AK-ARBIS: An improved AK-MCS based on the adaptive radial-based importance sampling for small failure probability

•An improved AK-MCS method is proposed to estimate the small failure probability.•An optimal β-sphere is searched without any extra model evaluations.•Kriging model is ceaselessly updated layer by layer outside the current β-sphere.•The adaptive Kriging model is finished until an optimal β-sphere is...

Full description

Saved in:
Bibliographic Details
Published inStructural safety Vol. 82; p. 101891
Main Authors Yun, Wanying, Lu, Zhenzhou, Jiang, Xian, Zhang, Leigang, He, Pengfei
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.01.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •An improved AK-MCS method is proposed to estimate the small failure probability.•An optimal β-sphere is searched without any extra model evaluations.•Kriging model is ceaselessly updated layer by layer outside the current β-sphere.•The adaptive Kriging model is finished until an optimal β-sphere is founded.•The candidate sampling pool in the proposed algorithm is remarkably reduced. The pivotal problem in reliability analysis is how to use a smaller number of model evaluations to get more accurate failure probabilities. To achieve this aim, an iterative method based on the Monte Carlo simulation and the adaptive Kriging (AK) model (abbreviated as AK-MCS) has been proposed in 2011 by Echard et al. But for small failure probability, the number of the candidate points is extremely large for convergent solution. These points need to be evaluated by the current Kriging model to select the best next sample for updating the Kriging model in AK-MCS method, and the large candidate points will make the adaptive updating process of Kriging model much more time-consuming. Therefore, to improve the applicability of the AK-MCS method for small failure probability, the adaptive radial-based importance sampling (ARBIS) is employed to reduce the number of candidate points in the AK-MCS method, and an ARBIS combined with AK model method (abbreviated as AK-ARBIS) is proposed. The idea of the ARBIS is adaptively to find the optimal β-sphere, i.e., the largest sphere of the safe domain, and then samples inside the optimal β-sphere is directly recognized as safety and do not need to call the true limit state function to judge their states (safe or failed). During the adaptive process of finding the optimal β-sphere, the Kriging model is ceaselessly updated layer after layer based on the U learning scheme in each sampling pool which only contains the samples between the current spherical rings. The updating process of Kriging model stops until the optimal β-sphere is adaptively found and the convergent condition is satisfied. By finding the optimal β-sphere, the total number of candidate samples is reduced which only includes the samples outside the optimal β-sphere. Besides, the whole candidate sampling pool is partitioned into several sub-candidate sampling pool sequentially. The proposed method not only inherits the advantage of the AK-MCS but also reduces the reliability analysis time of the AK-MCS from two aspects. One is the size reduction of the candidate sampling pool, the other is the reduction of the actual limit state function evaluations because the sampling points locating inside the adaptively searched optimal β-sphere do not need to participate in the training process. By analyzing a highly nonlinear numerical case, a non-linear oscillator system, a simplified wing box structural model, an aero-engine turbine disk and a planar ten-bar structure, the effectiveness and the accuracy of the proposed AK-ARBIS method for estimating the small failure probability are verified.
AbstractList •An improved AK-MCS method is proposed to estimate the small failure probability.•An optimal β-sphere is searched without any extra model evaluations.•Kriging model is ceaselessly updated layer by layer outside the current β-sphere.•The adaptive Kriging model is finished until an optimal β-sphere is founded.•The candidate sampling pool in the proposed algorithm is remarkably reduced. The pivotal problem in reliability analysis is how to use a smaller number of model evaluations to get more accurate failure probabilities. To achieve this aim, an iterative method based on the Monte Carlo simulation and the adaptive Kriging (AK) model (abbreviated as AK-MCS) has been proposed in 2011 by Echard et al. But for small failure probability, the number of the candidate points is extremely large for convergent solution. These points need to be evaluated by the current Kriging model to select the best next sample for updating the Kriging model in AK-MCS method, and the large candidate points will make the adaptive updating process of Kriging model much more time-consuming. Therefore, to improve the applicability of the AK-MCS method for small failure probability, the adaptive radial-based importance sampling (ARBIS) is employed to reduce the number of candidate points in the AK-MCS method, and an ARBIS combined with AK model method (abbreviated as AK-ARBIS) is proposed. The idea of the ARBIS is adaptively to find the optimal β-sphere, i.e., the largest sphere of the safe domain, and then samples inside the optimal β-sphere is directly recognized as safety and do not need to call the true limit state function to judge their states (safe or failed). During the adaptive process of finding the optimal β-sphere, the Kriging model is ceaselessly updated layer after layer based on the U learning scheme in each sampling pool which only contains the samples between the current spherical rings. The updating process of Kriging model stops until the optimal β-sphere is adaptively found and the convergent condition is satisfied. By finding the optimal β-sphere, the total number of candidate samples is reduced which only includes the samples outside the optimal β-sphere. Besides, the whole candidate sampling pool is partitioned into several sub-candidate sampling pool sequentially. The proposed method not only inherits the advantage of the AK-MCS but also reduces the reliability analysis time of the AK-MCS from two aspects. One is the size reduction of the candidate sampling pool, the other is the reduction of the actual limit state function evaluations because the sampling points locating inside the adaptively searched optimal β-sphere do not need to participate in the training process. By analyzing a highly nonlinear numerical case, a non-linear oscillator system, a simplified wing box structural model, an aero-engine turbine disk and a planar ten-bar structure, the effectiveness and the accuracy of the proposed AK-ARBIS method for estimating the small failure probability are verified.
The pivotal problem in reliability analysis is how to use a smaller number of model evaluations to get more accurate failure probabilities. To achieve this aim, an iterative method based on the Monte Carlo simulation and the adaptive Kriging (AK) model (abbreviated as AK-MCS) has been proposed in 2011 by Echard et al. But for small failure probability, the number of the candidate points is extremely large for convergent solution. These points need to be evaluated by the current Kriging model to select the best next sample for updating the Kriging model in AK-MCS method, and the large candidate points will make the adaptive updating process of Kriging model much more time-consuming. Therefore, to improve the applicability of the AK-MCS method for small failure probability, the adaptive radial-based importance sampling (ARBIS) is employed to reduce the number of candidate points in the AK-MCS method, and an ARBIS combined with AK model method (abbreviated as AK-ARBIS) is proposed. The idea of the ARBIS is adaptively to find the optimal β-sphere, i.e., the largest sphere of the safe domain, and then samples inside the optimal β-sphere is directly recognized as safety and do not need to call the true limit state function to judge their states (safe or failed). During the adaptive process of finding the optimal β-sphere, the Kriging model is ceaselessly updated layer after layer based on the U learning scheme in each sampling pool which only contains the samples between the current spherical rings. The updating process of Kriging model stops until the optimal β-sphere is adaptively found and the convergent condition is satisfied. By finding the optimal β-sphere, the total number of candidate samples is reduced which only includes the samples outside the optimal β-sphere. Besides, the whole candidate sampling pool is partitioned into several sub-candidate sampling pool sequentially. The proposed method not only inherits the advantage of the AK-MCS but also reduces the reliability analysis time of the AK-MCS from two aspects. One is the size reduction of the candidate sampling pool, the other is the reduction of the actual limit state function evaluations because the sampling points locating inside the adaptively searched optimal β-sphere do not need to participate in the training process. By analyzing a highly nonlinear numerical case, a non-linear oscillator system, a simplified wing box structural model, an aero-engine turbine disk and a planar ten-bar structure, the effectiveness and the accuracy of the proposed AK-ARBIS method for estimating the small failure probability are verified.
ArticleNumber 101891
Author Lu, Zhenzhou
Jiang, Xian
Zhang, Leigang
He, Pengfei
Yun, Wanying
Author_xml – sequence: 1
  givenname: Wanying
  surname: Yun
  fullname: Yun, Wanying
  email: wanying_yun@tongji.edu.cn
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
– sequence: 2
  givenname: Zhenzhou
  surname: Lu
  fullname: Lu, Zhenzhou
  email: zhenzhoulu@nwpu.edu.cn
  organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
– sequence: 3
  givenname: Xian
  surname: Jiang
  fullname: Jiang, Xian
  email: jiangxiannwpu@163.com
  organization: Aircraft Flight Test Technology Institute, Chinese Flight Test Establishment, Xi’an, Shaanxi 710089, China
– sequence: 4
  givenname: Leigang
  surname: Zhang
  fullname: Zhang, Leigang
  email: leigang_zhang@163.com
  organization: China Academy of Launch Vehicle Technology, Beijing 100076, China
– sequence: 5
  givenname: Pengfei
  surname: He
  fullname: He, Pengfei
  email: ph232@tongji.edu.cn
  organization: School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
BookMark eNqFkE1PAyEQhonRxFb9C4bE81ZYtgtrPFgbv2KNiR9nwrKD0myXFmiT_ntpVi9eeiLMvO87M88QHXauA4TOKRlRQsvL-ShEvw7KwCgntNoVRUUP0IAKXmWMjceHaJCEPCs4I8doGMKcEDIWuRig1eQ5m7zdPr1f4UmH7WLp3QYanKov03dcq5A-rsPxG7Bq1DLaDWCvGqvarG8mi_NRdRpwUItla7svbJzHYaHaFhtl27UHnGJrVdvWxu0pOjKqDXD2-56gz_u7j-ljNnt9eJpOZpkuSBkzQYTStCwJsJKrihWaN0BYWRMjSgPCEC70WOesYjmvTTqP5aQRuuB1Yyoq2Am66HPT7NUaQpRzt_ZdGilzRquCU8pYUl33Ku1dCB6M1DaqaF0XfdpdUiJ3kOVc_kGWO8iyh5zs5T_70tuF8tv9xpveCAnBxoKXQVtIFBvrQUfZOLsv4gc2apx8
CitedBy_id crossref_primary_10_1007_s11071_022_07861_1
crossref_primary_10_1016_j_probengmech_2023_103573
crossref_primary_10_1016_j_istruc_2023_05_010
crossref_primary_10_1016_j_probengmech_2023_103572
crossref_primary_10_1016_j_seta_2021_101792
crossref_primary_10_1061_AJRUA6_RUENG_1034
crossref_primary_10_1007_s00158_020_02622_3
crossref_primary_10_1016_j_ress_2020_106935
crossref_primary_10_1007_s00366_021_01570_w
crossref_primary_10_1007_s00366_023_01815_w
crossref_primary_10_1016_j_ress_2023_109643
crossref_primary_10_1007_s00158_021_03155_z
crossref_primary_10_1016_j_eswa_2023_121633
crossref_primary_10_1016_j_egyr_2023_04_185
crossref_primary_10_1016_j_cja_2024_08_055
crossref_primary_10_3390_machines10080613
crossref_primary_10_32604_cmes_2023_022078
crossref_primary_10_1016_j_engstruct_2019_110164
crossref_primary_10_1177_1748006X241296972
crossref_primary_10_1016_j_cma_2024_117658
crossref_primary_10_1007_s00158_022_03229_6
crossref_primary_10_1007_s00366_024_02044_5
crossref_primary_10_1016_j_asoc_2024_111808
crossref_primary_10_1016_j_probengmech_2023_103443
crossref_primary_10_1007_s00158_022_03431_6
crossref_primary_10_1016_j_cma_2023_116066
crossref_primary_10_1007_s00158_020_02678_1
crossref_primary_10_1016_j_ress_2024_110098
crossref_primary_10_1016_j_cma_2023_116146
crossref_primary_10_1016_j_ress_2024_110090
crossref_primary_10_1016_j_istruc_2024_107726
crossref_primary_10_1016_j_ress_2022_108749
crossref_primary_10_1016_j_ast_2020_106406
crossref_primary_10_1016_j_ress_2021_108247
crossref_primary_10_1016_j_ress_2022_108824
crossref_primary_10_1016_j_ress_2021_107953
crossref_primary_10_1016_j_ress_2021_108009
crossref_primary_10_1016_j_ress_2023_109610
crossref_primary_10_1016_j_ress_2023_109657
crossref_primary_10_1016_j_ress_2023_109898
crossref_primary_10_1631_jzus_A2200300
crossref_primary_10_1016_j_ress_2022_109034
crossref_primary_10_1016_j_ress_2023_109730
crossref_primary_10_1016_j_ress_2021_108287
crossref_primary_10_1177_1748006X241256166
crossref_primary_10_1016_j_compgeo_2021_104434
crossref_primary_10_1061__ASCE_EM_1943_7889_0002088
crossref_primary_10_1002_nme_6968
crossref_primary_10_1007_s00158_022_03440_5
crossref_primary_10_1016_j_cma_2021_114172
crossref_primary_10_1016_j_probengmech_2022_103351
crossref_primary_10_1080_15376494_2023_2297397
crossref_primary_10_1007_s00158_023_03672_z
crossref_primary_10_1016_j_cma_2024_116992
crossref_primary_10_1016_j_probengmech_2023_103473
crossref_primary_10_1016_j_ress_2022_108539
crossref_primary_10_1016_j_ymssp_2020_106684
crossref_primary_10_1007_s00158_023_03587_9
crossref_primary_10_1016_j_cja_2024_06_020
crossref_primary_10_1016_j_ress_2021_108214
crossref_primary_10_1016_j_ress_2020_107124
crossref_primary_10_1016_j_ress_2020_107169
crossref_primary_10_1016_j_ress_2020_107248
crossref_primary_10_1177_1748006X221108825
crossref_primary_10_1016_j_apm_2021_12_043
crossref_primary_10_1016_j_strusafe_2023_102427
crossref_primary_10_1007_s00158_023_03571_3
crossref_primary_10_1007_s11771_021_4740_8
crossref_primary_10_1016_j_probengmech_2023_103479
crossref_primary_10_1016_j_probengmech_2023_103513
crossref_primary_10_1007_s40430_022_03447_5
crossref_primary_10_1016_j_probengmech_2023_103558
crossref_primary_10_1002_qre_3403
crossref_primary_10_1016_j_ast_2024_109688
crossref_primary_10_1108_IJSI_10_2021_0111
crossref_primary_10_1007_s00158_021_02966_4
crossref_primary_10_1016_j_ress_2021_107737
crossref_primary_10_1016_j_ress_2022_108605
crossref_primary_10_1177_0954406220973233
crossref_primary_10_1016_j_strusafe_2020_102019
crossref_primary_10_1016_j_ress_2021_107778
crossref_primary_10_1007_s00158_023_03503_1
crossref_primary_10_1016_j_istruc_2021_10_090
crossref_primary_10_1016_j_ress_2023_109513
crossref_primary_10_1002_qre_3493
crossref_primary_10_1016_j_ress_2022_108761
crossref_primary_10_1115_1_4054994
crossref_primary_10_1016_j_probengmech_2023_103547
crossref_primary_10_1016_j_ress_2023_109670
crossref_primary_10_1016_j_ress_2024_110319
Cites_doi 10.1016/j.ress.2012.10.008
10.1016/j.strusafe.2015.12.003
10.1007/s00158-017-1832-z
10.1016/j.apm.2014.07.008
10.1016/0167-4730(94)00021-H
10.1016/j.ress.2015.05.007
10.1016/0167-4730(89)90003-9
10.1061/(ASCE)0733-9399(1999)125:1(79)
10.1016/j.strusafe.2015.12.005
10.1007/s00158-017-1715-3
10.1016/j.strusafe.2006.07.009
10.1016/j.strusafe.2018.01.002
10.1016/j.ress.2014.06.023
10.1016/j.strusafe.2003.10.001
10.1061/(ASCE)0733-9399(1991)117:12(2904)
10.1016/S0167-4730(02)00047-4
10.1016/S0167-4730(00)00027-8
10.1016/j.strusafe.2018.04.003
10.1016/j.ress.2013.10.010
10.1016/S0266-8920(01)00019-4
10.2514/1.34321
10.1016/0167-4730(86)90012-3
10.1016/j.strusafe.2012.06.003
10.1016/j.ress.2016.02.008
10.1016/j.strusafe.2013.03.001
10.1115/1.4026033
10.1016/j.engstruct.2017.06.038
10.1007/s00158-018-1975-6
10.1016/j.probengmech.2013.02.002
10.1016/j.strusafe.2011.01.002
10.1115/1.4033428
10.1007/s12206-015-0717-6
10.1016/j.camwa.2015.07.004
10.1016/j.jcp.2015.01.034
10.1016/j.strusafe.2007.10.002
10.1016/S0167-4730(02)00056-5
10.1016/j.probengmech.2015.06.006
10.1016/j.strusafe.2007.10.001
10.1016/j.ress.2018.03.013
10.1016/S0167-4730(00)00014-X
10.1016/j.engstruct.2019.01.020
10.1080/00401706.1989.10488474
10.1016/j.ress.2018.03.029
10.1007/s00158-018-2067-3
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV 2020
DBID AAYXX
CITATION
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.strusafe.2019.101891
DatabaseName CrossRef
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Health and Safety Science Abstracts (Full archive)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Environmental Sciences and Pollution Management
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Health & Safety Science Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3355
ExternalDocumentID 10_1016_j_strusafe_2019_101891
S0167473018303515
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7QF
7QQ
7SC
7SE
7SP
7SR
7T2
7TA
7TB
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c406t-808ac1660e367a934c7de036b0f86fe8f078c5c239327bf167320d8c47bdf9183
IEDL.DBID .~1
ISSN 0167-4730
IngestDate Wed Aug 13 08:12:37 EDT 2025
Tue Jul 01 00:59:30 EDT 2025
Thu Apr 24 23:03:03 EDT 2025
Fri Feb 23 02:33:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Small failure probability
Kriging model
Adaptive radial-based importance sampling
Candidate sampling pool
Training time
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-808ac1660e367a934c7de036b0f86fe8f078c5c239327bf167320d8c47bdf9183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2319471133
PQPubID 2045395
ParticipantIDs proquest_journals_2319471133
crossref_citationtrail_10_1016_j_strusafe_2019_101891
crossref_primary_10_1016_j_strusafe_2019_101891
elsevier_sciencedirect_doi_10_1016_j_strusafe_2019_101891
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Structural safety
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Hasofer, Lind (b0005) 1974; 100
Xu, Cheng (b0035) 2003; 25
Der Kiureghian, Stefano (b0015) 1991; 117
Zheng, Wang, Zong, L.Q., Wang (b0140) 2017; 148
Fauriat, Gayton (b0205) 2014; 123
Zhao, Ono (b0010) 1999; 21
Zhao, Ono (b0020) 1999; 125
Lophaven, Nielsen, Sondergaard, DACE (b0225) 2003
Zhao (b0040) 2004; 26
Melchers (b0060) 1989; 6
Hu, Mahadevan (b0145) 2016; 138
Wang, Chen, Soares (b0200) 2016; 152
Lu, Song, Yue, Wang (b0105) 2008; 30
Pradlwarter, Schueller, Koustourelakis, Charmpis (b0095) 2007; 29
Yun, Lu, Zhou, Jiang (b0210) 2019; 59
Huang, Chen, Zhu (b0175) 2016; 59
Kersaudy, Sudret, Varsier, Picon, Wiart (b0240) 2015; 286
Lelievre, Beaurepaire, Mattrand, Gayton (b0150) 2018; 73
Yun, Lu, Jiang (b0075) 2018; 57
Tichy (b0025) 1994; 16
Zhang (b0045) 2017; 56
Papaioannou, Betz, Zwirglmaier, Straub (b0090) 2015; 41
Harbitz (b0065) 1986; 3
Au, Beck (b0085) 2001; 16
Ling CY, Lu ZZ, Feng KX, Zhang XB. A coupled subset simulation and active learning kriging reliability analysis method for rare failure events, Struct Multidiscip Optim. doi:10/1007/s00158-019-02326-3.
Lv, Lu, Wang (b0130) 2015; 70
Wang, Wang (b0135) 2014; 136
Wei, Liu, Tang (b0215) 2018; 175
Au, Beck (b0070) 2002; 25
Sacks, Schiller, Welch (b0235) 1989; 31
Jinsuo, Ellingwood (b0110) 2000; 22
Zhang, Lu, Wang (b0125) 2015; 39
Bichon, Eldred, Swiler, Mahadevan, McFarland (b0115) 2008; 46
Grooteman (b0080) 2008; 30
Yun, Lu, Zhang, Jiang (b0100) 2018; 74
Tong, Sun, Zhao, Wang, Wang (b0190) 2015; 29
Rasmussen, Williams (b0245) 2006
Cadini, Santos, Zio (b0170) 2014; 131
Yun, Lu, Feng, Jiang (b0220) 2019; 183
Depina, Le, Fenton, Eiksund (b0185) 2016; 60
Zhang, Pandey (b0050) 2013; 43
Rashki, Miri, Moghaddam (b0230) 2012; 39
Wang, Wang (b0195) 2015; 142
Zhao, Ono (b0030) 2001; 23
Yun, Lu, Jiang (b0055) 2019; 187
Echard, Gayton, Lemaire (b0120) 2011; 33
Echard, Gayton, Lemaire, Relun (b0155) 2013; 111
Dubourg, Sudret, Deheeger (b0165) 2013; 33
Yun, Lu, Jiang (b0160) 2018; 58
Grooteman (10.1016/j.strusafe.2019.101891_b0080) 2008; 30
Yun (10.1016/j.strusafe.2019.101891_b0210) 2019; 59
Tong (10.1016/j.strusafe.2019.101891_b0190) 2015; 29
Harbitz (10.1016/j.strusafe.2019.101891_b0065) 1986; 3
Lv (10.1016/j.strusafe.2019.101891_b0130) 2015; 70
Rasmussen (10.1016/j.strusafe.2019.101891_b0245) 2006
Fauriat (10.1016/j.strusafe.2019.101891_b0205) 2014; 123
Zhang (10.1016/j.strusafe.2019.101891_b0045) 2017; 56
Wang (10.1016/j.strusafe.2019.101891_b0200) 2016; 152
Bichon (10.1016/j.strusafe.2019.101891_b0115) 2008; 46
Yun (10.1016/j.strusafe.2019.101891_b0160) 2018; 58
Sacks (10.1016/j.strusafe.2019.101891_b0235) 1989; 31
Huang (10.1016/j.strusafe.2019.101891_b0175) 2016; 59
Wang (10.1016/j.strusafe.2019.101891_b0195) 2015; 142
Kersaudy (10.1016/j.strusafe.2019.101891_b0240) 2015; 286
Zhang (10.1016/j.strusafe.2019.101891_b0125) 2015; 39
Yun (10.1016/j.strusafe.2019.101891_b0075) 2018; 57
Wang (10.1016/j.strusafe.2019.101891_b0135) 2014; 136
Hu (10.1016/j.strusafe.2019.101891_b0145) 2016; 138
Cadini (10.1016/j.strusafe.2019.101891_b0170) 2014; 131
Hasofer (10.1016/j.strusafe.2019.101891_b0005) 1974; 100
Yun (10.1016/j.strusafe.2019.101891_b0055) 2019; 187
Dubourg (10.1016/j.strusafe.2019.101891_b0165) 2013; 33
Au (10.1016/j.strusafe.2019.101891_b0070) 2002; 25
10.1016/j.strusafe.2019.101891_b0180
Pradlwarter (10.1016/j.strusafe.2019.101891_b0095) 2007; 29
Echard (10.1016/j.strusafe.2019.101891_b0120) 2011; 33
Lophaven (10.1016/j.strusafe.2019.101891_b0225) 2003
Zhang (10.1016/j.strusafe.2019.101891_b0050) 2013; 43
Xu (10.1016/j.strusafe.2019.101891_b0035) 2003; 25
Au (10.1016/j.strusafe.2019.101891_b0085) 2001; 16
Yun (10.1016/j.strusafe.2019.101891_b0220) 2019; 183
Tichy (10.1016/j.strusafe.2019.101891_b0025) 1994; 16
Lu (10.1016/j.strusafe.2019.101891_b0105) 2008; 30
Zhao (10.1016/j.strusafe.2019.101891_b0030) 2001; 23
Zhao (10.1016/j.strusafe.2019.101891_b0040) 2004; 26
Jinsuo (10.1016/j.strusafe.2019.101891_b0110) 2000; 22
Depina (10.1016/j.strusafe.2019.101891_b0185) 2016; 60
Zhao (10.1016/j.strusafe.2019.101891_b0020) 1999; 125
Papaioannou (10.1016/j.strusafe.2019.101891_b0090) 2015; 41
Der Kiureghian (10.1016/j.strusafe.2019.101891_b0015) 1991; 117
Melchers (10.1016/j.strusafe.2019.101891_b0060) 1989; 6
Yun (10.1016/j.strusafe.2019.101891_b0100) 2018; 74
Zheng (10.1016/j.strusafe.2019.101891_b0140) 2017; 148
Rashki (10.1016/j.strusafe.2019.101891_b0230) 2012; 39
Wei (10.1016/j.strusafe.2019.101891_b0215) 2018; 175
Zhao (10.1016/j.strusafe.2019.101891_b0010) 1999; 21
Echard (10.1016/j.strusafe.2019.101891_b0155) 2013; 111
Lelievre (10.1016/j.strusafe.2019.101891_b0150) 2018; 73
References_xml – volume: 31
  start-page: 41
  year: 1989
  end-page: 47
  ident: b0235
  article-title: Design for computer experiment
  publication-title: Technometrics
– volume: 58
  start-page: 1383
  year: 2018
  end-page: 1393
  ident: b0160
  article-title: An efficient reliability analysis method combining adaptive Kriging and modified importance sampling for small failure probability
  publication-title: Struct Multidiscip Optim
– volume: 286
  start-page: 103
  year: 2015
  end-page: 117
  ident: b0240
  article-title: A new surrogate modeling technique combining Kriging and polynomial chaos expansions-Application to uncertainty analysis in computational dosimetry
  publication-title: J Comput Phys
– volume: 100
  start-page: 111
  year: 1974
  end-page: 121
  ident: b0005
  article-title: An exact and invariant first order reliability format
  publication-title: ASCE J Eng Mech
– volume: 39
  start-page: 781
  year: 2015
  end-page: 793
  ident: b0125
  article-title: Efficient structural reliability analysis method based on advanced Kriging model
  publication-title: Appl Math Model
– volume: 29
  start-page: 3183
  year: 2015
  end-page: 3193
  ident: b0190
  article-title: A hybrid algorithm for reliability analysis combining kriging and subset simulation importance sampling
  publication-title: J Mech Sci Technol
– volume: 138
  start-page: 061406
  year: 2016
  end-page: 61411
  ident: b0145
  article-title: A single-loop Kriging surrogate modeling for time-dependent reliability analysis
  publication-title: ASME J Mech Des
– reference: Ling CY, Lu ZZ, Feng KX, Zhang XB. A coupled subset simulation and active learning kriging reliability analysis method for rare failure events, Struct Multidiscip Optim. doi:10/1007/s00158-019-02326-3.
– volume: 123
  start-page: 137
  year: 2014
  end-page: 144
  ident: b0205
  article-title: AK-SYS: An adaptation of the AK-MCS method for system reliability
  publication-title: Reliab Eng Syst Saf
– volume: 25
  start-page: 139
  year: 2002
  end-page: 163
  ident: b0070
  article-title: Importance sampling in high dimensions
  publication-title: Struct Saf
– volume: 60
  start-page: 1
  year: 2016
  end-page: 15
  ident: b0185
  article-title: Reliability analysis with Metamodel Line Sampling
  publication-title: Struct Saf
– volume: 183
  start-page: 340
  year: 2019
  end-page: 350
  ident: b0220
  article-title: A novel step-wise AK-MCS method for efficient estimation of fuzzy failure probability under probability inputs and fuzzy state assumption
  publication-title: Eng Struct
– volume: 25
  start-page: 193
  year: 2003
  end-page: 199
  ident: b0035
  article-title: Discussion on: moment methods for structural reliability
  publication-title: Struct Saf
– volume: 30
  start-page: 533
  year: 2008
  end-page: 542
  ident: b0080
  article-title: Adaptive radial-based importance sampling method for structural reliability
  publication-title: Struct Saf
– volume: 136
  year: 2014
  ident: b0135
  article-title: A maximum confidence enhancement based sequential sampling scheme for simulation-based design
  publication-title: ASME J Mech Des
– volume: 117
  start-page: 2904
  year: 1991
  end-page: 2923
  ident: b0015
  article-title: Efficient algorithm for second-order reliability analysis
  publication-title: ASCE J Eng Mech
– volume: 46
  start-page: 2459
  year: 2008
  end-page: 2568
  ident: b0115
  article-title: Efficient global reliability analysis for nonlinear implicit performance function
  publication-title: AIAA J
– volume: 33
  start-page: 47
  year: 2013
  end-page: 57
  ident: b0165
  article-title: Metamodel-based importance sampling for structural reliability analysis
  publication-title: Probab Eng Mech
– volume: 73
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0150
  article-title: AK-MCSi: A Kriging-based method to deal with small failure probabilities and time-consuming models
  publication-title: Struct Saf
– volume: 152
  start-page: 166
  year: 2016
  end-page: 175
  ident: b0200
  article-title: Time-variant reliability assessment through equivalent stochastic process transformation
  publication-title: Reliab Eng Syst Saf
– volume: 70
  start-page: 1182
  year: 2015
  end-page: 1197
  ident: b0130
  article-title: A new learning function for Kriging and its applications to solve reliability problems in engineering
  publication-title: Comput Math Appl
– volume: 131
  start-page: 109
  year: 2014
  end-page: 117
  ident: b0170
  article-title: An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability
  publication-title: Reliab Eng Syst Saf
– volume: 142
  start-page: 346
  year: 2015
  end-page: 1256
  ident: b0195
  article-title: A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis
  publication-title: Reliab Eng Syst Saf
– volume: 33
  start-page: 145
  year: 2011
  end-page: 154
  ident: b0120
  article-title: AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation
  publication-title: Struct Saf
– volume: 39
  start-page: 22
  year: 2012
  end-page: 29
  ident: b0230
  article-title: A new efficient simulation method to approximate the probability of failure and most probable point
  publication-title: Struct Saf
– volume: 56
  start-page: 1225
  year: 2017
  end-page: 1232
  ident: b0045
  article-title: An improved high-moment method for reliability analysis
  publication-title: Struct Multidiscip Optim
– volume: 16
  start-page: 263
  year: 2001
  end-page: 277
  ident: b0085
  article-title: Estimation of small failure probabilities in high dimensions by subset simulation
  publication-title: Probab Eng Mech
– volume: 111
  start-page: 232
  year: 2013
  end-page: 240
  ident: b0155
  article-title: A combined importance sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models
  publication-title: Reliab Eng Syst Saf
– volume: 59
  start-page: 263
  year: 2019
  end-page: 278
  ident: b0210
  article-title: AK-SYSi: an improved adaptive Kriging model for system reliability analysis with multiple failure modes by a refined U learning function
  publication-title: Struct Multidiscip Optim
– volume: 6
  start-page: 3
  year: 1989
  end-page: 10
  ident: b0060
  article-title: Importance sampling in structural system
  publication-title: Struct Saf
– year: 2006
  ident: b0245
  article-title: Gaussian Processer for Machine Learning
– volume: 23
  start-page: 47
  year: 2001
  end-page: 75
  ident: b0030
  article-title: Moment method for structural reliability
  publication-title: Struct Saf
– volume: 22
  start-page: 233
  year: 2000
  end-page: 249
  ident: b0110
  article-title: Directional methods for structural reliability analysis
  publication-title: Struct Saf
– volume: 30
  start-page: 517
  year: 2008
  end-page: 532
  ident: b0105
  article-title: Reliability sensitivity method by line sampling
  publication-title: Struct Saf
– volume: 148
  start-page: 185
  year: 2017
  end-page: 194
  ident: b0140
  article-title: A new active learning method based on the learning function
  publication-title: Eng Struct
– volume: 16
  start-page: 189
  year: 1994
  end-page: 200
  ident: b0025
  article-title: First-order third-moment reliability method
  publication-title: Struct Saf
– volume: 59
  start-page: 86
  year: 2016
  end-page: 95
  ident: b0175
  article-title: Assessing small failure probabilities by AK-SS: an active learning method combining Kriging and Subset simulation
  publication-title: Struct Saf
– volume: 175
  start-page: 183
  year: 2018
  end-page: 195
  ident: b0215
  article-title: Reliability and reliability-based importance analysis of structural systems using multiple response Gaussian process model
  publication-title: Reliab Eng Syst Saf
– volume: 21
  start-page: 95
  year: 1999
  end-page: 112
  ident: b0010
  article-title: A general procedure for first/second-order reliability method (FORM/SORM)
  publication-title: Eng Struct
– year: 2003
  ident: b0225
  article-title: a Matlab Kriging
  publication-title: Toolbox
– volume: 3
  start-page: 109
  year: 1986
  end-page: 115
  ident: b0065
  article-title: An efficient sampling method for probability of failure calculation
  publication-title: Struct Saf
– volume: 26
  start-page: 343
  year: 2004
  end-page: 347
  ident: b0040
  article-title: Ono T, On the problems of the fourth moment method
  publication-title: Struct Saf
– volume: 125
  start-page: 79
  year: 1999
  end-page: 85
  ident: b0020
  article-title: New approximations for SORM: part 1
  publication-title: ASCE J Eng Mech
– volume: 43
  start-page: 28
  year: 2013
  end-page: 40
  ident: b0050
  article-title: Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method
  publication-title: Struct Saf
– volume: 41
  start-page: 89
  year: 2015
  end-page: 103
  ident: b0090
  article-title: MCMC algorithms for Subset Simulation
  publication-title: Probab Eng Mech
– volume: 29
  start-page: 208
  year: 2007
  end-page: 221
  ident: b0095
  article-title: Application of line sampling simulation method to reliability benchmark problems
  publication-title: Struct Saf
– volume: 74
  start-page: 49
  year: 2018
  end-page: 57
  ident: b0100
  article-title: An efficient global reliability sensitivity analysis algorithm based on classification of model output and subset simulation
  publication-title: Struct Saf
– volume: 57
  start-page: 1625
  year: 2018
  end-page: 1641
  ident: b0075
  article-title: A modified importance sampling method for structural reliability and its global reliability sensitivity analysis
  publication-title: Struct Multidiscip Optim
– volume: 187
  start-page: 174
  year: 2019
  end-page: 182
  ident: b0055
  article-title: An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy
  publication-title: Reliab Eng Syst Saf
– volume: 111
  start-page: 232
  year: 2013
  ident: 10.1016/j.strusafe.2019.101891_b0155
  article-title: A combined importance sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2012.10.008
– volume: 59
  start-page: 86
  year: 2016
  ident: 10.1016/j.strusafe.2019.101891_b0175
  article-title: Assessing small failure probabilities by AK-SS: an active learning method combining Kriging and Subset simulation
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2015.12.003
– volume: 57
  start-page: 1625
  year: 2018
  ident: 10.1016/j.strusafe.2019.101891_b0075
  article-title: A modified importance sampling method for structural reliability and its global reliability sensitivity analysis
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-017-1832-z
– volume: 39
  start-page: 781
  year: 2015
  ident: 10.1016/j.strusafe.2019.101891_b0125
  article-title: Efficient structural reliability analysis method based on advanced Kriging model
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2014.07.008
– volume: 16
  start-page: 189
  issue: 3
  year: 1994
  ident: 10.1016/j.strusafe.2019.101891_b0025
  article-title: First-order third-moment reliability method
  publication-title: Struct Saf
  doi: 10.1016/0167-4730(94)00021-H
– volume: 142
  start-page: 346
  year: 2015
  ident: 10.1016/j.strusafe.2019.101891_b0195
  article-title: A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2015.05.007
– volume: 100
  start-page: 111
  issue: 1
  year: 1974
  ident: 10.1016/j.strusafe.2019.101891_b0005
  article-title: An exact and invariant first order reliability format
  publication-title: ASCE J Eng Mech
– year: 2003
  ident: 10.1016/j.strusafe.2019.101891_b0225
  article-title: a Matlab Kriging
  publication-title: Toolbox
– volume: 21
  start-page: 95
  issue: 2
  year: 1999
  ident: 10.1016/j.strusafe.2019.101891_b0010
  article-title: A general procedure for first/second-order reliability method (FORM/SORM)
  publication-title: Eng Struct
– volume: 6
  start-page: 3
  year: 1989
  ident: 10.1016/j.strusafe.2019.101891_b0060
  article-title: Importance sampling in structural system
  publication-title: Struct Saf
  doi: 10.1016/0167-4730(89)90003-9
– ident: 10.1016/j.strusafe.2019.101891_b0180
– volume: 125
  start-page: 79
  issue: 1
  year: 1999
  ident: 10.1016/j.strusafe.2019.101891_b0020
  article-title: New approximations for SORM: part 1
  publication-title: ASCE J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(1999)125:1(79)
– volume: 60
  start-page: 1
  year: 2016
  ident: 10.1016/j.strusafe.2019.101891_b0185
  article-title: Reliability analysis with Metamodel Line Sampling
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2015.12.005
– volume: 56
  start-page: 1225
  year: 2017
  ident: 10.1016/j.strusafe.2019.101891_b0045
  article-title: An improved high-moment method for reliability analysis
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-017-1715-3
– year: 2006
  ident: 10.1016/j.strusafe.2019.101891_b0245
– volume: 29
  start-page: 208
  issue: 3
  year: 2007
  ident: 10.1016/j.strusafe.2019.101891_b0095
  article-title: Application of line sampling simulation method to reliability benchmark problems
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2006.07.009
– volume: 73
  start-page: 1
  year: 2018
  ident: 10.1016/j.strusafe.2019.101891_b0150
  article-title: AK-MCSi: A Kriging-based method to deal with small failure probabilities and time-consuming models
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2018.01.002
– volume: 131
  start-page: 109
  year: 2014
  ident: 10.1016/j.strusafe.2019.101891_b0170
  article-title: An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.06.023
– volume: 26
  start-page: 343
  issue: 3
  year: 2004
  ident: 10.1016/j.strusafe.2019.101891_b0040
  article-title: Ono T, On the problems of the fourth moment method
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2003.10.001
– volume: 117
  start-page: 2904
  issue: 2
  year: 1991
  ident: 10.1016/j.strusafe.2019.101891_b0015
  article-title: Efficient algorithm for second-order reliability analysis
  publication-title: ASCE J Eng Mech
  doi: 10.1061/(ASCE)0733-9399(1991)117:12(2904)
– volume: 25
  start-page: 139
  year: 2002
  ident: 10.1016/j.strusafe.2019.101891_b0070
  article-title: Importance sampling in high dimensions
  publication-title: Struct Saf
  doi: 10.1016/S0167-4730(02)00047-4
– volume: 23
  start-page: 47
  issue: 1
  year: 2001
  ident: 10.1016/j.strusafe.2019.101891_b0030
  article-title: Moment method for structural reliability
  publication-title: Struct Saf
  doi: 10.1016/S0167-4730(00)00027-8
– volume: 74
  start-page: 49
  year: 2018
  ident: 10.1016/j.strusafe.2019.101891_b0100
  article-title: An efficient global reliability sensitivity analysis algorithm based on classification of model output and subset simulation
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2018.04.003
– volume: 123
  start-page: 137
  year: 2014
  ident: 10.1016/j.strusafe.2019.101891_b0205
  article-title: AK-SYS: An adaptation of the AK-MCS method for system reliability
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2013.10.010
– volume: 16
  start-page: 263
  issue: 4
  year: 2001
  ident: 10.1016/j.strusafe.2019.101891_b0085
  article-title: Estimation of small failure probabilities in high dimensions by subset simulation
  publication-title: Probab Eng Mech
  doi: 10.1016/S0266-8920(01)00019-4
– volume: 46
  start-page: 2459
  year: 2008
  ident: 10.1016/j.strusafe.2019.101891_b0115
  article-title: Efficient global reliability analysis for nonlinear implicit performance function
  publication-title: AIAA J
  doi: 10.2514/1.34321
– volume: 3
  start-page: 109
  year: 1986
  ident: 10.1016/j.strusafe.2019.101891_b0065
  article-title: An efficient sampling method for probability of failure calculation
  publication-title: Struct Saf
  doi: 10.1016/0167-4730(86)90012-3
– volume: 39
  start-page: 22
  year: 2012
  ident: 10.1016/j.strusafe.2019.101891_b0230
  article-title: A new efficient simulation method to approximate the probability of failure and most probable point
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2012.06.003
– volume: 152
  start-page: 166
  year: 2016
  ident: 10.1016/j.strusafe.2019.101891_b0200
  article-title: Time-variant reliability assessment through equivalent stochastic process transformation
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.02.008
– volume: 43
  start-page: 28
  issue: 9
  year: 2013
  ident: 10.1016/j.strusafe.2019.101891_b0050
  article-title: Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2013.03.001
– volume: 136
  issue: 2
  year: 2014
  ident: 10.1016/j.strusafe.2019.101891_b0135
  article-title: A maximum confidence enhancement based sequential sampling scheme for simulation-based design
  publication-title: ASME J Mech Des
  doi: 10.1115/1.4026033
– volume: 148
  start-page: 185
  year: 2017
  ident: 10.1016/j.strusafe.2019.101891_b0140
  article-title: A new active learning method based on the learning function U of the AK-MCS reliability analysis method
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2017.06.038
– volume: 58
  start-page: 1383
  year: 2018
  ident: 10.1016/j.strusafe.2019.101891_b0160
  article-title: An efficient reliability analysis method combining adaptive Kriging and modified importance sampling for small failure probability
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-018-1975-6
– volume: 33
  start-page: 47
  year: 2013
  ident: 10.1016/j.strusafe.2019.101891_b0165
  article-title: Metamodel-based importance sampling for structural reliability analysis
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2013.02.002
– volume: 33
  start-page: 145
  year: 2011
  ident: 10.1016/j.strusafe.2019.101891_b0120
  article-title: AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2011.01.002
– volume: 138
  start-page: 061406
  year: 2016
  ident: 10.1016/j.strusafe.2019.101891_b0145
  article-title: A single-loop Kriging surrogate modeling for time-dependent reliability analysis
  publication-title: ASME J Mech Des
  doi: 10.1115/1.4033428
– volume: 29
  start-page: 3183
  issue: 8
  year: 2015
  ident: 10.1016/j.strusafe.2019.101891_b0190
  article-title: A hybrid algorithm for reliability analysis combining kriging and subset simulation importance sampling
  publication-title: J Mech Sci Technol
  doi: 10.1007/s12206-015-0717-6
– volume: 70
  start-page: 1182
  year: 2015
  ident: 10.1016/j.strusafe.2019.101891_b0130
  article-title: A new learning function for Kriging and its applications to solve reliability problems in engineering
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2015.07.004
– volume: 286
  start-page: 103
  year: 2015
  ident: 10.1016/j.strusafe.2019.101891_b0240
  article-title: A new surrogate modeling technique combining Kriging and polynomial chaos expansions-Application to uncertainty analysis in computational dosimetry
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2015.01.034
– volume: 30
  start-page: 533
  year: 2008
  ident: 10.1016/j.strusafe.2019.101891_b0080
  article-title: Adaptive radial-based importance sampling method for structural reliability
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2007.10.002
– volume: 25
  start-page: 193
  year: 2003
  ident: 10.1016/j.strusafe.2019.101891_b0035
  article-title: Discussion on: moment methods for structural reliability
  publication-title: Struct Saf
  doi: 10.1016/S0167-4730(02)00056-5
– volume: 41
  start-page: 89
  year: 2015
  ident: 10.1016/j.strusafe.2019.101891_b0090
  article-title: MCMC algorithms for Subset Simulation
  publication-title: Probab Eng Mech
  doi: 10.1016/j.probengmech.2015.06.006
– volume: 30
  start-page: 517
  issue: 2
  year: 2008
  ident: 10.1016/j.strusafe.2019.101891_b0105
  article-title: Reliability sensitivity method by line sampling
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2007.10.001
– volume: 175
  start-page: 183
  year: 2018
  ident: 10.1016/j.strusafe.2019.101891_b0215
  article-title: Reliability and reliability-based importance analysis of structural systems using multiple response Gaussian process model
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.03.013
– volume: 22
  start-page: 233
  issue: 3
  year: 2000
  ident: 10.1016/j.strusafe.2019.101891_b0110
  article-title: Directional methods for structural reliability analysis
  publication-title: Struct Saf
  doi: 10.1016/S0167-4730(00)00014-X
– volume: 183
  start-page: 340
  year: 2019
  ident: 10.1016/j.strusafe.2019.101891_b0220
  article-title: A novel step-wise AK-MCS method for efficient estimation of fuzzy failure probability under probability inputs and fuzzy state assumption
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2019.01.020
– volume: 31
  start-page: 41
  issue: 1
  year: 1989
  ident: 10.1016/j.strusafe.2019.101891_b0235
  article-title: Design for computer experiment
  publication-title: Technometrics
  doi: 10.1080/00401706.1989.10488474
– volume: 187
  start-page: 174
  year: 2019
  ident: 10.1016/j.strusafe.2019.101891_b0055
  article-title: An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.03.029
– volume: 59
  start-page: 263
  year: 2019
  ident: 10.1016/j.strusafe.2019.101891_b0210
  article-title: AK-SYSi: an improved adaptive Kriging model for system reliability analysis with multiple failure modes by a refined U learning function
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-018-2067-3
SSID ssj0005828
Score 2.542254
Snippet •An improved AK-MCS method is proposed to estimate the small failure probability.•An optimal β-sphere is searched without any extra model evaluations.•Kriging...
The pivotal problem in reliability analysis is how to use a smaller number of model evaluations to get more accurate failure probabilities. To achieve this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101891
SubjectTerms Adaptive radial-based importance sampling
Adaptive sampling
Candidate sampling pool
Computer simulation
Convergence
Failure analysis
Importance sampling
Iterative methods
Kriging interpolation
Kriging model
Monte Carlo simulation
Nonlinear analysis
Probability
Reliability analysis
Reliability aspects
Sampling
Size reduction
Small failure probability
Training time
Turbine disks
Turbines
Wing boxes
Title AK-ARBIS: An improved AK-MCS based on the adaptive radial-based importance sampling for small failure probability
URI https://dx.doi.org/10.1016/j.strusafe.2019.101891
https://www.proquest.com/docview/2319471133
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWBAPEV5yQNr-kicxGYLFajlJURBYrOc2Eap0lAoCwu_nTsnQQUJMTBFcuwoOl_uOzufvyPk2EAEZD6SwkJjPcZF5HEbxl4KaJYqk_JAO4LsTTR8YBeP4eMSGTRnYZBWWcf-Kqa7aF23dGtrdmd53h07Aj06KA_wdxgeNGcsRi_vfCzQPLirr1rpe0PvhVPCkw5qtM6VRbnMvsBGLvq_AdSPUO3w53ydrNWJI02qd9sgS6bcJKsLcoJb5CW59JK709H4hCYlzd12gdEUWq8HY4p4pelzSSHlo0qrGQY6-oraBIVX3cynLhsHG9C5Qqp5-UQhqaXzqSoKalWOHHaKNWgqde_3bfJwfnY_GHp1SQUvA-R-AzziKutHUc8EUaxEwLJYGwCxtGd5ZA23kDFkYYa6aH6cWjBa4Pc0z1icaivA0jukVT6XZpfQAGc3jTQmjIxlSigRcRUzpW3oW7_fJmFjR5nVeuNY9qKQDbFsIhv7S7S_rOzfJt2vcbNKcePPEaKZJvnNdyTAwp9jD5p5lfXXO5eQ8woAbVi-7_3j0ftkxcfFuduvOSAt6GIOIYN5S4-cix6R5WRwd3WL19Hl8OYTm03xUQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BewAOiFUsBXzgGtpmtbmFCtRS6IGCxM1yYhulKqFQLvw9M1nYJMSBq5OJomdn3th5fgY4NpgBfZdEYYGxjs9F6HAbRE6CbJYok3BPFwLZUdi_8y_vg_sF6NV7YUhWWeX-MqcX2bpqaVdotmdZ1h4XAnoaoNyj32HBIjTJnSpoQDMeDPujT6UHL45YLS2-MeDLRuHJCdm0zpUlx8yuoEYuur9x1I9sXVDQxRqsVrUji8vXW4cFk2_AyhdHwU14jodOfHM2GJ-yOGdZsWJgNMPW696YEWVp9pQzrPqY0mpGuY69kD3B1CkvZo9FQY4wsLkitXn-wLCuZfNHNZ0yqzKSsTM6hqY0-H7bgruL89te36lOVXBSJO9XpCSu0m4YdowXRkp4fhppgzyWdCwPreEWi4Y0SMkazY0Si6B5bkfz1I8SbQWCvQ2N_Ck3O8A86uAk1FQz-n6qhBIhV5GvtA1c63Z3IahxlGllOU4nX0xlrS2byBp_SfjLEv9daH_EzUrTjT8jRN1N8tvwkcgMf8a26n6V1Qc8l1j2CuRtnMHv_ePRR7DUv72-kleD0XAfll2aqxfLNy1o4O3mAAua1-SwGrDvUVXybQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AK-ARBIS%3A+An+improved+AK-MCS+based+on+the+adaptive+radial-based+importance+sampling+for+small+failure+probability&rft.jtitle=Structural+safety&rft.au=Yun%2C+Wanying&rft.au=Lu%2C+Zhenzhou&rft.au=Jiang%2C+Xian&rft.au=Zhang%2C+Leigang&rft.date=2020-01-01&rft.issn=0167-4730&rft.volume=82&rft.spage=101891&rft_id=info:doi/10.1016%2Fj.strusafe.2019.101891&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_strusafe_2019_101891
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4730&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4730&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4730&client=summon