Prediction of leaf area index using thermal infrared data acquired by UAS over a mixed temperate forest

•LAI prediction accuracy improves by integrating remote sensing VNIR and TIR data.•The relationship between LAI and LST is found to be insignificant.•LSE has a positive correlation with LAI.•Accurate measurement of the percentage of vegetation cover is crucial for LSE retrieval accuracy.•LAI predict...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 114; p. 103049
Main Authors Stobbelaar, Philip, Neinavaz, Elnaz, Nyktas, Panagiotis
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Elsevier
Subjects
Online AccessGet full text
ISSN1569-8432
1872-826X
DOI10.1016/j.jag.2022.103049

Cover

Abstract •LAI prediction accuracy improves by integrating remote sensing VNIR and TIR data.•The relationship between LAI and LST is found to be insignificant.•LSE has a positive correlation with LAI.•Accurate measurement of the percentage of vegetation cover is crucial for LSE retrieval accuracy.•LAI prediction accuracy is higher with LST retrieved from a lower flight altitude. The leaf area index (LAI) is a crucial biophysical variable for remote sensing vegetation studies. LAI estimation through remote sensing data has mostly been investigated using visible and near-infrared (0.4–1.3 μm, VNIR) and Shortwave Infrared (1.4–3 μm, SWIR) data. However, Thermal Infrared (3–14 μm, TIR) data for LAI retrieval has rarely been explored. This study aims to predict LAI by integrating VNIR and TIR data from Unmanned Aerial Systems (UAS) in a mixed temperate forest, the Haagse Bos, Enschede, the Netherlands. The VNIR and TIR images were acquired in September 2020, in conjunction with fieldwork to collect LAI in situ data for 30 plots. TIR images were acquired at two heights (i.e., 85 m and 120 m above ground) to investigate the effect of flight height on the LAI prediction accuracy by means of UAS data. Land Surface Temperature (LST) and Land Surface Emissivity (LSE) were computed and extracted from the collected images. LAI was estimated using seven vegetation indices and Partial Least Squares Regression (PLSR). LAI prediction accuracy using VNIR reflectance spectra was compared to the accuracy achieved by integrating VNIR data with LST or LSE applying vegetation indices as well as PLSR. Among the applied vegetation indices, the Reduced Simple Ratio (RSR) gained the highest prediction accuracy using VNIR data (R2 = 0.5815, RMSE = 0.6972); the prediction accuracy was not improved when LST was integrated with VNIR data but increased when LSE was included (RSR: R2 = 0.7458, RMSE = 0.5081). However, when LST from 85 m altitude and VNIR data was applied as an input using PLSR (R2 = 0.5565, RMSECV = 0.7998), the LAI prediction accuracy was slightly increased compared to when only VNIR data was used (R2 = 0.4452, RMSECV = 0.8668). Integrating VNIR data with LSE significantly improved the LAI retrieval accuracy (R2 = 0.7907, RMSECV = 0.8351). These findings corroborate prior research indicating that combining LSE with VNIR data can increase the prediction accuracy of LAI. However, LST was found to be ineffective for this purpose. The relationship between LAI and LSE should be the subject of more investigation through various approachesto bridge the existingscientific gap.
AbstractList •LAI prediction accuracy improves by integrating remote sensing VNIR and TIR data.•The relationship between LAI and LST is found to be insignificant.•LSE has a positive correlation with LAI.•Accurate measurement of the percentage of vegetation cover is crucial for LSE retrieval accuracy.•LAI prediction accuracy is higher with LST retrieved from a lower flight altitude. The leaf area index (LAI) is a crucial biophysical variable for remote sensing vegetation studies. LAI estimation through remote sensing data has mostly been investigated using visible and near-infrared (0.4–1.3 μm, VNIR) and Shortwave Infrared (1.4–3 μm, SWIR) data. However, Thermal Infrared (3–14 μm, TIR) data for LAI retrieval has rarely been explored. This study aims to predict LAI by integrating VNIR and TIR data from Unmanned Aerial Systems (UAS) in a mixed temperate forest, the Haagse Bos, Enschede, the Netherlands. The VNIR and TIR images were acquired in September 2020, in conjunction with fieldwork to collect LAI in situ data for 30 plots. TIR images were acquired at two heights (i.e., 85 m and 120 m above ground) to investigate the effect of flight height on the LAI prediction accuracy by means of UAS data. Land Surface Temperature (LST) and Land Surface Emissivity (LSE) were computed and extracted from the collected images. LAI was estimated using seven vegetation indices and Partial Least Squares Regression (PLSR). LAI prediction accuracy using VNIR reflectance spectra was compared to the accuracy achieved by integrating VNIR data with LST or LSE applying vegetation indices as well as PLSR. Among the applied vegetation indices, the Reduced Simple Ratio (RSR) gained the highest prediction accuracy using VNIR data (R2 = 0.5815, RMSE = 0.6972); the prediction accuracy was not improved when LST was integrated with VNIR data but increased when LSE was included (RSR: R2 = 0.7458, RMSE = 0.5081). However, when LST from 85 m altitude and VNIR data was applied as an input using PLSR (R2 = 0.5565, RMSECV = 0.7998), the LAI prediction accuracy was slightly increased compared to when only VNIR data was used (R2 = 0.4452, RMSECV = 0.8668). Integrating VNIR data with LSE significantly improved the LAI retrieval accuracy (R2 = 0.7907, RMSECV = 0.8351). These findings corroborate prior research indicating that combining LSE with VNIR data can increase the prediction accuracy of LAI. However, LST was found to be ineffective for this purpose. The relationship between LAI and LSE should be the subject of more investigation through various approachesto bridge the existingscientific gap.
The leaf area index (LAI) is a crucial biophysical variable for remote sensing vegetation studies. LAI estimation through remote sensing data has mostly been investigated using visible and near-infrared (0.4–1.3 μm, VNIR) and Shortwave Infrared (1.4–3 μm, SWIR) data. However, Thermal Infrared (3–14 μm, TIR) data for LAI retrieval has rarely been explored. This study aims to predict LAI by integrating VNIR and TIR data from Unmanned Aerial Systems (UAS) in a mixed temperate forest, the Haagse Bos, Enschede, the Netherlands. The VNIR and TIR images were acquired in September 2020, in conjunction with fieldwork to collect LAI in situ data for 30 plots. TIR images were acquired at two heights (i.e., 85 m and 120 m above ground) to investigate the effect of flight height on the LAI prediction accuracy by means of UAS data. Land Surface Temperature (LST) and Land Surface Emissivity (LSE) were computed and extracted from the collected images. LAI was estimated using seven vegetation indices and Partial Least Squares Regression (PLSR). LAI prediction accuracy using VNIR reflectance spectra was compared to the accuracy achieved by integrating VNIR data with LST or LSE applying vegetation indices as well as PLSR. Among the applied vegetation indices, the Reduced Simple Ratio (RSR) gained the highest prediction accuracy using VNIR data (R2 = 0.5815, RMSE = 0.6972); the prediction accuracy was not improved when LST was integrated with VNIR data but increased when LSE was included (RSR: R2 = 0.7458, RMSE = 0.5081). However, when LST from 85 m altitude and VNIR data was applied as an input using PLSR (R2 = 0.5565, RMSECV = 0.7998), the LAI prediction accuracy was slightly increased compared to when only VNIR data was used (R2 = 0.4452, RMSECV = 0.8668). Integrating VNIR data with LSE significantly improved the LAI retrieval accuracy (R2 = 0.7907, RMSECV = 0.8351). These findings corroborate prior research indicating that combining LSE with VNIR data can increase the prediction accuracy of LAI. However, LST was found to be ineffective for this purpose. The relationship between LAI and LSE should be the subject of more investigation through various approaches to bridge the existing scientific gap.
ArticleNumber 103049
Author Nyktas, Panagiotis
Neinavaz, Elnaz
Stobbelaar, Philip
Author_xml – sequence: 1
  givenname: Philip
  surname: Stobbelaar
  fullname: Stobbelaar, Philip
  email: p.stobbelaar@utwente.nl
– sequence: 2
  givenname: Elnaz
  surname: Neinavaz
  fullname: Neinavaz, Elnaz
  email: e.neinavaz@utwente.nl
– sequence: 3
  givenname: Panagiotis
  surname: Nyktas
  fullname: Nyktas, Panagiotis
  email: p.nyktas@utwente.nl
BookMark eNp9kc1KJTEQhYM44N88wOzyAvean053mlmJOI4gKKgwu1BJKnfS9O1oOoq-_aS94mIWblKpU5xD8dUR2Z_ShIT84GzNGW9Ph_UAm7VgQtResqbfI4dcd2KlRftnv_5V2690I8UBOZrngTHeda0-JJvbjD66EtNEU6AjQqCQEWicPL7S5zlOG1r-Yt7CWLWQ69BTDwUouKfnuHT2jT6c3dH0gpkC3cbXqhXcPmKGgjSkjHM5Id8CjDN-_6jH5OHXxf3579X1zeXV-dn1yjWsLcu2EBqnOHKrvOjr47gE37k-6NayAN6GXrMuBGFlUF4hWg3QSNt2zII8Jle7XJ9gMI85biG_mQTRvAspbwzkEt2IxgUFQaDyUkIjXK-FVa6xndOS-aBUzeK7LJfTPGcMn3mcmYW6GUylbhbqZke9err_PC4WWPCWDHH80vlz58SK5yViNrOLOLl6noyu1P3jF-5_yfKgZA
CitedBy_id crossref_primary_10_1029_2024EA003888
Cites_doi 10.3390/rs10071139
10.1016/0034-4257(96)00039-9
10.1016/j.isprsjprs.2008.01.001
10.5194/amt-4-909-2011
10.14214/sf.431
10.1201/9780429020940-85
10.1080/01431161.2012.716540
10.1016/j.rse.2009.09.019
10.1016/j.biosystemseng.2020.02.014
10.1016/j.rse.2013.07.031
10.1016/j.rse.2003.11.005
10.3390/s90402719
10.1080/07038992.1996.10855178
10.1080/22797254.2020.1845104
10.1016/0924-2716(90)90077-O
10.1016/j.compag.2019.104946
10.1007/s11119-019-09699-x
10.1016/S0034-4257(00)00115-2
10.3390/land9100388
10.1016/0003-2670(86)80028-9
10.3390/rs11040390
10.1016/j.agrformet.2017.08.020
10.1109/LGRS.2006.885857
10.1016/j.isprsjprs.2014.04.005
10.1111/j.1744-7348.1953.tb02364.x
10.3390/rs12071075
10.1016/j.rse.2012.03.007
10.1016/0034-4257(88)90110-1
10.1016/S0034-4257(00)00171-1
10.1016/j.acags.2020.100032
10.1109/JSTARS.2019.2891519
10.1016/j.rse.2017.06.006
10.1016/j.rse.2007.01.008
10.3390/rs5105040
10.1016/S0034-4257(02)00096-2
10.2307/1936256
10.1016/j.rse.2008.06.006
10.1016/S0034-4257(99)00035-8
10.1016/j.agwat.2015.01.020
10.1016/0034-4257(79)90013-0
10.3390/rs13061121
10.1080/01431169308904400
10.3390/rs14091989
10.1016/S0034-4257(97)00104-1
10.1016/0034-4257(95)00186-7
10.3390/rs10122000
10.1016/S0034-4257(98)00014-5
10.1109/GEOINFORMATICS.2010.5568204
10.1186/s13007-019-0507-8
10.1016/j.firesaf.2017.03.085
10.1016/j.rse.2006.04.012
10.1016/j.rse.2017.10.015
10.1016/j.rse.2019.111599
10.1016/j.rse.2011.11.008
10.1109/TGRS.2007.904834
10.1109/36.700995
10.3390/rs12091491
10.1016/j.isprsjprs.2016.07.001
10.3390/rs11151763
10.1016/j.agrformet.2018.01.021
10.1016/j.agwat.2020.106036
10.1016/S0269-7491(03)00266-5
10.3390/rs10111739
10.1016/j.rse.2019.05.015
10.1117/12.2535478
10.1111/j.1365-3040.1992.tb00992.x
10.1007/978-3-642-14791-3_3
10.1155/2017/1353691
10.1111/j.1469-8137.2006.01823.x
10.1016/0034-4257(94)00114-3
10.1080/01431160500306906
10.1016/j.ecoenv.2015.07.004
10.1016/j.comnet.2020.107148
10.3390/su11040978
10.1016/j.rse.2012.12.008
10.1016/j.rse.2012.05.010
10.1016/j.rse.2004.02.003
10.1007/BF02174528
10.3390/rs11202456
10.1126/sciadv.1602244
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jag.2022.103049
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_cf5af2e5d33a42c982b5c4b7c830df55
10_1016_j_jag_2022_103049
S1569843222002370
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGCQF
AGQPQ
AGRNS
AIIUN
AITUG
ANKPU
APXCP
BNPGV
CITATION
EFJIC
SSH
EFKBS
ID FETCH-LOGICAL-c406t-826af4c51e1b5d29b5dc13ad7c9f86b0fadbf9807ff2b3f5d5eeb8aa43b670ba3
IEDL.DBID AIKHN
ISSN 1569-8432
IngestDate Wed Aug 27 01:03:58 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
Tue Jul 01 02:15:21 EDT 2025
Fri Feb 23 02:39:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Thermal infrared
Unmanned aerial vehicle
Unmanned aerial system
Vegetation indices
Land surface emissivity
Land surface temperature
Leaf area index
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-826af4c51e1b5d29b5dc13ad7c9f86b0fadbf9807ff2b3f5d5eeb8aa43b670ba3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1569843222002370
ParticipantIDs doaj_primary_oai_doaj_org_article_cf5af2e5d33a42c982b5c4b7c830df55
crossref_primary_10_1016_j_jag_2022_103049
crossref_citationtrail_10_1016_j_jag_2022_103049
elsevier_sciencedirect_doi_10_1016_j_jag_2022_103049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Heinemann, S., Siegmann, B., Thonfeld, F., Muro, J., Jedmowski, C., Kemna, A., Kraska, T., Muller, O., Schultz, J., Udelhoven, T., Wilke, N., Rascher, U., 2020. Land Surface Temperature Retrieval for Agricultural Areas Using a Novel UAV Platform Equipped with a Thermal Infrared and Multispectral Sensor. Remote Sens. 2020, 12, 1075 12, 1075. https://doi.org/10.3390/RS12071075.
Neinavaz, E., Darvishzadeh, R., Skidmore, A.K., Abdullah, H., 2019. Integration of Landsat-8 Thermal and Visible-Short Wave Infrared Data for Improving Prediction Accuracy of Forest Leaf Area Index. Remote Sens. 2019, 11, 390. https://doi.org/10.3390/RS11040390.
Olioso, Sòria, Sobrino, Duchemin (b0300) 2007; 4
Tucker (b0405) 1979; 8
Guo, X., Wang, L., Tian, J., Yin, D., Shi, C., Nie, S., 2018. Vegetation Horizontal Occlusion Index (VHOI) from TLS and UAV Image to Better Measure Mangrove LAI. Remote Sensing 2018, Vol. 10, Page 1739 10, 1739. https://doi.org/10.3390/RS10111739.
Zhang, Liu, Ni, Sun, Zhang, Liu, Wang (b0455) 2019; 12
Allred, Martinez, Fessehazion, Rouse, Williamson, Wishart, Koganti, Freeland, Eash, Batschelet, Featheringill (b0005) 2020; 232
Chang, C.-C., Song, G.-Z.M., Chao, Y.-C., 2019. Exploring the relationships between normalized difference vegetation index and leaf area index in central Taiwan, in: Scour and Erosion IX - Proceedings of the 9th International Conference on Scour and Erosion, ICSE 2018. pp. 591–595.
Jiang, Huete, Didan, Miura (b0190) 2008; 112
Paltridge, Barber (b0310) 1988; 25
Rouse, Haas, Deering, Schell, Harlan (b0355) 1973
Comba, Biglia, Ricauda Aimonino, Tortia, Mania, Guidoni, Gay (b0070) 2020; 21
Clerbaux, C., Drummond, J.R., Flaud, J.-M., Orphal, J., 2011. Using Thermal Infrared Absorption and Emission to Determine Trace Gases 123–151. https://doi.org/10.1007/978-3-642-14791-3_3.
de Lima, R.S., Lang, M., Burnside, N.G., Peciña, M.V., Arumäe, T., Laarmann, D., Ward, R.D., Vain, A., Sepp, K., 2021. An Evaluation of the Effects of UAS Flight Parameters on Digital Aerial Photogrammetry Processing and Dense-Cloud Production Quality in a Scots Pine Forest. Remote Sensing 2021, Vol. 13, Page 1121 13, 1121. https://doi.org/10.3390/RS13061121.
Rasul, A., Ibrahim, S., Onojeghuo, A.R., Balzter, H., 2020. A Trend Analysis of Leaf Area Index and Land Surface Temperature and Their Relationship from Global to Local Scale. Land 2020, 9, 388. https://doi.org/10.3390/LAND9100388.
Ullah, Skidmore, Ramoelo, Groen, Naeem, Ali (b0415) 2014; 93
Stenberg, Rautiainen, Manninen, Voipio, Smolander (b0395) 2004; 38
Zhu, Huang, Sun (b0485) 2018
Xue, Su (b0445) 2017; 2017
Roujean, Breon (b0350) 1995; 51
Li, Z.L., Wu, H., Wang, N., Qiu, S., Sobrino, J.A., Wan, Z., Tang, B.H., Yan, G., 2013b. Land surface emissivity retrieval from satellite data. https://doi.org/10.1080/01431161.2012.716540 34, 3084–3127. https://doi.org/10.1080/01431161.2012.716540.
Gillespie, Rokugawa, Matsunaga, Steven Cothern, Hook, Kahle (b0150) 1998; 36
LICOR, n.d. LAI-2200C | Operating Instructions [WWW Document]. URL https://www.licor.com/env/support/LAI-2200C/manuals.html (accessed 9.19.22).
Kanning, M., Kühling, I., Trautz, D., Jarmer, T., 2018. High-Resolution UAV-Based Hyperspectral Imagery for LAI and Chlorophyll Estimations from Wheat for Yield Prediction. Remote Sens. 2018, 10, Page 2000 10, 2000. https://doi.org/10.3390/RS10122000.
Yue, W., Xu, J., Tan, W., Xu, L., 2007. The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. http://dx.doi.org/10.1080/01431160500306906, 28, 3205–3226.
Zhu, X., Li, C., Tang, L., Ma, L., 2019. Retrieval and scale effect analysis of LAI over typical farmland from UAV-based hyperspectral data. https://doi.org/10.1117/12.2535478, 11149, 168–173.
Neinavaz, Darvishzadeh, Skidmore, Groen (b0270) 2016; 53
Zhang, Odeh, Han (b0460) 2009; 11
Jiménez-Muñoz, Sobrino, Gillespie, Sabol, Gustafson (b0200) 2006; 103
Eshetae, M.A., 2020. Tree species classification using uav-rgb images and machine learning algorithms in a mixed temperate forest: a case study of Haagse Bos, Netherlands.
Radoglou-Grammatikis, Sarigiannidis, Lagkas, Moscholios (b0320) 2020; 172
Jacob, Lesaignoux, Olioso, Weiss, Caillault, Jacquemoud, Nerry, French, Schmugge, Briottet, Lagouarde (b0185) 2017; 198
Kumar, Shekhar (b0220) 2015; 121
Oltra-Carrió, Sobrino, Franch, Nerry (b0305) 2012; 123
French, Schmugge, Kustas (b0125) 2000; 74
Feng, Zhou, Vories, Sudduth, Zhang (b0105) 2020; 193
Jordan (b0205) 1969; 50
Souza Barbosa, B., Mendes Dos Santos, L., Ferreira Ponciano Ferraz, P., Conti, L., Camiciottoli, S., Rossi, G., 2021. Influence of flight altitude and control points in the georeferencing of images obtained by unmanned aerial vehicle. https://doi.org/10.1080/22797254.2020.1845104, 54, 59–71.
Somvanshi, Kumari (b0390) 2020; 7
Göttsche, Hulley (b0160) 2012; 124
Zhu, G., Ju, W., Chen, J.M., Zhou, Y., Li, X., Xu, X., 2010. Comparison of forest leaf area index retrieval based on simple ratio and reduced simple ratio, in: 2010 18th International Conference on Geoinformatics, Geoinformatics 2010. https://doi.org/10.1109/GEOINFORMATICS.2010.5568204.
Rondeaux, Steven, Baret (b0345) 1996; 55
Fumera, J.O., Saludes, R.B., Dorado, M.A., Sta Cruz, P.C., n.d. Estimating Corn (Zea Mays L.) LAI Using UAV-Derived Vegetation Indices.
Neinavaz, Skidmore, Darvishzadeh, Groen (b0280) 2016; 119
Ullah, Schlerf, Skidmore, Hecker (b0410) 2012; 118
Pope, G., Treitz, P., 2013. Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR) and WorldView-2 Imagery. Remote Sensing 2013, 5, 5040–5063. https://doi.org/10.3390/RS5105040.
Valor, Caselles (b0425) 1996; 57
Guo, Y., Senthilnath, J., Wu, W., Zhang, X., Zeng, Z., Huang, H., 2019. Radiometric Calibration for Multispectral Camera of Different Imaging Conditions Mounted on a UAV Platform. Sustainability 2019, Vol. 11, Page 978 11, 978. https://doi.org/10.3390/SU11040978.
Cramer (b0075) 1993; 1
Darvishzadeh, Skidmore, Schlerf, Atzberger, Corsi, Cho (b0080) 2008; 63
Jimenez-Munoz, Sobrino, Guanter, Moreno, Plaza, Matinez, Jimenez-Munoz, Sobrino, Guanter, Moreno, Plaza, Matinez (b0195) 2005; 593
Sobrino, Jiménez-Muñoz, Sòria, Romaguera, Guanter, Moreno, Plaza, Martínez (b0385) 2008; 46
Brown, Chen, Leblanc, Cihlar (b0020) 2000; 71
Li, S., Yuan, F., Ata-UI-Karim, S.T., Zheng, H., Cheng, T., Liu, X., Tian, Y., Zhu, Y., Cao, W., Cao, Q., 2019. Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation. Remote Sens. 2019, 11, 1763. https://doi.org/10.3390/RS11151763.
Zheng, G., Moskal, L.M., 2009. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors 2009, 9, 2719–2745. https://doi.org/10.3390/S90402719.
Huete, Didan, Miura, Rodriguez, Gao, Ferreira (b0180) 2002; 83
Li, Tang, Wu, Ren, Yan, Wan, Trigo, Sobrino (b0235) 2013; 131
Meier, Scherer, Richters, Christen (b0260) 2011; 4
Duan, Liu, Gong, Peng, Wu, Zhu, Fang (b0090) 2019; 15
Duda, R.O., Hart, P.E., Stork, D.G., 1995. Pattern Classiication and Scene Analysis 2nd ed. Part 1: Pattern Classiication.
FLIR Systems Inc., 2016. FLIR Vue Pro and Vue Pro R User Guide [WWW Document]. URL (accessed 9.19.22).
Freeland, Allred, Eash, Martinez, Wishart (b0120) 2019; 165
Carlson, Ripley (b0035) 1997; 62
Meerdink, Hook, Roberts, Abbott (b0255) 2019; 230
Neinavaz, Skidmore, Darvishzadeh (b0290) 2020; 85
Watson, Watson (b0435) 1953; 40
Ribeiro da Luz, Crowley (b0335) 2007; 109
Kooistra, Salas, Clevers, Wehrens, Leuven, Nienhuis, Buydens (b0215) 2004; 127
Valero, Rios, Mata, Pastor, Planas (b0420) 2017; 91
Geladi, Kowalski (b0140) 1986; 185
Chen (b0045) 1996; 22
Messina, G., Modica, G., 2020. Applications of UAV Thermal Imagery in Precision Agriculture: State of the Art and Future Research Outlook. Remote Sens. 2020, 12, 1491. https://doi.org/10.3390/RS12091491.
Ribeiro da Luz, Crowley (b0340) 2010; 114
Gerhards, Schlerf, Rascher, Udelhoven, Juszczak, Alberti, Miglietta, Inoue (b0145) 2018; 10
Ribeiro da Luz (b0330) 2006; 172
Rouse, J.W., 1974. Monitoring the vernal advancement and retrogradation (greenwave effect) of natural vegetation.
Sobrino, Caselles, Becker (b0370) 1990; 44
Asner (b0010) 1998; 64
ClimateData.org, n.d. Enschede climate: Average Temperature, weather by month, Enschede weather averages - Climate-Data.org [WWW Document]. URL https://en.climate-data.org/europe/the-netherlands/overijssel/enschede-924/ (accessed 9.19.22).
Badgley, G., Field, C.B., Berry, J.A., 2017. Canopy near-infrared reflectance and terrestrial photosynthesis.
Weng, Lu, Schubring (b0440) 2004; 89
Sobrino, Jiménez-Muñoz, Paolini (b0380) 2004; 90
Swayze, Tinkham, Creasy, Vogeler, Hoffman, Hudak (b0400) 2022; 14
Neinavaz, Schlerf, Darvishzadeh, Gerhards, Skidmore (b0295) 2021; 102
Maimaitijiang, Sagan, Sidike, Hartling, Esposito, Fritschi (b0250) 2020; 237
Gomis-Cebolla, Jimenez, Sobrino (b0155) 2018; 204
Liu, Li, Zhong, Jiang, Jin, Zhou, Liu, Sun, Guo (b0245) 2018; 252
FLIR Systems Inc., n.d. FLIR sUAS cameras Radiometric Information [WWW Document]. URL https://flir.custhelp.com/app/answers/detail/a_id/3108/∼/flir-suas-cameras-radiometric-information (accessed 9.19.22).
Chen, Black (b0050) 1992; 15
Cho, Skidmore, Corsi, van Wieren, Sobhan (b0055) 2007; 9
van de Griend, A.A., Owe, M., 2007. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. http://dx.doi.org/10.1080/01431169308904400, 14, 1119–1131.
Calderón, Navas-Cortés, Lucena, Zarco-Tejada (b0030) 2013; 139
Zhu, W., Sun, Z., Huang, Y., Lai, J., Li, J., Zhang, J., Yang, B., Li, B., Li, S., Zhu, K., Li, Y., Liao, X., 2019. Improving Field-Scale Wheat LAI Retrieval Based on UAV Remote-Sensing Observations and Optimized VI-LUTs. Remote Sens. 2019, 11, 2456. https://doi.org/10.3390/RS11202456.
Gago, Douthe, Coopman, Gallego, Ribas-Carbo, Flexas, Escalona, Medrano (b0135) 2015; 153
Neinavaz, Skidmore, Darvishzadeh, Groen (b0285) 2017; 247
Sobrino, Raissouni, Li (b0375) 2001; 75
10.1016/j.jag.2022.103049_b0315
Jacob (10.1016/j.jag.2022.103049_b0185) 2017; 198
10.1016/j.jag.2022.103049_b0475
10.1016/j.jag.2022.103049_b0115
Ullah (10.1016/j.jag.2022.103049_b0410) 2012; 118
Radoglou-Grammatikis (10.1016/j.jag.2022.103049_b0320) 2020; 172
Ribeiro da Luz (10.1016/j.jag.2022.103049_b0330) 2006; 172
Valor (10.1016/j.jag.2022.103049_b0425) 1996; 57
10.1016/j.jag.2022.103049_b0230
Jiang (10.1016/j.jag.2022.103049_b0190) 2008; 112
Neinavaz (10.1016/j.jag.2022.103049_b0270) 2016; 53
Watson (10.1016/j.jag.2022.103049_b0435) 1953; 40
10.1016/j.jag.2022.103049_b0430
10.1016/j.jag.2022.103049_b0110
10.1016/j.jag.2022.103049_b0275
Neinavaz (10.1016/j.jag.2022.103049_b0290) 2020; 85
10.1016/j.jag.2022.103049_b0470
Calderón (10.1016/j.jag.2022.103049_b0030) 2013; 139
French (10.1016/j.jag.2022.103049_b0125) 2000; 74
Liu (10.1016/j.jag.2022.103049_b0245) 2018; 252
Jiménez-Muñoz (10.1016/j.jag.2022.103049_b0200) 2006; 103
Göttsche (10.1016/j.jag.2022.103049_b0160) 2012; 124
Asner (10.1016/j.jag.2022.103049_b0010) 1998; 64
Ribeiro da Luz (10.1016/j.jag.2022.103049_b0335) 2007; 109
Roujean (10.1016/j.jag.2022.103049_b0350) 1995; 51
Brown (10.1016/j.jag.2022.103049_b0020) 2000; 71
Ribeiro da Luz (10.1016/j.jag.2022.103049_b0340) 2010; 114
10.1016/j.jag.2022.103049_b0465
10.1016/j.jag.2022.103049_b0225
Allred (10.1016/j.jag.2022.103049_b0005) 2020; 232
Gillespie (10.1016/j.jag.2022.103049_b0150) 1998; 36
10.1016/j.jag.2022.103049_b0065
Oltra-Carrió (10.1016/j.jag.2022.103049_b0305) 2012; 123
10.1016/j.jag.2022.103049_b0100
Feng (10.1016/j.jag.2022.103049_b0105) 2020; 193
10.1016/j.jag.2022.103049_b0265
Geladi (10.1016/j.jag.2022.103049_b0140) 1986; 185
Meerdink (10.1016/j.jag.2022.103049_b0255) 2019; 230
Weng (10.1016/j.jag.2022.103049_b0440) 2004; 89
10.1016/j.jag.2022.103049_b0060
Rouse (10.1016/j.jag.2022.103049_b0355) 1973
Chen (10.1016/j.jag.2022.103049_b0050) 1992; 15
Xue (10.1016/j.jag.2022.103049_b0445) 2017; 2017
Meier (10.1016/j.jag.2022.103049_b0260) 2011; 4
Sobrino (10.1016/j.jag.2022.103049_b0370) 1990; 44
Valero (10.1016/j.jag.2022.103049_b0420) 2017; 91
Comba (10.1016/j.jag.2022.103049_b0070) 2020; 21
Freeland (10.1016/j.jag.2022.103049_b0120) 2019; 165
Jordan (10.1016/j.jag.2022.103049_b0205) 1969; 50
Tucker (10.1016/j.jag.2022.103049_b0405) 1979; 8
Rondeaux (10.1016/j.jag.2022.103049_b0345) 1996; 55
Darvishzadeh (10.1016/j.jag.2022.103049_b0080) 2008; 63
Gomis-Cebolla (10.1016/j.jag.2022.103049_b0155) 2018; 204
Neinavaz (10.1016/j.jag.2022.103049_b0285) 2017; 247
Stenberg (10.1016/j.jag.2022.103049_b0395) 2004; 38
Neinavaz (10.1016/j.jag.2022.103049_b0295) 2021; 102
Cho (10.1016/j.jag.2022.103049_b0055) 2007; 9
Sobrino (10.1016/j.jag.2022.103049_b0375) 2001; 75
10.1016/j.jag.2022.103049_b0015
10.1016/j.jag.2022.103049_b0175
10.1016/j.jag.2022.103049_b0450
10.1016/j.jag.2022.103049_b0130
Gago (10.1016/j.jag.2022.103049_b0135) 2015; 153
Jimenez-Munoz (10.1016/j.jag.2022.103049_b0195) 2005; 593
10.1016/j.jag.2022.103049_b0210
Sobrino (10.1016/j.jag.2022.103049_b0385) 2008; 46
Duan (10.1016/j.jag.2022.103049_b0090) 2019; 15
Somvanshi (10.1016/j.jag.2022.103049_b0390) 2020; 7
Zhu (10.1016/j.jag.2022.103049_b0485) 2018
10.1016/j.jag.2022.103049_b0170
Sobrino (10.1016/j.jag.2022.103049_b0380) 2004; 90
10.1016/j.jag.2022.103049_b0095
Huete (10.1016/j.jag.2022.103049_b0180) 2002; 83
Chen (10.1016/j.jag.2022.103049_b0045) 1996; 22
Carlson (10.1016/j.jag.2022.103049_b0035) 1997; 62
Gerhards (10.1016/j.jag.2022.103049_b0145) 2018; 10
10.1016/j.jag.2022.103049_b0325
Zhang (10.1016/j.jag.2022.103049_b0455) 2019; 12
Cramer (10.1016/j.jag.2022.103049_b0075) 1993; 1
Swayze (10.1016/j.jag.2022.103049_b0400) 2022; 14
10.1016/j.jag.2022.103049_b0365
Ullah (10.1016/j.jag.2022.103049_b0415) 2014; 93
10.1016/j.jag.2022.103049_b0240
Olioso (10.1016/j.jag.2022.103049_b0300) 2007; 4
10.1016/j.jag.2022.103049_b0165
Maimaitijiang (10.1016/j.jag.2022.103049_b0250) 2020; 237
Zhang (10.1016/j.jag.2022.103049_b0460) 2009; 11
10.1016/j.jag.2022.103049_b0085
Kumar (10.1016/j.jag.2022.103049_b0220) 2015; 121
10.1016/j.jag.2022.103049_b0360
10.1016/j.jag.2022.103049_b0040
10.1016/j.jag.2022.103049_b0480
Kooistra (10.1016/j.jag.2022.103049_b0215) 2004; 127
Neinavaz (10.1016/j.jag.2022.103049_b0280) 2016; 119
Li (10.1016/j.jag.2022.103049_b0235) 2013; 131
Paltridge (10.1016/j.jag.2022.103049_b0310) 1988; 25
References_xml – volume: 46
  start-page: 316
  year: 2008
  end-page: 327
  ident: b0385
  article-title: Land surface emissivity retrieval from different VNIR and TIR sensors
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Pope, G., Treitz, P., 2013. Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR) and WorldView-2 Imagery. Remote Sensing 2013, 5, 5040–5063. https://doi.org/10.3390/RS5105040.
– volume: 38
  start-page: 3
  year: 2004
  end-page: 14
  ident: b0395
  article-title: Reduced simple ratio better than NDVI for estimating LAI in Finnish pine and spruce stands
  publication-title: Silva Fennica
– reference: FLIR Systems Inc., 2016. FLIR Vue Pro and Vue Pro R User Guide [WWW Document]. URL (accessed 9.19.22).
– volume: 198
  start-page: 160
  year: 2017
  end-page: 172
  ident: b0185
  article-title: Reassessment of the temperature-emissivity separation from multispectral thermal infrared data: Introducing the impact of vegetation canopy by simulating the cavity effect with the SAIL-Thermique model
  publication-title: Remote Sens. Environ.
– reference: Li, Z.L., Wu, H., Wang, N., Qiu, S., Sobrino, J.A., Wan, Z., Tang, B.H., Yan, G., 2013b. Land surface emissivity retrieval from satellite data. https://doi.org/10.1080/01431161.2012.716540 34, 3084–3127. https://doi.org/10.1080/01431161.2012.716540.
– volume: 44
  start-page: 343
  year: 1990
  end-page: 354
  ident: b0370
  article-title: Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Kanning, M., Kühling, I., Trautz, D., Jarmer, T., 2018. High-Resolution UAV-Based Hyperspectral Imagery for LAI and Chlorophyll Estimations from Wheat for Yield Prediction. Remote Sens. 2018, 10, Page 2000 10, 2000. https://doi.org/10.3390/RS10122000.
– volume: 172
  year: 2020
  ident: b0320
  article-title: A compilation of UAV applications for precision agriculture
  publication-title: Comput. Netw.
– volume: 11
  start-page: 256
  year: 2009
  end-page: 264
  ident: b0460
  article-title: Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– reference: Guo, X., Wang, L., Tian, J., Yin, D., Shi, C., Nie, S., 2018. Vegetation Horizontal Occlusion Index (VHOI) from TLS and UAV Image to Better Measure Mangrove LAI. Remote Sensing 2018, Vol. 10, Page 1739 10, 1739. https://doi.org/10.3390/RS10111739.
– reference: van de Griend, A.A., Owe, M., 2007. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. http://dx.doi.org/10.1080/01431169308904400, 14, 1119–1131.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 17
  ident: b0445
  article-title: Significant remote sensing vegetation indices: a review of developments and applications
  publication-title: J. Sens.
– reference: Zheng, G., Moskal, L.M., 2009. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors 2009, 9, 2719–2745. https://doi.org/10.3390/S90402719.
– reference: Rasul, A., Ibrahim, S., Onojeghuo, A.R., Balzter, H., 2020. A Trend Analysis of Leaf Area Index and Land Surface Temperature and Their Relationship from Global to Local Scale. Land 2020, 9, 388. https://doi.org/10.3390/LAND9100388.
– volume: 232
  year: 2020
  ident: b0005
  article-title: Overall results and key findings on the use of UAV visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes
  publication-title: Agric. Water Manag.
– reference: Eshetae, M.A., 2020. Tree species classification using uav-rgb images and machine learning algorithms in a mixed temperate forest: a case study of Haagse Bos, Netherlands.
– volume: 193
  start-page: 101
  year: 2020
  end-page: 114
  ident: b0105
  article-title: Yield estimation in cotton using UAV-based multi-sensor imagery
  publication-title: Biosyst. Eng.
– volume: 252
  start-page: 144
  year: 2018
  end-page: 154
  ident: b0245
  article-title: Estimates of rice lodging using indices derived from UAV visible and thermal infrared images
  publication-title: Agric. For. Meteorol.
– volume: 12
  start-page: 471
  year: 2019
  end-page: 481
  ident: b0455
  article-title: Estimation of forest leaf area index using height and canopy cover information extracted from unmanned aerial vehicle stereo imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 123
  start-page: 298
  year: 2012
  end-page: 305
  ident: b0305
  article-title: Land surface emissivity retrieval from airborne sensor over urban areas
  publication-title: Remote Sens. Environ.
– volume: 75
  start-page: 256
  year: 2001
  end-page: 266
  ident: b0375
  article-title: A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data
  publication-title: Remote Sens. Environ.
– reference: LICOR, n.d. LAI-2200C | Operating Instructions [WWW Document]. URL https://www.licor.com/env/support/LAI-2200C/manuals.html (accessed 9.19.22).
– volume: 25
  start-page: 381
  year: 1988
  end-page: 394
  ident: b0310
  article-title: Monitoring grassland dryness and fire potential in australia with NOAA/AVHRR data
  publication-title: Remote Sens. Environ.
– volume: 172
  start-page: 305
  year: 2006
  end-page: 318
  ident: b0330
  article-title: Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies
  publication-title: New Phytol.
– volume: 62
  start-page: 241
  year: 1997
  end-page: 252
  ident: b0035
  article-title: On the relation between NDVI, fractional vegetation cover, and leaf area index
  publication-title: Remote Sens. Environ.
– volume: 9
  start-page: 414
  year: 2007
  end-page: 424
  ident: b0055
  article-title: Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 204
  start-page: 401
  year: 2018
  end-page: 411
  ident: b0155
  article-title: LST retrieval algorithm adapted to the Amazon evergreen forests using MODIS data
  publication-title: Remote Sens. Environ.
– reference: Heinemann, S., Siegmann, B., Thonfeld, F., Muro, J., Jedmowski, C., Kemna, A., Kraska, T., Muller, O., Schultz, J., Udelhoven, T., Wilke, N., Rascher, U., 2020. Land Surface Temperature Retrieval for Agricultural Areas Using a Novel UAV Platform Equipped with a Thermal Infrared and Multispectral Sensor. Remote Sens. 2020, 12, 1075 12, 1075. https://doi.org/10.3390/RS12071075.
– reference: Souza Barbosa, B., Mendes Dos Santos, L., Ferreira Ponciano Ferraz, P., Conti, L., Camiciottoli, S., Rossi, G., 2021. Influence of flight altitude and control points in the georeferencing of images obtained by unmanned aerial vehicle. https://doi.org/10.1080/22797254.2020.1845104, 54, 59–71.
– volume: 64
  start-page: 234
  year: 1998
  end-page: 253
  ident: b0010
  article-title: Biophysical and biochemical sources of variability in canopy reflectance
  publication-title: Remote Sens. Environ.
– volume: 119
  start-page: 390
  year: 2016
  end-page: 401
  ident: b0280
  article-title: Retrieval of leaf area index in different plant species using thermal hyperspectral data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Li, S., Yuan, F., Ata-UI-Karim, S.T., Zheng, H., Cheng, T., Liu, X., Tian, Y., Zhu, Y., Cao, W., Cao, Q., 2019. Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation. Remote Sens. 2019, 11, 1763. https://doi.org/10.3390/RS11151763.
– volume: 139
  start-page: 231
  year: 2013
  end-page: 245
  ident: b0030
  article-title: High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices
  publication-title: Remote Sens. Environ.
– volume: 53
  start-page: 40
  year: 2016
  end-page: 47
  ident: b0270
  article-title: Measuring the response of canopy emissivity spectra to leaf area index variation using thermal hyperspectral data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 8
  start-page: 127
  year: 1979
  end-page: 150
  ident: b0405
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: b0485
  article-title: Mapping crop leaf area index from multi-spectral imagery onboard an unmanned aerial vehicle
  publication-title: 2018 7th International Conference on Agro-Geoinformatics
– reference: ClimateData.org, n.d. Enschede climate: Average Temperature, weather by month, Enschede weather averages - Climate-Data.org [WWW Document]. URL https://en.climate-data.org/europe/the-netherlands/overijssel/enschede-924/ (accessed 9.19.22).
– reference: Yue, W., Xu, J., Tan, W., Xu, L., 2007. The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. http://dx.doi.org/10.1080/01431160500306906, 28, 3205–3226.
– reference: Chang, C.-C., Song, G.-Z.M., Chao, Y.-C., 2019. Exploring the relationships between normalized difference vegetation index and leaf area index in central Taiwan, in: Scour and Erosion IX - Proceedings of the 9th International Conference on Scour and Erosion, ICSE 2018. pp. 591–595.
– volume: 63
  start-page: 409
  year: 2008
  end-page: 426
  ident: b0080
  article-title: LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 40
  start-page: 1
  year: 1953
  end-page: 37
  ident: b0435
  article-title: Comparative physiological studies on the growth of field crops
  publication-title: Ann. Appl. Biol.
– volume: 71
  start-page: 16
  year: 2000
  end-page: 25
  ident: b0020
  article-title: A shortwave infrared modification to the simple ratio for lai retrieval in boreal forests: an image and model analysis
  publication-title: Remote Sens. Environ.
– volume: 93
  start-page: 56
  year: 2014
  end-page: 64
  ident: b0415
  article-title: Retrieval of leaf water content spanning the visible to thermal infrared spectra
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Zhu, G., Ju, W., Chen, J.M., Zhou, Y., Li, X., Xu, X., 2010. Comparison of forest leaf area index retrieval based on simple ratio and reduced simple ratio, in: 2010 18th International Conference on Geoinformatics, Geoinformatics 2010. https://doi.org/10.1109/GEOINFORMATICS.2010.5568204.
– reference: Badgley, G., Field, C.B., Berry, J.A., 2017. Canopy near-infrared reflectance and terrestrial photosynthesis.
– volume: 83
  start-page: 195
  year: 2002
  end-page: 213
  ident: b0180
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
– volume: 1
  start-page: 269
  year: 1993
  end-page: 278
  ident: b0075
  article-title: Partial Least Squares (PLS): Its strengths and limitations
  publication-title: Perspect. Drug Discovery Des.
– volume: 103
  start-page: 474
  year: 2006
  end-page: 487
  ident: b0200
  article-title: Improved land surface emissivities over agricultural areas using ASTER NDVI
  publication-title: Remote Sens. Environ.
– reference: Neinavaz, E., Darvishzadeh, R., Skidmore, A.K., Abdullah, H., 2019. Integration of Landsat-8 Thermal and Visible-Short Wave Infrared Data for Improving Prediction Accuracy of Forest Leaf Area Index. Remote Sens. 2019, 11, 390. https://doi.org/10.3390/RS11040390.
– volume: 102
  year: 2021
  ident: b0295
  article-title: Thermal infrared remote sensing of vegetation: Current status and perspectives
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 109
  start-page: 393
  year: 2007
  end-page: 405
  ident: b0335
  article-title: Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0–14.0 μm)
  publication-title: Remote Sens. Environ.
– volume: 22
  start-page: 229
  year: 1996
  end-page: 242
  ident: b0045
  article-title: Evaluation of vegetation indices and a modified simple ratio for boreal applications
  publication-title: Can. J. Remote Sens.
– volume: 15
  start-page: 421
  year: 1992
  end-page: 429
  ident: b0050
  article-title: Defining leaf area index for non-flat leaves
  publication-title: Plant, Cell Environ.
– volume: 237
  year: 2020
  ident: b0250
  article-title: Soybean yield prediction from UAV using multimodal data fusion and deep learning
  publication-title: Remote Sens. Environ.
– reference: Zhu, W., Sun, Z., Huang, Y., Lai, J., Li, J., Zhang, J., Yang, B., Li, B., Li, S., Zhu, K., Li, Y., Liao, X., 2019. Improving Field-Scale Wheat LAI Retrieval Based on UAV Remote-Sensing Observations and Optimized VI-LUTs. Remote Sens. 2019, 11, 2456. https://doi.org/10.3390/RS11202456.
– volume: 247
  start-page: 365
  year: 2017
  end-page: 375
  ident: b0285
  article-title: Retrieving vegetation canopy water content from hyperspectral thermal measurements
  publication-title: Agric. For. Meteorol.
– volume: 85
  year: 2020
  ident: b0290
  article-title: Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 4
  start-page: 112
  year: 2007
  end-page: 116
  ident: b0300
  article-title: Evidence of low land surface thermal infrared emissivity in the presence of dry vegetation
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 55
  start-page: 95
  year: 1996
  end-page: 107
  ident: b0345
  article-title: Optimization of soil-adjusted vegetation indices
  publication-title: Remote Sens. Environ.
– volume: 21
  start-page: 881
  year: 2020
  end-page: 896
  ident: b0070
  article-title: Leaf Area Index evaluation in vineyards using 3D point clouds from UAV imagery
  publication-title: Precis. Agric.
– volume: 121
  start-page: 39
  year: 2015
  end-page: 44
  ident: b0220
  article-title: Statistical analysis of land surface temperature–vegetation indexes relationship through thermal remote sensing
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 114
  start-page: 404
  year: 2010
  end-page: 413
  ident: b0340
  article-title: Identification of plant species by using high spatial and spectral resolution thermal infrared (8.0–13.5 μm) imagery
  publication-title: Remote Sens. Environ.
– reference: Rouse, J.W., 1974. Monitoring the vernal advancement and retrogradation (greenwave effect) of natural vegetation.
– volume: 118
  start-page: 95
  year: 2012
  end-page: 102
  ident: b0410
  article-title: Identifying plant species using mid-wave infrared (2.5–6 μm) and thermal infrared (8–14 μm) emissivity spectra
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 1139
  year: 2018
  ident: b0145
  article-title: Analysis of airborne optical and thermal imagery for detection of water stress symptoms
  publication-title: Remote Sens. (Basel)
– volume: 185
  start-page: 1
  year: 1986
  end-page: 17
  ident: b0140
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta
– volume: 91
  start-page: 835
  year: 2017
  end-page: 844
  ident: b0420
  article-title: An integrated approach for tactical monitoring and data-driven spread forecasting of wildfires
  publication-title: Fire Saf. J.
– volume: 153
  start-page: 9
  year: 2015
  end-page: 19
  ident: b0135
  article-title: UAVs challenge to assess water stress for sustainable agriculture
  publication-title: Agric. Water Manag.
– volume: 7
  year: 2020
  ident: b0390
  article-title: Comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using sentinel data
  publication-title: Appl. Comput. Geosci.
– volume: 593
  start-page: 19
  year: 2005
  ident: b0195
  article-title: Fractional Vegetation Cover Estimation from Proba/CHRIS Data: Methods, Analysis of Angular Effects and Application to the Land Surface Emissivity Retrieval
  publication-title: ESASP
– reference: Duda, R.O., Hart, P.E., Stork, D.G., 1995. Pattern Classiication and Scene Analysis 2nd ed. Part 1: Pattern Classiication.
– volume: 74
  start-page: 249
  year: 2000
  end-page: 254
  ident: b0125
  article-title: Discrimination of senescent vegetation using thermal emissivity contrast
  publication-title: Remote Sens. Environ.
– volume: 124
  start-page: 149
  year: 2012
  end-page: 158
  ident: b0160
  article-title: Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region
  publication-title: Remote Sens. Environ.
– volume: 127
  start-page: 281
  year: 2004
  end-page: 290
  ident: b0215
  article-title: Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains
  publication-title: Environ. Pollut.
– reference: Guo, Y., Senthilnath, J., Wu, W., Zhang, X., Zeng, Z., Huang, H., 2019. Radiometric Calibration for Multispectral Camera of Different Imaging Conditions Mounted on a UAV Platform. Sustainability 2019, Vol. 11, Page 978 11, 978. https://doi.org/10.3390/SU11040978.
– volume: 36
  start-page: 1113
  year: 1998
  end-page: 1126
  ident: b0150
  article-title: A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 90
  start-page: 434
  year: 2004
  end-page: 440
  ident: b0380
  article-title: Land surface temperature retrieval from LANDSAT TM 5
  publication-title: Remote Sens. Environ.
– reference: de Lima, R.S., Lang, M., Burnside, N.G., Peciña, M.V., Arumäe, T., Laarmann, D., Ward, R.D., Vain, A., Sepp, K., 2021. An Evaluation of the Effects of UAS Flight Parameters on Digital Aerial Photogrammetry Processing and Dense-Cloud Production Quality in a Scots Pine Forest. Remote Sensing 2021, Vol. 13, Page 1121 13, 1121. https://doi.org/10.3390/RS13061121.
– volume: 4
  start-page: 909
  year: 2011
  end-page: 922
  ident: b0260
  article-title: Atmospheric correction of thermal-infrared imagery of the 3-D urban environment acquired in oblique viewing geometry
  publication-title: Atmos. Meas. Tech.
– volume: 230
  year: 2019
  ident: b0255
  article-title: The ECOSTRESS spectral library version 1.0
  publication-title: Remote Sens. Environ.
– volume: 51
  start-page: 375
  year: 1995
  end-page: 384
  ident: b0350
  article-title: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements
  publication-title: Remote Sens. Environ.
– volume: 89
  start-page: 467
  year: 2004
  end-page: 483
  ident: b0440
  article-title: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies
  publication-title: Remote Sens. Environ.
– reference: Zhu, X., Li, C., Tang, L., Ma, L., 2019. Retrieval and scale effect analysis of LAI over typical farmland from UAV-based hyperspectral data. https://doi.org/10.1117/12.2535478, 11149, 168–173.
– volume: 15
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0090
  article-title: Remote estimation of rice LAI based on Fourier spectrum texture from UAV image
  publication-title: Plant Methods
– reference: FLIR Systems Inc., n.d. FLIR sUAS cameras Radiometric Information [WWW Document]. URL https://flir.custhelp.com/app/answers/detail/a_id/3108/∼/flir-suas-cameras-radiometric-information (accessed 9.19.22).
– volume: 131
  start-page: 14
  year: 2013
  end-page: 37
  ident: b0235
  article-title: Satellite-derived land surface temperature: Current status and perspectives
  publication-title: Remote Sens. Environ.
– volume: 165
  year: 2019
  ident: b0120
  article-title: Agricultural drainage tile surveying using an unmanned aircraft vehicle paired with Real-Time Kinematic positioning—A case study
  publication-title: Comput. Electron. Agric.
– volume: 112
  start-page: 3833
  year: 2008
  end-page: 3845
  ident: b0190
  article-title: Development of a two-band enhanced vegetation index without a blue band
  publication-title: Remote Sens. Environ.
– volume: 50
  start-page: 663
  year: 1969
  end-page: 666
  ident: b0205
  article-title: Derivation of leaf-area index from quality of light on the forest floor
  publication-title: Ecology
– year: 1973
  ident: b0355
  article-title: Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation
  publication-title: [Great Plains Corridor]. undefined.
– volume: 57
  start-page: 167
  year: 1996
  end-page: 184
  ident: b0425
  article-title: Mapping land surface emissivity from NDVI: Application to European, African, and South American areas
  publication-title: Remote Sens. Environ.
– reference: Clerbaux, C., Drummond, J.R., Flaud, J.-M., Orphal, J., 2011. Using Thermal Infrared Absorption and Emission to Determine Trace Gases 123–151. https://doi.org/10.1007/978-3-642-14791-3_3.
– reference: Messina, G., Modica, G., 2020. Applications of UAV Thermal Imagery in Precision Agriculture: State of the Art and Future Research Outlook. Remote Sens. 2020, 12, 1491. https://doi.org/10.3390/RS12091491.
– volume: 14
  start-page: 1989
  year: 2022
  ident: b0400
  article-title: Influence of UAS Flight Altitude and Speed on Aboveground Biomass Prediction
  publication-title: Remote Sens. (Basel)
– reference: Fumera, J.O., Saludes, R.B., Dorado, M.A., Sta Cruz, P.C., n.d. Estimating Corn (Zea Mays L.) LAI Using UAV-Derived Vegetation Indices.
– volume: 10
  start-page: 1139
  year: 2018
  ident: 10.1016/j.jag.2022.103049_b0145
  article-title: Analysis of airborne optical and thermal imagery for detection of water stress symptoms
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs10071139
– volume: 57
  start-page: 167
  year: 1996
  ident: 10.1016/j.jag.2022.103049_b0425
  article-title: Mapping land surface emissivity from NDVI: Application to European, African, and South American areas
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(96)00039-9
– volume: 63
  start-page: 409
  year: 2008
  ident: 10.1016/j.jag.2022.103049_b0080
  article-title: LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2008.01.001
– volume: 4
  start-page: 909
  year: 2011
  ident: 10.1016/j.jag.2022.103049_b0260
  article-title: Atmospheric correction of thermal-infrared imagery of the 3-D urban environment acquired in oblique viewing geometry
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-4-909-2011
– volume: 38
  start-page: 3
  year: 2004
  ident: 10.1016/j.jag.2022.103049_b0395
  article-title: Reduced simple ratio better than NDVI for estimating LAI in Finnish pine and spruce stands
  publication-title: Silva Fennica
  doi: 10.14214/sf.431
– ident: 10.1016/j.jag.2022.103049_b0040
  doi: 10.1201/9780429020940-85
– ident: 10.1016/j.jag.2022.103049_b0225
  doi: 10.1080/01431161.2012.716540
– volume: 114
  start-page: 404
  year: 2010
  ident: 10.1016/j.jag.2022.103049_b0340
  article-title: Identification of plant species by using high spatial and spectral resolution thermal infrared (8.0–13.5 μm) imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.09.019
– volume: 193
  start-page: 101
  year: 2020
  ident: 10.1016/j.jag.2022.103049_b0105
  article-title: Yield estimation in cotton using UAV-based multi-sensor imagery
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2020.02.014
– ident: 10.1016/j.jag.2022.103049_b0115
– volume: 139
  start-page: 231
  year: 2013
  ident: 10.1016/j.jag.2022.103049_b0030
  article-title: High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.07.031
– ident: 10.1016/j.jag.2022.103049_b0240
– volume: 89
  start-page: 467
  year: 2004
  ident: 10.1016/j.jag.2022.103049_b0440
  article-title: Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2003.11.005
– ident: 10.1016/j.jag.2022.103049_b0465
  doi: 10.3390/s90402719
– volume: 22
  start-page: 229
  year: 1996
  ident: 10.1016/j.jag.2022.103049_b0045
  article-title: Evaluation of vegetation indices and a modified simple ratio for boreal applications
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.1996.10855178
– ident: 10.1016/j.jag.2022.103049_b0365
  doi: 10.1080/22797254.2020.1845104
– volume: 44
  start-page: 343
  year: 1990
  ident: 10.1016/j.jag.2022.103049_b0370
  article-title: Significance of the remotely sensed thermal infrared measurements obtained over a citrus orchard
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/0924-2716(90)90077-O
– volume: 165
  year: 2019
  ident: 10.1016/j.jag.2022.103049_b0120
  article-title: Agricultural drainage tile surveying using an unmanned aircraft vehicle paired with Real-Time Kinematic positioning—A case study
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104946
– year: 1973
  ident: 10.1016/j.jag.2022.103049_b0355
  article-title: Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation
  publication-title: [Great Plains Corridor]. undefined.
– volume: 21
  start-page: 881
  year: 2020
  ident: 10.1016/j.jag.2022.103049_b0070
  article-title: Leaf Area Index evaluation in vineyards using 3D point clouds from UAV imagery
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-019-09699-x
– volume: 74
  start-page: 249
  year: 2000
  ident: 10.1016/j.jag.2022.103049_b0125
  article-title: Discrimination of senescent vegetation using thermal emissivity contrast
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00115-2
– ident: 10.1016/j.jag.2022.103049_b0325
  doi: 10.3390/land9100388
– volume: 185
  start-page: 1
  year: 1986
  ident: 10.1016/j.jag.2022.103049_b0140
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(86)80028-9
– ident: 10.1016/j.jag.2022.103049_b0275
  doi: 10.3390/rs11040390
– ident: 10.1016/j.jag.2022.103049_b0065
– volume: 247
  start-page: 365
  year: 2017
  ident: 10.1016/j.jag.2022.103049_b0285
  article-title: Retrieving vegetation canopy water content from hyperspectral thermal measurements
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2017.08.020
– volume: 4
  start-page: 112
  year: 2007
  ident: 10.1016/j.jag.2022.103049_b0300
  article-title: Evidence of low land surface thermal infrared emissivity in the presence of dry vegetation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2006.885857
– volume: 93
  start-page: 56
  year: 2014
  ident: 10.1016/j.jag.2022.103049_b0415
  article-title: Retrieval of leaf water content spanning the visible to thermal infrared spectra
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.04.005
– volume: 40
  start-page: 1
  year: 1953
  ident: 10.1016/j.jag.2022.103049_b0435
  article-title: Comparative physiological studies on the growth of field crops
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.1953.tb02364.x
– ident: 10.1016/j.jag.2022.103049_b0175
  doi: 10.3390/rs12071075
– volume: 123
  start-page: 298
  year: 2012
  ident: 10.1016/j.jag.2022.103049_b0305
  article-title: Land surface emissivity retrieval from airborne sensor over urban areas
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.03.007
– volume: 25
  start-page: 381
  year: 1988
  ident: 10.1016/j.jag.2022.103049_b0310
  article-title: Monitoring grassland dryness and fire potential in australia with NOAA/AVHRR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90110-1
– volume: 75
  start-page: 256
  year: 2001
  ident: 10.1016/j.jag.2022.103049_b0375
  article-title: A Comparative Study of Land Surface Emissivity Retrieval from NOAA Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00171-1
– volume: 7
  year: 2020
  ident: 10.1016/j.jag.2022.103049_b0390
  article-title: Comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using sentinel data
  publication-title: Appl. Comput. Geosci.
  doi: 10.1016/j.acags.2020.100032
– volume: 12
  start-page: 471
  year: 2019
  ident: 10.1016/j.jag.2022.103049_b0455
  article-title: Estimation of forest leaf area index using height and canopy cover information extracted from unmanned aerial vehicle stereo imagery
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2891519
– volume: 198
  start-page: 160
  year: 2017
  ident: 10.1016/j.jag.2022.103049_b0185
  article-title: Reassessment of the temperature-emissivity separation from multispectral thermal infrared data: Introducing the impact of vegetation canopy by simulating the cavity effect with the SAIL-Thermique model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.006
– ident: 10.1016/j.jag.2022.103049_b0110
– volume: 11
  start-page: 256
  year: 2009
  ident: 10.1016/j.jag.2022.103049_b0460
  article-title: Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 109
  start-page: 393
  year: 2007
  ident: 10.1016/j.jag.2022.103049_b0335
  article-title: Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0–14.0 μm)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.01.008
– ident: 10.1016/j.jag.2022.103049_b0315
  doi: 10.3390/rs5105040
– volume: 83
  start-page: 195
  year: 2002
  ident: 10.1016/j.jag.2022.103049_b0180
  article-title: Overview of the radiometric and biophysical performance of the MODIS vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00096-2
– ident: 10.1016/j.jag.2022.103049_b0360
– year: 2018
  ident: 10.1016/j.jag.2022.103049_b0485
  article-title: Mapping crop leaf area index from multi-spectral imagery onboard an unmanned aerial vehicle
– ident: 10.1016/j.jag.2022.103049_b0100
– volume: 50
  start-page: 663
  year: 1969
  ident: 10.1016/j.jag.2022.103049_b0205
  article-title: Derivation of leaf-area index from quality of light on the forest floor
  publication-title: Ecology
  doi: 10.2307/1936256
– volume: 112
  start-page: 3833
  year: 2008
  ident: 10.1016/j.jag.2022.103049_b0190
  article-title: Development of a two-band enhanced vegetation index without a blue band
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.06.006
– volume: 71
  start-page: 16
  year: 2000
  ident: 10.1016/j.jag.2022.103049_b0020
  article-title: A shortwave infrared modification to the simple ratio for lai retrieval in boreal forests: an image and model analysis
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(99)00035-8
– volume: 85
  year: 2020
  ident: 10.1016/j.jag.2022.103049_b0290
  article-title: Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 153
  start-page: 9
  year: 2015
  ident: 10.1016/j.jag.2022.103049_b0135
  article-title: UAVs challenge to assess water stress for sustainable agriculture
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2015.01.020
– volume: 593
  start-page: 19
  year: 2005
  ident: 10.1016/j.jag.2022.103049_b0195
  article-title: Fractional Vegetation Cover Estimation from Proba/CHRIS Data: Methods, Analysis of Angular Effects and Application to the Land Surface Emissivity Retrieval
  publication-title: ESASP
– volume: 8
  start-page: 127
  year: 1979
  ident: 10.1016/j.jag.2022.103049_b0405
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– ident: 10.1016/j.jag.2022.103049_b0085
  doi: 10.3390/rs13061121
– ident: 10.1016/j.jag.2022.103049_b0430
  doi: 10.1080/01431169308904400
– volume: 14
  start-page: 1989
  year: 2022
  ident: 10.1016/j.jag.2022.103049_b0400
  article-title: Influence of UAS Flight Altitude and Speed on Aboveground Biomass Prediction
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs14091989
– volume: 62
  start-page: 241
  year: 1997
  ident: 10.1016/j.jag.2022.103049_b0035
  article-title: On the relation between NDVI, fractional vegetation cover, and leaf area index
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00104-1
– ident: 10.1016/j.jag.2022.103049_b0095
– volume: 55
  start-page: 95
  year: 1996
  ident: 10.1016/j.jag.2022.103049_b0345
  article-title: Optimization of soil-adjusted vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00186-7
– volume: 53
  start-page: 40
  year: 2016
  ident: 10.1016/j.jag.2022.103049_b0270
  article-title: Measuring the response of canopy emissivity spectra to leaf area index variation using thermal hyperspectral data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.jag.2022.103049_b0210
  doi: 10.3390/rs10122000
– volume: 64
  start-page: 234
  year: 1998
  ident: 10.1016/j.jag.2022.103049_b0010
  article-title: Biophysical and biochemical sources of variability in canopy reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(98)00014-5
– ident: 10.1016/j.jag.2022.103049_b0470
  doi: 10.1109/GEOINFORMATICS.2010.5568204
– volume: 15
  start-page: 1
  year: 2019
  ident: 10.1016/j.jag.2022.103049_b0090
  article-title: Remote estimation of rice LAI based on Fourier spectrum texture from UAV image
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0507-8
– volume: 91
  start-page: 835
  year: 2017
  ident: 10.1016/j.jag.2022.103049_b0420
  article-title: An integrated approach for tactical monitoring and data-driven spread forecasting of wildfires
  publication-title: Fire Saf. J.
  doi: 10.1016/j.firesaf.2017.03.085
– volume: 103
  start-page: 474
  year: 2006
  ident: 10.1016/j.jag.2022.103049_b0200
  article-title: Improved land surface emissivities over agricultural areas using ASTER NDVI
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.04.012
– volume: 102
  year: 2021
  ident: 10.1016/j.jag.2022.103049_b0295
  article-title: Thermal infrared remote sensing of vegetation: Current status and perspectives
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 204
  start-page: 401
  year: 2018
  ident: 10.1016/j.jag.2022.103049_b0155
  article-title: LST retrieval algorithm adapted to the Amazon evergreen forests using MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.10.015
– volume: 237
  year: 2020
  ident: 10.1016/j.jag.2022.103049_b0250
  article-title: Soybean yield prediction from UAV using multimodal data fusion and deep learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111599
– volume: 118
  start-page: 95
  year: 2012
  ident: 10.1016/j.jag.2022.103049_b0410
  article-title: Identifying plant species using mid-wave infrared (2.5–6 μm) and thermal infrared (8–14 μm) emissivity spectra
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.008
– volume: 9
  start-page: 414
  year: 2007
  ident: 10.1016/j.jag.2022.103049_b0055
  article-title: Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 46
  start-page: 316
  year: 2008
  ident: 10.1016/j.jag.2022.103049_b0385
  article-title: Land surface emissivity retrieval from different VNIR and TIR sensors
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.904834
– volume: 36
  start-page: 1113
  year: 1998
  ident: 10.1016/j.jag.2022.103049_b0150
  article-title: A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.700995
– ident: 10.1016/j.jag.2022.103049_b0265
  doi: 10.3390/rs12091491
– volume: 119
  start-page: 390
  year: 2016
  ident: 10.1016/j.jag.2022.103049_b0280
  article-title: Retrieval of leaf area index in different plant species using thermal hyperspectral data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.07.001
– ident: 10.1016/j.jag.2022.103049_b0230
  doi: 10.3390/rs11151763
– volume: 252
  start-page: 144
  year: 2018
  ident: 10.1016/j.jag.2022.103049_b0245
  article-title: Estimates of rice lodging using indices derived from UAV visible and thermal infrared images
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2018.01.021
– volume: 232
  year: 2020
  ident: 10.1016/j.jag.2022.103049_b0005
  article-title: Overall results and key findings on the use of UAV visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2020.106036
– volume: 127
  start-page: 281
  year: 2004
  ident: 10.1016/j.jag.2022.103049_b0215
  article-title: Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(03)00266-5
– ident: 10.1016/j.jag.2022.103049_b0130
– ident: 10.1016/j.jag.2022.103049_b0165
  doi: 10.3390/rs10111739
– volume: 230
  year: 2019
  ident: 10.1016/j.jag.2022.103049_b0255
  article-title: The ECOSTRESS spectral library version 1.0
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.05.015
– ident: 10.1016/j.jag.2022.103049_b0475
  doi: 10.1117/12.2535478
– volume: 15
  start-page: 421
  year: 1992
  ident: 10.1016/j.jag.2022.103049_b0050
  article-title: Defining leaf area index for non-flat leaves
  publication-title: Plant, Cell Environ.
  doi: 10.1111/j.1365-3040.1992.tb00992.x
– ident: 10.1016/j.jag.2022.103049_b0060
  doi: 10.1007/978-3-642-14791-3_3
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.jag.2022.103049_b0445
  article-title: Significant remote sensing vegetation indices: a review of developments and applications
  publication-title: J. Sens.
  doi: 10.1155/2017/1353691
– volume: 172
  start-page: 305
  year: 2006
  ident: 10.1016/j.jag.2022.103049_b0330
  article-title: Attenuated total reflectance spectroscopy of plant leaves: a tool for ecological and botanical studies
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2006.01823.x
– volume: 51
  start-page: 375
  year: 1995
  ident: 10.1016/j.jag.2022.103049_b0350
  article-title: Estimating PAR absorbed by vegetation from bidirectional reflectance measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(94)00114-3
– ident: 10.1016/j.jag.2022.103049_b0450
  doi: 10.1080/01431160500306906
– volume: 121
  start-page: 39
  year: 2015
  ident: 10.1016/j.jag.2022.103049_b0220
  article-title: Statistical analysis of land surface temperature–vegetation indexes relationship through thermal remote sensing
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2015.07.004
– volume: 172
  year: 2020
  ident: 10.1016/j.jag.2022.103049_b0320
  article-title: A compilation of UAV applications for precision agriculture
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107148
– ident: 10.1016/j.jag.2022.103049_b0170
  doi: 10.3390/su11040978
– volume: 131
  start-page: 14
  year: 2013
  ident: 10.1016/j.jag.2022.103049_b0235
  article-title: Satellite-derived land surface temperature: Current status and perspectives
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.008
– volume: 124
  start-page: 149
  year: 2012
  ident: 10.1016/j.jag.2022.103049_b0160
  article-title: Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.05.010
– volume: 90
  start-page: 434
  year: 2004
  ident: 10.1016/j.jag.2022.103049_b0380
  article-title: Land surface temperature retrieval from LANDSAT TM 5
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2004.02.003
– volume: 1
  start-page: 269
  issue: 2
  year: 1993
  ident: 10.1016/j.jag.2022.103049_b0075
  article-title: Partial Least Squares (PLS): Its strengths and limitations
  publication-title: Perspect. Drug Discovery Des.
  doi: 10.1007/BF02174528
– ident: 10.1016/j.jag.2022.103049_b0480
  doi: 10.3390/rs11202456
– ident: 10.1016/j.jag.2022.103049_b0015
  doi: 10.1126/sciadv.1602244
SSID ssj0017768
Score 2.349909
Snippet •LAI prediction accuracy improves by integrating remote sensing VNIR and TIR data.•The relationship between LAI and LST is found to be insignificant.•LSE has a...
The leaf area index (LAI) is a crucial biophysical variable for remote sensing vegetation studies. LAI estimation through remote sensing data has mostly been...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 103049
SubjectTerms Land surface emissivity
Land surface temperature
Leaf area index
Thermal infrared
Unmanned aerial system
Unmanned aerial vehicle
Vegetation indices
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ-iVbG-yMGTsLibxz6OKhYRFEELvS2ZPIrSVqkV9N87s4-6F_XiZWHDJFkyE2Zm880Xxk4cJBbj8jQqUNmRQpnI4KaLtBFW-cwVWlLt8O1dej1UNyM96lz1RZiwmh64XrgzG7QJwmsnpVHCFrkAbRVkNpexC7piL42LuE2mmvODLKuL4HRaRLmSoj3PrJBdz2aMiaEQVHAeE4lmxyNVxP0dx9RxNoNNttFEify8_rottuJnPbbe4Q7ssd2r7xI1FG326Ns2G9_P6fCFFpy_BD7xJnCDoSGviBE5Ad3HnMK-KXZD-5oTBJ0TUpQbS7hgfINPPjx_4ATv5IZPnz6wjUisiIHZc4xz0ZfssOHg6vHyOmquU4gseu1FhImECcrqxCegnSjwYRNpXGaLkKcQB-MgFHmchSBABu2095AboySkWQxG7rLV2cvM7zGegpMgAVQWcvo1B2keRABMthKDGSX0WdwuaWkbrnG68mJStqCy5xK1UJIWyloLfXa67PJaE238JnxBeloKEkd21YCWUzaWU_5lOX2mWi2XTbhRhxE41NPPc-__x9wHbI2GrIsaD9nqYv7ujzC6WcBxZchffl34Iw
  priority: 102
  providerName: Directory of Open Access Journals
Title Prediction of leaf area index using thermal infrared data acquired by UAS over a mixed temperate forest
URI https://dx.doi.org/10.1016/j.jag.2022.103049
https://doaj.org/article/cf5af2e5d33a42c982b5c4b7c830df55
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9LIdhq5bsaxdoMNOA4zYelj2MQ1aZK-iWBegN0PUI0jRJkWWAdu_H2nLWXbYDrsYkEDZhkiJpEh-Yuyth8KhXV5mNTI7U0iTWVx0mbbCqWB8rSXVDn--Kmdz9eFW3x6waV8LQ2mVae_v9vR2t0494zSb48flcnyDnkddKYoUkOIx6LcfClmXesAOJ-8_zq52wQRjuoo4pM9oQB_cbNO87uwCvUQhqPo8J0TNPfXUovjvaak9zXN5xJ4lk5FPur96zg7C6pg93QMSPGYnF7_r1ZA0LdhvL9jiekORGJp9vo78PtjILdqJvEVJ5JT1vuBkAz7gMBS2DeWjc0ob5dZRkjC24CefT2445Xpyyx-WP7CPEK0IjjlwNHpRsbxk88uLr9NZlu5WyByq8G2GXoWNyukiFKC9qPHhCmm9cXWsSsij9RDrKjcxCpBRex0CVNYqCaXJwcoTNlitV-EV4yV4CRJAmVjROR2UVRQR0PMqLLqXMGR5P6WNS8DjdP_FfdNnmN01yIWGuNB0XBiyd7shjx3qxr-Iz4lPO0ICzG471ptFkySmcVHbKIL2UlolXF0J0E6BcZXMfdR6yFTP5eYP-cNXLf_-7df_N-yUPaFWV9N4xgbbzffwBo2bLYxQeKdfPl2PkhCP2kOCXxjA-uE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9LDtMGzdimVPHXYaYMS2JMs-ZkWLdG2DAW2A3gRRjyBFmxRZBrT_fqQtZ9lhO-xiwDJpGyItkib5ibHPHgqHfnmVNSjsTCJNZvGjy5QtnQzaN0pQ7_DFtJrM5Ldrdb3HjvpeGCqrTGt_t6a3q3UaGaXZHN0vFqNLjDyaWlKmgAyPxrh9XyqM9gZsf3x6Nplukwladx1xSJ8RQ5_cbMu8buwco8SypO7znBA1d8xTi-K_Y6V2LM_JC_Y8uYx83L3VS7YXlgfs2Q6Q4AE7PP7dr4ak6YP98YrNv68pE0Ozz1eR3wYbuUU_kbcoiZyq3uecfMA7ZENlW1M9OqeyUW4dFQnjGTzy2fiSU60nt_xu8YBjhGhFcMyBo9OLhuU1m50cXx1NsrS3QubQhG8yjCpslE4VoQDlywYPrhDWa9fEuoI8Wg-xqXMdYwkiKq9CgNpaKaDSOVhxyAbL1TK8YbwCL0AASB1r-k8HVR3LCBh5FRbDSxiyvJ9S4xLwOO1_cWv6CrMbg1IwJAXTSWHIvmxZ7jvUjX8RfyU5bQkJMLsdWK3nJmmMcVHZWAblhbCydE1dgnIStKtF7qNSQyZ7KZs_9A9vtfj7s9_-H9sn9mRydXFuzk-nZ-_YU7rS9Te-Z4PN-mf4gI7OBj4mRf4FPz77RA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+leaf+area+index+using+thermal+infrared+data+acquired+by+UAS+over+a+mixed+temperate+forest&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Stobbelaar%2C+Philip&rft.au=Neinavaz%2C+Elnaz&rft.au=Nyktas%2C+Panagiotis&rft.date=2022-11-01&rft.pub=Elsevier+B.V&rft.issn=1569-8432&rft.eissn=1872-826X&rft.volume=114&rft_id=info:doi/10.1016%2Fj.jag.2022.103049&rft.externalDocID=S1569843222002370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon