AK-ARBIS: An improved AK-MCS based on the adaptive radial-based importance sampling for small failure probability
•An improved AK-MCS method is proposed to estimate the small failure probability.•An optimal β-sphere is searched without any extra model evaluations.•Kriging model is ceaselessly updated layer by layer outside the current β-sphere.•The adaptive Kriging model is finished until an optimal β-sphere is...
Saved in:
Published in | Structural safety Vol. 82; p. 101891 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.01.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •An improved AK-MCS method is proposed to estimate the small failure probability.•An optimal β-sphere is searched without any extra model evaluations.•Kriging model is ceaselessly updated layer by layer outside the current β-sphere.•The adaptive Kriging model is finished until an optimal β-sphere is founded.•The candidate sampling pool in the proposed algorithm is remarkably reduced.
The pivotal problem in reliability analysis is how to use a smaller number of model evaluations to get more accurate failure probabilities. To achieve this aim, an iterative method based on the Monte Carlo simulation and the adaptive Kriging (AK) model (abbreviated as AK-MCS) has been proposed in 2011 by Echard et al. But for small failure probability, the number of the candidate points is extremely large for convergent solution. These points need to be evaluated by the current Kriging model to select the best next sample for updating the Kriging model in AK-MCS method, and the large candidate points will make the adaptive updating process of Kriging model much more time-consuming. Therefore, to improve the applicability of the AK-MCS method for small failure probability, the adaptive radial-based importance sampling (ARBIS) is employed to reduce the number of candidate points in the AK-MCS method, and an ARBIS combined with AK model method (abbreviated as AK-ARBIS) is proposed. The idea of the ARBIS is adaptively to find the optimal β-sphere, i.e., the largest sphere of the safe domain, and then samples inside the optimal β-sphere is directly recognized as safety and do not need to call the true limit state function to judge their states (safe or failed). During the adaptive process of finding the optimal β-sphere, the Kriging model is ceaselessly updated layer after layer based on the U learning scheme in each sampling pool which only contains the samples between the current spherical rings. The updating process of Kriging model stops until the optimal β-sphere is adaptively found and the convergent condition is satisfied. By finding the optimal β-sphere, the total number of candidate samples is reduced which only includes the samples outside the optimal β-sphere. Besides, the whole candidate sampling pool is partitioned into several sub-candidate sampling pool sequentially. The proposed method not only inherits the advantage of the AK-MCS but also reduces the reliability analysis time of the AK-MCS from two aspects. One is the size reduction of the candidate sampling pool, the other is the reduction of the actual limit state function evaluations because the sampling points locating inside the adaptively searched optimal β-sphere do not need to participate in the training process. By analyzing a highly nonlinear numerical case, a non-linear oscillator system, a simplified wing box structural model, an aero-engine turbine disk and a planar ten-bar structure, the effectiveness and the accuracy of the proposed AK-ARBIS method for estimating the small failure probability are verified. |
---|---|
AbstractList | •An improved AK-MCS method is proposed to estimate the small failure probability.•An optimal β-sphere is searched without any extra model evaluations.•Kriging model is ceaselessly updated layer by layer outside the current β-sphere.•The adaptive Kriging model is finished until an optimal β-sphere is founded.•The candidate sampling pool in the proposed algorithm is remarkably reduced.
The pivotal problem in reliability analysis is how to use a smaller number of model evaluations to get more accurate failure probabilities. To achieve this aim, an iterative method based on the Monte Carlo simulation and the adaptive Kriging (AK) model (abbreviated as AK-MCS) has been proposed in 2011 by Echard et al. But for small failure probability, the number of the candidate points is extremely large for convergent solution. These points need to be evaluated by the current Kriging model to select the best next sample for updating the Kriging model in AK-MCS method, and the large candidate points will make the adaptive updating process of Kriging model much more time-consuming. Therefore, to improve the applicability of the AK-MCS method for small failure probability, the adaptive radial-based importance sampling (ARBIS) is employed to reduce the number of candidate points in the AK-MCS method, and an ARBIS combined with AK model method (abbreviated as AK-ARBIS) is proposed. The idea of the ARBIS is adaptively to find the optimal β-sphere, i.e., the largest sphere of the safe domain, and then samples inside the optimal β-sphere is directly recognized as safety and do not need to call the true limit state function to judge their states (safe or failed). During the adaptive process of finding the optimal β-sphere, the Kriging model is ceaselessly updated layer after layer based on the U learning scheme in each sampling pool which only contains the samples between the current spherical rings. The updating process of Kriging model stops until the optimal β-sphere is adaptively found and the convergent condition is satisfied. By finding the optimal β-sphere, the total number of candidate samples is reduced which only includes the samples outside the optimal β-sphere. Besides, the whole candidate sampling pool is partitioned into several sub-candidate sampling pool sequentially. The proposed method not only inherits the advantage of the AK-MCS but also reduces the reliability analysis time of the AK-MCS from two aspects. One is the size reduction of the candidate sampling pool, the other is the reduction of the actual limit state function evaluations because the sampling points locating inside the adaptively searched optimal β-sphere do not need to participate in the training process. By analyzing a highly nonlinear numerical case, a non-linear oscillator system, a simplified wing box structural model, an aero-engine turbine disk and a planar ten-bar structure, the effectiveness and the accuracy of the proposed AK-ARBIS method for estimating the small failure probability are verified. The pivotal problem in reliability analysis is how to use a smaller number of model evaluations to get more accurate failure probabilities. To achieve this aim, an iterative method based on the Monte Carlo simulation and the adaptive Kriging (AK) model (abbreviated as AK-MCS) has been proposed in 2011 by Echard et al. But for small failure probability, the number of the candidate points is extremely large for convergent solution. These points need to be evaluated by the current Kriging model to select the best next sample for updating the Kriging model in AK-MCS method, and the large candidate points will make the adaptive updating process of Kriging model much more time-consuming. Therefore, to improve the applicability of the AK-MCS method for small failure probability, the adaptive radial-based importance sampling (ARBIS) is employed to reduce the number of candidate points in the AK-MCS method, and an ARBIS combined with AK model method (abbreviated as AK-ARBIS) is proposed. The idea of the ARBIS is adaptively to find the optimal β-sphere, i.e., the largest sphere of the safe domain, and then samples inside the optimal β-sphere is directly recognized as safety and do not need to call the true limit state function to judge their states (safe or failed). During the adaptive process of finding the optimal β-sphere, the Kriging model is ceaselessly updated layer after layer based on the U learning scheme in each sampling pool which only contains the samples between the current spherical rings. The updating process of Kriging model stops until the optimal β-sphere is adaptively found and the convergent condition is satisfied. By finding the optimal β-sphere, the total number of candidate samples is reduced which only includes the samples outside the optimal β-sphere. Besides, the whole candidate sampling pool is partitioned into several sub-candidate sampling pool sequentially. The proposed method not only inherits the advantage of the AK-MCS but also reduces the reliability analysis time of the AK-MCS from two aspects. One is the size reduction of the candidate sampling pool, the other is the reduction of the actual limit state function evaluations because the sampling points locating inside the adaptively searched optimal β-sphere do not need to participate in the training process. By analyzing a highly nonlinear numerical case, a non-linear oscillator system, a simplified wing box structural model, an aero-engine turbine disk and a planar ten-bar structure, the effectiveness and the accuracy of the proposed AK-ARBIS method for estimating the small failure probability are verified. |
ArticleNumber | 101891 |
Author | Lu, Zhenzhou Jiang, Xian Zhang, Leigang He, Pengfei Yun, Wanying |
Author_xml | – sequence: 1 givenname: Wanying surname: Yun fullname: Yun, Wanying email: wanying_yun@tongji.edu.cn organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China – sequence: 2 givenname: Zhenzhou surname: Lu fullname: Lu, Zhenzhou email: zhenzhoulu@nwpu.edu.cn organization: School of Aeronautics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China – sequence: 3 givenname: Xian surname: Jiang fullname: Jiang, Xian email: jiangxiannwpu@163.com organization: Aircraft Flight Test Technology Institute, Chinese Flight Test Establishment, Xi’an, Shaanxi 710089, China – sequence: 4 givenname: Leigang surname: Zhang fullname: Zhang, Leigang email: leigang_zhang@163.com organization: China Academy of Launch Vehicle Technology, Beijing 100076, China – sequence: 5 givenname: Pengfei surname: He fullname: He, Pengfei email: ph232@tongji.edu.cn organization: School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China |
BookMark | eNqFkE1PAyEQhonRxFb9C4bE81ZYtgtrPFgbv2KNiR9nwrKD0myXFmiT_ntpVi9eeiLMvO87M88QHXauA4TOKRlRQsvL-ShEvw7KwCgntNoVRUUP0IAKXmWMjceHaJCEPCs4I8doGMKcEDIWuRig1eQ5m7zdPr1f4UmH7WLp3QYanKov03dcq5A-rsPxG7Bq1DLaDWCvGqvarG8mi_NRdRpwUItla7svbJzHYaHaFhtl27UHnGJrVdvWxu0pOjKqDXD2-56gz_u7j-ljNnt9eJpOZpkuSBkzQYTStCwJsJKrihWaN0BYWRMjSgPCEC70WOesYjmvTTqP5aQRuuB1Yyoq2Am66HPT7NUaQpRzt_ZdGilzRquCU8pYUl33Ku1dCB6M1DaqaF0XfdpdUiJ3kOVc_kGWO8iyh5zs5T_70tuF8tv9xpveCAnBxoKXQVtIFBvrQUfZOLsv4gc2apx8 |
CitedBy_id | crossref_primary_10_1007_s11071_022_07861_1 crossref_primary_10_1016_j_probengmech_2023_103573 crossref_primary_10_1016_j_istruc_2023_05_010 crossref_primary_10_1016_j_probengmech_2023_103572 crossref_primary_10_1016_j_seta_2021_101792 crossref_primary_10_1061_AJRUA6_RUENG_1034 crossref_primary_10_1007_s00158_020_02622_3 crossref_primary_10_1016_j_ress_2020_106935 crossref_primary_10_1007_s00366_021_01570_w crossref_primary_10_1007_s00366_023_01815_w crossref_primary_10_1016_j_ress_2023_109643 crossref_primary_10_1007_s00158_021_03155_z crossref_primary_10_1016_j_eswa_2023_121633 crossref_primary_10_1016_j_egyr_2023_04_185 crossref_primary_10_1016_j_cja_2024_08_055 crossref_primary_10_3390_machines10080613 crossref_primary_10_32604_cmes_2023_022078 crossref_primary_10_1016_j_engstruct_2019_110164 crossref_primary_10_1177_1748006X241296972 crossref_primary_10_1016_j_cma_2024_117658 crossref_primary_10_1007_s00158_022_03229_6 crossref_primary_10_1007_s00366_024_02044_5 crossref_primary_10_1016_j_asoc_2024_111808 crossref_primary_10_1016_j_probengmech_2023_103443 crossref_primary_10_1007_s00158_022_03431_6 crossref_primary_10_1016_j_cma_2023_116066 crossref_primary_10_1007_s00158_020_02678_1 crossref_primary_10_1016_j_ress_2024_110098 crossref_primary_10_1016_j_cma_2023_116146 crossref_primary_10_1016_j_ress_2024_110090 crossref_primary_10_1016_j_istruc_2024_107726 crossref_primary_10_1016_j_ress_2022_108749 crossref_primary_10_1016_j_ast_2020_106406 crossref_primary_10_1016_j_ress_2021_108247 crossref_primary_10_1016_j_ress_2022_108824 crossref_primary_10_1016_j_ress_2021_107953 crossref_primary_10_1016_j_ress_2021_108009 crossref_primary_10_1016_j_ress_2023_109610 crossref_primary_10_1016_j_ress_2023_109657 crossref_primary_10_1016_j_ress_2023_109898 crossref_primary_10_1631_jzus_A2200300 crossref_primary_10_1016_j_ress_2022_109034 crossref_primary_10_1016_j_ress_2023_109730 crossref_primary_10_1016_j_ress_2021_108287 crossref_primary_10_1177_1748006X241256166 crossref_primary_10_1016_j_compgeo_2021_104434 crossref_primary_10_1061__ASCE_EM_1943_7889_0002088 crossref_primary_10_1002_nme_6968 crossref_primary_10_1007_s00158_022_03440_5 crossref_primary_10_1016_j_cma_2021_114172 crossref_primary_10_1016_j_probengmech_2022_103351 crossref_primary_10_1080_15376494_2023_2297397 crossref_primary_10_1007_s00158_023_03672_z crossref_primary_10_1016_j_cma_2024_116992 crossref_primary_10_1016_j_probengmech_2023_103473 crossref_primary_10_1016_j_ress_2022_108539 crossref_primary_10_1016_j_ymssp_2020_106684 crossref_primary_10_1007_s00158_023_03587_9 crossref_primary_10_1016_j_cja_2024_06_020 crossref_primary_10_1016_j_ress_2021_108214 crossref_primary_10_1016_j_ress_2020_107124 crossref_primary_10_1016_j_ress_2020_107169 crossref_primary_10_1016_j_ress_2020_107248 crossref_primary_10_1177_1748006X221108825 crossref_primary_10_1016_j_apm_2021_12_043 crossref_primary_10_1016_j_strusafe_2023_102427 crossref_primary_10_1007_s00158_023_03571_3 crossref_primary_10_1007_s11771_021_4740_8 crossref_primary_10_1016_j_probengmech_2023_103479 crossref_primary_10_1016_j_probengmech_2023_103513 crossref_primary_10_1007_s40430_022_03447_5 crossref_primary_10_1016_j_probengmech_2023_103558 crossref_primary_10_1002_qre_3403 crossref_primary_10_1016_j_ast_2024_109688 crossref_primary_10_1108_IJSI_10_2021_0111 crossref_primary_10_1007_s00158_021_02966_4 crossref_primary_10_1016_j_ress_2021_107737 crossref_primary_10_1016_j_ress_2022_108605 crossref_primary_10_1177_0954406220973233 crossref_primary_10_1016_j_strusafe_2020_102019 crossref_primary_10_1016_j_ress_2021_107778 crossref_primary_10_1007_s00158_023_03503_1 crossref_primary_10_1016_j_istruc_2021_10_090 crossref_primary_10_1016_j_ress_2023_109513 crossref_primary_10_1002_qre_3493 crossref_primary_10_1016_j_ress_2022_108761 crossref_primary_10_1115_1_4054994 crossref_primary_10_1016_j_probengmech_2023_103547 crossref_primary_10_1016_j_ress_2023_109670 crossref_primary_10_1016_j_ress_2024_110319 |
Cites_doi | 10.1016/j.ress.2012.10.008 10.1016/j.strusafe.2015.12.003 10.1007/s00158-017-1832-z 10.1016/j.apm.2014.07.008 10.1016/0167-4730(94)00021-H 10.1016/j.ress.2015.05.007 10.1016/0167-4730(89)90003-9 10.1061/(ASCE)0733-9399(1999)125:1(79) 10.1016/j.strusafe.2015.12.005 10.1007/s00158-017-1715-3 10.1016/j.strusafe.2006.07.009 10.1016/j.strusafe.2018.01.002 10.1016/j.ress.2014.06.023 10.1016/j.strusafe.2003.10.001 10.1061/(ASCE)0733-9399(1991)117:12(2904) 10.1016/S0167-4730(02)00047-4 10.1016/S0167-4730(00)00027-8 10.1016/j.strusafe.2018.04.003 10.1016/j.ress.2013.10.010 10.1016/S0266-8920(01)00019-4 10.2514/1.34321 10.1016/0167-4730(86)90012-3 10.1016/j.strusafe.2012.06.003 10.1016/j.ress.2016.02.008 10.1016/j.strusafe.2013.03.001 10.1115/1.4026033 10.1016/j.engstruct.2017.06.038 10.1007/s00158-018-1975-6 10.1016/j.probengmech.2013.02.002 10.1016/j.strusafe.2011.01.002 10.1115/1.4033428 10.1007/s12206-015-0717-6 10.1016/j.camwa.2015.07.004 10.1016/j.jcp.2015.01.034 10.1016/j.strusafe.2007.10.002 10.1016/S0167-4730(02)00056-5 10.1016/j.probengmech.2015.06.006 10.1016/j.strusafe.2007.10.001 10.1016/j.ress.2018.03.013 10.1016/S0167-4730(00)00014-X 10.1016/j.engstruct.2019.01.020 10.1080/00401706.1989.10488474 10.1016/j.ress.2018.03.029 10.1007/s00158-018-2067-3 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright Elsevier BV 2020 |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV 2020 |
DBID | AAYXX CITATION 7QF 7QQ 7SC 7SE 7SP 7SR 7T2 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.strusafe.2019.101891 |
DatabaseName | CrossRef Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Health and Safety Science Abstracts (Full archive) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Environmental Sciences and Pollution Management Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Health & Safety Science Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3355 |
ExternalDocumentID | 10_1016_j_strusafe_2019_101891 S0167473018303515 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACPRK ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QF 7QQ 7SC 7SE 7SP 7SR 7T2 7TA 7TB 7U5 8BQ 8FD C1K EFKBS F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c406t-808ac1660e367a934c7de036b0f86fe8f078c5c239327bf167320d8c47bdf9183 |
IEDL.DBID | .~1 |
ISSN | 0167-4730 |
IngestDate | Wed Aug 13 08:12:37 EDT 2025 Tue Jul 01 00:59:30 EDT 2025 Thu Apr 24 23:03:03 EDT 2025 Fri Feb 23 02:33:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Small failure probability Kriging model Adaptive radial-based importance sampling Candidate sampling pool Training time |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-808ac1660e367a934c7de036b0f86fe8f078c5c239327bf167320d8c47bdf9183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2319471133 |
PQPubID | 2045395 |
ParticipantIDs | proquest_journals_2319471133 crossref_citationtrail_10_1016_j_strusafe_2019_101891 crossref_primary_10_1016_j_strusafe_2019_101891 elsevier_sciencedirect_doi_10_1016_j_strusafe_2019_101891 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Structural safety |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Hasofer, Lind (b0005) 1974; 100 Xu, Cheng (b0035) 2003; 25 Der Kiureghian, Stefano (b0015) 1991; 117 Zheng, Wang, Zong, L.Q., Wang (b0140) 2017; 148 Fauriat, Gayton (b0205) 2014; 123 Zhao, Ono (b0010) 1999; 21 Zhao, Ono (b0020) 1999; 125 Lophaven, Nielsen, Sondergaard, DACE (b0225) 2003 Zhao (b0040) 2004; 26 Melchers (b0060) 1989; 6 Hu, Mahadevan (b0145) 2016; 138 Wang, Chen, Soares (b0200) 2016; 152 Lu, Song, Yue, Wang (b0105) 2008; 30 Pradlwarter, Schueller, Koustourelakis, Charmpis (b0095) 2007; 29 Yun, Lu, Zhou, Jiang (b0210) 2019; 59 Huang, Chen, Zhu (b0175) 2016; 59 Kersaudy, Sudret, Varsier, Picon, Wiart (b0240) 2015; 286 Lelievre, Beaurepaire, Mattrand, Gayton (b0150) 2018; 73 Yun, Lu, Jiang (b0075) 2018; 57 Tichy (b0025) 1994; 16 Zhang (b0045) 2017; 56 Papaioannou, Betz, Zwirglmaier, Straub (b0090) 2015; 41 Harbitz (b0065) 1986; 3 Au, Beck (b0085) 2001; 16 Ling CY, Lu ZZ, Feng KX, Zhang XB. A coupled subset simulation and active learning kriging reliability analysis method for rare failure events, Struct Multidiscip Optim. doi:10/1007/s00158-019-02326-3. Lv, Lu, Wang (b0130) 2015; 70 Wang, Wang (b0135) 2014; 136 Wei, Liu, Tang (b0215) 2018; 175 Au, Beck (b0070) 2002; 25 Sacks, Schiller, Welch (b0235) 1989; 31 Jinsuo, Ellingwood (b0110) 2000; 22 Zhang, Lu, Wang (b0125) 2015; 39 Bichon, Eldred, Swiler, Mahadevan, McFarland (b0115) 2008; 46 Grooteman (b0080) 2008; 30 Yun, Lu, Zhang, Jiang (b0100) 2018; 74 Tong, Sun, Zhao, Wang, Wang (b0190) 2015; 29 Rasmussen, Williams (b0245) 2006 Cadini, Santos, Zio (b0170) 2014; 131 Yun, Lu, Feng, Jiang (b0220) 2019; 183 Depina, Le, Fenton, Eiksund (b0185) 2016; 60 Zhang, Pandey (b0050) 2013; 43 Rashki, Miri, Moghaddam (b0230) 2012; 39 Wang, Wang (b0195) 2015; 142 Zhao, Ono (b0030) 2001; 23 Yun, Lu, Jiang (b0055) 2019; 187 Echard, Gayton, Lemaire (b0120) 2011; 33 Echard, Gayton, Lemaire, Relun (b0155) 2013; 111 Dubourg, Sudret, Deheeger (b0165) 2013; 33 Yun, Lu, Jiang (b0160) 2018; 58 Grooteman (10.1016/j.strusafe.2019.101891_b0080) 2008; 30 Yun (10.1016/j.strusafe.2019.101891_b0210) 2019; 59 Tong (10.1016/j.strusafe.2019.101891_b0190) 2015; 29 Harbitz (10.1016/j.strusafe.2019.101891_b0065) 1986; 3 Lv (10.1016/j.strusafe.2019.101891_b0130) 2015; 70 Rasmussen (10.1016/j.strusafe.2019.101891_b0245) 2006 Fauriat (10.1016/j.strusafe.2019.101891_b0205) 2014; 123 Zhang (10.1016/j.strusafe.2019.101891_b0045) 2017; 56 Wang (10.1016/j.strusafe.2019.101891_b0200) 2016; 152 Bichon (10.1016/j.strusafe.2019.101891_b0115) 2008; 46 Yun (10.1016/j.strusafe.2019.101891_b0160) 2018; 58 Sacks (10.1016/j.strusafe.2019.101891_b0235) 1989; 31 Huang (10.1016/j.strusafe.2019.101891_b0175) 2016; 59 Wang (10.1016/j.strusafe.2019.101891_b0195) 2015; 142 Kersaudy (10.1016/j.strusafe.2019.101891_b0240) 2015; 286 Zhang (10.1016/j.strusafe.2019.101891_b0125) 2015; 39 Yun (10.1016/j.strusafe.2019.101891_b0075) 2018; 57 Wang (10.1016/j.strusafe.2019.101891_b0135) 2014; 136 Hu (10.1016/j.strusafe.2019.101891_b0145) 2016; 138 Cadini (10.1016/j.strusafe.2019.101891_b0170) 2014; 131 Hasofer (10.1016/j.strusafe.2019.101891_b0005) 1974; 100 Yun (10.1016/j.strusafe.2019.101891_b0055) 2019; 187 Dubourg (10.1016/j.strusafe.2019.101891_b0165) 2013; 33 Au (10.1016/j.strusafe.2019.101891_b0070) 2002; 25 10.1016/j.strusafe.2019.101891_b0180 Pradlwarter (10.1016/j.strusafe.2019.101891_b0095) 2007; 29 Echard (10.1016/j.strusafe.2019.101891_b0120) 2011; 33 Lophaven (10.1016/j.strusafe.2019.101891_b0225) 2003 Zhang (10.1016/j.strusafe.2019.101891_b0050) 2013; 43 Xu (10.1016/j.strusafe.2019.101891_b0035) 2003; 25 Au (10.1016/j.strusafe.2019.101891_b0085) 2001; 16 Yun (10.1016/j.strusafe.2019.101891_b0220) 2019; 183 Tichy (10.1016/j.strusafe.2019.101891_b0025) 1994; 16 Lu (10.1016/j.strusafe.2019.101891_b0105) 2008; 30 Zhao (10.1016/j.strusafe.2019.101891_b0030) 2001; 23 Zhao (10.1016/j.strusafe.2019.101891_b0040) 2004; 26 Jinsuo (10.1016/j.strusafe.2019.101891_b0110) 2000; 22 Depina (10.1016/j.strusafe.2019.101891_b0185) 2016; 60 Zhao (10.1016/j.strusafe.2019.101891_b0020) 1999; 125 Papaioannou (10.1016/j.strusafe.2019.101891_b0090) 2015; 41 Der Kiureghian (10.1016/j.strusafe.2019.101891_b0015) 1991; 117 Melchers (10.1016/j.strusafe.2019.101891_b0060) 1989; 6 Yun (10.1016/j.strusafe.2019.101891_b0100) 2018; 74 Zheng (10.1016/j.strusafe.2019.101891_b0140) 2017; 148 Rashki (10.1016/j.strusafe.2019.101891_b0230) 2012; 39 Wei (10.1016/j.strusafe.2019.101891_b0215) 2018; 175 Zhao (10.1016/j.strusafe.2019.101891_b0010) 1999; 21 Echard (10.1016/j.strusafe.2019.101891_b0155) 2013; 111 Lelievre (10.1016/j.strusafe.2019.101891_b0150) 2018; 73 |
References_xml | – volume: 31 start-page: 41 year: 1989 end-page: 47 ident: b0235 article-title: Design for computer experiment publication-title: Technometrics – volume: 58 start-page: 1383 year: 2018 end-page: 1393 ident: b0160 article-title: An efficient reliability analysis method combining adaptive Kriging and modified importance sampling for small failure probability publication-title: Struct Multidiscip Optim – volume: 286 start-page: 103 year: 2015 end-page: 117 ident: b0240 article-title: A new surrogate modeling technique combining Kriging and polynomial chaos expansions-Application to uncertainty analysis in computational dosimetry publication-title: J Comput Phys – volume: 100 start-page: 111 year: 1974 end-page: 121 ident: b0005 article-title: An exact and invariant first order reliability format publication-title: ASCE J Eng Mech – volume: 39 start-page: 781 year: 2015 end-page: 793 ident: b0125 article-title: Efficient structural reliability analysis method based on advanced Kriging model publication-title: Appl Math Model – volume: 29 start-page: 3183 year: 2015 end-page: 3193 ident: b0190 article-title: A hybrid algorithm for reliability analysis combining kriging and subset simulation importance sampling publication-title: J Mech Sci Technol – volume: 138 start-page: 061406 year: 2016 end-page: 61411 ident: b0145 article-title: A single-loop Kriging surrogate modeling for time-dependent reliability analysis publication-title: ASME J Mech Des – reference: Ling CY, Lu ZZ, Feng KX, Zhang XB. A coupled subset simulation and active learning kriging reliability analysis method for rare failure events, Struct Multidiscip Optim. doi:10/1007/s00158-019-02326-3. – volume: 123 start-page: 137 year: 2014 end-page: 144 ident: b0205 article-title: AK-SYS: An adaptation of the AK-MCS method for system reliability publication-title: Reliab Eng Syst Saf – volume: 25 start-page: 139 year: 2002 end-page: 163 ident: b0070 article-title: Importance sampling in high dimensions publication-title: Struct Saf – volume: 60 start-page: 1 year: 2016 end-page: 15 ident: b0185 article-title: Reliability analysis with Metamodel Line Sampling publication-title: Struct Saf – volume: 183 start-page: 340 year: 2019 end-page: 350 ident: b0220 article-title: A novel step-wise AK-MCS method for efficient estimation of fuzzy failure probability under probability inputs and fuzzy state assumption publication-title: Eng Struct – volume: 25 start-page: 193 year: 2003 end-page: 199 ident: b0035 article-title: Discussion on: moment methods for structural reliability publication-title: Struct Saf – volume: 30 start-page: 533 year: 2008 end-page: 542 ident: b0080 article-title: Adaptive radial-based importance sampling method for structural reliability publication-title: Struct Saf – volume: 136 year: 2014 ident: b0135 article-title: A maximum confidence enhancement based sequential sampling scheme for simulation-based design publication-title: ASME J Mech Des – volume: 117 start-page: 2904 year: 1991 end-page: 2923 ident: b0015 article-title: Efficient algorithm for second-order reliability analysis publication-title: ASCE J Eng Mech – volume: 46 start-page: 2459 year: 2008 end-page: 2568 ident: b0115 article-title: Efficient global reliability analysis for nonlinear implicit performance function publication-title: AIAA J – volume: 33 start-page: 47 year: 2013 end-page: 57 ident: b0165 article-title: Metamodel-based importance sampling for structural reliability analysis publication-title: Probab Eng Mech – volume: 73 start-page: 1 year: 2018 end-page: 11 ident: b0150 article-title: AK-MCSi: A Kriging-based method to deal with small failure probabilities and time-consuming models publication-title: Struct Saf – volume: 152 start-page: 166 year: 2016 end-page: 175 ident: b0200 article-title: Time-variant reliability assessment through equivalent stochastic process transformation publication-title: Reliab Eng Syst Saf – volume: 70 start-page: 1182 year: 2015 end-page: 1197 ident: b0130 article-title: A new learning function for Kriging and its applications to solve reliability problems in engineering publication-title: Comput Math Appl – volume: 131 start-page: 109 year: 2014 end-page: 117 ident: b0170 article-title: An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability publication-title: Reliab Eng Syst Saf – volume: 142 start-page: 346 year: 2015 end-page: 1256 ident: b0195 article-title: A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis publication-title: Reliab Eng Syst Saf – volume: 33 start-page: 145 year: 2011 end-page: 154 ident: b0120 article-title: AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation publication-title: Struct Saf – volume: 39 start-page: 22 year: 2012 end-page: 29 ident: b0230 article-title: A new efficient simulation method to approximate the probability of failure and most probable point publication-title: Struct Saf – volume: 56 start-page: 1225 year: 2017 end-page: 1232 ident: b0045 article-title: An improved high-moment method for reliability analysis publication-title: Struct Multidiscip Optim – volume: 16 start-page: 263 year: 2001 end-page: 277 ident: b0085 article-title: Estimation of small failure probabilities in high dimensions by subset simulation publication-title: Probab Eng Mech – volume: 111 start-page: 232 year: 2013 end-page: 240 ident: b0155 article-title: A combined importance sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models publication-title: Reliab Eng Syst Saf – volume: 59 start-page: 263 year: 2019 end-page: 278 ident: b0210 article-title: AK-SYSi: an improved adaptive Kriging model for system reliability analysis with multiple failure modes by a refined U learning function publication-title: Struct Multidiscip Optim – volume: 6 start-page: 3 year: 1989 end-page: 10 ident: b0060 article-title: Importance sampling in structural system publication-title: Struct Saf – year: 2006 ident: b0245 article-title: Gaussian Processer for Machine Learning – volume: 23 start-page: 47 year: 2001 end-page: 75 ident: b0030 article-title: Moment method for structural reliability publication-title: Struct Saf – volume: 22 start-page: 233 year: 2000 end-page: 249 ident: b0110 article-title: Directional methods for structural reliability analysis publication-title: Struct Saf – volume: 30 start-page: 517 year: 2008 end-page: 532 ident: b0105 article-title: Reliability sensitivity method by line sampling publication-title: Struct Saf – volume: 148 start-page: 185 year: 2017 end-page: 194 ident: b0140 article-title: A new active learning method based on the learning function publication-title: Eng Struct – volume: 16 start-page: 189 year: 1994 end-page: 200 ident: b0025 article-title: First-order third-moment reliability method publication-title: Struct Saf – volume: 59 start-page: 86 year: 2016 end-page: 95 ident: b0175 article-title: Assessing small failure probabilities by AK-SS: an active learning method combining Kriging and Subset simulation publication-title: Struct Saf – volume: 175 start-page: 183 year: 2018 end-page: 195 ident: b0215 article-title: Reliability and reliability-based importance analysis of structural systems using multiple response Gaussian process model publication-title: Reliab Eng Syst Saf – volume: 21 start-page: 95 year: 1999 end-page: 112 ident: b0010 article-title: A general procedure for first/second-order reliability method (FORM/SORM) publication-title: Eng Struct – year: 2003 ident: b0225 article-title: a Matlab Kriging publication-title: Toolbox – volume: 3 start-page: 109 year: 1986 end-page: 115 ident: b0065 article-title: An efficient sampling method for probability of failure calculation publication-title: Struct Saf – volume: 26 start-page: 343 year: 2004 end-page: 347 ident: b0040 article-title: Ono T, On the problems of the fourth moment method publication-title: Struct Saf – volume: 125 start-page: 79 year: 1999 end-page: 85 ident: b0020 article-title: New approximations for SORM: part 1 publication-title: ASCE J Eng Mech – volume: 43 start-page: 28 year: 2013 end-page: 40 ident: b0050 article-title: Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method publication-title: Struct Saf – volume: 41 start-page: 89 year: 2015 end-page: 103 ident: b0090 article-title: MCMC algorithms for Subset Simulation publication-title: Probab Eng Mech – volume: 29 start-page: 208 year: 2007 end-page: 221 ident: b0095 article-title: Application of line sampling simulation method to reliability benchmark problems publication-title: Struct Saf – volume: 74 start-page: 49 year: 2018 end-page: 57 ident: b0100 article-title: An efficient global reliability sensitivity analysis algorithm based on classification of model output and subset simulation publication-title: Struct Saf – volume: 57 start-page: 1625 year: 2018 end-page: 1641 ident: b0075 article-title: A modified importance sampling method for structural reliability and its global reliability sensitivity analysis publication-title: Struct Multidiscip Optim – volume: 187 start-page: 174 year: 2019 end-page: 182 ident: b0055 article-title: An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy publication-title: Reliab Eng Syst Saf – volume: 111 start-page: 232 year: 2013 ident: 10.1016/j.strusafe.2019.101891_b0155 article-title: A combined importance sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2012.10.008 – volume: 59 start-page: 86 year: 2016 ident: 10.1016/j.strusafe.2019.101891_b0175 article-title: Assessing small failure probabilities by AK-SS: an active learning method combining Kriging and Subset simulation publication-title: Struct Saf doi: 10.1016/j.strusafe.2015.12.003 – volume: 57 start-page: 1625 year: 2018 ident: 10.1016/j.strusafe.2019.101891_b0075 article-title: A modified importance sampling method for structural reliability and its global reliability sensitivity analysis publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-017-1832-z – volume: 39 start-page: 781 year: 2015 ident: 10.1016/j.strusafe.2019.101891_b0125 article-title: Efficient structural reliability analysis method based on advanced Kriging model publication-title: Appl Math Model doi: 10.1016/j.apm.2014.07.008 – volume: 16 start-page: 189 issue: 3 year: 1994 ident: 10.1016/j.strusafe.2019.101891_b0025 article-title: First-order third-moment reliability method publication-title: Struct Saf doi: 10.1016/0167-4730(94)00021-H – volume: 142 start-page: 346 year: 2015 ident: 10.1016/j.strusafe.2019.101891_b0195 article-title: A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.05.007 – volume: 100 start-page: 111 issue: 1 year: 1974 ident: 10.1016/j.strusafe.2019.101891_b0005 article-title: An exact and invariant first order reliability format publication-title: ASCE J Eng Mech – year: 2003 ident: 10.1016/j.strusafe.2019.101891_b0225 article-title: a Matlab Kriging publication-title: Toolbox – volume: 21 start-page: 95 issue: 2 year: 1999 ident: 10.1016/j.strusafe.2019.101891_b0010 article-title: A general procedure for first/second-order reliability method (FORM/SORM) publication-title: Eng Struct – volume: 6 start-page: 3 year: 1989 ident: 10.1016/j.strusafe.2019.101891_b0060 article-title: Importance sampling in structural system publication-title: Struct Saf doi: 10.1016/0167-4730(89)90003-9 – ident: 10.1016/j.strusafe.2019.101891_b0180 – volume: 125 start-page: 79 issue: 1 year: 1999 ident: 10.1016/j.strusafe.2019.101891_b0020 article-title: New approximations for SORM: part 1 publication-title: ASCE J Eng Mech doi: 10.1061/(ASCE)0733-9399(1999)125:1(79) – volume: 60 start-page: 1 year: 2016 ident: 10.1016/j.strusafe.2019.101891_b0185 article-title: Reliability analysis with Metamodel Line Sampling publication-title: Struct Saf doi: 10.1016/j.strusafe.2015.12.005 – volume: 56 start-page: 1225 year: 2017 ident: 10.1016/j.strusafe.2019.101891_b0045 article-title: An improved high-moment method for reliability analysis publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-017-1715-3 – year: 2006 ident: 10.1016/j.strusafe.2019.101891_b0245 – volume: 29 start-page: 208 issue: 3 year: 2007 ident: 10.1016/j.strusafe.2019.101891_b0095 article-title: Application of line sampling simulation method to reliability benchmark problems publication-title: Struct Saf doi: 10.1016/j.strusafe.2006.07.009 – volume: 73 start-page: 1 year: 2018 ident: 10.1016/j.strusafe.2019.101891_b0150 article-title: AK-MCSi: A Kriging-based method to deal with small failure probabilities and time-consuming models publication-title: Struct Saf doi: 10.1016/j.strusafe.2018.01.002 – volume: 131 start-page: 109 year: 2014 ident: 10.1016/j.strusafe.2019.101891_b0170 article-title: An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.06.023 – volume: 26 start-page: 343 issue: 3 year: 2004 ident: 10.1016/j.strusafe.2019.101891_b0040 article-title: Ono T, On the problems of the fourth moment method publication-title: Struct Saf doi: 10.1016/j.strusafe.2003.10.001 – volume: 117 start-page: 2904 issue: 2 year: 1991 ident: 10.1016/j.strusafe.2019.101891_b0015 article-title: Efficient algorithm for second-order reliability analysis publication-title: ASCE J Eng Mech doi: 10.1061/(ASCE)0733-9399(1991)117:12(2904) – volume: 25 start-page: 139 year: 2002 ident: 10.1016/j.strusafe.2019.101891_b0070 article-title: Importance sampling in high dimensions publication-title: Struct Saf doi: 10.1016/S0167-4730(02)00047-4 – volume: 23 start-page: 47 issue: 1 year: 2001 ident: 10.1016/j.strusafe.2019.101891_b0030 article-title: Moment method for structural reliability publication-title: Struct Saf doi: 10.1016/S0167-4730(00)00027-8 – volume: 74 start-page: 49 year: 2018 ident: 10.1016/j.strusafe.2019.101891_b0100 article-title: An efficient global reliability sensitivity analysis algorithm based on classification of model output and subset simulation publication-title: Struct Saf doi: 10.1016/j.strusafe.2018.04.003 – volume: 123 start-page: 137 year: 2014 ident: 10.1016/j.strusafe.2019.101891_b0205 article-title: AK-SYS: An adaptation of the AK-MCS method for system reliability publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2013.10.010 – volume: 16 start-page: 263 issue: 4 year: 2001 ident: 10.1016/j.strusafe.2019.101891_b0085 article-title: Estimation of small failure probabilities in high dimensions by subset simulation publication-title: Probab Eng Mech doi: 10.1016/S0266-8920(01)00019-4 – volume: 46 start-page: 2459 year: 2008 ident: 10.1016/j.strusafe.2019.101891_b0115 article-title: Efficient global reliability analysis for nonlinear implicit performance function publication-title: AIAA J doi: 10.2514/1.34321 – volume: 3 start-page: 109 year: 1986 ident: 10.1016/j.strusafe.2019.101891_b0065 article-title: An efficient sampling method for probability of failure calculation publication-title: Struct Saf doi: 10.1016/0167-4730(86)90012-3 – volume: 39 start-page: 22 year: 2012 ident: 10.1016/j.strusafe.2019.101891_b0230 article-title: A new efficient simulation method to approximate the probability of failure and most probable point publication-title: Struct Saf doi: 10.1016/j.strusafe.2012.06.003 – volume: 152 start-page: 166 year: 2016 ident: 10.1016/j.strusafe.2019.101891_b0200 article-title: Time-variant reliability assessment through equivalent stochastic process transformation publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.02.008 – volume: 43 start-page: 28 issue: 9 year: 2013 ident: 10.1016/j.strusafe.2019.101891_b0050 article-title: Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method publication-title: Struct Saf doi: 10.1016/j.strusafe.2013.03.001 – volume: 136 issue: 2 year: 2014 ident: 10.1016/j.strusafe.2019.101891_b0135 article-title: A maximum confidence enhancement based sequential sampling scheme for simulation-based design publication-title: ASME J Mech Des doi: 10.1115/1.4026033 – volume: 148 start-page: 185 year: 2017 ident: 10.1016/j.strusafe.2019.101891_b0140 article-title: A new active learning method based on the learning function U of the AK-MCS reliability analysis method publication-title: Eng Struct doi: 10.1016/j.engstruct.2017.06.038 – volume: 58 start-page: 1383 year: 2018 ident: 10.1016/j.strusafe.2019.101891_b0160 article-title: An efficient reliability analysis method combining adaptive Kriging and modified importance sampling for small failure probability publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-018-1975-6 – volume: 33 start-page: 47 year: 2013 ident: 10.1016/j.strusafe.2019.101891_b0165 article-title: Metamodel-based importance sampling for structural reliability analysis publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2013.02.002 – volume: 33 start-page: 145 year: 2011 ident: 10.1016/j.strusafe.2019.101891_b0120 article-title: AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation publication-title: Struct Saf doi: 10.1016/j.strusafe.2011.01.002 – volume: 138 start-page: 061406 year: 2016 ident: 10.1016/j.strusafe.2019.101891_b0145 article-title: A single-loop Kriging surrogate modeling for time-dependent reliability analysis publication-title: ASME J Mech Des doi: 10.1115/1.4033428 – volume: 29 start-page: 3183 issue: 8 year: 2015 ident: 10.1016/j.strusafe.2019.101891_b0190 article-title: A hybrid algorithm for reliability analysis combining kriging and subset simulation importance sampling publication-title: J Mech Sci Technol doi: 10.1007/s12206-015-0717-6 – volume: 70 start-page: 1182 year: 2015 ident: 10.1016/j.strusafe.2019.101891_b0130 article-title: A new learning function for Kriging and its applications to solve reliability problems in engineering publication-title: Comput Math Appl doi: 10.1016/j.camwa.2015.07.004 – volume: 286 start-page: 103 year: 2015 ident: 10.1016/j.strusafe.2019.101891_b0240 article-title: A new surrogate modeling technique combining Kriging and polynomial chaos expansions-Application to uncertainty analysis in computational dosimetry publication-title: J Comput Phys doi: 10.1016/j.jcp.2015.01.034 – volume: 30 start-page: 533 year: 2008 ident: 10.1016/j.strusafe.2019.101891_b0080 article-title: Adaptive radial-based importance sampling method for structural reliability publication-title: Struct Saf doi: 10.1016/j.strusafe.2007.10.002 – volume: 25 start-page: 193 year: 2003 ident: 10.1016/j.strusafe.2019.101891_b0035 article-title: Discussion on: moment methods for structural reliability publication-title: Struct Saf doi: 10.1016/S0167-4730(02)00056-5 – volume: 41 start-page: 89 year: 2015 ident: 10.1016/j.strusafe.2019.101891_b0090 article-title: MCMC algorithms for Subset Simulation publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2015.06.006 – volume: 30 start-page: 517 issue: 2 year: 2008 ident: 10.1016/j.strusafe.2019.101891_b0105 article-title: Reliability sensitivity method by line sampling publication-title: Struct Saf doi: 10.1016/j.strusafe.2007.10.001 – volume: 175 start-page: 183 year: 2018 ident: 10.1016/j.strusafe.2019.101891_b0215 article-title: Reliability and reliability-based importance analysis of structural systems using multiple response Gaussian process model publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.03.013 – volume: 22 start-page: 233 issue: 3 year: 2000 ident: 10.1016/j.strusafe.2019.101891_b0110 article-title: Directional methods for structural reliability analysis publication-title: Struct Saf doi: 10.1016/S0167-4730(00)00014-X – volume: 183 start-page: 340 year: 2019 ident: 10.1016/j.strusafe.2019.101891_b0220 article-title: A novel step-wise AK-MCS method for efficient estimation of fuzzy failure probability under probability inputs and fuzzy state assumption publication-title: Eng Struct doi: 10.1016/j.engstruct.2019.01.020 – volume: 31 start-page: 41 issue: 1 year: 1989 ident: 10.1016/j.strusafe.2019.101891_b0235 article-title: Design for computer experiment publication-title: Technometrics doi: 10.1080/00401706.1989.10488474 – volume: 187 start-page: 174 year: 2019 ident: 10.1016/j.strusafe.2019.101891_b0055 article-title: An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.03.029 – volume: 59 start-page: 263 year: 2019 ident: 10.1016/j.strusafe.2019.101891_b0210 article-title: AK-SYSi: an improved adaptive Kriging model for system reliability analysis with multiple failure modes by a refined U learning function publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-018-2067-3 |
SSID | ssj0005828 |
Score | 2.542254 |
Snippet | •An improved AK-MCS method is proposed to estimate the small failure probability.•An optimal β-sphere is searched without any extra model evaluations.•Kriging... The pivotal problem in reliability analysis is how to use a smaller number of model evaluations to get more accurate failure probabilities. To achieve this... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 101891 |
SubjectTerms | Adaptive radial-based importance sampling Adaptive sampling Candidate sampling pool Computer simulation Convergence Failure analysis Importance sampling Iterative methods Kriging interpolation Kriging model Monte Carlo simulation Nonlinear analysis Probability Reliability analysis Reliability aspects Sampling Size reduction Small failure probability Training time Turbine disks Turbines Wing boxes |
Title | AK-ARBIS: An improved AK-MCS based on the adaptive radial-based importance sampling for small failure probability |
URI | https://dx.doi.org/10.1016/j.strusafe.2019.101891 https://www.proquest.com/docview/2319471133 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWBAPEV5yQNr-kicxGYLFajlJURBYrOc2Eap0lAoCwu_nTsnQQUJMTBFcuwoOl_uOzufvyPk2EAEZD6SwkJjPcZF5HEbxl4KaJYqk_JAO4LsTTR8YBeP4eMSGTRnYZBWWcf-Kqa7aF23dGtrdmd53h07Aj06KA_wdxgeNGcsRi_vfCzQPLirr1rpe0PvhVPCkw5qtM6VRbnMvsBGLvq_AdSPUO3w53ydrNWJI02qd9sgS6bcJKsLcoJb5CW59JK709H4hCYlzd12gdEUWq8HY4p4pelzSSHlo0qrGQY6-oraBIVX3cynLhsHG9C5Qqp5-UQhqaXzqSoKalWOHHaKNWgqde_3bfJwfnY_GHp1SQUvA-R-AzziKutHUc8EUaxEwLJYGwCxtGd5ZA23kDFkYYa6aH6cWjBa4Pc0z1icaivA0jukVT6XZpfQAGc3jTQmjIxlSigRcRUzpW3oW7_fJmFjR5nVeuNY9qKQDbFsIhv7S7S_rOzfJt2vcbNKcePPEaKZJvnNdyTAwp9jD5p5lfXXO5eQ8woAbVi-7_3j0ftkxcfFuduvOSAt6GIOIYN5S4-cix6R5WRwd3WL19Hl8OYTm03xUQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BewAOiFUsBXzgGtpmtbmFCtRS6IGCxM1yYhulKqFQLvw9M1nYJMSBq5OJomdn3th5fgY4NpgBfZdEYYGxjs9F6HAbRE6CbJYok3BPFwLZUdi_8y_vg_sF6NV7YUhWWeX-MqcX2bpqaVdotmdZ1h4XAnoaoNyj32HBIjTJnSpoQDMeDPujT6UHL45YLS2-MeDLRuHJCdm0zpUlx8yuoEYuur9x1I9sXVDQxRqsVrUji8vXW4cFk2_AyhdHwU14jodOfHM2GJ-yOGdZsWJgNMPW696YEWVp9pQzrPqY0mpGuY69kD3B1CkvZo9FQY4wsLkitXn-wLCuZfNHNZ0yqzKSsTM6hqY0-H7bgruL89te36lOVXBSJO9XpCSu0m4YdowXRkp4fhppgzyWdCwPreEWi4Y0SMkazY0Si6B5bkfz1I8SbQWCvQ2N_Ck3O8A86uAk1FQz-n6qhBIhV5GvtA1c63Z3IahxlGllOU4nX0xlrS2byBp_SfjLEv9daH_EzUrTjT8jRN1N8tvwkcgMf8a26n6V1Qc8l1j2CuRtnMHv_ePRR7DUv72-kleD0XAfll2aqxfLNy1o4O3mAAua1-SwGrDvUVXybQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AK-ARBIS%3A+An+improved+AK-MCS+based+on+the+adaptive+radial-based+importance+sampling+for+small+failure+probability&rft.jtitle=Structural+safety&rft.au=Yun%2C+Wanying&rft.au=Lu%2C+Zhenzhou&rft.au=Jiang%2C+Xian&rft.au=Zhang%2C+Leigang&rft.date=2020-01-01&rft.issn=0167-4730&rft.volume=82&rft.spage=101891&rft_id=info:doi/10.1016%2Fj.strusafe.2019.101891&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_strusafe_2019_101891 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4730&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4730&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4730&client=summon |