Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview

As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papil...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 13; no. 14; p. 3224
Main Author Kaczmarek, Beata
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.07.2020
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Yersinia enterocolitica, Listeria innocua. Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called “from nature to nature”. Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes.
AbstractList As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as , , , , , , . Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called "from nature to nature". Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes.
As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus , Escherichia coli , Streptococcus pyogenes , Enterococcus faecalis , Pseudomonas aeruginosa , Yersinia enterocolitica , Listeria innocua . Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called “from nature to nature”. Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes.
As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Yersinia enterocolitica, Listeria innocua. Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called "from nature to nature". Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes.As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Yersinia enterocolitica, Listeria innocua. Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called "from nature to nature". Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes.
As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Yersinia enterocolitica, Listeria innocua. Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called “from nature to nature”. Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes.
Author Kaczmarek, Beata
AuthorAffiliation Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland; beata.kaczmarek@umk.pl
AuthorAffiliation_xml – name: Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland; beata.kaczmarek@umk.pl
Author_xml – sequence: 1
  givenname: Beata
  surname: Kaczmarek
  fullname: Kaczmarek, Beata
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32698426$$D View this record in MEDLINE/PubMed
BookMark eNptkc1OGzEQxy1ExUfgwgNUlnpBldL6K7veC9ISlbYSFRzgbNleLwzK2sF2grj1IfqEPAkOAUpRfbE985vR_z-zizZ98A6hA0q-cN6Qr4OmnArOmNhAO7RpqjFthNh8895G-yndkHI4p5I1W2ibs6qRglU7aLjQ3oPFrYUO30G-xq3PsISoZ1j77ulntM0uQom0dpXL91gn3OLzGAZI4K_wNAzzIstnHHp8DGHQ64L08PtPi3-Bh-iW4O720Ie-RN3-8z1ClyffLqY_xqdn339O29OxFaTKY1kbaQhlRbwxk662hDnXMyuNqXTd1LRnPZe0p4bzYqQmghNRdZpqXU207PkIHa37zhdmcJ0tyoohNY8w6Hivggb1b8bDtboKS1ULymgZ1AgdPjeI4XbhUlbFqXWzmfYuLJJiZXgTXhPJC_rpHXoTFtEXe0-UFLQSolAf3yp6lfKyiQKQNWBjSCm6XlnIOkNYCYSZokSt9q3-7ruUfH5X8tL1P_AjwYWrig
CitedBy_id crossref_primary_10_1002_pi_6699
crossref_primary_10_1016_j_ijbiomac_2021_10_067
crossref_primary_10_1016_j_carbpol_2024_122321
crossref_primary_10_1021_acsami_4c09909
crossref_primary_10_1021_acsanm_4c05449
crossref_primary_10_1088_1755_1315_1241_1_012102
crossref_primary_10_3390_cosmetics10030087
crossref_primary_10_52622_jisk_v4i1_02
crossref_primary_10_1007_s00210_023_02548_9
crossref_primary_10_1016_j_ijbiomac_2024_130744
crossref_primary_10_1021_acs_jafc_3c09396
crossref_primary_10_52622_jisk_v4i1_04
crossref_primary_10_1021_acsami_2c00236
crossref_primary_10_1016_j_ijbiomac_2024_133334
crossref_primary_10_1016_j_jip_2024_108142
crossref_primary_10_1039_D1TB00227A
crossref_primary_10_1016_j_mtcomm_2023_107927
crossref_primary_10_1021_acssuschemeng_1c03313
crossref_primary_10_3390_antibiotics11060766
crossref_primary_10_1016_j_ijbiomac_2024_135750
crossref_primary_10_1093_burnst_tkac019
crossref_primary_10_52711_0974_360X_2024_00673
crossref_primary_10_1186_s12951_023_01922_2
crossref_primary_10_3389_fmicb_2023_1287167
crossref_primary_10_1016_j_cej_2022_136835
crossref_primary_10_22159_ijpps_2022v14i3_43603
crossref_primary_10_3390_polysaccharides5040051
crossref_primary_10_1016_j_ijbiomac_2023_123489
crossref_primary_10_3389_fphar_2022_940628
crossref_primary_10_1021_acsbiomaterials_2c00935
crossref_primary_10_3390_ma17020278
crossref_primary_10_3389_fmicb_2022_958660
crossref_primary_10_3390_ijms23147687
crossref_primary_10_3390_polym15204180
crossref_primary_10_2139_ssrn_4132959
crossref_primary_10_1016_j_nxnano_2023_100035
crossref_primary_10_1016_j_jcis_2024_10_189
crossref_primary_10_3390_molecules29112615
crossref_primary_10_1021_acs_biomac_3c00043
crossref_primary_10_1016_j_ijbiomac_2025_140958
crossref_primary_10_1021_acs_molpharmaceut_4c00048
crossref_primary_10_3390_polym16142021
crossref_primary_10_53365_nrfhh_143085
crossref_primary_10_1016_j_matpr_2023_02_285
crossref_primary_10_1093_lambio_ovac053
crossref_primary_10_1016_j_bioactmat_2022_05_017
crossref_primary_10_1016_j_foodhyd_2022_108415
crossref_primary_10_3390_microorganisms9102113
crossref_primary_10_1016_j_foodchem_2023_135539
crossref_primary_10_1080_09593330_2024_2402096
crossref_primary_10_1631_bdm_2300327
crossref_primary_10_3390_eng5020034
crossref_primary_10_1016_j_jclepro_2023_140503
crossref_primary_10_3390_ijms252212353
crossref_primary_10_1016_j_matchemphys_2022_126689
crossref_primary_10_1080_09205063_2023_2201808
crossref_primary_10_1002_anie_202423654
crossref_primary_10_1088_2053_1591_ad9813
crossref_primary_10_3390_life13030735
crossref_primary_10_2754_avb202392040407
crossref_primary_10_1016_j_compscitech_2023_110295
crossref_primary_10_70099_BJ_2024_01_04_19
crossref_primary_10_1039_D2BM00820C
crossref_primary_10_3390_molecules26216686
crossref_primary_10_1016_j_indcrop_2022_115978
crossref_primary_10_3389_fmicb_2023_1134207
crossref_primary_10_1016_j_ijbiomac_2022_11_054
crossref_primary_10_1016_j_bioadv_2022_212831
crossref_primary_10_2174_1573399820666230828091708
crossref_primary_10_1166_mex_2023_2384
crossref_primary_10_1016_j_ijbiomac_2022_03_174
crossref_primary_10_2478_amma_2024_0022
crossref_primary_10_1039_D2RA01630C
crossref_primary_10_2174_0126667797310136240723093606
crossref_primary_10_1016_j_nantod_2023_102071
crossref_primary_10_1016_j_nwnano_2024_100040
crossref_primary_10_1177_0040517521994884
crossref_primary_10_3390_antiox13020237
crossref_primary_10_1007_s13726_021_00966_1
crossref_primary_10_1016_j_fbio_2021_101245
crossref_primary_10_3390_pr13030878
crossref_primary_10_3390_ijms25105196
crossref_primary_10_1016_j_ijbiomac_2024_138682
crossref_primary_10_31665_JFB_2021_15283
crossref_primary_10_3390_su16114352
crossref_primary_10_20473_jfiki_v9i32022_305_313
crossref_primary_10_3389_fbioe_2023_1171908
crossref_primary_10_1002_pat_6636
crossref_primary_10_1016_j_chemosphere_2022_135810
crossref_primary_10_1021_acsbiomaterials_3c00590
crossref_primary_10_3390_polym15040986
crossref_primary_10_1007_s11829_024_10059_4
crossref_primary_10_1039_D4NA00643G
crossref_primary_10_47836_ifrj_30_5_11
crossref_primary_10_3390_polym16233398
crossref_primary_10_3390_plants10091847
crossref_primary_10_3390_ijms24044213
crossref_primary_10_54751_revistafoco_v16n10_157
crossref_primary_10_1016_j_bioactmat_2023_06_007
crossref_primary_10_1134_S0006350924700866
crossref_primary_10_1088_1748_605X_ad0d85
crossref_primary_10_1002_adsu_202400389
crossref_primary_10_1002_mabi_202400410
crossref_primary_10_1016_j_cej_2024_152286
crossref_primary_10_11002_kjfp_2021_28_7_857
crossref_primary_10_1016_j_memsci_2024_122570
crossref_primary_10_1021_acsomega_4c05152
crossref_primary_10_1016_j_engreg_2024_06_003
crossref_primary_10_1021_acsami_1c08061
crossref_primary_10_1515_chem_2023_0120
crossref_primary_10_1002_app_56799
crossref_primary_10_1016_j_jobab_2024_02_002
crossref_primary_10_1016_j_ijbiomac_2023_128870
crossref_primary_10_3390_biomedicines10071619
crossref_primary_10_1016_j_jddst_2024_105568
crossref_primary_10_3389_fvets_2023_1157633
crossref_primary_10_1016_j_carbpol_2024_122111
crossref_primary_10_1016_j_eurpolymj_2023_112373
crossref_primary_10_1016_j_foodcont_2022_109059
crossref_primary_10_3390_jfb14020069
crossref_primary_10_1016_j_cej_2023_146305
crossref_primary_10_1016_j_psj_2023_102987
crossref_primary_10_1016_j_susmat_2024_e01194
crossref_primary_10_1080_25740881_2024_2358998
crossref_primary_10_1002_ange_202423654
crossref_primary_10_1002_cbdv_202401754
crossref_primary_10_1016_j_jare_2022_09_013
crossref_primary_10_3390_polym17060770
crossref_primary_10_1007_s42535_023_00673_7
crossref_primary_10_1021_acs_biomac_4c01234
crossref_primary_10_1002_pc_26354
crossref_primary_10_2217_nnm_2023_0275
crossref_primary_10_1016_j_jddst_2023_104625
crossref_primary_10_1038_s41598_024_72190_9
crossref_primary_10_20473_jvhs_V7_I2_2023_115_120
crossref_primary_10_1007_s11224_022_02035_6
crossref_primary_10_3390_app131810549
crossref_primary_10_35229_jaes_1573899
crossref_primary_10_1111_iwj_14571
crossref_primary_10_4236_jpee_2023_118002
crossref_primary_10_1016_j_ijbiomac_2024_134961
crossref_primary_10_1016_j_tiv_2024_105971
crossref_primary_10_1080_1539445X_2022_2147945
crossref_primary_10_20473_jmv_vol6_iss2_2023_262_270
crossref_primary_10_32604_jrm_2024_054739
crossref_primary_10_1039_D1NR06237A
crossref_primary_10_1007_s00396_023_05148_4
crossref_primary_10_3390_molecules27072214
crossref_primary_10_1007_s11274_025_04266_1
crossref_primary_10_1021_acsapm_3c01247
crossref_primary_10_1021_acsami_2c18664
crossref_primary_10_1021_acsbiomaterials_1c00900
crossref_primary_10_1016_j_micpath_2025_107400
crossref_primary_10_3390_microorganisms12030498
crossref_primary_10_1016_j_heliyon_2024_e36768
crossref_primary_10_55230_mabjournal_v53i6_3
crossref_primary_10_1002_ps_8564
crossref_primary_10_1016_j_carbpol_2022_119844
crossref_primary_10_3390_ijms25136937
crossref_primary_10_17776_csj_1425012
crossref_primary_10_1039_D2TB01056A
crossref_primary_10_2139_ssrn_4122156
crossref_primary_10_1002_slct_202302206
crossref_primary_10_1021_acsapm_1c01724
crossref_primary_10_1016_j_biteb_2023_101411
crossref_primary_10_3390_molecules25225252
crossref_primary_10_1016_j_arabjc_2021_103410
crossref_primary_10_1111_jfs_70007
crossref_primary_10_1016_j_bioadv_2025_214195
crossref_primary_10_1007_s42247_021_00192_8
crossref_primary_10_1016_j_ceramint_2024_06_011
crossref_primary_10_1016_j_ijbiomac_2024_134162
crossref_primary_10_1016_j_progpolymsci_2024_101908
crossref_primary_10_4103_japtr_japtr_111_22
crossref_primary_10_1002_pat_70047
crossref_primary_10_3390_app142210728
crossref_primary_10_1016_j_cocis_2021_101480
crossref_primary_10_1016_j_scitotenv_2023_167474
crossref_primary_10_1021_acsami_3c02408
crossref_primary_10_1039_D2NH00574C
crossref_primary_10_1016_j_cej_2025_161262
crossref_primary_10_3390_antiox14010112
crossref_primary_10_1039_D2RA01675C
crossref_primary_10_3390_ma14092449
crossref_primary_10_1159_000533656
crossref_primary_10_1016_j_ijbiomac_2024_135118
crossref_primary_10_1246_bcsj_20220046
crossref_primary_10_2147_IJN_S363827
crossref_primary_10_3389_fsufs_2021_643208
crossref_primary_10_29244_currbiomed_2_1_1_12
crossref_primary_10_3390_ma13163641
crossref_primary_10_1016_j_ijbiomac_2024_130341
crossref_primary_10_1016_j_bioadv_2024_213983
crossref_primary_10_3390_ijms232315411
crossref_primary_10_1007_s00210_024_03640_4
crossref_primary_10_1007_s13399_023_04726_4
crossref_primary_10_52711_0974_360X_2022_00887
crossref_primary_10_1016_j_porgcoat_2024_108719
crossref_primary_10_3390_ijms222111788
crossref_primary_10_3390_jfb14070344
crossref_primary_10_1016_j_mtbio_2025_101477
crossref_primary_10_1016_j_eurpolymj_2023_111881
crossref_primary_10_20473_juxta_V14I12023_43_47
crossref_primary_10_1002_smll_202308295
crossref_primary_10_1021_acsami_1c13744
crossref_primary_10_4102_jomped_v7i1_178
crossref_primary_10_1021_acs_jafc_3c00863
crossref_primary_10_1088_1755_1315_1449_1_012050
crossref_primary_10_1134_S1068162023020103
crossref_primary_10_60084_hjas_v1i2_89
crossref_primary_10_3390_su15043268
crossref_primary_10_1016_j_foodhyd_2024_110333
crossref_primary_10_3390_coatings12020178
crossref_primary_10_1039_D2CC05102H
crossref_primary_10_1002_EXP_20230092
crossref_primary_10_1021_acsomega_3c03459
crossref_primary_10_1038_s41598_024_67133_3
crossref_primary_10_3390_ijms232415818
crossref_primary_10_3390_ma18050998
crossref_primary_10_5604_01_3001_0014_8972
crossref_primary_10_1016_j_foodres_2023_112756
crossref_primary_10_1088_1755_1315_1282_1_012029
crossref_primary_10_1016_j_inoche_2023_111140
crossref_primary_10_3390_gels9050398
crossref_primary_10_1002_pat_6487
crossref_primary_10_1016_j_foodchem_2025_143757
crossref_primary_10_1039_D3TB02581K
crossref_primary_10_3390_ijms22126472
crossref_primary_10_1016_j_csbj_2023_04_011
crossref_primary_10_1186_s12917_024_04036_5
crossref_primary_10_1016_j_foodhyd_2023_109414
crossref_primary_10_1016_j_ijbiomac_2024_129329
crossref_primary_10_18006_2024_12_1__145_152
crossref_primary_10_2174_1389557522666220622112959
crossref_primary_10_1039_D2MH00591C
crossref_primary_10_31857_S0233475524010062
crossref_primary_10_3390_plants12234041
crossref_primary_10_1002_advs_202207352
crossref_primary_10_3390_molecules26247454
crossref_primary_10_1039_D1TB02413B
crossref_primary_10_1016_j_heliyon_2024_e40159
crossref_primary_10_1016_j_foodchem_2024_138676
crossref_primary_10_3390_nano12234320
crossref_primary_10_1016_j_mser_2024_100882
crossref_primary_10_1080_17460794_2024_2398949
crossref_primary_10_20473_j_djmkg_v56_i4_p220_225
crossref_primary_10_1186_s41936_022_00282_x
crossref_primary_10_3390_antiox10101594
crossref_primary_10_3390_gels11030168
crossref_primary_10_3390_molecules28020693
crossref_primary_10_1016_j_colsurfb_2023_113198
crossref_primary_10_1016_j_ijbiomac_2023_128101
crossref_primary_10_3390_ani12091054
crossref_primary_10_1002_ps_7564
crossref_primary_10_1016_j_matchemphys_2022_126141
crossref_primary_10_3389_fbioe_2021_638577
crossref_primary_10_3390_molecules27010279
crossref_primary_10_1016_j_ijbiomac_2022_06_168
crossref_primary_10_1021_acsabm_3c00785
crossref_primary_10_1016_j_compositesb_2024_111875
crossref_primary_10_1111_jfd_13924
crossref_primary_10_1515_pac_2024_0018
crossref_primary_10_1021_acsabm_4c01044
crossref_primary_10_1002_adhm_202100793
crossref_primary_10_1007_s42770_024_01477_w
crossref_primary_10_1016_j_eurpolymj_2024_112943
crossref_primary_10_3390_antiox11102027
crossref_primary_10_1016_j_fuel_2022_125763
crossref_primary_10_1002_adhm_202404260
crossref_primary_10_1021_acsbiomaterials_2c00974
crossref_primary_10_1007_s10570_022_05003_9
crossref_primary_10_3390_polym14112197
crossref_primary_10_34133_research_0438
crossref_primary_10_1016_j_ijbiomac_2025_140082
crossref_primary_10_1016_j_molliq_2022_119561
crossref_primary_10_1016_j_mtcomm_2024_110172
crossref_primary_10_1016_j_ijadhadh_2024_103847
crossref_primary_10_3390_biomedicines11030706
crossref_primary_10_3390_oral4040044
crossref_primary_10_1055_s_0041_1741374
crossref_primary_10_1088_1748_605X_acce88
crossref_primary_10_1016_j_foodchem_2022_132399
crossref_primary_10_31857_S0006302924040217
crossref_primary_10_3390_biom12070875
crossref_primary_10_1016_j_memsci_2024_123257
crossref_primary_10_1080_09205063_2021_1950961
crossref_primary_10_2478_aoas_2022_0057
crossref_primary_10_3389_fbioe_2024_1434435
crossref_primary_10_1155_adpp_9954073
crossref_primary_10_1002_adhm_202303686
crossref_primary_10_3390_biomedicines13010209
crossref_primary_10_1007_s11694_024_02546_2
crossref_primary_10_1007_s12247_023_09782_x
crossref_primary_10_3390_ijms24054532
crossref_primary_10_1016_j_carbpol_2022_119235
crossref_primary_10_1016_j_ijbiomac_2024_132719
crossref_primary_10_1134_S1990747823070048
crossref_primary_10_1016_j_jfca_2024_106832
crossref_primary_10_1007_s13197_023_05790_4
crossref_primary_10_1021_acssuschemeng_4c05829
crossref_primary_10_3389_fphar_2024_1508835
crossref_primary_10_3390_ph16060881
crossref_primary_10_3390_gels9050354
crossref_primary_10_1016_j_inoche_2022_109532
crossref_primary_10_1039_D4BM00893F
crossref_primary_10_1016_j_ceramint_2025_01_151
crossref_primary_10_2174_0113816128309718240822060114
crossref_primary_10_61186_MCH_2024_1064
crossref_primary_10_1016_j_ijpharm_2021_121255
crossref_primary_10_3390_horticulturae10040367
crossref_primary_10_1016_j_matdes_2023_112244
crossref_primary_10_1080_07391102_2024_2309643
crossref_primary_10_14202_IJOH_2024_148_152
crossref_primary_10_1016_j_molliq_2022_119104
crossref_primary_10_1016_j_colsurfa_2024_134925
crossref_primary_10_3390_biochem2040019
crossref_primary_10_1002_macp_202400220
crossref_primary_10_1007_s10965_021_02777_7
crossref_primary_10_1016_j_jcis_2024_08_129
crossref_primary_10_1016_j_mtla_2024_102165
crossref_primary_10_1021_acs_jafc_3c00849
crossref_primary_10_1016_j_ijbiomac_2024_129409
crossref_primary_10_1016_j_colsurfa_2023_132213
crossref_primary_10_1002_smll_202407195
crossref_primary_10_1177_08853282211058099
crossref_primary_10_1002_btm2_10540
crossref_primary_10_1088_2752_5724_ad9493
crossref_primary_10_3390_app14209203
crossref_primary_10_1016_j_molliq_2024_126462
crossref_primary_10_2174_2666779701666220412085825
crossref_primary_10_1007_s00289_021_03727_5
crossref_primary_10_35229_jaes_1004833
crossref_primary_10_1007_s12221_021_1459_y
crossref_primary_10_3389_fphar_2025_1522814
crossref_primary_10_14202_vetworld_2022_350_359
crossref_primary_10_1016_j_compscitech_2024_110829
crossref_primary_10_1021_acsami_4c13360
crossref_primary_10_1007_s10570_021_04273_z
crossref_primary_10_20473_j_djmkg_v56_i4_p226_232
Cites_doi 10.1248/bpb.23.1072
10.1016/j.tiv.2019.104688
10.1016/j.msec.2019.110493
10.1007/s10853-009-3770-7
10.1016/j.carbpol.2014.09.007
10.1016/j.polymertesting.2019.106007
10.1586/erd.09.36
10.1016/j.jpba.2009.05.035
10.1016/S1369-7021(11)70058-X
10.3390/v10100524
10.3390/ijms21031003
10.1016/j.foodchem.2009.05.060
10.1016/j.bmc.2011.11.040
10.1155/2014/186864
10.1016/S0166-3542(02)00186-9
10.3390/cancers12030593
10.1016/j.ijbiomac.2017.10.105
10.1016/j.carbpol.2018.01.056
10.1016/j.crci.2014.07.007
10.1016/j.carbpol.2012.04.021
10.1021/jf053259f
10.1016/S0039-9140(02)00410-1
10.1371/journal.pone.0088062
10.1039/D0BM00322K
10.1021/acsbiomaterials.9b00604
10.1016/j.chemphys.2018.12.009
10.1016/j.foodhyd.2019.03.019
10.1016/j.addr.2007.03.015
10.1016/j.copbio.2007.09.008
10.1021/jf9805146
10.1016/j.btre.2019.e00370
10.1093/ajcn/81.1.215S
10.1080/09205063.2017.1421349
10.1016/j.foodchem.2013.09.113
10.1021/acsami.6b10491
10.1016/j.tifs.2015.02.003
10.1016/j.biomaterials.2007.07.044
10.1016/j.sajb.2020.02.018
10.1021/np50069a008
10.1016/B978-0-323-47720-8.00013-4
10.1021/acs.biomac.8b00270
10.1080/15421406.2018.1542069
10.1155/2016/3012462
10.1016/j.arabjc.2009.12.008
10.1016/j.colcom.2020.100241
10.1080/10942912.2016.1220393
10.1016/j.carbpol.2010.04.048
10.1016/j.compositesb.2006.06.014
10.1016/j.marenvres.2012.12.005
10.1007/s10856-008-3675-z
10.1080/14786419.2017.1323209
10.1016/j.tifs.2016.04.008
10.1016/j.ijpharm.2008.07.033
10.1016/j.jaci.2003.08.048
10.1016/j.memsci.2012.11.059
10.3389/fmicb.2017.01314
10.4103/2277-9175.109722
10.3390/antiox9010061
10.1002/mabi.200700005
10.1021/acssuschemeng.6b02737
10.1080/09205063.2019.1630699
10.1016/j.cej.2019.123888
10.1007/s10973-018-7341-5
10.1016/j.antiviral.2005.05.002
10.3390/ijms19020387
10.1038/nrmicro.2017.99
10.1002/pat.4722
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 by the author. 2020
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 by the author. 2020
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma13143224
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC7412100
32698426
10_3390_ma13143224
Genre Journal Article
Review
GrantInformation_xml – fundername: Nicolaus Copernicus University
  grantid: -
GroupedDBID 29M
2WC
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7SR
8FD
ABUWG
AZQEC
COVID
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c406t-87b8b012944bb5d7c02eef2c8bb6a7971f2f381f1b336987043046da1aa65a8f3
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 17:45:50 EDT 2025
Fri Jul 11 10:29:54 EDT 2025
Fri Jul 25 11:51:57 EDT 2025
Wed Feb 19 02:01:47 EST 2025
Tue Jul 01 03:56:30 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords antibacterial
tannic acid
antiviral
phenolic acids
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-87b8b012944bb5d7c02eef2c8bb6a7971f2f381f1b336987043046da1aa65a8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.proquest.com/docview/2426841644?pq-origsite=%requestingapplication%
PMID 32698426
PQID 2426841644
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7412100
proquest_miscellaneous_2426537083
proquest_journals_2426841644
pubmed_primary_32698426
crossref_citationtrail_10_3390_ma13143224
crossref_primary_10_3390_ma13143224
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200720
PublicationDateYYYYMMDD 2020-07-20
PublicationDate_xml – month: 7
  year: 2020
  text: 20200720
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Koo (ref_4) 2017; 15
Howse (ref_47) 2006; 54
Popa (ref_64) 2018; 52
ref_16
Pandey (ref_51) 2018; 32
(ref_28) 2002; 58
Krzyzowska (ref_38) 2017; 1
Bouki (ref_29) 2013; 85
Huyut (ref_31) 2010; 3
Brazdaru (ref_52) 2015; 18
An (ref_58) 2019; 520
Lee (ref_57) 2018; 110
Lee (ref_69) 2018; 186
Chung (ref_5) 2007; 59
Dabbaghi (ref_23) 2009; 30
Kim (ref_26) 2010; 118
Xu (ref_41) 2000; 23
(ref_9) 2011; 14
ref_20
Rivero (ref_30) 2010; 82
Albu (ref_53) 2019; 60
ref_63
Gao (ref_71) 2020; 8
Tucci (ref_48) 2011; 47
Chahal (ref_13) 2019; 30
Sabir (ref_12) 2009; 44
Thakur (ref_7) 2008; 364
Uchiumi (ref_43) 2003; 58
Kaczmarek (ref_60) 2019; 78
Ninan (ref_65) 2016; 8
Ngobili (ref_54) 2015; 35
Zhu (ref_67) 2015; 43
Kyziol (ref_14) 2020; 385
Aelenei (ref_22) 2009; 20
Azeredo (ref_15) 2016; 52
Kopecek (ref_10) 2007; 28
Bridgeman (ref_55) 2018; 29
Frazier (ref_46) 2010; 51
Gorgieva (ref_25) 2012; 89
ref_34
Jing (ref_72) 2019; 5
Vasilev (ref_6) 2009; 6
Abbas (ref_33) 2014; 147
Rubentheren (ref_59) 2015; 115
Cheng (ref_73) 2020; 35
Karimi (ref_36) 2013; 2
Grabska (ref_70) 2019; 670
ref_39
Nance (ref_42) 2003; 112
Saiz (ref_21) 2017; 8
ref_37
Nonaka (ref_40) 1999; 53
Cheynier (ref_45) 1999; 47
Belhaoues (ref_49) 2020; 131
Xu (ref_66) 2017; 5
Wei (ref_68) 2019; 94
Abbas (ref_17) 2017; 20
Zhang (ref_35) 2012; 20
Wu (ref_56) 2018; 135
Zhang (ref_27) 2013; 429
Karp (ref_8) 2007; 18
Ather (ref_2) 2005; 67
Uyama (ref_32) 2007; 7
Kumorek (ref_62) 2020; 109
Suzilla (ref_50) 2020; 736
Cheung (ref_11) 2007; 38
ref_1
ref_3
Kumar (ref_24) 2019; 24
Kaczmarek (ref_61) 2020; 62
Archivio (ref_18) 2017; 43
Pronantyo (ref_44) 2018; 19
Scalbert (ref_19) 2015; 81
References_xml – volume: 23
  start-page: 1072
  year: 2000
  ident: ref_41
  article-title: Inhibitory activity of flavonoids and tannins against HIV-1 protease
  publication-title: Biol. Pharm. Bull.
  doi: 10.1248/bpb.23.1072
– volume: 62
  start-page: 104688
  year: 2020
  ident: ref_61
  article-title: Normal and cancer cells response on the thin films based on chitosan and tannic acid
  publication-title: Toxicol. Vitr.
  doi: 10.1016/j.tiv.2019.104688
– volume: 109
  start-page: 110493
  year: 2020
  ident: ref_62
  article-title: pH-responsive and antibacterial properties of self-assembled multilayer films based on chitosan and tannic acid
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.110493
– volume: 44
  start-page: 5713
  year: 2009
  ident: ref_12
  article-title: A review on biodegradable polymeric materials for bone tissue engineering applications
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-3770-7
– volume: 115
  start-page: 379
  year: 2015
  ident: ref_59
  article-title: Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2014.09.007
– volume: 78
  start-page: 106007
  year: 2019
  ident: ref_60
  article-title: The characterization of thin films based on chitosan and tannic acid mixture for potential applications as wound dressings
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2019.106007
– volume: 6
  start-page: 553
  year: 2009
  ident: ref_6
  article-title: Antibacterial surfaces for biomedical devices
  publication-title: Expert Rev. Med. Devices
  doi: 10.1586/erd.09.36
– volume: 51
  start-page: 490
  year: 2010
  ident: ref_46
  article-title: Interactions of tea tannins and condensed tannins with proteins
  publication-title: J. Pharm. Biomed. Anal.
  doi: 10.1016/j.jpba.2009.05.035
– volume: 14
  start-page: 88
  year: 2011
  ident: ref_9
  article-title: Biomaterials & scaffolds for tissue engineering
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(11)70058-X
– ident: ref_39
  doi: 10.3390/v10100524
– ident: ref_20
  doi: 10.3390/ijms21031003
– volume: 118
  start-page: 740
  year: 2010
  ident: ref_26
  article-title: Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2009.05.060
– volume: 20
  start-page: 1616
  year: 2012
  ident: ref_35
  article-title: Tannic acid inhibited norovirus binding to HBGA receptors, a study of 50 Chinese medicinal herbs
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2011.11.040
– ident: ref_1
  doi: 10.1155/2014/186864
– volume: 58
  start-page: 89
  year: 2003
  ident: ref_43
  article-title: Transcriptional suppression of the HIV promoter by natural compounds
  publication-title: Antivir. Res.
  doi: 10.1016/S0166-3542(02)00186-9
– ident: ref_63
  doi: 10.3390/cancers12030593
– volume: 110
  start-page: 497
  year: 2018
  ident: ref_57
  article-title: Development of a tannic acid cross-linking process for obtaining 3D porous cell-laden collagen structure
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.10.105
– volume: 186
  start-page: 290
  year: 2018
  ident: ref_69
  article-title: Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2018.01.056
– volume: 18
  start-page: 160
  year: 2015
  ident: ref_52
  article-title: Structural and rheological properties of collagen hydrogels containing tannic acid and chlorhexidine digluconate intended for topical applications
  publication-title: Comptes Rendus Chim.
  doi: 10.1016/j.crci.2014.07.007
– volume: 89
  start-page: 854
  year: 2012
  ident: ref_25
  article-title: Homogeneous and heterogeneous methods for laccase-mediated functionalization of chitosan by tannic acid and quercetin
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2012.04.021
– volume: 54
  start-page: 4077
  year: 2006
  ident: ref_47
  article-title: Noncovalent crosslinking of casein by epigallocatechin gallate characterized by single molecule force microscopy
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf053259f
– volume: 58
  start-page: 1243
  year: 2002
  ident: ref_28
  article-title: Determination of tannic acid by direct chemiluminescence in a FIA assembly
  publication-title: Talanta
  doi: 10.1016/S0039-9140(02)00410-1
– ident: ref_34
  doi: 10.1371/journal.pone.0088062
– volume: 8
  start-page: 2694
  year: 2020
  ident: ref_71
  article-title: A medical adhesive used in a wet environment by blending tannic acid and silk fibroin
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM00322K
– volume: 5
  start-page: 4601
  year: 2019
  ident: ref_72
  article-title: Fabrication of hybrid hydrogels from silk fibroin and tannic acid with enhanced gelation and antibacterial activities
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b00604
– volume: 736
  start-page: 022030
  year: 2020
  ident: ref_50
  article-title: Formulation and evaluation of antimicrobial herbosomal gel from Quercus infectoria extract
  publication-title: Mater. Sci. Eng. C
– volume: 520
  start-page: 100
  year: 2019
  ident: ref_58
  article-title: The interaction between chitosan and tannic acid calculated based on the density functional theory
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2018.12.009
– volume: 94
  start-page: 174
  year: 2019
  ident: ref_68
  article-title: Multiple steps and critical behaviors of the binding of tannic acid to wheat starch: Effect of the concentration of wheat starch and the mass ratio of tannic acid to wheat starch
  publication-title: Food Hydrocoll.
  doi: 10.1016/j.foodhyd.2019.03.019
– volume: 52
  start-page: 353
  year: 2018
  ident: ref_64
  article-title: Controlling the release kinetics of calcein loaded liposomes from chitosan/tannic acid and chitosan/poly(vinyl alcohol)/tannic acid hydrogels
  publication-title: Cellul. Chem. Technol.
– volume: 59
  start-page: 249
  year: 2007
  ident: ref_5
  article-title: Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2007.03.015
– volume: 18
  start-page: 454
  year: 2007
  ident: ref_8
  article-title: Development and therapeutic applications of advanced biomaterials
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2007.09.008
– volume: 47
  start-page: 42
  year: 1999
  ident: ref_45
  article-title: Interactions of grape seed tannins with salivary proteins
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf9805146
– volume: 24
  start-page: e00370
  year: 2019
  ident: ref_24
  article-title: Phenolic acids: Natural versatile molecules with promising therapeutic applications
  publication-title: Biotechnol. Rep.
  doi: 10.1016/j.btre.2019.e00370
– volume: 81
  start-page: 215S
  year: 2015
  ident: ref_19
  article-title: Polyphenols: Antioxidants and beyond
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/81.1.215S
– volume: 29
  start-page: 412
  year: 2018
  ident: ref_55
  article-title: Anticancer efficacy of tannic acid is dependent on the stiffness of the underlying matrix
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1080/09205063.2017.1421349
– volume: 43
  start-page: 348
  year: 2017
  ident: ref_18
  article-title: Polyphenols, dietary sources and bioavailability
  publication-title: Ann.-Ist. Super. Di Sanita
– volume: 147
  start-page: 10
  year: 2014
  ident: ref_33
  article-title: Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum)
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2013.09.113
– volume: 8
  start-page: 28511
  year: 2016
  ident: ref_65
  article-title: Controlling the release kinetics of calcein loaded liposomes from chitosan/tannic acid and chitosan/poly(vinyl alcohol)/tannic acid hydrogels
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10491
– volume: 43
  start-page: 129
  year: 2015
  ident: ref_67
  article-title: Interactions between starch and phenolic compound
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2015.02.003
– volume: 47
  start-page: 177
  year: 2011
  ident: ref_48
  article-title: Evaluation of the antimicrobial efficacy of green tea extract (egcg) against streptococcus pyogenes in vitro—Biomed 2011
  publication-title: Biomed. Sci. Instrum.
– volume: 28
  start-page: 5185
  year: 2007
  ident: ref_10
  article-title: Hydrogel biomaterials: A smart future?
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.07.044
– volume: 131
  start-page: 200
  year: 2020
  ident: ref_49
  article-title: Major phenolic compounds, antioxidant and antibacterial activities of Anthemis praecox Link aerial parts
  publication-title: S. Afr. J. Bot.
  doi: 10.1016/j.sajb.2020.02.018
– volume: 53
  start-page: 587
  year: 1999
  ident: ref_40
  article-title: Anti-AIDS agents. 2. Inhibitory effects of tannins on HIV reverse transcriptase and HIV replication in H9 lymphocyte cells
  publication-title: J. Nat. Prod.
  doi: 10.1021/np50069a008
– volume: 1
  start-page: 335
  year: 2017
  ident: ref_38
  article-title: Tannic acid modification of metal nanoparticles: Possibility for new antiviral applications
  publication-title: Nanostructures Oral Med.
  doi: 10.1016/B978-0-323-47720-8.00013-4
– volume: 19
  start-page: 2156
  year: 2018
  ident: ref_44
  article-title: Chitosan-based peptidopolysaccharides as cationic antimicrobial agents and antibacterial coatings
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b00270
– volume: 670
  start-page: 90
  year: 2019
  ident: ref_70
  article-title: The physicochemical properties of 3D materials based on hyaluronic acid modified by tannic acid addition
  publication-title: Mol. Cryst. Liq. Cryst.
  doi: 10.1080/15421406.2018.1542069
– ident: ref_3
  doi: 10.1155/2016/3012462
– volume: 3
  start-page: 43
  year: 2010
  ident: ref_31
  article-title: Y. Radical scavenging and antioxidant activity of tannic acid
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2009.12.008
– volume: 35
  start-page: 100241
  year: 2020
  ident: ref_73
  article-title: Tannic acid-assisted deposition of silk sericin on the titanium surfaces for antifouling application
  publication-title: Colloid Interface Sci. Commun.
  doi: 10.1016/j.colcom.2020.100241
– volume: 20
  start-page: 1689
  year: 2017
  ident: ref_17
  article-title: Natural polyphenols: An overview
  publication-title: Int. J. Food Prop.
  doi: 10.1080/10942912.2016.1220393
– volume: 82
  start-page: 270
  year: 2010
  ident: ref_30
  article-title: Crosslinking capacity of tannic acid in plasticized chitosan films
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2010.04.048
– volume: 38
  start-page: 291
  year: 2007
  ident: ref_11
  article-title: A critical review on polymer-based bio-engineered materials for scaffold development
  publication-title: Comp. B Eng.
  doi: 10.1016/j.compositesb.2006.06.014
– volume: 85
  start-page: 13
  year: 2013
  ident: ref_29
  article-title: Antioxidant and pro-oxidant challenge of tannic acid in mussel hemocytes exposed to cadmium
  publication-title: Mar. Environ. Res.
  doi: 10.1016/j.marenvres.2012.12.005
– volume: 20
  start-page: 1095
  year: 2009
  ident: ref_22
  article-title: Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-008-3675-z
– volume: 32
  start-page: 1189
  year: 2018
  ident: ref_51
  article-title: Phytochemical composition, in vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts
  publication-title: Nat. Prod. Res.
  doi: 10.1080/14786419.2017.1323209
– volume: 52
  start-page: 109
  year: 2016
  ident: ref_15
  article-title: Crosslinking in polysaccharide and protein films and coatings for food contact—A review
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2016.04.008
– volume: 364
  start-page: 87
  year: 2008
  ident: ref_7
  article-title: Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2008.07.033
– volume: 112
  start-page: 851
  year: 2003
  ident: ref_42
  article-title: Is green tea good for HIV-1 infection?
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2003.08.048
– volume: 429
  start-page: 235
  year: 2013
  ident: ref_27
  article-title: Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2012.11.059
– volume: 8
  start-page: 1314
  year: 2017
  ident: ref_21
  article-title: Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses west nile virus, zika virus, and dengue virus
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01314
– volume: 2
  start-page: 36
  year: 2013
  ident: ref_36
  article-title: Antiviral activity of Quercus persica L.: High efficacy and low toxicity
  publication-title: Adv. Biomed. Res.
  doi: 10.4103/2277-9175.109722
– ident: ref_16
  doi: 10.3390/antiox9010061
– volume: 7
  start-page: 410
  year: 2007
  ident: ref_32
  article-title: Artificial polymeric flavonoids: Synthesis and applications
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200700005
– volume: 5
  start-page: 3055
  year: 2017
  ident: ref_66
  article-title: Tea stains-inspired antifouling coatings based on tannic acid-functionalized agarose
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b02737
– volume: 35
  start-page: 1285
  year: 2015
  ident: ref_54
  article-title: Remodeling of tannic acid crosslinked collagen type i induces apoptosis in er+ breast cancer cells
  publication-title: Anticancer Res.
– volume: 30
  start-page: 1308
  year: 2019
  ident: ref_13
  article-title: Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1080/09205063.2019.1630699
– volume: 385
  start-page: 123888
  year: 2020
  ident: ref_14
  article-title: Tackling microbial infections and increasing resistance involving formulations based on antimicrobial polymers
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123888
– volume: 135
  start-page: 2329
  year: 2018
  ident: ref_56
  article-title: Thermal behavior of collagen crosslinked with tannic acid under microwave heating
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-018-7341-5
– volume: 67
  start-page: 107
  year: 2005
  ident: ref_2
  article-title: Extracts and molecules from medicinal plants against herpes simplex viruses
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2005.05.002
– ident: ref_37
  doi: 10.3390/ijms19020387
– volume: 60
  start-page: 666
  year: 2019
  ident: ref_53
  article-title: Spectral characteristics and antioxidant properties of tannic acid immobilized on collagen drug-delivery systems
  publication-title: Rev. De Chim.
– volume: 15
  start-page: 740
  year: 2017
  ident: ref_4
  article-title: Targeting microbial biofilms: Current and prospective therapeutic strategies
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2017.99
– volume: 30
  start-page: 2894
  year: 2009
  ident: ref_23
  article-title: Synthesis of bio-based internal and external cross-linkers based on tannic acid for preparation of antibacterial superabsorbents
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.4722
SSID ssj0000331829
Score 2.670137
SecondaryResourceType review_article
Snippet As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3224
SubjectTerms Acids
Additives
Antimicrobial agents
Bacteria
Biological activity
Biological properties
Biomedical materials
Biopolymers
Chitosan
Coliforms
COVID-19
Diabetes
E coli
Herpes viruses
HIV
Human immunodeficiency virus
Human papillomavirus
In vivo methods and tests
Influenza
Listeria
Microorganisms
Molecular weight
Nanoparticles
Papilloma viruses
Pathogens
Phenolic acids
Polyphenols
Polysaccharides
Pseudomonas aeruginosa
Regeneration
Review
Tannic acid
Tissue engineering
Viruses
Wound healing
Title Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials—A Minireview
URI https://www.ncbi.nlm.nih.gov/pubmed/32698426
https://www.proquest.com/docview/2426841644
https://www.proquest.com/docview/2426537083
https://pubmed.ncbi.nlm.nih.gov/PMC7412100
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LTtwwcFSWS3uo6DsUkKv20kNEYjuxc0IBsaBKIFSBtLfITzVSSSi73PmIfmG_pON1NrBt1aPl0djyjOdpzwB8otRZaoxDt8SplHNRptp6mzpnUBmwyskyfHA-Oy9Pr_iXWTEbAm7z4VnlSiYuBbXtTYiR7wdVElJknB_c_EhD16iQXR1aaGzAJopgKSeweXh8fvF1jLJkDHmWVrEuKUP_fv9a5Qw3QSlf10R_mZd_vpJ8pHamW_B8sBdJHQn8Ap647iU8e1RF8BVcX4a-Q4bUprUkxFVJ3YWeEIiNqM4uRzoWZQ6YTOwXQdSc1OTitkdCIxoSBEPf4SZI78lh26MlG5nz1_3Pmpy1XRt_ubyGq-nx5dFpOnRRSA0q6wWKOy11CDdxrnVhhcmoc54aqXWpRCVyTz2qbZ9rxsoKry8PyVKrcqXKQknP3sCkw_XfASkzK2xGbV5axrURuqg8IlXWc8WUkgl8Xp1oY4YS46HTxfcGXY1w-s3D6SfwcYS9iYU1_gm1syJMM1yuefPACgl8GKfxtEKuQ3Wuv4swBRNoYCbwNtJxXAYt1krifAJijcIjQCi5vT7Ttd-WpbfR_kIfOdv-_7bew1Ma3PJMoBDagcni9s7tou2y0HuwIacnewOb4uhklv8GfDL1RQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKAXpAvAkUMAIOHKImtvM6IBQey5Z2Kw5bqbfgV0SkNindrRA3PoLv4KP4EmbWm7QLiFuPka2xMw_Pw54ZgGecO8uNceiWOBVKmaWhtrUNnTOoDETh8pQSnCd76XhffjhIDtbgZ58LQ88q-zNxcVDbzlCMfItUCV2RSfnq-EtIXaPodrVvoeHZYsd9-4ou2-zl9luk73POR--mb8bhsqtAaFB5zVH8da4p_CKl1onNTMSdq7nJtU5VVmRxzWtUY3WshUjRI6eiWDK1KlYqTVReC4R7CS5LgZqcMtNH74eYTiRQQnjhq6DieLR1pGKBv8y5XNV7fxmzf77JPKfkRtfh2tI6ZaVnpxuw5tqbsHGuZuEtOJpSlyPDStNYRlFcVrbUgQKhMdXaxZf2JaAJkvHdKZiasZJ9POmQrRAMo2Ooa3ETrKvZ66ZDu9mLwq_vP0o2adrG59Tchv0Lwe4dWG9x_XvA0shmNuI2Tq2Q2mQ6KWoEqmwtlVAqD-BFj9HKLAuaU1-NwwodG8J-dYb9AJ4Oc499GY9_ztrsCVMtRXlWnTFeAE-GYcQW3ayo1nWnfk4iMjRnA7jr6Tgsg_ZxkeN4ANkKhYcJVOB7daRtPi8KfaO1hx55dP__23oMV8bTyW61u7238wCucgoIRBkef5uwPj85dQ_RaprrRwtWZfDpomXjNxZcLlk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2EoID4k2ggBFw4BBtYjtxckAopV21lK5WqJV6C36KSDQp3a0QNz6Cr-Fz-BLGm0e7gLj1GHk0juY9Y3sG4AWl1lCtLaYlVoacizRUxpnQWo3OgOU2S_0D5_1punPI3x0lR2vws38L469V9jZxaahNo32NfOxdiT8i43zsumsRs63Jm5MvoZ8g5U9a-3EarYjs2W9fMX2bv97dQl6_pHSyffB2J-wmDIQaHdkCTYHKlC_FcK5UYoSOqLWO6kypVIpcxI46dGkuVoylmJ37Blk8NTKWMk1k5hjivQLrwmdFI1jf3J7OPgwVnoihvtC87YnKWB6Nj2XMkACU8lUv-Fdo--cNzQsub3ITbnSxKila4boFa7a-DdcvdDC8A8cHfuaRJoWuDPE1XVLUfh4FYiOyNssv1TaE9ph0O6uCyDkpyOy0QSFDNMQbpabGnyCNI5tVg1F0qxi_vv8oyH5VV-0Lm7tweCn0vQejGvd_ACSNjDARNXFqGFdaqCR3iFQaxyWTMgvgVU_RUnftzf2Ujc8lpjme-uU59QN4PsCetE09_gm10TOm7BR7Xp6LYQDPhmWklj9nkbVtzlqYhAkMbgO43_Jx2Aaj5TzD9QDECocHAN_ue3Wlrj4t235j7If5efTw_7_1FK6iXpTvd6d7j-Aa9dWBSKAt3IDR4vTMPsYQaqGedLJK4ONlq8dv5ZUz6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tannic+Acid+with+Antiviral+and+Antibacterial+Activity+as+A+Promising+Component+of+Biomaterials%E2%80%94A+Minireview&rft.jtitle=Materials&rft.au=Kaczmarek%2C+Beata&rft.date=2020-07-20&rft.pub=MDPI+AG&rft.eissn=1996-1944&rft.volume=13&rft.issue=14&rft.spage=3224&rft_id=info:doi/10.3390%2Fma13143224&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon