Prediction of leaf area index using thermal infrared data acquired by UAS over a mixed temperate forest
•LAI prediction accuracy improves by integrating remote sensing VNIR and TIR data.•The relationship between LAI and LST is found to be insignificant.•LSE has a positive correlation with LAI.•Accurate measurement of the percentage of vegetation cover is crucial for LSE retrieval accuracy.•LAI predict...
Saved in:
Published in | International journal of applied earth observation and geoinformation Vol. 114; p. 103049 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2022
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1569-8432 1872-826X |
DOI | 10.1016/j.jag.2022.103049 |
Cover
Abstract | •LAI prediction accuracy improves by integrating remote sensing VNIR and TIR data.•The relationship between LAI and LST is found to be insignificant.•LSE has a positive correlation with LAI.•Accurate measurement of the percentage of vegetation cover is crucial for LSE retrieval accuracy.•LAI prediction accuracy is higher with LST retrieved from a lower flight altitude.
The leaf area index (LAI) is a crucial biophysical variable for remote sensing vegetation studies. LAI estimation through remote sensing data has mostly been investigated using visible and near-infrared (0.4–1.3 μm, VNIR) and Shortwave Infrared (1.4–3 μm, SWIR) data. However, Thermal Infrared (3–14 μm, TIR) data for LAI retrieval has rarely been explored. This study aims to predict LAI by integrating VNIR and TIR data from Unmanned Aerial Systems (UAS) in a mixed temperate forest, the Haagse Bos, Enschede, the Netherlands. The VNIR and TIR images were acquired in September 2020, in conjunction with fieldwork to collect LAI in situ data for 30 plots. TIR images were acquired at two heights (i.e., 85 m and 120 m above ground) to investigate the effect of flight height on the LAI prediction accuracy by means of UAS data. Land Surface Temperature (LST) and Land Surface Emissivity (LSE) were computed and extracted from the collected images. LAI was estimated using seven vegetation indices and Partial Least Squares Regression (PLSR). LAI prediction accuracy using VNIR reflectance spectra was compared to the accuracy achieved by integrating VNIR data with LST or LSE applying vegetation indices as well as PLSR. Among the applied vegetation indices, the Reduced Simple Ratio (RSR) gained the highest prediction accuracy using VNIR data (R2 = 0.5815, RMSE = 0.6972); the prediction accuracy was not improved when LST was integrated with VNIR data but increased when LSE was included (RSR: R2 = 0.7458, RMSE = 0.5081). However, when LST from 85 m altitude and VNIR data was applied as an input using PLSR (R2 = 0.5565, RMSECV = 0.7998), the LAI prediction accuracy was slightly increased compared to when only VNIR data was used (R2 = 0.4452, RMSECV = 0.8668). Integrating VNIR data with LSE significantly improved the LAI retrieval accuracy (R2 = 0.7907, RMSECV = 0.8351). These findings corroborate prior research indicating that combining LSE with VNIR data can increase the prediction accuracy of LAI. However, LST was found to be ineffective for this purpose. The relationship between LAI and LSE should be the subject of more investigation through various approachesto bridge the existingscientific gap. |
---|---|
AbstractList | •LAI prediction accuracy improves by integrating remote sensing VNIR and TIR data.•The relationship between LAI and LST is found to be insignificant.•LSE has a positive correlation with LAI.•Accurate measurement of the percentage of vegetation cover is crucial for LSE retrieval accuracy.•LAI prediction accuracy is higher with LST retrieved from a lower flight altitude.
The leaf area index (LAI) is a crucial biophysical variable for remote sensing vegetation studies. LAI estimation through remote sensing data has mostly been investigated using visible and near-infrared (0.4–1.3 μm, VNIR) and Shortwave Infrared (1.4–3 μm, SWIR) data. However, Thermal Infrared (3–14 μm, TIR) data for LAI retrieval has rarely been explored. This study aims to predict LAI by integrating VNIR and TIR data from Unmanned Aerial Systems (UAS) in a mixed temperate forest, the Haagse Bos, Enschede, the Netherlands. The VNIR and TIR images were acquired in September 2020, in conjunction with fieldwork to collect LAI in situ data for 30 plots. TIR images were acquired at two heights (i.e., 85 m and 120 m above ground) to investigate the effect of flight height on the LAI prediction accuracy by means of UAS data. Land Surface Temperature (LST) and Land Surface Emissivity (LSE) were computed and extracted from the collected images. LAI was estimated using seven vegetation indices and Partial Least Squares Regression (PLSR). LAI prediction accuracy using VNIR reflectance spectra was compared to the accuracy achieved by integrating VNIR data with LST or LSE applying vegetation indices as well as PLSR. Among the applied vegetation indices, the Reduced Simple Ratio (RSR) gained the highest prediction accuracy using VNIR data (R2 = 0.5815, RMSE = 0.6972); the prediction accuracy was not improved when LST was integrated with VNIR data but increased when LSE was included (RSR: R2 = 0.7458, RMSE = 0.5081). However, when LST from 85 m altitude and VNIR data was applied as an input using PLSR (R2 = 0.5565, RMSECV = 0.7998), the LAI prediction accuracy was slightly increased compared to when only VNIR data was used (R2 = 0.4452, RMSECV = 0.8668). Integrating VNIR data with LSE significantly improved the LAI retrieval accuracy (R2 = 0.7907, RMSECV = 0.8351). These findings corroborate prior research indicating that combining LSE with VNIR data can increase the prediction accuracy of LAI. However, LST was found to be ineffective for this purpose. The relationship between LAI and LSE should be the subject of more investigation through various approachesto bridge the existingscientific gap. The leaf area index (LAI) is a crucial biophysical variable for remote sensing vegetation studies. LAI estimation through remote sensing data has mostly been investigated using visible and near-infrared (0.4–1.3 μm, VNIR) and Shortwave Infrared (1.4–3 μm, SWIR) data. However, Thermal Infrared (3–14 μm, TIR) data for LAI retrieval has rarely been explored. This study aims to predict LAI by integrating VNIR and TIR data from Unmanned Aerial Systems (UAS) in a mixed temperate forest, the Haagse Bos, Enschede, the Netherlands. The VNIR and TIR images were acquired in September 2020, in conjunction with fieldwork to collect LAI in situ data for 30 plots. TIR images were acquired at two heights (i.e., 85 m and 120 m above ground) to investigate the effect of flight height on the LAI prediction accuracy by means of UAS data. Land Surface Temperature (LST) and Land Surface Emissivity (LSE) were computed and extracted from the collected images. LAI was estimated using seven vegetation indices and Partial Least Squares Regression (PLSR). LAI prediction accuracy using VNIR reflectance spectra was compared to the accuracy achieved by integrating VNIR data with LST or LSE applying vegetation indices as well as PLSR. Among the applied vegetation indices, the Reduced Simple Ratio (RSR) gained the highest prediction accuracy using VNIR data (R2 = 0.5815, RMSE = 0.6972); the prediction accuracy was not improved when LST was integrated with VNIR data but increased when LSE was included (RSR: R2 = 0.7458, RMSE = 0.5081). However, when LST from 85 m altitude and VNIR data was applied as an input using PLSR (R2 = 0.5565, RMSECV = 0.7998), the LAI prediction accuracy was slightly increased compared to when only VNIR data was used (R2 = 0.4452, RMSECV = 0.8668). Integrating VNIR data with LSE significantly improved the LAI retrieval accuracy (R2 = 0.7907, RMSECV = 0.8351). These findings corroborate prior research indicating that combining LSE with VNIR data can increase the prediction accuracy of LAI. However, LST was found to be ineffective for this purpose. The relationship between LAI and LSE should be the subject of more investigation through various approaches to bridge the existing scientific gap. |
ArticleNumber | 103049 |
Author | Nyktas, Panagiotis Neinavaz, Elnaz Stobbelaar, Philip |
Author_xml | – sequence: 1 givenname: Philip surname: Stobbelaar fullname: Stobbelaar, Philip email: p.stobbelaar@utwente.nl – sequence: 2 givenname: Elnaz surname: Neinavaz fullname: Neinavaz, Elnaz email: e.neinavaz@utwente.nl – sequence: 3 givenname: Panagiotis surname: Nyktas fullname: Nyktas, Panagiotis email: p.nyktas@utwente.nl |
BookMark | eNp9kc1KJTEQhYM44N88wOzyAvean053mlmJOI4gKKgwu1BJKnfS9O1oOoq-_aS94mIWblKpU5xD8dUR2Z_ShIT84GzNGW9Ph_UAm7VgQtResqbfI4dcd2KlRftnv_5V2690I8UBOZrngTHeda0-JJvbjD66EtNEU6AjQqCQEWicPL7S5zlOG1r-Yt7CWLWQ69BTDwUouKfnuHT2jT6c3dH0gpkC3cbXqhXcPmKGgjSkjHM5Id8CjDN-_6jH5OHXxf3579X1zeXV-dn1yjWsLcu2EBqnOHKrvOjr47gE37k-6NayAN6GXrMuBGFlUF4hWg3QSNt2zII8Jle7XJ9gMI85biG_mQTRvAspbwzkEt2IxgUFQaDyUkIjXK-FVa6xndOS-aBUzeK7LJfTPGcMn3mcmYW6GUylbhbqZke9err_PC4WWPCWDHH80vlz58SK5yViNrOLOLl6noyu1P3jF-5_yfKgZA |
CitedBy_id | crossref_primary_10_1029_2024EA003888 |
Cites_doi | 10.3390/rs10071139 10.1016/0034-4257(96)00039-9 10.1016/j.isprsjprs.2008.01.001 10.5194/amt-4-909-2011 10.14214/sf.431 10.1201/9780429020940-85 10.1080/01431161.2012.716540 10.1016/j.rse.2009.09.019 10.1016/j.biosystemseng.2020.02.014 10.1016/j.rse.2013.07.031 10.1016/j.rse.2003.11.005 10.3390/s90402719 10.1080/07038992.1996.10855178 10.1080/22797254.2020.1845104 10.1016/0924-2716(90)90077-O 10.1016/j.compag.2019.104946 10.1007/s11119-019-09699-x 10.1016/S0034-4257(00)00115-2 10.3390/land9100388 10.1016/0003-2670(86)80028-9 10.3390/rs11040390 10.1016/j.agrformet.2017.08.020 10.1109/LGRS.2006.885857 10.1016/j.isprsjprs.2014.04.005 10.1111/j.1744-7348.1953.tb02364.x 10.3390/rs12071075 10.1016/j.rse.2012.03.007 10.1016/0034-4257(88)90110-1 10.1016/S0034-4257(00)00171-1 10.1016/j.acags.2020.100032 10.1109/JSTARS.2019.2891519 10.1016/j.rse.2017.06.006 10.1016/j.rse.2007.01.008 10.3390/rs5105040 10.1016/S0034-4257(02)00096-2 10.2307/1936256 10.1016/j.rse.2008.06.006 10.1016/S0034-4257(99)00035-8 10.1016/j.agwat.2015.01.020 10.1016/0034-4257(79)90013-0 10.3390/rs13061121 10.1080/01431169308904400 10.3390/rs14091989 10.1016/S0034-4257(97)00104-1 10.1016/0034-4257(95)00186-7 10.3390/rs10122000 10.1016/S0034-4257(98)00014-5 10.1109/GEOINFORMATICS.2010.5568204 10.1186/s13007-019-0507-8 10.1016/j.firesaf.2017.03.085 10.1016/j.rse.2006.04.012 10.1016/j.rse.2017.10.015 10.1016/j.rse.2019.111599 10.1016/j.rse.2011.11.008 10.1109/TGRS.2007.904834 10.1109/36.700995 10.3390/rs12091491 10.1016/j.isprsjprs.2016.07.001 10.3390/rs11151763 10.1016/j.agrformet.2018.01.021 10.1016/j.agwat.2020.106036 10.1016/S0269-7491(03)00266-5 10.3390/rs10111739 10.1016/j.rse.2019.05.015 10.1117/12.2535478 10.1111/j.1365-3040.1992.tb00992.x 10.1007/978-3-642-14791-3_3 10.1155/2017/1353691 10.1111/j.1469-8137.2006.01823.x 10.1016/0034-4257(94)00114-3 10.1080/01431160500306906 10.1016/j.ecoenv.2015.07.004 10.1016/j.comnet.2020.107148 10.3390/su11040978 10.1016/j.rse.2012.12.008 10.1016/j.rse.2012.05.010 10.1016/j.rse.2004.02.003 10.1007/BF02174528 10.3390/rs11202456 10.1126/sciadv.1602244 |
ContentType | Journal Article |
Copyright | 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jag.2022.103049 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-826X |
ExternalDocumentID | oai_doaj_org_article_cf5af2e5d33a42c982b5c4b7c830df55 10_1016_j_jag_2022_103049 S1569843222002370 |
GroupedDBID | 29J 4.4 5GY 6I. AAFTH AAQXK AAXUO ABFYP ABLST ABQEM ABQYD ABYKQ ACLVX ACRLP ACSBN ADBBV ADMUD AFKWA AFTJW AFXIZ AGYEJ AHEUO AIKHN AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AZFZN BKOJK BLECG EBS EJD FDB FEDTE FIRID FYGXN GROUPED_DOAJ HVGLF IMUCA KCYFY KOM M41 O-L P-8 P-9 P2P R2- RIG ROL SDF SDG SES SPC SSE SSJ T5K ~02 AAHBH AALRI AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AGCQF AGQPQ AGRNS AIIUN AITUG ANKPU APXCP BNPGV CITATION EFJIC SSH EFKBS |
ID | FETCH-LOGICAL-c406t-826af4c51e1b5d29b5dc13ad7c9f86b0fadbf9807ff2b3f5d5eeb8aa43b670ba3 |
IEDL.DBID | AIKHN |
ISSN | 1569-8432 |
IngestDate | Wed Aug 27 01:03:58 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Tue Jul 01 02:15:21 EDT 2025 Fri Feb 23 02:39:33 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal infrared Unmanned aerial vehicle Unmanned aerial system Vegetation indices Land surface emissivity Land surface temperature Leaf area index |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-826af4c51e1b5d29b5dc13ad7c9f86b0fadbf9807ff2b3f5d5eeb8aa43b670ba3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1569843222002370 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cf5af2e5d33a42c982b5c4b7c830df55 crossref_primary_10_1016_j_jag_2022_103049 crossref_citationtrail_10_1016_j_jag_2022_103049 elsevier_sciencedirect_doi_10_1016_j_jag_2022_103049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2022 2022-11-00 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationTitle | International journal of applied earth observation and geoinformation |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Heinemann, S., Siegmann, B., Thonfeld, F., Muro, J., Jedmowski, C., Kemna, A., Kraska, T., Muller, O., Schultz, J., Udelhoven, T., Wilke, N., Rascher, U., 2020. Land Surface Temperature Retrieval for Agricultural Areas Using a Novel UAV Platform Equipped with a Thermal Infrared and Multispectral Sensor. Remote Sens. 2020, 12, 1075 12, 1075. https://doi.org/10.3390/RS12071075. Neinavaz, E., Darvishzadeh, R., Skidmore, A.K., Abdullah, H., 2019. Integration of Landsat-8 Thermal and Visible-Short Wave Infrared Data for Improving Prediction Accuracy of Forest Leaf Area Index. Remote Sens. 2019, 11, 390. https://doi.org/10.3390/RS11040390. Olioso, Sòria, Sobrino, Duchemin (b0300) 2007; 4 Tucker (b0405) 1979; 8 Guo, X., Wang, L., Tian, J., Yin, D., Shi, C., Nie, S., 2018. Vegetation Horizontal Occlusion Index (VHOI) from TLS and UAV Image to Better Measure Mangrove LAI. Remote Sensing 2018, Vol. 10, Page 1739 10, 1739. https://doi.org/10.3390/RS10111739. Zhang, Liu, Ni, Sun, Zhang, Liu, Wang (b0455) 2019; 12 Allred, Martinez, Fessehazion, Rouse, Williamson, Wishart, Koganti, Freeland, Eash, Batschelet, Featheringill (b0005) 2020; 232 Chang, C.-C., Song, G.-Z.M., Chao, Y.-C., 2019. Exploring the relationships between normalized difference vegetation index and leaf area index in central Taiwan, in: Scour and Erosion IX - Proceedings of the 9th International Conference on Scour and Erosion, ICSE 2018. pp. 591–595. Jiang, Huete, Didan, Miura (b0190) 2008; 112 Paltridge, Barber (b0310) 1988; 25 Rouse, Haas, Deering, Schell, Harlan (b0355) 1973 Comba, Biglia, Ricauda Aimonino, Tortia, Mania, Guidoni, Gay (b0070) 2020; 21 Clerbaux, C., Drummond, J.R., Flaud, J.-M., Orphal, J., 2011. Using Thermal Infrared Absorption and Emission to Determine Trace Gases 123–151. https://doi.org/10.1007/978-3-642-14791-3_3. de Lima, R.S., Lang, M., Burnside, N.G., Peciña, M.V., Arumäe, T., Laarmann, D., Ward, R.D., Vain, A., Sepp, K., 2021. An Evaluation of the Effects of UAS Flight Parameters on Digital Aerial Photogrammetry Processing and Dense-Cloud Production Quality in a Scots Pine Forest. Remote Sensing 2021, Vol. 13, Page 1121 13, 1121. https://doi.org/10.3390/RS13061121. Rasul, A., Ibrahim, S., Onojeghuo, A.R., Balzter, H., 2020. A Trend Analysis of Leaf Area Index and Land Surface Temperature and Their Relationship from Global to Local Scale. Land 2020, 9, 388. https://doi.org/10.3390/LAND9100388. Ullah, Skidmore, Ramoelo, Groen, Naeem, Ali (b0415) 2014; 93 Stenberg, Rautiainen, Manninen, Voipio, Smolander (b0395) 2004; 38 Zhu, Huang, Sun (b0485) 2018 Xue, Su (b0445) 2017; 2017 Roujean, Breon (b0350) 1995; 51 Li, Z.L., Wu, H., Wang, N., Qiu, S., Sobrino, J.A., Wan, Z., Tang, B.H., Yan, G., 2013b. Land surface emissivity retrieval from satellite data. https://doi.org/10.1080/01431161.2012.716540 34, 3084–3127. https://doi.org/10.1080/01431161.2012.716540. Gillespie, Rokugawa, Matsunaga, Steven Cothern, Hook, Kahle (b0150) 1998; 36 LICOR, n.d. LAI-2200C | Operating Instructions [WWW Document]. URL https://www.licor.com/env/support/LAI-2200C/manuals.html (accessed 9.19.22). Kanning, M., Kühling, I., Trautz, D., Jarmer, T., 2018. High-Resolution UAV-Based Hyperspectral Imagery for LAI and Chlorophyll Estimations from Wheat for Yield Prediction. Remote Sens. 2018, 10, Page 2000 10, 2000. https://doi.org/10.3390/RS10122000. Yue, W., Xu, J., Tan, W., Xu, L., 2007. The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. http://dx.doi.org/10.1080/01431160500306906, 28, 3205–3226. Zhu, X., Li, C., Tang, L., Ma, L., 2019. Retrieval and scale effect analysis of LAI over typical farmland from UAV-based hyperspectral data. https://doi.org/10.1117/12.2535478, 11149, 168–173. Neinavaz, Darvishzadeh, Skidmore, Groen (b0270) 2016; 53 Zhang, Odeh, Han (b0460) 2009; 11 Jiménez-Muñoz, Sobrino, Gillespie, Sabol, Gustafson (b0200) 2006; 103 Eshetae, M.A., 2020. Tree species classification using uav-rgb images and machine learning algorithms in a mixed temperate forest: a case study of Haagse Bos, Netherlands. Radoglou-Grammatikis, Sarigiannidis, Lagkas, Moscholios (b0320) 2020; 172 Jacob, Lesaignoux, Olioso, Weiss, Caillault, Jacquemoud, Nerry, French, Schmugge, Briottet, Lagouarde (b0185) 2017; 198 Kumar, Shekhar (b0220) 2015; 121 Oltra-Carrió, Sobrino, Franch, Nerry (b0305) 2012; 123 French, Schmugge, Kustas (b0125) 2000; 74 Feng, Zhou, Vories, Sudduth, Zhang (b0105) 2020; 193 Jordan (b0205) 1969; 50 Souza Barbosa, B., Mendes Dos Santos, L., Ferreira Ponciano Ferraz, P., Conti, L., Camiciottoli, S., Rossi, G., 2021. Influence of flight altitude and control points in the georeferencing of images obtained by unmanned aerial vehicle. https://doi.org/10.1080/22797254.2020.1845104, 54, 59–71. Somvanshi, Kumari (b0390) 2020; 7 Göttsche, Hulley (b0160) 2012; 124 Zhu, G., Ju, W., Chen, J.M., Zhou, Y., Li, X., Xu, X., 2010. Comparison of forest leaf area index retrieval based on simple ratio and reduced simple ratio, in: 2010 18th International Conference on Geoinformatics, Geoinformatics 2010. https://doi.org/10.1109/GEOINFORMATICS.2010.5568204. Rondeaux, Steven, Baret (b0345) 1996; 55 Fumera, J.O., Saludes, R.B., Dorado, M.A., Sta Cruz, P.C., n.d. Estimating Corn (Zea Mays L.) LAI Using UAV-Derived Vegetation Indices. Neinavaz, Skidmore, Darvishzadeh, Groen (b0280) 2016; 119 Ullah, Schlerf, Skidmore, Hecker (b0410) 2012; 118 Pope, G., Treitz, P., 2013. Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR) and WorldView-2 Imagery. Remote Sensing 2013, 5, 5040–5063. https://doi.org/10.3390/RS5105040. Valor, Caselles (b0425) 1996; 57 Guo, Y., Senthilnath, J., Wu, W., Zhang, X., Zeng, Z., Huang, H., 2019. Radiometric Calibration for Multispectral Camera of Different Imaging Conditions Mounted on a UAV Platform. Sustainability 2019, Vol. 11, Page 978 11, 978. https://doi.org/10.3390/SU11040978. Cramer (b0075) 1993; 1 Darvishzadeh, Skidmore, Schlerf, Atzberger, Corsi, Cho (b0080) 2008; 63 Jimenez-Munoz, Sobrino, Guanter, Moreno, Plaza, Matinez, Jimenez-Munoz, Sobrino, Guanter, Moreno, Plaza, Matinez (b0195) 2005; 593 Sobrino, Jiménez-Muñoz, Sòria, Romaguera, Guanter, Moreno, Plaza, Martínez (b0385) 2008; 46 Brown, Chen, Leblanc, Cihlar (b0020) 2000; 71 Li, S., Yuan, F., Ata-UI-Karim, S.T., Zheng, H., Cheng, T., Liu, X., Tian, Y., Zhu, Y., Cao, W., Cao, Q., 2019. Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation. Remote Sens. 2019, 11, 1763. https://doi.org/10.3390/RS11151763. Zheng, G., Moskal, L.M., 2009. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors 2009, 9, 2719–2745. https://doi.org/10.3390/S90402719. Huete, Didan, Miura, Rodriguez, Gao, Ferreira (b0180) 2002; 83 Li, Tang, Wu, Ren, Yan, Wan, Trigo, Sobrino (b0235) 2013; 131 Meier, Scherer, Richters, Christen (b0260) 2011; 4 Duan, Liu, Gong, Peng, Wu, Zhu, Fang (b0090) 2019; 15 Duda, R.O., Hart, P.E., Stork, D.G., 1995. Pattern Classiication and Scene Analysis 2nd ed. Part 1: Pattern Classiication. FLIR Systems Inc., 2016. FLIR Vue Pro and Vue Pro R User Guide [WWW Document]. URL (accessed 9.19.22). Freeland, Allred, Eash, Martinez, Wishart (b0120) 2019; 165 Carlson, Ripley (b0035) 1997; 62 Meerdink, Hook, Roberts, Abbott (b0255) 2019; 230 Neinavaz, Skidmore, Darvishzadeh (b0290) 2020; 85 Watson, Watson (b0435) 1953; 40 Ribeiro da Luz, Crowley (b0335) 2007; 109 Kooistra, Salas, Clevers, Wehrens, Leuven, Nienhuis, Buydens (b0215) 2004; 127 Valero, Rios, Mata, Pastor, Planas (b0420) 2017; 91 Geladi, Kowalski (b0140) 1986; 185 Chen (b0045) 1996; 22 Messina, G., Modica, G., 2020. Applications of UAV Thermal Imagery in Precision Agriculture: State of the Art and Future Research Outlook. Remote Sens. 2020, 12, 1491. https://doi.org/10.3390/RS12091491. Ribeiro da Luz, Crowley (b0340) 2010; 114 Gerhards, Schlerf, Rascher, Udelhoven, Juszczak, Alberti, Miglietta, Inoue (b0145) 2018; 10 Ribeiro da Luz (b0330) 2006; 172 Rouse, J.W., 1974. Monitoring the vernal advancement and retrogradation (greenwave effect) of natural vegetation. Sobrino, Caselles, Becker (b0370) 1990; 44 Asner (b0010) 1998; 64 ClimateData.org, n.d. Enschede climate: Average Temperature, weather by month, Enschede weather averages - Climate-Data.org [WWW Document]. URL https://en.climate-data.org/europe/the-netherlands/overijssel/enschede-924/ (accessed 9.19.22). Badgley, G., Field, C.B., Berry, J.A., 2017. Canopy near-infrared reflectance and terrestrial photosynthesis. Weng, Lu, Schubring (b0440) 2004; 89 Sobrino, Jiménez-Muñoz, Paolini (b0380) 2004; 90 Swayze, Tinkham, Creasy, Vogeler, Hoffman, Hudak (b0400) 2022; 14 Neinavaz, Schlerf, Darvishzadeh, Gerhards, Skidmore (b0295) 2021; 102 Maimaitijiang, Sagan, Sidike, Hartling, Esposito, Fritschi (b0250) 2020; 237 Gomis-Cebolla, Jimenez, Sobrino (b0155) 2018; 204 Liu, Li, Zhong, Jiang, Jin, Zhou, Liu, Sun, Guo (b0245) 2018; 252 FLIR Systems Inc., n.d. FLIR sUAS cameras Radiometric Information [WWW Document]. URL https://flir.custhelp.com/app/answers/detail/a_id/3108/∼/flir-suas-cameras-radiometric-information (accessed 9.19.22). Chen, Black (b0050) 1992; 15 Cho, Skidmore, Corsi, van Wieren, Sobhan (b0055) 2007; 9 van de Griend, A.A., Owe, M., 2007. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. http://dx.doi.org/10.1080/01431169308904400, 14, 1119–1131. Calderón, Navas-Cortés, Lucena, Zarco-Tejada (b0030) 2013; 139 Zhu, W., Sun, Z., Huang, Y., Lai, J., Li, J., Zhang, J., Yang, B., Li, B., Li, S., Zhu, K., Li, Y., Liao, X., 2019. Improving Field-Scale Wheat LAI Retrieval Based on UAV Remote-Sensing Observations and Optimized VI-LUTs. Remote Sens. 2019, 11, 2456. https://doi.org/10.3390/RS11202456. Gago, Douthe, Coopman, Gallego, Ribas-Carbo, Flexas, Escalona, Medrano (b0135) 2015; 153 Neinavaz, Skidmore, Darvishzadeh, Groen (b0285) 2017; 247 Sobrino, Raissouni, Li (b0375) 2001; 75 10.1016/j.jag.2022.103049_b0315 Jacob (10.1016/j.jag.2022.103049_b0185) 2017; 198 10.1016/j.jag.2022.103049_b0475 10.1016/j.jag.2022.103049_b0115 Ullah (10.1016/j.jag.2022.103049_b0410) 2012; 118 Radoglou-Grammatikis (10.1016/j.jag.2022.103049_b0320) 2020; 172 Ribeiro da Luz (10.1016/j.jag.2022.103049_b0330) 2006; 172 Valor (10.1016/j.jag.2022.103049_b0425) 1996; 57 10.1016/j.jag.2022.103049_b0230 Jiang (10.1016/j.jag.2022.103049_b0190) 2008; 112 Neinavaz (10.1016/j.jag.2022.103049_b0270) 2016; 53 Watson (10.1016/j.jag.2022.103049_b0435) 1953; 40 10.1016/j.jag.2022.103049_b0430 10.1016/j.jag.2022.103049_b0110 10.1016/j.jag.2022.103049_b0275 Neinavaz (10.1016/j.jag.2022.103049_b0290) 2020; 85 10.1016/j.jag.2022.103049_b0470 Calderón (10.1016/j.jag.2022.103049_b0030) 2013; 139 French (10.1016/j.jag.2022.103049_b0125) 2000; 74 Liu (10.1016/j.jag.2022.103049_b0245) 2018; 252 Jiménez-Muñoz (10.1016/j.jag.2022.103049_b0200) 2006; 103 Göttsche (10.1016/j.jag.2022.103049_b0160) 2012; 124 Asner (10.1016/j.jag.2022.103049_b0010) 1998; 64 Ribeiro da Luz (10.1016/j.jag.2022.103049_b0335) 2007; 109 Roujean (10.1016/j.jag.2022.103049_b0350) 1995; 51 Brown (10.1016/j.jag.2022.103049_b0020) 2000; 71 Ribeiro da Luz (10.1016/j.jag.2022.103049_b0340) 2010; 114 10.1016/j.jag.2022.103049_b0465 10.1016/j.jag.2022.103049_b0225 Allred (10.1016/j.jag.2022.103049_b0005) 2020; 232 Gillespie (10.1016/j.jag.2022.103049_b0150) 1998; 36 10.1016/j.jag.2022.103049_b0065 Oltra-Carrió (10.1016/j.jag.2022.103049_b0305) 2012; 123 10.1016/j.jag.2022.103049_b0100 Feng (10.1016/j.jag.2022.103049_b0105) 2020; 193 10.1016/j.jag.2022.103049_b0265 Geladi (10.1016/j.jag.2022.103049_b0140) 1986; 185 Meerdink (10.1016/j.jag.2022.103049_b0255) 2019; 230 Weng (10.1016/j.jag.2022.103049_b0440) 2004; 89 10.1016/j.jag.2022.103049_b0060 Rouse (10.1016/j.jag.2022.103049_b0355) 1973 Chen (10.1016/j.jag.2022.103049_b0050) 1992; 15 Xue (10.1016/j.jag.2022.103049_b0445) 2017; 2017 Meier (10.1016/j.jag.2022.103049_b0260) 2011; 4 Sobrino (10.1016/j.jag.2022.103049_b0370) 1990; 44 Valero (10.1016/j.jag.2022.103049_b0420) 2017; 91 Comba (10.1016/j.jag.2022.103049_b0070) 2020; 21 Freeland (10.1016/j.jag.2022.103049_b0120) 2019; 165 Jordan (10.1016/j.jag.2022.103049_b0205) 1969; 50 Tucker (10.1016/j.jag.2022.103049_b0405) 1979; 8 Rondeaux (10.1016/j.jag.2022.103049_b0345) 1996; 55 Darvishzadeh (10.1016/j.jag.2022.103049_b0080) 2008; 63 Gomis-Cebolla (10.1016/j.jag.2022.103049_b0155) 2018; 204 Neinavaz (10.1016/j.jag.2022.103049_b0285) 2017; 247 Stenberg (10.1016/j.jag.2022.103049_b0395) 2004; 38 Neinavaz (10.1016/j.jag.2022.103049_b0295) 2021; 102 Cho (10.1016/j.jag.2022.103049_b0055) 2007; 9 Sobrino (10.1016/j.jag.2022.103049_b0375) 2001; 75 10.1016/j.jag.2022.103049_b0015 10.1016/j.jag.2022.103049_b0175 10.1016/j.jag.2022.103049_b0450 10.1016/j.jag.2022.103049_b0130 Gago (10.1016/j.jag.2022.103049_b0135) 2015; 153 Jimenez-Munoz (10.1016/j.jag.2022.103049_b0195) 2005; 593 10.1016/j.jag.2022.103049_b0210 Sobrino (10.1016/j.jag.2022.103049_b0385) 2008; 46 Duan (10.1016/j.jag.2022.103049_b0090) 2019; 15 Somvanshi (10.1016/j.jag.2022.103049_b0390) 2020; 7 Zhu (10.1016/j.jag.2022.103049_b0485) 2018 10.1016/j.jag.2022.103049_b0170 Sobrino (10.1016/j.jag.2022.103049_b0380) 2004; 90 10.1016/j.jag.2022.103049_b0095 Huete (10.1016/j.jag.2022.103049_b0180) 2002; 83 Chen (10.1016/j.jag.2022.103049_b0045) 1996; 22 Carlson (10.1016/j.jag.2022.103049_b0035) 1997; 62 Gerhards (10.1016/j.jag.2022.103049_b0145) 2018; 10 10.1016/j.jag.2022.103049_b0325 Zhang (10.1016/j.jag.2022.103049_b0455) 2019; 12 Cramer (10.1016/j.jag.2022.103049_b0075) 1993; 1 Swayze (10.1016/j.jag.2022.103049_b0400) 2022; 14 10.1016/j.jag.2022.103049_b0365 Ullah (10.1016/j.jag.2022.103049_b0415) 2014; 93 10.1016/j.jag.2022.103049_b0240 Olioso (10.1016/j.jag.2022.103049_b0300) 2007; 4 10.1016/j.jag.2022.103049_b0165 Maimaitijiang (10.1016/j.jag.2022.103049_b0250) 2020; 237 Zhang (10.1016/j.jag.2022.103049_b0460) 2009; 11 10.1016/j.jag.2022.103049_b0085 Kumar (10.1016/j.jag.2022.103049_b0220) 2015; 121 10.1016/j.jag.2022.103049_b0360 10.1016/j.jag.2022.103049_b0040 10.1016/j.jag.2022.103049_b0480 Kooistra (10.1016/j.jag.2022.103049_b0215) 2004; 127 Neinavaz (10.1016/j.jag.2022.103049_b0280) 2016; 119 Li (10.1016/j.jag.2022.103049_b0235) 2013; 131 Paltridge (10.1016/j.jag.2022.103049_b0310) 1988; 25 |
References_xml | – volume: 46 start-page: 316 year: 2008 end-page: 327 ident: b0385 article-title: Land surface emissivity retrieval from different VNIR and TIR sensors publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Pope, G., Treitz, P., 2013. Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR) and WorldView-2 Imagery. Remote Sensing 2013, 5, 5040–5063. https://doi.org/10.3390/RS5105040. – volume: 38 start-page: 3 year: 2004 end-page: 14 ident: b0395 article-title: Reduced simple ratio better than NDVI for estimating LAI in Finnish pine and spruce stands publication-title: Silva Fennica – reference: FLIR Systems Inc., 2016. FLIR Vue Pro and Vue Pro R User Guide [WWW Document]. URL (accessed 9.19.22). – volume: 198 start-page: 160 year: 2017 end-page: 172 ident: b0185 article-title: Reassessment of the temperature-emissivity separation from multispectral thermal infrared data: Introducing the impact of vegetation canopy by simulating the cavity effect with the SAIL-Thermique model publication-title: Remote Sens. Environ. – reference: Li, Z.L., Wu, H., Wang, N., Qiu, S., Sobrino, J.A., Wan, Z., Tang, B.H., Yan, G., 2013b. Land surface emissivity retrieval from satellite data. https://doi.org/10.1080/01431161.2012.716540 34, 3084–3127. https://doi.org/10.1080/01431161.2012.716540. – volume: 44 start-page: 343 year: 1990 end-page: 354 ident: b0370 article-title: Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Kanning, M., Kühling, I., Trautz, D., Jarmer, T., 2018. High-Resolution UAV-Based Hyperspectral Imagery for LAI and Chlorophyll Estimations from Wheat for Yield Prediction. Remote Sens. 2018, 10, Page 2000 10, 2000. https://doi.org/10.3390/RS10122000. – volume: 172 year: 2020 ident: b0320 article-title: A compilation of UAV applications for precision agriculture publication-title: Comput. Netw. – volume: 11 start-page: 256 year: 2009 end-page: 264 ident: b0460 article-title: Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis publication-title: Int. J. Appl. Earth Obs. Geoinf. – reference: Guo, X., Wang, L., Tian, J., Yin, D., Shi, C., Nie, S., 2018. Vegetation Horizontal Occlusion Index (VHOI) from TLS and UAV Image to Better Measure Mangrove LAI. Remote Sensing 2018, Vol. 10, Page 1739 10, 1739. https://doi.org/10.3390/RS10111739. – reference: van de Griend, A.A., Owe, M., 2007. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. http://dx.doi.org/10.1080/01431169308904400, 14, 1119–1131. – volume: 2017 start-page: 1 year: 2017 end-page: 17 ident: b0445 article-title: Significant remote sensing vegetation indices: a review of developments and applications publication-title: J. Sens. – reference: Zheng, G., Moskal, L.M., 2009. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors 2009, 9, 2719–2745. https://doi.org/10.3390/S90402719. – reference: Rasul, A., Ibrahim, S., Onojeghuo, A.R., Balzter, H., 2020. A Trend Analysis of Leaf Area Index and Land Surface Temperature and Their Relationship from Global to Local Scale. Land 2020, 9, 388. https://doi.org/10.3390/LAND9100388. – volume: 232 year: 2020 ident: b0005 article-title: Overall results and key findings on the use of UAV visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes publication-title: Agric. Water Manag. – reference: Eshetae, M.A., 2020. Tree species classification using uav-rgb images and machine learning algorithms in a mixed temperate forest: a case study of Haagse Bos, Netherlands. – volume: 193 start-page: 101 year: 2020 end-page: 114 ident: b0105 article-title: Yield estimation in cotton using UAV-based multi-sensor imagery publication-title: Biosyst. Eng. – volume: 252 start-page: 144 year: 2018 end-page: 154 ident: b0245 article-title: Estimates of rice lodging using indices derived from UAV visible and thermal infrared images publication-title: Agric. For. Meteorol. – volume: 12 start-page: 471 year: 2019 end-page: 481 ident: b0455 article-title: Estimation of forest leaf area index using height and canopy cover information extracted from unmanned aerial vehicle stereo imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 123 start-page: 298 year: 2012 end-page: 305 ident: b0305 article-title: Land surface emissivity retrieval from airborne sensor over urban areas publication-title: Remote Sens. Environ. – volume: 75 start-page: 256 year: 2001 end-page: 266 ident: b0375 article-title: A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data publication-title: Remote Sens. Environ. – reference: LICOR, n.d. LAI-2200C | Operating Instructions [WWW Document]. URL https://www.licor.com/env/support/LAI-2200C/manuals.html (accessed 9.19.22). – volume: 25 start-page: 381 year: 1988 end-page: 394 ident: b0310 article-title: Monitoring grassland dryness and fire potential in australia with NOAA/AVHRR data publication-title: Remote Sens. Environ. – volume: 172 start-page: 305 year: 2006 end-page: 318 ident: b0330 article-title: Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies publication-title: New Phytol. – volume: 62 start-page: 241 year: 1997 end-page: 252 ident: b0035 article-title: On the relation between NDVI, fractional vegetation cover, and leaf area index publication-title: Remote Sens. Environ. – volume: 9 start-page: 414 year: 2007 end-page: 424 ident: b0055 article-title: Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 204 start-page: 401 year: 2018 end-page: 411 ident: b0155 article-title: LST retrieval algorithm adapted to the Amazon evergreen forests using MODIS data publication-title: Remote Sens. Environ. – reference: Heinemann, S., Siegmann, B., Thonfeld, F., Muro, J., Jedmowski, C., Kemna, A., Kraska, T., Muller, O., Schultz, J., Udelhoven, T., Wilke, N., Rascher, U., 2020. Land Surface Temperature Retrieval for Agricultural Areas Using a Novel UAV Platform Equipped with a Thermal Infrared and Multispectral Sensor. Remote Sens. 2020, 12, 1075 12, 1075. https://doi.org/10.3390/RS12071075. – reference: Souza Barbosa, B., Mendes Dos Santos, L., Ferreira Ponciano Ferraz, P., Conti, L., Camiciottoli, S., Rossi, G., 2021. Influence of flight altitude and control points in the georeferencing of images obtained by unmanned aerial vehicle. https://doi.org/10.1080/22797254.2020.1845104, 54, 59–71. – volume: 64 start-page: 234 year: 1998 end-page: 253 ident: b0010 article-title: Biophysical and biochemical sources of variability in canopy reflectance publication-title: Remote Sens. Environ. – volume: 119 start-page: 390 year: 2016 end-page: 401 ident: b0280 article-title: Retrieval of leaf area index in different plant species using thermal hyperspectral data publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Li, S., Yuan, F., Ata-UI-Karim, S.T., Zheng, H., Cheng, T., Liu, X., Tian, Y., Zhu, Y., Cao, W., Cao, Q., 2019. Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation. Remote Sens. 2019, 11, 1763. https://doi.org/10.3390/RS11151763. – volume: 139 start-page: 231 year: 2013 end-page: 245 ident: b0030 article-title: High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices publication-title: Remote Sens. Environ. – volume: 53 start-page: 40 year: 2016 end-page: 47 ident: b0270 article-title: Measuring the response of canopy emissivity spectra to leaf area index variation using thermal hyperspectral data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 8 start-page: 127 year: 1979 end-page: 150 ident: b0405 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. – year: 2018 ident: b0485 article-title: Mapping crop leaf area index from multi-spectral imagery onboard an unmanned aerial vehicle publication-title: 2018 7th International Conference on Agro-Geoinformatics – reference: ClimateData.org, n.d. Enschede climate: Average Temperature, weather by month, Enschede weather averages - Climate-Data.org [WWW Document]. URL https://en.climate-data.org/europe/the-netherlands/overijssel/enschede-924/ (accessed 9.19.22). – reference: Yue, W., Xu, J., Tan, W., Xu, L., 2007. The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. http://dx.doi.org/10.1080/01431160500306906, 28, 3205–3226. – reference: Chang, C.-C., Song, G.-Z.M., Chao, Y.-C., 2019. Exploring the relationships between normalized difference vegetation index and leaf area index in central Taiwan, in: Scour and Erosion IX - Proceedings of the 9th International Conference on Scour and Erosion, ICSE 2018. pp. 591–595. – volume: 63 start-page: 409 year: 2008 end-page: 426 ident: b0080 article-title: LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 40 start-page: 1 year: 1953 end-page: 37 ident: b0435 article-title: Comparative physiological studies on the growth of field crops publication-title: Ann. Appl. Biol. – volume: 71 start-page: 16 year: 2000 end-page: 25 ident: b0020 article-title: A shortwave infrared modification to the simple ratio for lai retrieval in boreal forests: an image and model analysis publication-title: Remote Sens. Environ. – volume: 93 start-page: 56 year: 2014 end-page: 64 ident: b0415 article-title: Retrieval of leaf water content spanning the visible to thermal infrared spectra publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Zhu, G., Ju, W., Chen, J.M., Zhou, Y., Li, X., Xu, X., 2010. Comparison of forest leaf area index retrieval based on simple ratio and reduced simple ratio, in: 2010 18th International Conference on Geoinformatics, Geoinformatics 2010. https://doi.org/10.1109/GEOINFORMATICS.2010.5568204. – reference: Badgley, G., Field, C.B., Berry, J.A., 2017. Canopy near-infrared reflectance and terrestrial photosynthesis. – volume: 83 start-page: 195 year: 2002 end-page: 213 ident: b0180 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. – volume: 1 start-page: 269 year: 1993 end-page: 278 ident: b0075 article-title: Partial Least Squares (PLS): Its strengths and limitations publication-title: Perspect. Drug Discovery Des. – volume: 103 start-page: 474 year: 2006 end-page: 487 ident: b0200 article-title: Improved land surface emissivities over agricultural areas using ASTER NDVI publication-title: Remote Sens. Environ. – reference: Neinavaz, E., Darvishzadeh, R., Skidmore, A.K., Abdullah, H., 2019. Integration of Landsat-8 Thermal and Visible-Short Wave Infrared Data for Improving Prediction Accuracy of Forest Leaf Area Index. Remote Sens. 2019, 11, 390. https://doi.org/10.3390/RS11040390. – volume: 102 year: 2021 ident: b0295 article-title: Thermal infrared remote sensing of vegetation: Current status and perspectives publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 109 start-page: 393 year: 2007 end-page: 405 ident: b0335 article-title: Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0–14.0 μm) publication-title: Remote Sens. Environ. – volume: 22 start-page: 229 year: 1996 end-page: 242 ident: b0045 article-title: Evaluation of vegetation indices and a modified simple ratio for boreal applications publication-title: Can. J. Remote Sens. – volume: 15 start-page: 421 year: 1992 end-page: 429 ident: b0050 article-title: Defining leaf area index for non-flat leaves publication-title: Plant, Cell Environ. – volume: 237 year: 2020 ident: b0250 article-title: Soybean yield prediction from UAV using multimodal data fusion and deep learning publication-title: Remote Sens. Environ. – reference: Zhu, W., Sun, Z., Huang, Y., Lai, J., Li, J., Zhang, J., Yang, B., Li, B., Li, S., Zhu, K., Li, Y., Liao, X., 2019. Improving Field-Scale Wheat LAI Retrieval Based on UAV Remote-Sensing Observations and Optimized VI-LUTs. Remote Sens. 2019, 11, 2456. https://doi.org/10.3390/RS11202456. – volume: 247 start-page: 365 year: 2017 end-page: 375 ident: b0285 article-title: Retrieving vegetation canopy water content from hyperspectral thermal measurements publication-title: Agric. For. Meteorol. – volume: 85 year: 2020 ident: b0290 article-title: Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 4 start-page: 112 year: 2007 end-page: 116 ident: b0300 article-title: Evidence of low land surface thermal infrared emissivity in the presence of dry vegetation publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 55 start-page: 95 year: 1996 end-page: 107 ident: b0345 article-title: Optimization of soil-adjusted vegetation indices publication-title: Remote Sens. Environ. – volume: 21 start-page: 881 year: 2020 end-page: 896 ident: b0070 article-title: Leaf Area Index evaluation in vineyards using 3D point clouds from UAV imagery publication-title: Precis. Agric. – volume: 121 start-page: 39 year: 2015 end-page: 44 ident: b0220 article-title: Statistical analysis of land surface temperature–vegetation indexes relationship through thermal remote sensing publication-title: Ecotoxicol. Environ. Saf. – volume: 114 start-page: 404 year: 2010 end-page: 413 ident: b0340 article-title: Identification of plant species by using high spatial and spectral resolution thermal infrared (8.0–13.5 μm) imagery publication-title: Remote Sens. Environ. – reference: Rouse, J.W., 1974. Monitoring the vernal advancement and retrogradation (greenwave effect) of natural vegetation. – volume: 118 start-page: 95 year: 2012 end-page: 102 ident: b0410 article-title: Identifying plant species using mid-wave infrared (2.5–6 μm) and thermal infrared (8–14 μm) emissivity spectra publication-title: Remote Sens. Environ. – volume: 10 start-page: 1139 year: 2018 ident: b0145 article-title: Analysis of airborne optical and thermal imagery for detection of water stress symptoms publication-title: Remote Sens. (Basel) – volume: 185 start-page: 1 year: 1986 end-page: 17 ident: b0140 article-title: Partial least-squares regression: a tutorial publication-title: Anal. Chim. Acta – volume: 91 start-page: 835 year: 2017 end-page: 844 ident: b0420 article-title: An integrated approach for tactical monitoring and data-driven spread forecasting of wildfires publication-title: Fire Saf. J. – volume: 153 start-page: 9 year: 2015 end-page: 19 ident: b0135 article-title: UAVs challenge to assess water stress for sustainable agriculture publication-title: Agric. Water Manag. – volume: 7 year: 2020 ident: b0390 article-title: Comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using sentinel data publication-title: Appl. Comput. Geosci. – volume: 593 start-page: 19 year: 2005 ident: b0195 article-title: Fractional Vegetation Cover Estimation from Proba/CHRIS Data: Methods, Analysis of Angular Effects and Application to the Land Surface Emissivity Retrieval publication-title: ESASP – reference: Duda, R.O., Hart, P.E., Stork, D.G., 1995. Pattern Classiication and Scene Analysis 2nd ed. Part 1: Pattern Classiication. – volume: 74 start-page: 249 year: 2000 end-page: 254 ident: b0125 article-title: Discrimination of senescent vegetation using thermal emissivity contrast publication-title: Remote Sens. Environ. – volume: 124 start-page: 149 year: 2012 end-page: 158 ident: b0160 article-title: Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region publication-title: Remote Sens. Environ. – volume: 127 start-page: 281 year: 2004 end-page: 290 ident: b0215 article-title: Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains publication-title: Environ. Pollut. – reference: Guo, Y., Senthilnath, J., Wu, W., Zhang, X., Zeng, Z., Huang, H., 2019. Radiometric Calibration for Multispectral Camera of Different Imaging Conditions Mounted on a UAV Platform. Sustainability 2019, Vol. 11, Page 978 11, 978. https://doi.org/10.3390/SU11040978. – volume: 36 start-page: 1113 year: 1998 end-page: 1126 ident: b0150 article-title: A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 90 start-page: 434 year: 2004 end-page: 440 ident: b0380 article-title: Land surface temperature retrieval from LANDSAT TM 5 publication-title: Remote Sens. Environ. – reference: de Lima, R.S., Lang, M., Burnside, N.G., Peciña, M.V., Arumäe, T., Laarmann, D., Ward, R.D., Vain, A., Sepp, K., 2021. An Evaluation of the Effects of UAS Flight Parameters on Digital Aerial Photogrammetry Processing and Dense-Cloud Production Quality in a Scots Pine Forest. Remote Sensing 2021, Vol. 13, Page 1121 13, 1121. https://doi.org/10.3390/RS13061121. – volume: 4 start-page: 909 year: 2011 end-page: 922 ident: b0260 article-title: Atmospheric correction of thermal-infrared imagery of the 3-D urban environment acquired in oblique viewing geometry publication-title: Atmos. Meas. Tech. – volume: 230 year: 2019 ident: b0255 article-title: The ECOSTRESS spectral library version 1.0 publication-title: Remote Sens. Environ. – volume: 51 start-page: 375 year: 1995 end-page: 384 ident: b0350 article-title: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements publication-title: Remote Sens. Environ. – volume: 89 start-page: 467 year: 2004 end-page: 483 ident: b0440 article-title: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies publication-title: Remote Sens. Environ. – reference: Zhu, X., Li, C., Tang, L., Ma, L., 2019. Retrieval and scale effect analysis of LAI over typical farmland from UAV-based hyperspectral data. https://doi.org/10.1117/12.2535478, 11149, 168–173. – volume: 15 start-page: 1 year: 2019 end-page: 12 ident: b0090 article-title: Remote estimation of rice LAI based on Fourier spectrum texture from UAV image publication-title: Plant Methods – reference: FLIR Systems Inc., n.d. FLIR sUAS cameras Radiometric Information [WWW Document]. URL https://flir.custhelp.com/app/answers/detail/a_id/3108/∼/flir-suas-cameras-radiometric-information (accessed 9.19.22). – volume: 131 start-page: 14 year: 2013 end-page: 37 ident: b0235 article-title: Satellite-derived land surface temperature: Current status and perspectives publication-title: Remote Sens. Environ. – volume: 165 year: 2019 ident: b0120 article-title: Agricultural drainage tile surveying using an unmanned aircraft vehicle paired with Real-Time Kinematic positioning—A case study publication-title: Comput. Electron. Agric. – volume: 112 start-page: 3833 year: 2008 end-page: 3845 ident: b0190 article-title: Development of a two-band enhanced vegetation index without a blue band publication-title: Remote Sens. Environ. – volume: 50 start-page: 663 year: 1969 end-page: 666 ident: b0205 article-title: Derivation of leaf-area index from quality of light on the forest floor publication-title: Ecology – year: 1973 ident: b0355 article-title: Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation publication-title: [Great Plains Corridor]. undefined. – volume: 57 start-page: 167 year: 1996 end-page: 184 ident: b0425 article-title: Mapping land surface emissivity from NDVI: Application to European, African, and South American areas publication-title: Remote Sens. Environ. – reference: Clerbaux, C., Drummond, J.R., Flaud, J.-M., Orphal, J., 2011. Using Thermal Infrared Absorption and Emission to Determine Trace Gases 123–151. https://doi.org/10.1007/978-3-642-14791-3_3. – reference: Messina, G., Modica, G., 2020. Applications of UAV Thermal Imagery in Precision Agriculture: State of the Art and Future Research Outlook. Remote Sens. 2020, 12, 1491. https://doi.org/10.3390/RS12091491. – volume: 14 start-page: 1989 year: 2022 ident: b0400 article-title: Influence of UAS Flight Altitude and Speed on Aboveground Biomass Prediction publication-title: Remote Sens. (Basel) – reference: Fumera, J.O., Saludes, R.B., Dorado, M.A., Sta Cruz, P.C., n.d. Estimating Corn (Zea Mays L.) LAI Using UAV-Derived Vegetation Indices. – volume: 10 start-page: 1139 year: 2018 ident: 10.1016/j.jag.2022.103049_b0145 article-title: Analysis of airborne optical and thermal imagery for detection of water stress symptoms publication-title: Remote Sens. (Basel) doi: 10.3390/rs10071139 – volume: 57 start-page: 167 year: 1996 ident: 10.1016/j.jag.2022.103049_b0425 article-title: Mapping land surface emissivity from NDVI: Application to European, African, and South American areas publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(96)00039-9 – volume: 63 start-page: 409 year: 2008 ident: 10.1016/j.jag.2022.103049_b0080 article-title: LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2008.01.001 – volume: 4 start-page: 909 year: 2011 ident: 10.1016/j.jag.2022.103049_b0260 article-title: Atmospheric correction of thermal-infrared imagery of the 3-D urban environment acquired in oblique viewing geometry publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-4-909-2011 – volume: 38 start-page: 3 year: 2004 ident: 10.1016/j.jag.2022.103049_b0395 article-title: Reduced simple ratio better than NDVI for estimating LAI in Finnish pine and spruce stands publication-title: Silva Fennica doi: 10.14214/sf.431 – ident: 10.1016/j.jag.2022.103049_b0040 doi: 10.1201/9780429020940-85 – ident: 10.1016/j.jag.2022.103049_b0225 doi: 10.1080/01431161.2012.716540 – volume: 114 start-page: 404 year: 2010 ident: 10.1016/j.jag.2022.103049_b0340 article-title: Identification of plant species by using high spatial and spectral resolution thermal infrared (8.0–13.5 μm) imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.09.019 – volume: 193 start-page: 101 year: 2020 ident: 10.1016/j.jag.2022.103049_b0105 article-title: Yield estimation in cotton using UAV-based multi-sensor imagery publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2020.02.014 – ident: 10.1016/j.jag.2022.103049_b0115 – volume: 139 start-page: 231 year: 2013 ident: 10.1016/j.jag.2022.103049_b0030 article-title: High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.031 – ident: 10.1016/j.jag.2022.103049_b0240 – volume: 89 start-page: 467 year: 2004 ident: 10.1016/j.jag.2022.103049_b0440 article-title: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2003.11.005 – ident: 10.1016/j.jag.2022.103049_b0465 doi: 10.3390/s90402719 – volume: 22 start-page: 229 year: 1996 ident: 10.1016/j.jag.2022.103049_b0045 article-title: Evaluation of vegetation indices and a modified simple ratio for boreal applications publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.1996.10855178 – ident: 10.1016/j.jag.2022.103049_b0365 doi: 10.1080/22797254.2020.1845104 – volume: 44 start-page: 343 year: 1990 ident: 10.1016/j.jag.2022.103049_b0370 article-title: Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/0924-2716(90)90077-O – volume: 165 year: 2019 ident: 10.1016/j.jag.2022.103049_b0120 article-title: Agricultural drainage tile surveying using an unmanned aircraft vehicle paired with Real-Time Kinematic positioning—A case study publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.104946 – year: 1973 ident: 10.1016/j.jag.2022.103049_b0355 article-title: Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation publication-title: [Great Plains Corridor]. undefined. – volume: 21 start-page: 881 year: 2020 ident: 10.1016/j.jag.2022.103049_b0070 article-title: Leaf Area Index evaluation in vineyards using 3D point clouds from UAV imagery publication-title: Precis. Agric. doi: 10.1007/s11119-019-09699-x – volume: 74 start-page: 249 year: 2000 ident: 10.1016/j.jag.2022.103049_b0125 article-title: Discrimination of senescent vegetation using thermal emissivity contrast publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00115-2 – ident: 10.1016/j.jag.2022.103049_b0325 doi: 10.3390/land9100388 – volume: 185 start-page: 1 year: 1986 ident: 10.1016/j.jag.2022.103049_b0140 article-title: Partial least-squares regression: a tutorial publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(86)80028-9 – ident: 10.1016/j.jag.2022.103049_b0275 doi: 10.3390/rs11040390 – ident: 10.1016/j.jag.2022.103049_b0065 – volume: 247 start-page: 365 year: 2017 ident: 10.1016/j.jag.2022.103049_b0285 article-title: Retrieving vegetation canopy water content from hyperspectral thermal measurements publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2017.08.020 – volume: 4 start-page: 112 year: 2007 ident: 10.1016/j.jag.2022.103049_b0300 article-title: Evidence of low land surface thermal infrared emissivity in the presence of dry vegetation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2006.885857 – volume: 93 start-page: 56 year: 2014 ident: 10.1016/j.jag.2022.103049_b0415 article-title: Retrieval of leaf water content spanning the visible to thermal infrared spectra publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.04.005 – volume: 40 start-page: 1 year: 1953 ident: 10.1016/j.jag.2022.103049_b0435 article-title: Comparative physiological studies on the growth of field crops publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.1953.tb02364.x – ident: 10.1016/j.jag.2022.103049_b0175 doi: 10.3390/rs12071075 – volume: 123 start-page: 298 year: 2012 ident: 10.1016/j.jag.2022.103049_b0305 article-title: Land surface emissivity retrieval from airborne sensor over urban areas publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.03.007 – volume: 25 start-page: 381 year: 1988 ident: 10.1016/j.jag.2022.103049_b0310 article-title: Monitoring grassland dryness and fire potential in australia with NOAA/AVHRR data publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90110-1 – volume: 75 start-page: 256 year: 2001 ident: 10.1016/j.jag.2022.103049_b0375 article-title: A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00171-1 – volume: 7 year: 2020 ident: 10.1016/j.jag.2022.103049_b0390 article-title: Comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using sentinel data publication-title: Appl. Comput. Geosci. doi: 10.1016/j.acags.2020.100032 – volume: 12 start-page: 471 year: 2019 ident: 10.1016/j.jag.2022.103049_b0455 article-title: Estimation of forest leaf area index using height and canopy cover information extracted from unmanned aerial vehicle stereo imagery publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2019.2891519 – volume: 198 start-page: 160 year: 2017 ident: 10.1016/j.jag.2022.103049_b0185 article-title: Reassessment of the temperature-emissivity separation from multispectral thermal infrared data: Introducing the impact of vegetation canopy by simulating the cavity effect with the SAIL-Thermique model publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.006 – ident: 10.1016/j.jag.2022.103049_b0110 – volume: 11 start-page: 256 year: 2009 ident: 10.1016/j.jag.2022.103049_b0460 article-title: Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 109 start-page: 393 year: 2007 ident: 10.1016/j.jag.2022.103049_b0335 article-title: Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0–14.0 μm) publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.01.008 – ident: 10.1016/j.jag.2022.103049_b0315 doi: 10.3390/rs5105040 – volume: 83 start-page: 195 year: 2002 ident: 10.1016/j.jag.2022.103049_b0180 article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00096-2 – ident: 10.1016/j.jag.2022.103049_b0360 – year: 2018 ident: 10.1016/j.jag.2022.103049_b0485 article-title: Mapping crop leaf area index from multi-spectral imagery onboard an unmanned aerial vehicle – ident: 10.1016/j.jag.2022.103049_b0100 – volume: 50 start-page: 663 year: 1969 ident: 10.1016/j.jag.2022.103049_b0205 article-title: Derivation of leaf-area index from quality of light on the forest floor publication-title: Ecology doi: 10.2307/1936256 – volume: 112 start-page: 3833 year: 2008 ident: 10.1016/j.jag.2022.103049_b0190 article-title: Development of a two-band enhanced vegetation index without a blue band publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.06.006 – volume: 71 start-page: 16 year: 2000 ident: 10.1016/j.jag.2022.103049_b0020 article-title: A shortwave infrared modification to the simple ratio for lai retrieval in boreal forests: an image and model analysis publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00035-8 – volume: 85 year: 2020 ident: 10.1016/j.jag.2022.103049_b0290 article-title: Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 153 start-page: 9 year: 2015 ident: 10.1016/j.jag.2022.103049_b0135 article-title: UAVs challenge to assess water stress for sustainable agriculture publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2015.01.020 – volume: 593 start-page: 19 year: 2005 ident: 10.1016/j.jag.2022.103049_b0195 article-title: Fractional Vegetation Cover Estimation from Proba/CHRIS Data: Methods, Analysis of Angular Effects and Application to the Land Surface Emissivity Retrieval publication-title: ESASP – volume: 8 start-page: 127 year: 1979 ident: 10.1016/j.jag.2022.103049_b0405 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 – ident: 10.1016/j.jag.2022.103049_b0085 doi: 10.3390/rs13061121 – ident: 10.1016/j.jag.2022.103049_b0430 doi: 10.1080/01431169308904400 – volume: 14 start-page: 1989 year: 2022 ident: 10.1016/j.jag.2022.103049_b0400 article-title: Influence of UAS Flight Altitude and Speed on Aboveground Biomass Prediction publication-title: Remote Sens. (Basel) doi: 10.3390/rs14091989 – volume: 62 start-page: 241 year: 1997 ident: 10.1016/j.jag.2022.103049_b0035 article-title: On the relation between NDVI, fractional vegetation cover, and leaf area index publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00104-1 – ident: 10.1016/j.jag.2022.103049_b0095 – volume: 55 start-page: 95 year: 1996 ident: 10.1016/j.jag.2022.103049_b0345 article-title: Optimization of soil-adjusted vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00186-7 – volume: 53 start-page: 40 year: 2016 ident: 10.1016/j.jag.2022.103049_b0270 article-title: Measuring the response of canopy emissivity spectra to leaf area index variation using thermal hyperspectral data publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: 10.1016/j.jag.2022.103049_b0210 doi: 10.3390/rs10122000 – volume: 64 start-page: 234 year: 1998 ident: 10.1016/j.jag.2022.103049_b0010 article-title: Biophysical and biochemical sources of variability in canopy reflectance publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(98)00014-5 – ident: 10.1016/j.jag.2022.103049_b0470 doi: 10.1109/GEOINFORMATICS.2010.5568204 – volume: 15 start-page: 1 year: 2019 ident: 10.1016/j.jag.2022.103049_b0090 article-title: Remote estimation of rice LAI based on Fourier spectrum texture from UAV image publication-title: Plant Methods doi: 10.1186/s13007-019-0507-8 – volume: 91 start-page: 835 year: 2017 ident: 10.1016/j.jag.2022.103049_b0420 article-title: An integrated approach for tactical monitoring and data-driven spread forecasting of wildfires publication-title: Fire Saf. J. doi: 10.1016/j.firesaf.2017.03.085 – volume: 103 start-page: 474 year: 2006 ident: 10.1016/j.jag.2022.103049_b0200 article-title: Improved land surface emissivities over agricultural areas using ASTER NDVI publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.04.012 – volume: 102 year: 2021 ident: 10.1016/j.jag.2022.103049_b0295 article-title: Thermal infrared remote sensing of vegetation: Current status and perspectives publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 204 start-page: 401 year: 2018 ident: 10.1016/j.jag.2022.103049_b0155 article-title: LST retrieval algorithm adapted to the Amazon evergreen forests using MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.10.015 – volume: 237 year: 2020 ident: 10.1016/j.jag.2022.103049_b0250 article-title: Soybean yield prediction from UAV using multimodal data fusion and deep learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111599 – volume: 118 start-page: 95 year: 2012 ident: 10.1016/j.jag.2022.103049_b0410 article-title: Identifying plant species using mid-wave infrared (2.5–6 μm) and thermal infrared (8–14 μm) emissivity spectra publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.11.008 – volume: 9 start-page: 414 year: 2007 ident: 10.1016/j.jag.2022.103049_b0055 article-title: Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 46 start-page: 316 year: 2008 ident: 10.1016/j.jag.2022.103049_b0385 article-title: Land surface emissivity retrieval from different VNIR and TIR sensors publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.904834 – volume: 36 start-page: 1113 year: 1998 ident: 10.1016/j.jag.2022.103049_b0150 article-title: A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.700995 – ident: 10.1016/j.jag.2022.103049_b0265 doi: 10.3390/rs12091491 – volume: 119 start-page: 390 year: 2016 ident: 10.1016/j.jag.2022.103049_b0280 article-title: Retrieval of leaf area index in different plant species using thermal hyperspectral data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.07.001 – ident: 10.1016/j.jag.2022.103049_b0230 doi: 10.3390/rs11151763 – volume: 252 start-page: 144 year: 2018 ident: 10.1016/j.jag.2022.103049_b0245 article-title: Estimates of rice lodging using indices derived from UAV visible and thermal infrared images publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2018.01.021 – volume: 232 year: 2020 ident: 10.1016/j.jag.2022.103049_b0005 article-title: Overall results and key findings on the use of UAV visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2020.106036 – volume: 127 start-page: 281 year: 2004 ident: 10.1016/j.jag.2022.103049_b0215 article-title: Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(03)00266-5 – ident: 10.1016/j.jag.2022.103049_b0130 – ident: 10.1016/j.jag.2022.103049_b0165 doi: 10.3390/rs10111739 – volume: 230 year: 2019 ident: 10.1016/j.jag.2022.103049_b0255 article-title: The ECOSTRESS spectral library version 1.0 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.05.015 – ident: 10.1016/j.jag.2022.103049_b0475 doi: 10.1117/12.2535478 – volume: 15 start-page: 421 year: 1992 ident: 10.1016/j.jag.2022.103049_b0050 article-title: Defining leaf area index for non-flat leaves publication-title: Plant, Cell Environ. doi: 10.1111/j.1365-3040.1992.tb00992.x – ident: 10.1016/j.jag.2022.103049_b0060 doi: 10.1007/978-3-642-14791-3_3 – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.jag.2022.103049_b0445 article-title: Significant remote sensing vegetation indices: a review of developments and applications publication-title: J. Sens. doi: 10.1155/2017/1353691 – volume: 172 start-page: 305 year: 2006 ident: 10.1016/j.jag.2022.103049_b0330 article-title: Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies publication-title: New Phytol. doi: 10.1111/j.1469-8137.2006.01823.x – volume: 51 start-page: 375 year: 1995 ident: 10.1016/j.jag.2022.103049_b0350 article-title: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(94)00114-3 – ident: 10.1016/j.jag.2022.103049_b0450 doi: 10.1080/01431160500306906 – volume: 121 start-page: 39 year: 2015 ident: 10.1016/j.jag.2022.103049_b0220 article-title: Statistical analysis of land surface temperature–vegetation indexes relationship through thermal remote sensing publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2015.07.004 – volume: 172 year: 2020 ident: 10.1016/j.jag.2022.103049_b0320 article-title: A compilation of UAV applications for precision agriculture publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107148 – ident: 10.1016/j.jag.2022.103049_b0170 doi: 10.3390/su11040978 – volume: 131 start-page: 14 year: 2013 ident: 10.1016/j.jag.2022.103049_b0235 article-title: Satellite-derived land surface temperature: Current status and perspectives publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.008 – volume: 124 start-page: 149 year: 2012 ident: 10.1016/j.jag.2022.103049_b0160 article-title: Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.05.010 – volume: 90 start-page: 434 year: 2004 ident: 10.1016/j.jag.2022.103049_b0380 article-title: Land surface temperature retrieval from LANDSAT TM 5 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.02.003 – volume: 1 start-page: 269 issue: 2 year: 1993 ident: 10.1016/j.jag.2022.103049_b0075 article-title: Partial Least Squares (PLS): Its strengths and limitations publication-title: Perspect. Drug Discovery Des. doi: 10.1007/BF02174528 – ident: 10.1016/j.jag.2022.103049_b0480 doi: 10.3390/rs11202456 – ident: 10.1016/j.jag.2022.103049_b0015 doi: 10.1126/sciadv.1602244 |
SSID | ssj0017768 |
Score | 2.349909 |
Snippet | •LAI prediction accuracy improves by integrating remote sensing VNIR and TIR data.•The relationship between LAI and LST is found to be insignificant.•LSE has a... The leaf area index (LAI) is a crucial biophysical variable for remote sensing vegetation studies. LAI estimation through remote sensing data has mostly been... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 103049 |
SubjectTerms | Land surface emissivity Land surface temperature Leaf area index Thermal infrared Unmanned aerial system Unmanned aerial vehicle Vegetation indices |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ-iVbG-yMGTsLibxz6OKhYRFEELvS2ZPIrSVqkV9N87s4-6F_XiZWHDJFkyE2Zm880Xxk4cJBbj8jQqUNmRQpnI4KaLtBFW-cwVWlLt8O1dej1UNyM96lz1RZiwmh64XrgzG7QJwmsnpVHCFrkAbRVkNpexC7piL42LuE2mmvODLKuL4HRaRLmSoj3PrJBdz2aMiaEQVHAeE4lmxyNVxP0dx9RxNoNNttFEify8_rottuJnPbbe4Q7ssd2r7xI1FG326Ns2G9_P6fCFFpy_BD7xJnCDoSGviBE5Ad3HnMK-KXZD-5oTBJ0TUpQbS7hgfINPPjx_4ATv5IZPnz6wjUisiIHZc4xz0ZfssOHg6vHyOmquU4gseu1FhImECcrqxCegnSjwYRNpXGaLkKcQB-MgFHmchSBABu2095AboySkWQxG7rLV2cvM7zGegpMgAVQWcvo1B2keRABMthKDGSX0WdwuaWkbrnG68mJStqCy5xK1UJIWyloLfXa67PJaE238JnxBeloKEkd21YCWUzaWU_5lOX2mWi2XTbhRhxE41NPPc-__x9wHbI2GrIsaD9nqYv7ujzC6WcBxZchffl34Iw priority: 102 providerName: Directory of Open Access Journals |
Title | Prediction of leaf area index using thermal infrared data acquired by UAS over a mixed temperate forest |
URI | https://dx.doi.org/10.1016/j.jag.2022.103049 https://doaj.org/article/cf5af2e5d33a42c982b5c4b7c830df55 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9LIdhq5bsaxdoMNOA4zYelj2MQ1aZK-iWBegN0PUI0jRJkWWAdu_H2nLWXbYDrsYkEDZhkiJpEh-Yuyth8KhXV5mNTI7U0iTWVx0mbbCqWB8rSXVDn--Kmdz9eFW3x6waV8LQ2mVae_v9vR2t0494zSb48flcnyDnkddKYoUkOIx6LcfClmXesAOJ-8_zq52wQRjuoo4pM9oQB_cbNO87uwCvUQhqPo8J0TNPfXUovjvaak9zXN5xJ4lk5FPur96zg7C6pg93QMSPGYnF7_r1ZA0LdhvL9jiekORGJp9vo78PtjILdqJvEVJ5JT1vuBkAz7gMBS2DeWjc0ob5dZRkjC24CefT2445Xpyyx-WP7CPEK0IjjlwNHpRsbxk88uLr9NZlu5WyByq8G2GXoWNyukiFKC9qPHhCmm9cXWsSsij9RDrKjcxCpBRex0CVNYqCaXJwcoTNlitV-EV4yV4CRJAmVjROR2UVRQR0PMqLLqXMGR5P6WNS8DjdP_FfdNnmN01yIWGuNB0XBiyd7shjx3qxr-Iz4lPO0ICzG471ptFkySmcVHbKIL2UlolXF0J0E6BcZXMfdR6yFTP5eYP-cNXLf_-7df_N-yUPaFWV9N4xgbbzffwBo2bLYxQeKdfPl2PkhCP2kOCXxjA-uE |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9LDtMGzdimVPHXYaYMS2JMs-ZkWLdG2DAW2A3gRRjyBFmxRZBrT_fqQtZ9lhO-xiwDJpGyItkib5ibHPHgqHfnmVNSjsTCJNZvGjy5QtnQzaN0pQ7_DFtJrM5Ldrdb3HjvpeGCqrTGt_t6a3q3UaGaXZHN0vFqNLjDyaWlKmgAyPxrh9XyqM9gZsf3x6Nplukwladx1xSJ8RQ5_cbMu8buwco8SypO7znBA1d8xTi-K_Y6V2LM_JC_Y8uYx83L3VS7YXlgfs2Q6Q4AE7PP7dr4ak6YP98YrNv68pE0Ozz1eR3wYbuUU_kbcoiZyq3uecfMA7ZENlW1M9OqeyUW4dFQnjGTzy2fiSU60nt_xu8YBjhGhFcMyBo9OLhuU1m50cXx1NsrS3QubQhG8yjCpslE4VoQDlywYPrhDWa9fEuoI8Wg-xqXMdYwkiKq9CgNpaKaDSOVhxyAbL1TK8YbwCL0AASB1r-k8HVR3LCBh5FRbDSxiyvJ9S4xLwOO1_cWv6CrMbg1IwJAXTSWHIvmxZ7jvUjX8RfyU5bQkJMLsdWK3nJmmMcVHZWAblhbCydE1dgnIStKtF7qNSQyZ7KZs_9A9vtfj7s9_-H9sn9mRydXFuzk-nZ-_YU7rS9Te-Z4PN-mf4gI7OBj4mRf4FPz77RA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+leaf+area+index+using+thermal+infrared+data+acquired+by+UAS+over+a+mixed+temperate+forest&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Stobbelaar%2C+Philip&rft.au=Neinavaz%2C+Elnaz&rft.au=Nyktas%2C+Panagiotis&rft.date=2022-11-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.eissn=1872-826X&rft.volume=114&rft_id=info:doi/10.1016%2Fj.jag.2022.103049&rft.externalDocID=S1569843222002370 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon |