 year: 2016 ident: CR4 article-title: Bosonic condensation and disorder-induced localization in a flat band publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.066402 – volume: 95 start-page: 253002 year: 2005 ident: CR14 article-title: Atom counting statistics in ensembles of interacting Rydberg atoms publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.253002 – volume: 106 start-page: 126401 year: 2011 ident: CR24 article-title: Interactions in confined polariton condensates publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.126401 – volume: 5 start-page: 805 year: 2009 end-page: 810 ident: CR23 article-title: Superfluidity of polaritons in semiconductor microcavities publication-title: Nat. Phys. doi: 10.1038/nphys1364 – ident: CR15 – volume: 4 start-page: 859 year: 2008 end-page: 863 ident: CR16 article-title: Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade publication-title: Nat. Phys. doi: 10.1038/nphys1078 – volume: 119 start-page: 097403 year: 2017 ident: CR18 article-title: Dark solitons in high velocity waveguide polariton fluids publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.097403 – volume: 93 start-page: 043833 year: 2016 ident: CR26 article-title: Probing photon correlations in the dark sites of geometrically frustrated cavity lattices publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.93.043833 – volume: 94 start-page: 246401 year: 2005 ident: CR10 article-title: Quantum complementarity of microcavity polaritons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.246401 – volume: 5 year: 2014 ident: CR8 article-title: Polariton-generated intensity squeezing in semiconductor micropillars publication-title: Nat. Commun. doi: 10.1038/ncomms4260 – volume: 4 start-page: eaao6814 year: 2018 ident: CR9 article-title: First observation of the quantized exciton-polariton field and effect of interactions on a single polariton publication-title: Sci. Adv. doi: 10.1126/sciadv.aao6814 – volume: 103 start-page: 033601 year: 2009 ident: CR27 article-title: Fermionized photons in an array of driven dissipative nonlinear cavities publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.033601 – volume: 90 start-page: 251109 year: 2007 ident: CR21 article-title: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2749862 – volume: 116 start-page: 066402 year: 2016 ident: 281_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.066402 – volume: 112 start-page: 116402 year: 2014 ident: 281_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.116402 – ident: 281_CR15 doi: 10.1038/s41567-018-0071-6 – volume: 4 start-page: 859 year: 2008 ident: 281_CR16 publication-title: Nat. Phys. doi: 10.1038/nphys1078 – volume: 5 year: 2014 ident: 281_CR8 publication-title: Nat. Commun. doi: 10.1038/ncomms4260 – volume: 436 start-page: 87 year: 2005 ident: 281_CR12 publication-title: Nature doi: 10.1038/nature03804 – volume: 119 start-page: 097403 year: 2017 ident: 281_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.097403 – volume: 120 start-page: 035301 year: 2018 ident: 281_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.035301 – volume: 4 start-page: 361 year: 2010 ident: 281_CR11 publication-title: Nat. Photon. doi: 10.1038/nphoton.2010.79 – volume: 3 start-page: 014008 year: 2015 ident: 281_CR20 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.3.014008 – volume: 93 start-page: 043833 year: 2016 ident: 281_CR26 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.93.043833 – volume: 4 start-page: 3 year: 2010 ident: 281_CR28 publication-title: Nat. Photon. doi: 10.1038/nphoton.2009.240 – ident: 281_CR25 doi: 10.1038/s41563-019-0282-y – volume: 85 start-page: 299 year: 2013 ident: 281_CR1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.299 – volume: 106 start-page: 126401 year: 2011 ident: 281_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.126401 – volume: 318 start-page: 104 year: 2005 ident: 281_CR19 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2005.06.045 – volume: 6 start-page: 93 year: 2012 ident: 281_CR17 publication-title: Nat. Photon. doi: 10.1038/nphoton.2011.321 – volume: 95 start-page: 253002 year: 2005 ident: 281_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.253002 – volume: 73 start-page: 193306 year: 2006 ident: 281_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.193306 – volume: 5 start-page: 041028 year: 2015 ident: 281_CR5 publication-title: Phys. Rev. X – volume: 103 start-page: 033601 year: 2009 ident: 281_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.033601 – volume: 94 start-page: 246401 year: 2005 ident: 281_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.246401 – volume: 4 start-page: eaao6814 year: 2018 ident: 281_CR9 publication-title: Sci. Adv. doi: 10.1126/sciadv.aao6814 – volume: 106 start-page: 243601 year: 2011 ident: 281_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.243601 – volume: 90 start-page: 251109 year: 2007 ident: 281_CR21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2749862 – volume: 5 start-page: 805 year: 2009 ident: 281_CR23 publication-title: Nat. Phys. doi: 10.1038/nphys1364 – volume: 3 start-page: 696 year: 2009 ident: 281_CR30 publication-title: Nat. Photon. doi: 10.1038/nphoton.2009.230 – volume: 80 start-page: 016401 year: 2017 ident: 281_CR29 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/80/1/016401 – volume: 16 start-page: 1120 year: 2017 ident: 281_CR2 publication-title: Nat. Mater. doi: 10.1038/nmat4971 – ident: 281_CR22 doi: 10.1016/j.measurement.2019.01.079 – reference: 30783232 - Nat Mater. 2019 Mar;18(3):200-201 – reference: 30783230 - Nat Mater. 2019 Mar;18(3):219-222 |
SSID | ssj0021556 |
Score | 2.651382 |
Snippet | Over the past decade, exciton-polaritons in semiconductor microcavities have revealed themselves as one of the richest realizations of a light-based quantum... |
SourceID | hal proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 213 |
SubjectTerms | 140/125 639/766/1130 639/766/119 639/766/400 639/766/483 Autocorrelation functions Biomaterials Chemistry and Materials Science Condensed Matter Condensed Matter Physics Correlation Emergence Letter Materials Science Microcavities Nanotechnology Optical and Electronic Materials Photons Physics Polaritons Quantum Gases Quantum Physics Quantum theory |
Title | Emergence of quantum correlations from interacting fibre-cavity polaritons |
URI | https://link.springer.com/article/10.1038/s41563-019-0281-z https://www.ncbi.nlm.nih.gov/pubmed/30783231 https://www.proquest.com/docview/2186302327 https://www.proquest.com/docview/2184141702 https://hal.science/hal-02128140 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6xuxc4IN4ElpVBnEDWxvErOaEWtVQrqBBipd4s2-vAAdIubTnsr2cmjxa0Yi-JlDiJM2N7Zjwz3wC8lgLNNSkjt0FbrgSaO6EOmptCqIDaXDIt2v6nuZmdq7OFXvQbbus-rHJYE9uF-mIZaY_8lGonUYGbwr5bXXKqGkXe1b6ExgEcEXQZhXTZxd7gQlnZZRdZw1GvKAavpixP12S4UCRRxVHCCn71j1w6-E5RkddVzmvu0lYKTe_B3V59ZKOO3_fhVmoewJ2_QAUfwtmkz6hMbFmzyy2SbvuTRarC0ce9McopYQQU0aZINd9YjUZz4tFTIQm2ImsXJ3qzfgTn08nX9zPeV0zgEQXzhpdRp6rCJSuqKl74lOcpWK9sVUSRcl0kFXLhQwrKah9QsufJos6WItqkvtRePobDZtmkp8CkiIX3yghTeRVqHZKSRifjQxC-NkUG-UAvF3s4capq8cO1bm1Zuo7EDknsiMTuKoM3u0dWHZbGTY1fIRN27QgFezb66OgaodITUNdvkcHxwCPXz72124-UDF7ubuOsIVeIb9Jy27ZRQgmb43886Xi7-5QkzyaqvRm8HZi9f_l_-_vs5q48h9tFO9hozB3D4ebXNr1AdWYTTtoxi8dy-uEEjkbT8XiO5_Fk_vnLH40o8xs |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB615QAcEM8SKGAQXEBW41ceB4Qq6LJttz21Um_Gdh04QHbL7oLoj-I3MpNXQRW99Zo4jjMPz3wZzwzASyUQrikVeO5NzrVAuOMrb3gmhfbozcWsqba_f5CNj_TusTlegd99Lgwdq-z3xGajPpkG-ke-Sb2TqMGNzN_NTjl1jaLoat9CoxWLvfjrJ0K2-dudD8jfV1KOtg_fj3nXVYAHNF4LXgQTyxLVOugynLiYptHnTuelDCKmRkbtU-F89Do3zqP1S2OOfk0MiNtcYZzCeVfhmlaqJI0qRh8HgIe2uc1myjOOfozso6iq2JwTUKKTSyVHiy742T92cPULncK86OJeCM82Vm90G2517irbauXrDqzE-i7c_KuI4T3Y3e4yOCObVux0iaxafmOBun505-wY5bAwKkzRpGTVn1mFID3y4KhxBZsRusaNpZ7fh6MroeUDWKundXwITIkgndOZyEqnfWV81CozMXPeC1dlMoG0p5cNXfly6qLx1TZhdFXYlsQWSWyJxPYsgdfDI7O2dsdlg18gE4ZxVHV7vDWxdI2q4FNhsB8igY2eR7bT9bk9l8wEng-3UUsp9OLqOF02Y7TQIk_xO9Zb3g6vUhRJRTc7gTc9s88n_-96H12-lGdwfXy4P7GTnYO9x3BDNoJH8rcBa4vvy_gEXamFf9rIL4NPV60wfwCe4C0W |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH5qi4TggNgJFDAILiCrcbxNDghVtKPpQsWBSnMztuvAATJTZgZEfxq_jveyzIAqeus1cba3-L0vbwN4IQXCNSkjt0FbrgTCnVAFzU0hVEBvLpmm2_77IzM6VvtjPV6D330tDKVV9ntis1GfTCL9I9-i2Uk04AahetWlRXzYGb6dnnKaIEWR1n6cRisiB-nXT4Rvszd7O8jrl0Ux3P34bsS7CQM8oiGb80HUqSxRxaMq44lPeZ6C9cqWRRQp10VSIRc-pKCs9gEtYZ4s-jgpIobzA-0l3ncdrlipBemYHa_AHtrptrLJGo4-TdFHVOVga0agibKYSo7WXfCzf2zi-hfKyDzv7p4L1TYWcHgTbnSuK9tuZe0WrKX6Nlz_q6HhHdjf7ao5E5tU7HSBbFt8Y5EmgHQ5d4zqWRg1qWjKs-rPrELAnnj0NMSCTQlp4yZTz-7C8aXQ8h5s1JM6PQAmRSy8V0aY0qtQ6ZCUNDoZH4LwlSkyyHt6udi1MqeJGl9dE1KXA9eS2CGJHZHYnWXwannJtO3jcdHi58iE5TrqwD3aPnR0jDriU5OwHyKDzZ5HrtP7mVtJaQbPlqdRYykM4-s0WTRrlFDC5vgd91veLh8lKaqKLncGr3tmr27-3_d9ePGrPIWrqCrucO_o4BFcKxq5I_HbhI3590V6jF7VPDxpxJfBp8vWlz-QqTFD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+of+quantum+correlations+from+interacting+fibre-cavity+polaritons&rft.jtitle=Nature+materials&rft.au=Mu%C3%B1oz-Matutano%2C+Guillermo&rft.au=Wood%2C+Andrew&rft.au=Johnsson%2C+Mattias&rft.au=Vidal%2C+Xavier&rft.date=2019-03-01&rft.pub=Nature+Publishing+Group&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=18&rft.issue=3&rft.spage=213&rft.epage=218&rft_id=info:doi/10.1038%2Fs41563-019-0281-z&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02128140v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |