Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview
As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papil...
Saved in:
Published in | Materials Vol. 13; no. 14; p. 3224 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.07.2020
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Yersinia enterocolitica, Listeria innocua. Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called “from nature to nature”. Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes. |
---|---|
AbstractList | As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as
,
,
,
,
,
,
. Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called "from nature to nature". Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes. As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus , Escherichia coli , Streptococcus pyogenes , Enterococcus faecalis , Pseudomonas aeruginosa , Yersinia enterocolitica , Listeria innocua . Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called “from nature to nature”. Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes. As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Yersinia enterocolitica, Listeria innocua. Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called "from nature to nature". Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes.As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Yersinia enterocolitica, Listeria innocua. Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called "from nature to nature". Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes. As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Yersinia enterocolitica, Listeria innocua. Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called “from nature to nature”. Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes. |
Author | Kaczmarek, Beata |
AuthorAffiliation | Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland; beata.kaczmarek@umk.pl |
AuthorAffiliation_xml | – name: Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland; beata.kaczmarek@umk.pl |
Author_xml | – sequence: 1 givenname: Beata surname: Kaczmarek fullname: Kaczmarek, Beata |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32698426$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1OGzEQxy1ExUfgwgNUlnpBldL6K7veC9ISlbYSFRzgbNleLwzK2sF2grj1IfqEPAkOAUpRfbE985vR_z-zizZ98A6hA0q-cN6Qr4OmnArOmNhAO7RpqjFthNh8895G-yndkHI4p5I1W2ibs6qRglU7aLjQ3oPFrYUO30G-xq3PsISoZ1j77ulntM0uQom0dpXL91gn3OLzGAZI4K_wNAzzIstnHHp8DGHQ64L08PtPi3-Bh-iW4O720Ie-RN3-8z1ClyffLqY_xqdn339O29OxFaTKY1kbaQhlRbwxk662hDnXMyuNqXTd1LRnPZe0p4bzYqQmghNRdZpqXU207PkIHa37zhdmcJ0tyoohNY8w6Hivggb1b8bDtboKS1ULymgZ1AgdPjeI4XbhUlbFqXWzmfYuLJJiZXgTXhPJC_rpHXoTFtEXe0-UFLQSolAf3yp6lfKyiQKQNWBjSCm6XlnIOkNYCYSZokSt9q3-7ruUfH5X8tL1P_AjwYWrig |
CitedBy_id | crossref_primary_10_1002_pi_6699 crossref_primary_10_1016_j_ijbiomac_2021_10_067 crossref_primary_10_1016_j_carbpol_2024_122321 crossref_primary_10_1021_acsami_4c09909 crossref_primary_10_1021_acsanm_4c05449 crossref_primary_10_1088_1755_1315_1241_1_012102 crossref_primary_10_3390_cosmetics10030087 crossref_primary_10_52622_jisk_v4i1_02 crossref_primary_10_1007_s00210_023_02548_9 crossref_primary_10_1016_j_ijbiomac_2024_130744 crossref_primary_10_1021_acs_jafc_3c09396 crossref_primary_10_52622_jisk_v4i1_04 crossref_primary_10_1021_acsami_2c00236 crossref_primary_10_1016_j_ijbiomac_2024_133334 crossref_primary_10_1016_j_jip_2024_108142 crossref_primary_10_1039_D1TB00227A crossref_primary_10_1016_j_mtcomm_2023_107927 crossref_primary_10_1021_acssuschemeng_1c03313 crossref_primary_10_3390_antibiotics11060766 crossref_primary_10_1016_j_ijbiomac_2024_135750 crossref_primary_10_1093_burnst_tkac019 crossref_primary_10_52711_0974_360X_2024_00673 crossref_primary_10_1186_s12951_023_01922_2 crossref_primary_10_3389_fmicb_2023_1287167 crossref_primary_10_1016_j_cej_2022_136835 crossref_primary_10_22159_ijpps_2022v14i3_43603 crossref_primary_10_3390_polysaccharides5040051 crossref_primary_10_1016_j_ijbiomac_2023_123489 crossref_primary_10_3389_fphar_2022_940628 crossref_primary_10_1021_acsbiomaterials_2c00935 crossref_primary_10_3390_ma17020278 crossref_primary_10_3389_fmicb_2022_958660 crossref_primary_10_3390_ijms23147687 crossref_primary_10_3390_polym15204180 crossref_primary_10_2139_ssrn_4132959 crossref_primary_10_1016_j_nxnano_2023_100035 crossref_primary_10_1016_j_jcis_2024_10_189 crossref_primary_10_3390_molecules29112615 crossref_primary_10_1021_acs_biomac_3c00043 crossref_primary_10_1016_j_ijbiomac_2025_140958 crossref_primary_10_1021_acs_molpharmaceut_4c00048 crossref_primary_10_3390_polym16142021 crossref_primary_10_53365_nrfhh_143085 crossref_primary_10_1016_j_matpr_2023_02_285 crossref_primary_10_1093_lambio_ovac053 crossref_primary_10_1016_j_bioactmat_2022_05_017 crossref_primary_10_1016_j_foodhyd_2022_108415 crossref_primary_10_3390_microorganisms9102113 crossref_primary_10_1016_j_foodchem_2023_135539 crossref_primary_10_1080_09593330_2024_2402096 crossref_primary_10_1631_bdm_2300327 crossref_primary_10_3390_eng5020034 crossref_primary_10_1016_j_jclepro_2023_140503 crossref_primary_10_3390_ijms252212353 crossref_primary_10_1016_j_matchemphys_2022_126689 crossref_primary_10_1080_09205063_2023_2201808 crossref_primary_10_1002_anie_202423654 crossref_primary_10_1088_2053_1591_ad9813 crossref_primary_10_3390_life13030735 crossref_primary_10_2754_avb202392040407 crossref_primary_10_1016_j_compscitech_2023_110295 crossref_primary_10_70099_BJ_2024_01_04_19 crossref_primary_10_1039_D2BM00820C crossref_primary_10_3390_molecules26216686 crossref_primary_10_1016_j_indcrop_2022_115978 crossref_primary_10_3389_fmicb_2023_1134207 crossref_primary_10_1016_j_ijbiomac_2022_11_054 crossref_primary_10_1016_j_bioadv_2022_212831 crossref_primary_10_2174_1573399820666230828091708 crossref_primary_10_1166_mex_2023_2384 crossref_primary_10_1016_j_ijbiomac_2022_03_174 crossref_primary_10_2478_amma_2024_0022 crossref_primary_10_1039_D2RA01630C crossref_primary_10_2174_0126667797310136240723093606 crossref_primary_10_1016_j_nantod_2023_102071 crossref_primary_10_1016_j_nwnano_2024_100040 crossref_primary_10_1177_0040517521994884 crossref_primary_10_3390_antiox13020237 crossref_primary_10_1007_s13726_021_00966_1 crossref_primary_10_1016_j_fbio_2021_101245 crossref_primary_10_3390_pr13030878 crossref_primary_10_3390_ijms25105196 crossref_primary_10_1016_j_ijbiomac_2024_138682 crossref_primary_10_31665_JFB_2021_15283 crossref_primary_10_3390_su16114352 crossref_primary_10_20473_jfiki_v9i32022_305_313 crossref_primary_10_3389_fbioe_2023_1171908 crossref_primary_10_1002_pat_6636 crossref_primary_10_1016_j_chemosphere_2022_135810 crossref_primary_10_1021_acsbiomaterials_3c00590 crossref_primary_10_3390_polym15040986 crossref_primary_10_1007_s11829_024_10059_4 crossref_primary_10_1039_D4NA00643G crossref_primary_10_47836_ifrj_30_5_11 crossref_primary_10_3390_polym16233398 crossref_primary_10_3390_plants10091847 crossref_primary_10_3390_ijms24044213 crossref_primary_10_54751_revistafoco_v16n10_157 crossref_primary_10_1016_j_bioactmat_2023_06_007 crossref_primary_10_1134_S0006350924700866 crossref_primary_10_1088_1748_605X_ad0d85 crossref_primary_10_1002_adsu_202400389 crossref_primary_10_1002_mabi_202400410 crossref_primary_10_1016_j_cej_2024_152286 crossref_primary_10_11002_kjfp_2021_28_7_857 crossref_primary_10_1016_j_memsci_2024_122570 crossref_primary_10_1021_acsomega_4c05152 crossref_primary_10_1016_j_engreg_2024_06_003 crossref_primary_10_1021_acsami_1c08061 crossref_primary_10_1515_chem_2023_0120 crossref_primary_10_1002_app_56799 crossref_primary_10_1016_j_jobab_2024_02_002 crossref_primary_10_1016_j_ijbiomac_2023_128870 crossref_primary_10_3390_biomedicines10071619 crossref_primary_10_1016_j_jddst_2024_105568 crossref_primary_10_3389_fvets_2023_1157633 crossref_primary_10_1016_j_carbpol_2024_122111 crossref_primary_10_1016_j_eurpolymj_2023_112373 crossref_primary_10_1016_j_foodcont_2022_109059 crossref_primary_10_3390_jfb14020069 crossref_primary_10_1016_j_cej_2023_146305 crossref_primary_10_1016_j_psj_2023_102987 crossref_primary_10_1016_j_susmat_2024_e01194 crossref_primary_10_1080_25740881_2024_2358998 crossref_primary_10_1002_ange_202423654 crossref_primary_10_1002_cbdv_202401754 crossref_primary_10_1016_j_jare_2022_09_013 crossref_primary_10_3390_polym17060770 crossref_primary_10_1007_s42535_023_00673_7 crossref_primary_10_1021_acs_biomac_4c01234 crossref_primary_10_1002_pc_26354 crossref_primary_10_2217_nnm_2023_0275 crossref_primary_10_1016_j_jddst_2023_104625 crossref_primary_10_1038_s41598_024_72190_9 crossref_primary_10_20473_jvhs_V7_I2_2023_115_120 crossref_primary_10_1007_s11224_022_02035_6 crossref_primary_10_3390_app131810549 crossref_primary_10_35229_jaes_1573899 crossref_primary_10_1111_iwj_14571 crossref_primary_10_4236_jpee_2023_118002 crossref_primary_10_1016_j_ijbiomac_2024_134961 crossref_primary_10_1016_j_tiv_2024_105971 crossref_primary_10_1080_1539445X_2022_2147945 crossref_primary_10_20473_jmv_vol6_iss2_2023_262_270 crossref_primary_10_32604_jrm_2024_054739 crossref_primary_10_1039_D1NR06237A crossref_primary_10_1007_s00396_023_05148_4 crossref_primary_10_3390_molecules27072214 crossref_primary_10_1007_s11274_025_04266_1 crossref_primary_10_1021_acsapm_3c01247 crossref_primary_10_1021_acsami_2c18664 crossref_primary_10_1021_acsbiomaterials_1c00900 crossref_primary_10_1016_j_micpath_2025_107400 crossref_primary_10_3390_microorganisms12030498 crossref_primary_10_1016_j_heliyon_2024_e36768 crossref_primary_10_55230_mabjournal_v53i6_3 crossref_primary_10_1002_ps_8564 crossref_primary_10_1016_j_carbpol_2022_119844 crossref_primary_10_3390_ijms25136937 crossref_primary_10_17776_csj_1425012 crossref_primary_10_1039_D2TB01056A crossref_primary_10_2139_ssrn_4122156 crossref_primary_10_1002_slct_202302206 crossref_primary_10_1021_acsapm_1c01724 crossref_primary_10_1016_j_biteb_2023_101411 crossref_primary_10_3390_molecules25225252 crossref_primary_10_1016_j_arabjc_2021_103410 crossref_primary_10_1111_jfs_70007 crossref_primary_10_1016_j_bioadv_2025_214195 crossref_primary_10_1007_s42247_021_00192_8 crossref_primary_10_1016_j_ceramint_2024_06_011 crossref_primary_10_1016_j_ijbiomac_2024_134162 crossref_primary_10_1016_j_progpolymsci_2024_101908 crossref_primary_10_4103_japtr_japtr_111_22 crossref_primary_10_1002_pat_70047 crossref_primary_10_3390_app142210728 crossref_primary_10_1016_j_cocis_2021_101480 crossref_primary_10_1016_j_scitotenv_2023_167474 crossref_primary_10_1021_acsami_3c02408 crossref_primary_10_1039_D2NH00574C crossref_primary_10_1016_j_cej_2025_161262 crossref_primary_10_3390_antiox14010112 crossref_primary_10_1039_D2RA01675C crossref_primary_10_3390_ma14092449 crossref_primary_10_1159_000533656 crossref_primary_10_1016_j_ijbiomac_2024_135118 crossref_primary_10_1246_bcsj_20220046 crossref_primary_10_2147_IJN_S363827 crossref_primary_10_3389_fsufs_2021_643208 crossref_primary_10_29244_currbiomed_2_1_1_12 crossref_primary_10_3390_ma13163641 crossref_primary_10_1016_j_ijbiomac_2024_130341 crossref_primary_10_1016_j_bioadv_2024_213983 crossref_primary_10_3390_ijms232315411 crossref_primary_10_1007_s00210_024_03640_4 crossref_primary_10_1007_s13399_023_04726_4 crossref_primary_10_52711_0974_360X_2022_00887 crossref_primary_10_1016_j_porgcoat_2024_108719 crossref_primary_10_3390_ijms222111788 crossref_primary_10_3390_jfb14070344 crossref_primary_10_1016_j_mtbio_2025_101477 crossref_primary_10_1016_j_eurpolymj_2023_111881 crossref_primary_10_20473_juxta_V14I12023_43_47 crossref_primary_10_1002_smll_202308295 crossref_primary_10_1021_acsami_1c13744 crossref_primary_10_4102_jomped_v7i1_178 crossref_primary_10_1021_acs_jafc_3c00863 crossref_primary_10_1088_1755_1315_1449_1_012050 crossref_primary_10_1134_S1068162023020103 crossref_primary_10_60084_hjas_v1i2_89 crossref_primary_10_3390_su15043268 crossref_primary_10_1016_j_foodhyd_2024_110333 crossref_primary_10_3390_coatings12020178 crossref_primary_10_1039_D2CC05102H crossref_primary_10_1002_EXP_20230092 crossref_primary_10_1021_acsomega_3c03459 crossref_primary_10_1038_s41598_024_67133_3 crossref_primary_10_3390_ijms232415818 crossref_primary_10_3390_ma18050998 crossref_primary_10_5604_01_3001_0014_8972 crossref_primary_10_1016_j_foodres_2023_112756 crossref_primary_10_1088_1755_1315_1282_1_012029 crossref_primary_10_1016_j_inoche_2023_111140 crossref_primary_10_3390_gels9050398 crossref_primary_10_1002_pat_6487 crossref_primary_10_1016_j_foodchem_2025_143757 crossref_primary_10_1039_D3TB02581K crossref_primary_10_3390_ijms22126472 crossref_primary_10_1016_j_csbj_2023_04_011 crossref_primary_10_1186_s12917_024_04036_5 crossref_primary_10_1016_j_foodhyd_2023_109414 crossref_primary_10_1016_j_ijbiomac_2024_129329 crossref_primary_10_18006_2024_12_1__145_152 crossref_primary_10_2174_1389557522666220622112959 crossref_primary_10_1039_D2MH00591C crossref_primary_10_31857_S0233475524010062 crossref_primary_10_3390_plants12234041 crossref_primary_10_1002_advs_202207352 crossref_primary_10_3390_molecules26247454 crossref_primary_10_1039_D1TB02413B crossref_primary_10_1016_j_heliyon_2024_e40159 crossref_primary_10_1016_j_foodchem_2024_138676 crossref_primary_10_3390_nano12234320 crossref_primary_10_1016_j_mser_2024_100882 crossref_primary_10_1080_17460794_2024_2398949 crossref_primary_10_20473_j_djmkg_v56_i4_p220_225 crossref_primary_10_1186_s41936_022_00282_x crossref_primary_10_3390_antiox10101594 crossref_primary_10_3390_gels11030168 crossref_primary_10_3390_molecules28020693 crossref_primary_10_1016_j_colsurfb_2023_113198 crossref_primary_10_1016_j_ijbiomac_2023_128101 crossref_primary_10_3390_ani12091054 crossref_primary_10_1002_ps_7564 crossref_primary_10_1016_j_matchemphys_2022_126141 crossref_primary_10_3389_fbioe_2021_638577 crossref_primary_10_3390_molecules27010279 crossref_primary_10_1016_j_ijbiomac_2022_06_168 crossref_primary_10_1021_acsabm_3c00785 crossref_primary_10_1016_j_compositesb_2024_111875 crossref_primary_10_1111_jfd_13924 crossref_primary_10_1515_pac_2024_0018 crossref_primary_10_1021_acsabm_4c01044 crossref_primary_10_1002_adhm_202100793 crossref_primary_10_1007_s42770_024_01477_w crossref_primary_10_1016_j_eurpolymj_2024_112943 crossref_primary_10_3390_antiox11102027 crossref_primary_10_1016_j_fuel_2022_125763 crossref_primary_10_1002_adhm_202404260 crossref_primary_10_1021_acsbiomaterials_2c00974 crossref_primary_10_1007_s10570_022_05003_9 crossref_primary_10_3390_polym14112197 crossref_primary_10_34133_research_0438 crossref_primary_10_1016_j_ijbiomac_2025_140082 crossref_primary_10_1016_j_molliq_2022_119561 crossref_primary_10_1016_j_mtcomm_2024_110172 crossref_primary_10_1016_j_ijadhadh_2024_103847 crossref_primary_10_3390_biomedicines11030706 crossref_primary_10_3390_oral4040044 crossref_primary_10_1055_s_0041_1741374 crossref_primary_10_1088_1748_605X_acce88 crossref_primary_10_1016_j_foodchem_2022_132399 crossref_primary_10_31857_S0006302924040217 crossref_primary_10_3390_biom12070875 crossref_primary_10_1016_j_memsci_2024_123257 crossref_primary_10_1080_09205063_2021_1950961 crossref_primary_10_2478_aoas_2022_0057 crossref_primary_10_3389_fbioe_2024_1434435 crossref_primary_10_1155_adpp_9954073 crossref_primary_10_1002_adhm_202303686 crossref_primary_10_3390_biomedicines13010209 crossref_primary_10_1007_s11694_024_02546_2 crossref_primary_10_1007_s12247_023_09782_x crossref_primary_10_3390_ijms24054532 crossref_primary_10_1016_j_carbpol_2022_119235 crossref_primary_10_1016_j_ijbiomac_2024_132719 crossref_primary_10_1134_S1990747823070048 crossref_primary_10_1016_j_jfca_2024_106832 crossref_primary_10_1007_s13197_023_05790_4 crossref_primary_10_1021_acssuschemeng_4c05829 crossref_primary_10_3389_fphar_2024_1508835 crossref_primary_10_3390_ph16060881 crossref_primary_10_3390_gels9050354 crossref_primary_10_1016_j_inoche_2022_109532 crossref_primary_10_1039_D4BM00893F crossref_primary_10_1016_j_ceramint_2025_01_151 crossref_primary_10_2174_0113816128309718240822060114 crossref_primary_10_61186_MCH_2024_1064 crossref_primary_10_1016_j_ijpharm_2021_121255 crossref_primary_10_3390_horticulturae10040367 crossref_primary_10_1016_j_matdes_2023_112244 crossref_primary_10_1080_07391102_2024_2309643 crossref_primary_10_14202_IJOH_2024_148_152 crossref_primary_10_1016_j_molliq_2022_119104 crossref_primary_10_1016_j_colsurfa_2024_134925 crossref_primary_10_3390_biochem2040019 crossref_primary_10_1002_macp_202400220 crossref_primary_10_1007_s10965_021_02777_7 crossref_primary_10_1016_j_jcis_2024_08_129 crossref_primary_10_1016_j_mtla_2024_102165 crossref_primary_10_1021_acs_jafc_3c00849 crossref_primary_10_1016_j_ijbiomac_2024_129409 crossref_primary_10_1016_j_colsurfa_2023_132213 crossref_primary_10_1002_smll_202407195 crossref_primary_10_1177_08853282211058099 crossref_primary_10_1002_btm2_10540 crossref_primary_10_1088_2752_5724_ad9493 crossref_primary_10_3390_app14209203 crossref_primary_10_1016_j_molliq_2024_126462 crossref_primary_10_2174_2666779701666220412085825 crossref_primary_10_1007_s00289_021_03727_5 crossref_primary_10_35229_jaes_1004833 crossref_primary_10_1007_s12221_021_1459_y crossref_primary_10_3389_fphar_2025_1522814 crossref_primary_10_14202_vetworld_2022_350_359 crossref_primary_10_1016_j_compscitech_2024_110829 crossref_primary_10_1021_acsami_4c13360 crossref_primary_10_1007_s10570_021_04273_z crossref_primary_10_20473_j_djmkg_v56_i4_p226_232 |
Cites_doi | 10.1248/bpb.23.1072 10.1016/j.tiv.2019.104688 10.1016/j.msec.2019.110493 10.1007/s10853-009-3770-7 10.1016/j.carbpol.2014.09.007 10.1016/j.polymertesting.2019.106007 10.1586/erd.09.36 10.1016/j.jpba.2009.05.035 10.1016/S1369-7021(11)70058-X 10.3390/v10100524 10.3390/ijms21031003 10.1016/j.foodchem.2009.05.060 10.1016/j.bmc.2011.11.040 10.1155/2014/186864 10.1016/S0166-3542(02)00186-9 10.3390/cancers12030593 10.1016/j.ijbiomac.2017.10.105 10.1016/j.carbpol.2018.01.056 10.1016/j.crci.2014.07.007 10.1016/j.carbpol.2012.04.021 10.1021/jf053259f 10.1016/S0039-9140(02)00410-1 10.1371/journal.pone.0088062 10.1039/D0BM00322K 10.1021/acsbiomaterials.9b00604 10.1016/j.chemphys.2018.12.009 10.1016/j.foodhyd.2019.03.019 10.1016/j.addr.2007.03.015 10.1016/j.copbio.2007.09.008 10.1021/jf9805146 10.1016/j.btre.2019.e00370 10.1093/ajcn/81.1.215S 10.1080/09205063.2017.1421349 10.1016/j.foodchem.2013.09.113 10.1021/acsami.6b10491 10.1016/j.tifs.2015.02.003 10.1016/j.biomaterials.2007.07.044 10.1016/j.sajb.2020.02.018 10.1021/np50069a008 10.1016/B978-0-323-47720-8.00013-4 10.1021/acs.biomac.8b00270 10.1080/15421406.2018.1542069 10.1155/2016/3012462 10.1016/j.arabjc.2009.12.008 10.1016/j.colcom.2020.100241 10.1080/10942912.2016.1220393 10.1016/j.carbpol.2010.04.048 10.1016/j.compositesb.2006.06.014 10.1016/j.marenvres.2012.12.005 10.1007/s10856-008-3675-z 10.1080/14786419.2017.1323209 10.1016/j.tifs.2016.04.008 10.1016/j.ijpharm.2008.07.033 10.1016/j.jaci.2003.08.048 10.1016/j.memsci.2012.11.059 10.3389/fmicb.2017.01314 10.4103/2277-9175.109722 10.3390/antiox9010061 10.1002/mabi.200700005 10.1021/acssuschemeng.6b02737 10.1080/09205063.2019.1630699 10.1016/j.cej.2019.123888 10.1007/s10973-018-7341-5 10.1016/j.antiviral.2005.05.002 10.3390/ijms19020387 10.1038/nrmicro.2017.99 10.1002/pat.4722 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 by the author. 2020 |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 by the author. 2020 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma13143224 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Coronavirus Research Database ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC7412100 32698426 10_3390_ma13143224 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Nicolaus Copernicus University grantid: - |
GroupedDBID | 29M 2WC 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS GROUPED_DOAJ NPM 7SR 8FD ABUWG AZQEC COVID DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c406t-87b8b012944bb5d7c02eef2c8bb6a7971f2f381f1b336987043046da1aa65a8f3 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 17:45:50 EDT 2025 Fri Jul 11 10:29:54 EDT 2025 Fri Jul 25 11:51:57 EDT 2025 Wed Feb 19 02:01:47 EST 2025 Tue Jul 01 03:56:30 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | antibacterial tannic acid antiviral phenolic acids |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-87b8b012944bb5d7c02eef2c8bb6a7971f2f381f1b336987043046da1aa65a8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2426841644?pq-origsite=%requestingapplication% |
PMID | 32698426 |
PQID | 2426841644 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7412100 proquest_miscellaneous_2426537083 proquest_journals_2426841644 pubmed_primary_32698426 crossref_citationtrail_10_3390_ma13143224 crossref_primary_10_3390_ma13143224 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200720 |
PublicationDateYYYYMMDD | 2020-07-20 |
PublicationDate_xml | – month: 7 year: 2020 text: 20200720 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2020 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Koo (ref_4) 2017; 15 Howse (ref_47) 2006; 54 Popa (ref_64) 2018; 52 ref_16 Pandey (ref_51) 2018; 32 (ref_28) 2002; 58 Krzyzowska (ref_38) 2017; 1 Bouki (ref_29) 2013; 85 Huyut (ref_31) 2010; 3 Brazdaru (ref_52) 2015; 18 An (ref_58) 2019; 520 Lee (ref_57) 2018; 110 Lee (ref_69) 2018; 186 Chung (ref_5) 2007; 59 Dabbaghi (ref_23) 2009; 30 Kim (ref_26) 2010; 118 Xu (ref_41) 2000; 23 (ref_9) 2011; 14 ref_20 Rivero (ref_30) 2010; 82 Albu (ref_53) 2019; 60 ref_63 Gao (ref_71) 2020; 8 Tucci (ref_48) 2011; 47 Chahal (ref_13) 2019; 30 Sabir (ref_12) 2009; 44 Thakur (ref_7) 2008; 364 Uchiumi (ref_43) 2003; 58 Kaczmarek (ref_60) 2019; 78 Ninan (ref_65) 2016; 8 Ngobili (ref_54) 2015; 35 Zhu (ref_67) 2015; 43 Kyziol (ref_14) 2020; 385 Aelenei (ref_22) 2009; 20 Azeredo (ref_15) 2016; 52 Kopecek (ref_10) 2007; 28 Bridgeman (ref_55) 2018; 29 Frazier (ref_46) 2010; 51 Gorgieva (ref_25) 2012; 89 ref_34 Jing (ref_72) 2019; 5 Vasilev (ref_6) 2009; 6 Abbas (ref_33) 2014; 147 Rubentheren (ref_59) 2015; 115 Cheng (ref_73) 2020; 35 Karimi (ref_36) 2013; 2 Grabska (ref_70) 2019; 670 ref_39 Nance (ref_42) 2003; 112 Saiz (ref_21) 2017; 8 ref_37 Nonaka (ref_40) 1999; 53 Cheynier (ref_45) 1999; 47 Belhaoues (ref_49) 2020; 131 Xu (ref_66) 2017; 5 Wei (ref_68) 2019; 94 Abbas (ref_17) 2017; 20 Zhang (ref_35) 2012; 20 Wu (ref_56) 2018; 135 Zhang (ref_27) 2013; 429 Karp (ref_8) 2007; 18 Ather (ref_2) 2005; 67 Uyama (ref_32) 2007; 7 Kumorek (ref_62) 2020; 109 Suzilla (ref_50) 2020; 736 Cheung (ref_11) 2007; 38 ref_1 ref_3 Kumar (ref_24) 2019; 24 Kaczmarek (ref_61) 2020; 62 Archivio (ref_18) 2017; 43 Pronantyo (ref_44) 2018; 19 Scalbert (ref_19) 2015; 81 |
References_xml | – volume: 23 start-page: 1072 year: 2000 ident: ref_41 article-title: Inhibitory activity of flavonoids and tannins against HIV-1 protease publication-title: Biol. Pharm. Bull. doi: 10.1248/bpb.23.1072 – volume: 62 start-page: 104688 year: 2020 ident: ref_61 article-title: Normal and cancer cells response on the thin films based on chitosan and tannic acid publication-title: Toxicol. Vitr. doi: 10.1016/j.tiv.2019.104688 – volume: 109 start-page: 110493 year: 2020 ident: ref_62 article-title: pH-responsive and antibacterial properties of self-assembled multilayer films based on chitosan and tannic acid publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.110493 – volume: 44 start-page: 5713 year: 2009 ident: ref_12 article-title: A review on biodegradable polymeric materials for bone tissue engineering applications publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-3770-7 – volume: 115 start-page: 379 year: 2015 ident: ref_59 article-title: Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2014.09.007 – volume: 78 start-page: 106007 year: 2019 ident: ref_60 article-title: The characterization of thin films based on chitosan and tannic acid mixture for potential applications as wound dressings publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2019.106007 – volume: 6 start-page: 553 year: 2009 ident: ref_6 article-title: Antibacterial surfaces for biomedical devices publication-title: Expert Rev. Med. Devices doi: 10.1586/erd.09.36 – volume: 51 start-page: 490 year: 2010 ident: ref_46 article-title: Interactions of tea tannins and condensed tannins with proteins publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2009.05.035 – volume: 14 start-page: 88 year: 2011 ident: ref_9 article-title: Biomaterials & scaffolds for tissue engineering publication-title: Mater. Today doi: 10.1016/S1369-7021(11)70058-X – ident: ref_39 doi: 10.3390/v10100524 – ident: ref_20 doi: 10.3390/ijms21031003 – volume: 118 start-page: 740 year: 2010 ident: ref_26 article-title: Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing publication-title: Food Chem. doi: 10.1016/j.foodchem.2009.05.060 – volume: 20 start-page: 1616 year: 2012 ident: ref_35 article-title: Tannic acid inhibited norovirus binding to HBGA receptors, a study of 50 Chinese medicinal herbs publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2011.11.040 – ident: ref_1 doi: 10.1155/2014/186864 – volume: 58 start-page: 89 year: 2003 ident: ref_43 article-title: Transcriptional suppression of the HIV promoter by natural compounds publication-title: Antivir. Res. doi: 10.1016/S0166-3542(02)00186-9 – ident: ref_63 doi: 10.3390/cancers12030593 – volume: 110 start-page: 497 year: 2018 ident: ref_57 article-title: Development of a tannic acid cross-linking process for obtaining 3D porous cell-laden collagen structure publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.10.105 – volume: 186 start-page: 290 year: 2018 ident: ref_69 article-title: Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.01.056 – volume: 18 start-page: 160 year: 2015 ident: ref_52 article-title: Structural and rheological properties of collagen hydrogels containing tannic acid and chlorhexidine digluconate intended for topical applications publication-title: Comptes Rendus Chim. doi: 10.1016/j.crci.2014.07.007 – volume: 89 start-page: 854 year: 2012 ident: ref_25 article-title: Homogeneous and heterogeneous methods for laccase-mediated functionalization of chitosan by tannic acid and quercetin publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2012.04.021 – volume: 54 start-page: 4077 year: 2006 ident: ref_47 article-title: Noncovalent crosslinking of casein by epigallocatechin gallate characterized by single molecule force microscopy publication-title: J. Agric. Food Chem. doi: 10.1021/jf053259f – volume: 58 start-page: 1243 year: 2002 ident: ref_28 article-title: Determination of tannic acid by direct chemiluminescence in a FIA assembly publication-title: Talanta doi: 10.1016/S0039-9140(02)00410-1 – ident: ref_34 doi: 10.1371/journal.pone.0088062 – volume: 8 start-page: 2694 year: 2020 ident: ref_71 article-title: A medical adhesive used in a wet environment by blending tannic acid and silk fibroin publication-title: Biomater. Sci. doi: 10.1039/D0BM00322K – volume: 5 start-page: 4601 year: 2019 ident: ref_72 article-title: Fabrication of hybrid hydrogels from silk fibroin and tannic acid with enhanced gelation and antibacterial activities publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.9b00604 – volume: 736 start-page: 022030 year: 2020 ident: ref_50 article-title: Formulation and evaluation of antimicrobial herbosomal gel from Quercus infectoria extract publication-title: Mater. Sci. Eng. C – volume: 520 start-page: 100 year: 2019 ident: ref_58 article-title: The interaction between chitosan and tannic acid calculated based on the density functional theory publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2018.12.009 – volume: 94 start-page: 174 year: 2019 ident: ref_68 article-title: Multiple steps and critical behaviors of the binding of tannic acid to wheat starch: Effect of the concentration of wheat starch and the mass ratio of tannic acid to wheat starch publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2019.03.019 – volume: 52 start-page: 353 year: 2018 ident: ref_64 article-title: Controlling the release kinetics of calcein loaded liposomes from chitosan/tannic acid and chitosan/poly(vinyl alcohol)/tannic acid hydrogels publication-title: Cellul. Chem. Technol. – volume: 59 start-page: 249 year: 2007 ident: ref_5 article-title: Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2007.03.015 – volume: 18 start-page: 454 year: 2007 ident: ref_8 article-title: Development and therapeutic applications of advanced biomaterials publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2007.09.008 – volume: 47 start-page: 42 year: 1999 ident: ref_45 article-title: Interactions of grape seed tannins with salivary proteins publication-title: J. Agric. Food Chem. doi: 10.1021/jf9805146 – volume: 24 start-page: e00370 year: 2019 ident: ref_24 article-title: Phenolic acids: Natural versatile molecules with promising therapeutic applications publication-title: Biotechnol. Rep. doi: 10.1016/j.btre.2019.e00370 – volume: 81 start-page: 215S year: 2015 ident: ref_19 article-title: Polyphenols: Antioxidants and beyond publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/81.1.215S – volume: 29 start-page: 412 year: 2018 ident: ref_55 article-title: Anticancer efficacy of tannic acid is dependent on the stiffness of the underlying matrix publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1080/09205063.2017.1421349 – volume: 43 start-page: 348 year: 2017 ident: ref_18 article-title: Polyphenols, dietary sources and bioavailability publication-title: Ann.-Ist. Super. Di Sanita – volume: 147 start-page: 10 year: 2014 ident: ref_33 article-title: Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum) publication-title: Food Chem. doi: 10.1016/j.foodchem.2013.09.113 – volume: 8 start-page: 28511 year: 2016 ident: ref_65 article-title: Controlling the release kinetics of calcein loaded liposomes from chitosan/tannic acid and chitosan/poly(vinyl alcohol)/tannic acid hydrogels publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10491 – volume: 43 start-page: 129 year: 2015 ident: ref_67 article-title: Interactions between starch and phenolic compound publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2015.02.003 – volume: 47 start-page: 177 year: 2011 ident: ref_48 article-title: Evaluation of the antimicrobial efficacy of green tea extract (egcg) against streptococcus pyogenes in vitro—Biomed 2011 publication-title: Biomed. Sci. Instrum. – volume: 28 start-page: 5185 year: 2007 ident: ref_10 article-title: Hydrogel biomaterials: A smart future? publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.07.044 – volume: 131 start-page: 200 year: 2020 ident: ref_49 article-title: Major phenolic compounds, antioxidant and antibacterial activities of Anthemis praecox Link aerial parts publication-title: S. Afr. J. Bot. doi: 10.1016/j.sajb.2020.02.018 – volume: 53 start-page: 587 year: 1999 ident: ref_40 article-title: Anti-AIDS agents. 2. Inhibitory effects of tannins on HIV reverse transcriptase and HIV replication in H9 lymphocyte cells publication-title: J. Nat. Prod. doi: 10.1021/np50069a008 – volume: 1 start-page: 335 year: 2017 ident: ref_38 article-title: Tannic acid modification of metal nanoparticles: Possibility for new antiviral applications publication-title: Nanostructures Oral Med. doi: 10.1016/B978-0-323-47720-8.00013-4 – volume: 19 start-page: 2156 year: 2018 ident: ref_44 article-title: Chitosan-based peptidopolysaccharides as cationic antimicrobial agents and antibacterial coatings publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b00270 – volume: 670 start-page: 90 year: 2019 ident: ref_70 article-title: The physicochemical properties of 3D materials based on hyaluronic acid modified by tannic acid addition publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/15421406.2018.1542069 – ident: ref_3 doi: 10.1155/2016/3012462 – volume: 3 start-page: 43 year: 2010 ident: ref_31 article-title: Y. Radical scavenging and antioxidant activity of tannic acid publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2009.12.008 – volume: 35 start-page: 100241 year: 2020 ident: ref_73 article-title: Tannic acid-assisted deposition of silk sericin on the titanium surfaces for antifouling application publication-title: Colloid Interface Sci. Commun. doi: 10.1016/j.colcom.2020.100241 – volume: 20 start-page: 1689 year: 2017 ident: ref_17 article-title: Natural polyphenols: An overview publication-title: Int. J. Food Prop. doi: 10.1080/10942912.2016.1220393 – volume: 82 start-page: 270 year: 2010 ident: ref_30 article-title: Crosslinking capacity of tannic acid in plasticized chitosan films publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2010.04.048 – volume: 38 start-page: 291 year: 2007 ident: ref_11 article-title: A critical review on polymer-based bio-engineered materials for scaffold development publication-title: Comp. B Eng. doi: 10.1016/j.compositesb.2006.06.014 – volume: 85 start-page: 13 year: 2013 ident: ref_29 article-title: Antioxidant and pro-oxidant challenge of tannic acid in mussel hemocytes exposed to cadmium publication-title: Mar. Environ. Res. doi: 10.1016/j.marenvres.2012.12.005 – volume: 20 start-page: 1095 year: 2009 ident: ref_22 article-title: Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-008-3675-z – volume: 32 start-page: 1189 year: 2018 ident: ref_51 article-title: Phytochemical composition, in vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts publication-title: Nat. Prod. Res. doi: 10.1080/14786419.2017.1323209 – volume: 52 start-page: 109 year: 2016 ident: ref_15 article-title: Crosslinking in polysaccharide and protein films and coatings for food contact—A review publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2016.04.008 – volume: 364 start-page: 87 year: 2008 ident: ref_7 article-title: Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2008.07.033 – volume: 112 start-page: 851 year: 2003 ident: ref_42 article-title: Is green tea good for HIV-1 infection? publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2003.08.048 – volume: 429 start-page: 235 year: 2013 ident: ref_27 article-title: Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2012.11.059 – volume: 8 start-page: 1314 year: 2017 ident: ref_21 article-title: Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses west nile virus, zika virus, and dengue virus publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01314 – volume: 2 start-page: 36 year: 2013 ident: ref_36 article-title: Antiviral activity of Quercus persica L.: High efficacy and low toxicity publication-title: Adv. Biomed. Res. doi: 10.4103/2277-9175.109722 – ident: ref_16 doi: 10.3390/antiox9010061 – volume: 7 start-page: 410 year: 2007 ident: ref_32 article-title: Artificial polymeric flavonoids: Synthesis and applications publication-title: Macromol. Biosci. doi: 10.1002/mabi.200700005 – volume: 5 start-page: 3055 year: 2017 ident: ref_66 article-title: Tea stains-inspired antifouling coatings based on tannic acid-functionalized agarose publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b02737 – volume: 35 start-page: 1285 year: 2015 ident: ref_54 article-title: Remodeling of tannic acid crosslinked collagen type i induces apoptosis in er+ breast cancer cells publication-title: Anticancer Res. – volume: 30 start-page: 1308 year: 2019 ident: ref_13 article-title: Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1080/09205063.2019.1630699 – volume: 385 start-page: 123888 year: 2020 ident: ref_14 article-title: Tackling microbial infections and increasing resistance involving formulations based on antimicrobial polymers publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123888 – volume: 135 start-page: 2329 year: 2018 ident: ref_56 article-title: Thermal behavior of collagen crosslinked with tannic acid under microwave heating publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-018-7341-5 – volume: 67 start-page: 107 year: 2005 ident: ref_2 article-title: Extracts and molecules from medicinal plants against herpes simplex viruses publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2005.05.002 – ident: ref_37 doi: 10.3390/ijms19020387 – volume: 60 start-page: 666 year: 2019 ident: ref_53 article-title: Spectral characteristics and antioxidant properties of tannic acid immobilized on collagen drug-delivery systems publication-title: Rev. De Chim. – volume: 15 start-page: 740 year: 2017 ident: ref_4 article-title: Targeting microbial biofilms: Current and prospective therapeutic strategies publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2017.99 – volume: 30 start-page: 2894 year: 2009 ident: ref_23 article-title: Synthesis of bio-based internal and external cross-linkers based on tannic acid for preparation of antibacterial superabsorbents publication-title: Polym. Adv. Technol. doi: 10.1002/pat.4722 |
SSID | ssj0000331829 |
Score | 2.670137 |
SecondaryResourceType | review_article |
Snippet | As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3224 |
SubjectTerms | Acids Additives Antimicrobial agents Bacteria Biological activity Biological properties Biomedical materials Biopolymers Chitosan Coliforms COVID-19 Diabetes E coli Herpes viruses HIV Human immunodeficiency virus Human papillomavirus In vivo methods and tests Influenza Listeria Microorganisms Molecular weight Nanoparticles Papilloma viruses Pathogens Phenolic acids Polyphenols Polysaccharides Pseudomonas aeruginosa Regeneration Review Tannic acid Tissue engineering Viruses Wound healing |
Title | Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32698426 https://www.proquest.com/docview/2426841644 https://www.proquest.com/docview/2426537083 https://pubmed.ncbi.nlm.nih.gov/PMC7412100 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LTtwwcFSWS3uo6DsUkKv20kNEYjuxc0IBsaBKIFSBtLfITzVSSSi73PmIfmG_pON1NrBt1aPl0djyjOdpzwB8otRZaoxDt8SplHNRptp6mzpnUBmwyskyfHA-Oy9Pr_iXWTEbAm7z4VnlSiYuBbXtTYiR7wdVElJknB_c_EhD16iQXR1aaGzAJopgKSeweXh8fvF1jLJkDHmWVrEuKUP_fv9a5Qw3QSlf10R_mZd_vpJ8pHamW_B8sBdJHQn8Ap647iU8e1RF8BVcX4a-Q4bUprUkxFVJ3YWeEIiNqM4uRzoWZQ6YTOwXQdSc1OTitkdCIxoSBEPf4SZI78lh26MlG5nz1_3Pmpy1XRt_ubyGq-nx5dFpOnRRSA0q6wWKOy11CDdxrnVhhcmoc54aqXWpRCVyTz2qbZ9rxsoKry8PyVKrcqXKQknP3sCkw_XfASkzK2xGbV5axrURuqg8IlXWc8WUkgl8Xp1oY4YS46HTxfcGXY1w-s3D6SfwcYS9iYU1_gm1syJMM1yuefPACgl8GKfxtEKuQ3Wuv4swBRNoYCbwNtJxXAYt1krifAJijcIjQCi5vT7Ttd-WpbfR_kIfOdv-_7bew1Ma3PJMoBDagcni9s7tou2y0HuwIacnewOb4uhklv8GfDL1RQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKAXpAvAkUMAIOHKImtvM6IBQey5Z2Kw5bqbfgV0SkNindrRA3PoLv4KP4EmbWm7QLiFuPka2xMw_Pw54ZgGecO8uNceiWOBVKmaWhtrUNnTOoDETh8pQSnCd76XhffjhIDtbgZ58LQ88q-zNxcVDbzlCMfItUCV2RSfnq-EtIXaPodrVvoeHZYsd9-4ou2-zl9luk73POR--mb8bhsqtAaFB5zVH8da4p_CKl1onNTMSdq7nJtU5VVmRxzWtUY3WshUjRI6eiWDK1KlYqTVReC4R7CS5LgZqcMtNH74eYTiRQQnjhq6DieLR1pGKBv8y5XNV7fxmzf77JPKfkRtfh2tI6ZaVnpxuw5tqbsHGuZuEtOJpSlyPDStNYRlFcVrbUgQKhMdXaxZf2JaAJkvHdKZiasZJ9POmQrRAMo2Ooa3ETrKvZ66ZDu9mLwq_vP0o2adrG59Tchv0Lwe4dWG9x_XvA0shmNuI2Tq2Q2mQ6KWoEqmwtlVAqD-BFj9HKLAuaU1-NwwodG8J-dYb9AJ4Oc499GY9_ztrsCVMtRXlWnTFeAE-GYcQW3ayo1nWnfk4iMjRnA7jr6Tgsg_ZxkeN4ANkKhYcJVOB7daRtPi8KfaO1hx55dP__23oMV8bTyW61u7238wCucgoIRBkef5uwPj85dQ_RaprrRwtWZfDpomXjNxZcLlk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2EoID4k2ggBFw4BBtYjtxckAopV21lK5WqJV6C36KSDQp3a0QNz6Cr-Fz-BLGm0e7gLj1GHk0juY9Y3sG4AWl1lCtLaYlVoacizRUxpnQWo3OgOU2S_0D5_1punPI3x0lR2vws38L469V9jZxaahNo32NfOxdiT8i43zsumsRs63Jm5MvoZ8g5U9a-3EarYjs2W9fMX2bv97dQl6_pHSyffB2J-wmDIQaHdkCTYHKlC_FcK5UYoSOqLWO6kypVIpcxI46dGkuVoylmJ37Blk8NTKWMk1k5hjivQLrwmdFI1jf3J7OPgwVnoihvtC87YnKWB6Nj2XMkACU8lUv-Fdo--cNzQsub3ITbnSxKila4boFa7a-DdcvdDC8A8cHfuaRJoWuDPE1XVLUfh4FYiOyNssv1TaE9ph0O6uCyDkpyOy0QSFDNMQbpabGnyCNI5tVg1F0qxi_vv8oyH5VV-0Lm7tweCn0vQejGvd_ACSNjDARNXFqGFdaqCR3iFQaxyWTMgvgVU_RUnftzf2Ujc8lpjme-uU59QN4PsCetE09_gm10TOm7BR7Xp6LYQDPhmWklj9nkbVtzlqYhAkMbgO43_Jx2Aaj5TzD9QDECocHAN_ue3Wlrj4t235j7If5efTw_7_1FK6iXpTvd6d7j-Aa9dWBSKAt3IDR4vTMPsYQaqGedLJK4ONlq8dv5ZUz6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tannic+Acid+with+Antiviral+and+Antibacterial+Activity+as+A+Promising+Component+of+Biomaterials%E2%80%94A+Minireview&rft.jtitle=Materials&rft.au=Kaczmarek%2C+Beata&rft.date=2020-07-20&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=13&rft.issue=14&rft.spage=3224&rft_id=info:doi/10.3390%2Fma13143224&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |