LA-ESN: A Novel Method for Time Series Classification

Time-series data is an appealing study topic in data mining and has a broad range of applications. Many approaches have been employed to handle time series classification (TSC) challenges with promising results, among which deep neural network methods have become mainstream. Echo State Networks (ESN...

Full description

Saved in:
Bibliographic Details
Published inInformation (Basel) Vol. 14; no. 2; p. 67
Main Authors Sheng, Hui, Liu, Min, Hu, Jiyong, Li, Ping, Peng, Yali, Yi, Yugen
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Time-series data is an appealing study topic in data mining and has a broad range of applications. Many approaches have been employed to handle time series classification (TSC) challenges with promising results, among which deep neural network methods have become mainstream. Echo State Networks (ESN) and Convolutional Neural Networks (CNN) are commonly utilized as deep neural network methods in TSC research. However, ESN and CNN can only extract local dependencies relations of time series, resulting in long-term temporal data dependence needing to be more challenging to capture. As a result, an encoder and decoder architecture named LA-ESN is proposed for TSC tasks. In LA-ESN, the encoder is composed of ESN, which is utilized to obtain the time series matrix representation. Meanwhile, the decoder consists of a one-dimensional CNN (1D CNN), a Long Short-Term Memory network (LSTM) and an Attention Mechanism (AM), which can extract local information and global dependencies from the representation. Finally, many comparative experimental studies were conducted on 128 univariate datasets from different domains, and three evaluation metrics including classification accuracy, mean error and mean rank were exploited to evaluate the performance. In comparison to other approaches, LA-ESN produced good results.
AbstractList Time-series data is an appealing study topic in data mining and has a broad range of applications. Many approaches have been employed to handle time series classification (TSC) challenges with promising results, among which deep neural network methods have become mainstream. Echo State Networks (ESN) and Convolutional Neural Networks (CNN) are commonly utilized as deep neural network methods in TSC research. However, ESN and CNN can only extract local dependencies relations of time series, resulting in long-term temporal data dependence needing to be more challenging to capture. As a result, an encoder and decoder architecture named LA-ESN is proposed for TSC tasks. In LA-ESN, the encoder is composed of ESN, which is utilized to obtain the time series matrix representation. Meanwhile, the decoder consists of a one-dimensional CNN (1D CNN), a Long Short-Term Memory network (LSTM) and an Attention Mechanism (AM), which can extract local information and global dependencies from the representation. Finally, many comparative experimental studies were conducted on 128 univariate datasets from different domains, and three evaluation metrics including classification accuracy, mean error and mean rank were exploited to evaluate the performance. In comparison to other approaches, LA-ESN produced good results.
Audience Academic
Author Sheng, Hui
Yi, Yugen
Liu, Min
Li, Ping
Hu, Jiyong
Peng, Yali
Author_xml – sequence: 1
  givenname: Hui
  surname: Sheng
  fullname: Sheng, Hui
– sequence: 2
  givenname: Min
  surname: Liu
  fullname: Liu, Min
– sequence: 3
  givenname: Jiyong
  surname: Hu
  fullname: Hu, Jiyong
– sequence: 4
  givenname: Ping
  surname: Li
  fullname: Li, Ping
– sequence: 5
  givenname: Yali
  surname: Peng
  fullname: Peng, Yali
– sequence: 6
  givenname: Yugen
  orcidid: 0000-0001-9828-0319
  surname: Yi
  fullname: Yi, Yugen
BookMark eNptUcFOGzEQtSqQSCE3PmClXrvUHq_Xu71FES2RAhyAszWxx6mjzZraC1L_voZQCVWMD2ON3nua9-YzOxrjSIydC34hZc-_hdFH0XDgvNWf2Ay47mpouv7o3f-EzXPe8VJad00nZkytF_Xl3c33alHdxGcaqmuafkVX-Ziq-7Cn6o5SoFwtB8w5-GBxCnE8Y8ceh0zzt37KHn5c3i-v6vXtz9Vysa5tw9up1l4CIYHwypetuPPcWy6gBbJSoFAEIBF7sp23FoG4lrTpHfauR8u9PGWrg66LuDOPKewx_TERg3kdxLQ1mKZgBzIb2YHaOC-EKk5Vi41zLajee0BBblO0vhy0HlP8_UR5Mrv4lMayvgGte8Xbtu0K6uKA2mIRfcl0SmjLc7QPtiTuQ5kvtILiAjpZCHAg2BRzTuSNDdNrSIUYBiO4eTmPeX-eQvr6H-mftw_hfwFOwpDZ
CitedBy_id crossref_primary_10_1002_cjce_25350
crossref_primary_10_3390_s23136223
crossref_primary_10_1016_j_sciaf_2024_e02299
crossref_primary_10_1007_s12530_023_09547_4
crossref_primary_10_1016_j_vlsi_2023_05_002
crossref_primary_10_1016_j_asoc_2024_111715
Cites_doi 10.1109/SII52469.2022.9708877
10.1007/s10618-015-0418-x
10.1016/j.patrec.2014.03.009
10.1016/j.ins.2017.05.028
10.1007/s11704-015-4478-2
10.1109/ITC-CSCC52171.2021.9501420
10.1109/IJCNN52387.2021.9533440
10.1016/j.neunet.2019.04.014
10.1016/j.ins.2021.04.074
10.1109/TNNLS.2014.2333876
10.1016/j.engstruct.2020.111564
10.1007/s10618-019-00619-1
10.1109/ICICIP53388.2021.9642214
10.1007/s10618-020-00710-y
10.1007/s10618-014-0377-7
10.3390/s21020603
10.1016/j.asoc.2021.107314
10.1016/j.patcog.2022.108811
10.1109/IJCNN.2017.7966039
10.1109/TCYB.2019.2919648
10.1016/j.ins.2018.10.039
10.1016/j.ins.2019.04.024
10.1109/TKDE.2015.2416723
10.1016/j.comnet.2018.11.031
10.1016/j.ins.2013.02.030
10.1007/s10618-014-0361-2
10.1109/TPAMI.2013.72
10.1109/LGRS.2020.3014418
10.1109/IJCNN48605.2020.9206725
10.2307/j.ctv14jx6sm
10.1109/ACCESS.2019.2916828
10.1007/978-3-319-08010-9_33
10.1109/ICAICA52286.2021.9497898
10.1109/ICIC54025.2021.9632918
10.1109/ICST50505.2020.9732811
10.1109/JAS.2019.1911747
10.1007/s10618-015-0425-y
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/info14020067
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2078-2489
ExternalDocumentID oai_doaj_org_article_b3825bdf11524856a4dd6259ff2a1edb
A752262283
10_3390_info14020067
GroupedDBID .4I
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
MK~
ML~
MODMG
M~E
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
XH6
PMFND
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c406t-7f32eae21f5f0670df0fc01262ec31a15e223aa9ec8fcca2e073eb9da9d9ac0f3
IEDL.DBID DOA
ISSN 2078-2489
IngestDate Wed Aug 27 01:23:46 EDT 2025
Sun Jul 13 05:38:09 EDT 2025
Tue Jun 10 20:25:26 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
Tue Jul 01 04:24:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-7f32eae21f5f0670df0fc01262ec31a15e223aa9ec8fcca2e073eb9da9d9ac0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9828-0319
OpenAccessLink https://doaj.org/article/b3825bdf11524856a4dd6259ff2a1edb
PQID 2779506668
PQPubID 2032384
ParticipantIDs doaj_primary_oai_doaj_org_article_b3825bdf11524856a4dd6259ff2a1edb
proquest_journals_2779506668
gale_infotracacademiconefile_A752262283
crossref_citationtrail_10_3390_info14020067
crossref_primary_10_3390_info14020067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Information (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kate (ref_20) 2016; 30
Baydogan (ref_15) 2013; 35
Wang (ref_30) 2022; 130
ref_13
ref_35
ref_12
ref_11
ref_33
Zheng (ref_31) 2016; 10
Arul (ref_18) 2021; 228
Bagnall (ref_38) 2015; 27
Dau (ref_34) 2019; 6
(ref_42) 2006; 7
Benavoli (ref_39) 2016; 17
Karim (ref_23) 2019; 7
Marteau (ref_8) 2014; 26
Ku (ref_25) 2020; 18
Lines (ref_37) 2015; 29
Forestier (ref_2) 2019; 33
Wang (ref_7) 2021; 570
ref_24
Deng (ref_16) 2013; 239
ref_40
ref_1
Wan (ref_6) 2017; 411
Ma (ref_22) 2019; 51
ref_29
Gustavo (ref_10) 2013; 28
ref_28
Holm (ref_41) 1979; 6
ref_27
(ref_36) 2015; 29
Karim (ref_21) 2019; 116
ref_26
ref_9
Ji (ref_17) 2019; 148
Baydogan (ref_19) 2016; 30
Mori (ref_5) 2019; 492
(ref_14) 2014; 45
ref_4
Fawaz (ref_32) 2020; 34
Xiao (ref_3) 2018; 479
References_xml – ident: ref_12
  doi: 10.1109/SII52469.2022.9708877
– volume: 30
  start-page: 283
  year: 2016
  ident: ref_20
  article-title: Using dynamic time warping distances as features for improved time series classification
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-015-0418-x
– volume: 28
  start-page: 634
  year: 2013
  ident: ref_10
  article-title: CID: An efficient complexity-invariant distance for time series
  publication-title: Data Min. Knowl. Discov.
– volume: 45
  start-page: 99
  year: 2014
  ident: ref_14
  article-title: Using derivatives in a longest common subsequence dissimilarity measure for time series classification
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.03.009
– volume: 411
  start-page: 151
  year: 2017
  ident: ref_6
  article-title: A formal approach to chart patterns classification in financial time series
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.05.028
– volume: 10
  start-page: 96
  year: 2016
  ident: ref_31
  article-title: Exploiting multi-channels deep convolutional neural networks for multivariate time series classification
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-015-4478-2
– ident: ref_4
  doi: 10.1109/ITC-CSCC52171.2021.9501420
– ident: ref_27
  doi: 10.1109/IJCNN52387.2021.9533440
– volume: 7
  start-page: 1
  year: 2006
  ident: ref_42
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 116
  start-page: 237
  year: 2019
  ident: ref_21
  article-title: Multivariate LSTM-FCNs for time series classification
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2019.04.014
– volume: 17
  start-page: 152
  year: 2016
  ident: ref_39
  article-title: Should we really use post-hoc tests based on mean-ranks?
  publication-title: J. Mach. Learn. Res.
– volume: 570
  start-page: 744
  year: 2021
  ident: ref_7
  article-title: Echo state network with a global reversible autoencoder for time series classification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.04.074
– volume: 26
  start-page: 1121
  year: 2014
  ident: ref_8
  article-title: On Recursive Edit Distance Kernels with Application to Time Series Classification
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2014.2333876
– volume: 228
  start-page: 111564
  year: 2021
  ident: ref_18
  article-title: Applications of shapelet transform to time series classification of earthquake, wind and wave data
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.111564
– ident: ref_40
– volume: 6
  start-page: 65
  year: 1979
  ident: ref_41
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scand. J. Stat.
– volume: 33
  start-page: 917
  year: 2019
  ident: ref_2
  article-title: Deep learning for time series classification: A review
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-019-00619-1
– ident: ref_28
  doi: 10.1109/ICICIP53388.2021.9642214
– volume: 34
  start-page: 1936
  year: 2020
  ident: ref_32
  article-title: InceptionTime: Finding AlexNet for time series classification
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-020-00710-y
– volume: 29
  start-page: 1505
  year: 2015
  ident: ref_36
  article-title: The BOSS is concerned with time series classification in the presence of noise
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-014-0377-7
– ident: ref_24
  doi: 10.3390/s21020603
– ident: ref_29
  doi: 10.1016/j.asoc.2021.107314
– volume: 130
  start-page: 1
  year: 2022
  ident: ref_30
  article-title: Discriminative and regularized echo state network for time series classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108811
– ident: ref_35
  doi: 10.1109/IJCNN.2017.7966039
– volume: 51
  start-page: 1613
  year: 2019
  ident: ref_22
  article-title: Convolutional Multitimescale Echo State Network
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2919648
– volume: 479
  start-page: 526
  year: 2018
  ident: ref_3
  article-title: Novel dynamic multiple classification system for network traffic
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.10.039
– volume: 492
  start-page: 204
  year: 2019
  ident: ref_5
  article-title: Early classification of time series using multi-objective optimization techniques
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.04.024
– volume: 27
  start-page: 2522
  year: 2015
  ident: ref_38
  article-title: Time-Series Classification with COTE: The Collective of Transformation-Based Ensembles
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2416723
– volume: 148
  start-page: 231
  year: 2019
  ident: ref_17
  article-title: A fast shapelet selection algorithm for time series classification
  publication-title: Comput. Networks
  doi: 10.1016/j.comnet.2018.11.031
– volume: 239
  start-page: 142
  year: 2013
  ident: ref_16
  article-title: A time series forest for classification and feature extraction
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.02.030
– volume: 29
  start-page: 565
  year: 2015
  ident: ref_37
  article-title: Time series classification with ensembles of elastic distance measures
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-014-0361-2
– volume: 35
  start-page: 2796
  year: 2013
  ident: ref_15
  article-title: A Bag-of-Features Framework to Classify Time Series
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.72
– volume: 18
  start-page: 2057
  year: 2020
  ident: ref_25
  article-title: Attention-Based Convolutional Neural Network for Earthquake Event Classification
  publication-title: IEEE Geosci. Remote. Sens. Lett.
  doi: 10.1109/LGRS.2020.3014418
– ident: ref_26
  doi: 10.1109/IJCNN48605.2020.9206725
– ident: ref_1
  doi: 10.2307/j.ctv14jx6sm
– volume: 7
  start-page: 67718
  year: 2019
  ident: ref_23
  article-title: Insights into LSTM Fully Convolutional Networks for Time Series Classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2916828
– ident: ref_33
  doi: 10.1007/978-3-319-08010-9_33
– ident: ref_9
  doi: 10.1109/ICAICA52286.2021.9497898
– ident: ref_13
  doi: 10.1109/ICIC54025.2021.9632918
– ident: ref_11
  doi: 10.1109/ICST50505.2020.9732811
– volume: 6
  start-page: 1293
  year: 2019
  ident: ref_34
  article-title: The UCR time series archive
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2019.1911747
– volume: 30
  start-page: 476
  year: 2016
  ident: ref_19
  article-title: Time series representation and similarity based on local autopatterns
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-015-0425-y
SSID ssj0000778481
Score 2.2775192
Snippet Time-series data is an appealing study topic in data mining and has a broad range of applications. Many approaches have been employed to handle time series...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 67
SubjectTerms Algorithms
Analysis
Artificial neural networks
Classification
Coders
Control engineering
convolutional neural network
Data mining
Deep learning
echo state network
Efficiency
long short-term memory network
Matrix representation
Medical research
Methods
Neural networks
Optimization techniques
Performance evaluation
Rankings
Time series
time series classification
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL3oQn7haJQfFgwSzzzRepJWKiBZRC96WPL2UVm319zuTpo-LXnfDsptJZuabzXwfIaeCG6l16pmpPGeFrDyTha2Y00KlruRchQ65x1511y_u38q3WHAbx2OVM58YHLUdGayRX2ZCyBKT7db1xydD1Sj8uxolNFbJGrjgFoCvtU639_Q8r7JwIZAvfnriPQd8f4l2SxE08SAtv4hFgbL_L8ccos3tFtmMaSJtT-26TVbccIdsLJEH7pLyoc26L70r2qa90Y8b0McgBk0hC6XY2EGx8OXGNMhe4oGgYIM90r_tvt7csSiCwAzE2gkTPs-cclnqS489NdZzbyCqVJkzearS0kGAV0o60_JgjczBnnVaWiWtVIb7fJ80hqOhOyDU6MJmAgCx4QaAjtZeKu8yrw3XtijzhFzMpqM2kSEchSoGNSAFnLx6efIScjYf_TFlxvhjXAdndj4G-azDhdHXex23R61zQKraeshPkWOtUoW1iMy8z2DJWJ2Qc7RLeDC8klGxeQA-DPmr6rbAPBKpfBLSnJmujttxXC8Wz-H_t4_IOurJT2ssTdKYfH27Y8g6JvokLq1fZejXFg
  priority: 102
  providerName: ProQuest
Title LA-ESN: A Novel Method for Time Series Classification
URI https://www.proquest.com/docview/2779506668
https://doaj.org/article/b3825bdf11524856a4dd6259ff2a1edb
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB58XPQgPrE-Sg6KB1nMPtN422qrSFvEB3hb8jyVVmz19zuTXbUX8eJpYQkhO98mM1-Y-QbgRHAjtY59ZArPo0wWPpKZLSKnhYpdzrkKFXLDUXH7nN295C8Lrb4oJ6yWB64Nd6FT5DDaeoxcSH2rUJm1FLN7n-BkVtPpiz5vgUyFM1gI0omvM91T5PUXhFdMZImHlvI_PihI9f92IAcv09-EjSY8ZGW9rC1YcpNtWF8QDdyBfFBGvcfRJSvZaPrhxmwYmkAzjD4ZFXQwuvByMxbaXVIiULD9Ljz3e09Xt1HT_CAy6GPnkfBp4pRLYp97qqWxnnuD3qRInEljFecOHbtS0pmORxQSh3vVaWmVtFIZ7tM9WJlMJ24fmNGZTQQSYcMNEhytvVTeJV4brm2Wpy04_zJHZRplcGpQMa6QIZDxqkXjteD0e_RrrYjxy7guWfZ7DOlYhxeIbtWgW_2FbgvOCJcwMS7JqKZoAD-MdKuqUlD8SBI-LTj6gq5qtuGsSoSQOTG0zsF_rOYQ1qjbfH0DcwQr87d3d4wxyVy3YbnTv2nDank9HDzis9sb3T-0w0_5CYdm4pk
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiKcIFPCBigOy6vU-HCMhFKAhpUkutFJvxk8uVVKaAOJP8RuZ8e6mvZRbr2vL2p2HZ8br-T6AV0p47VyRuG-S4JVuEtdVaHh0yhaxFsLmDrnZvJkcV19O6pMt-Nv3wtC1yn5PzBt1WHo6I9-TSumaku3h-7MfnFij6O9qT6HRmsVh_PMbS7bVu4NPqN9dKcf7Rx8nvGMV4B6D15qrVMpooyxSnahJJSSRPG7TjYy-LGxRR4yY1urohwk_T0Z0guh0sDpo60Uqcd0bcLMqS00eNRx_3pzpCKUInb69X4_jYo-spKASTWQi-4vIlwkCrgoDObaN78HdLillo9aK7sNWXDyAO5egCh9CPR3x_a_zt2zE5stf8ZTNMvU0w5yXURsJo2O2uGKZZJOuH2WNP4LjaxHOY9heLBfxCTDvqiAVlt9eeCyrnEvapiiT88KFqi4H8KYXh_EdHjnRYpwarEtIeOay8Aawu5l91uJwXDHvA0l2M4fQs_OD5fl30zmjcSXWxS4kzIYJ0a2xVQhUB6Yk0UCDG8Br0kteGF_J265VAT-M0LLMSFHWSsBBA9jpVWc651-ZC1N9-v_hl3BrcjSbmunB_PAZ3CYm-_Z0Zwe21-c_43PMd9buRTYyBt-u26r_AeV9FM8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gkhg9GJ9xEbUPEg-msz09j6ZNjFlkNyAwISoJt7GfXsgusKvGv-avs6pnZuGCN64znc50VXW9pqo-gDdKOG1tFrmrouCFriLXha94sMpkoRTCpA65o7raOyk-n5ana_C374WhsspeJyZF7eeOcuQjqZQuydneHsWuLOJ4d_rx_IITghT9ae3hNFoROQh_fmP4tviwv4u83pJyOvn2aY93CAPcoSFbchVzGUyQWSwjNaz4KKJDlV3J4PLMZGVA62mMDm474lFlwAsRrPZGe22ciDnuewfWFUZFYgDrO5P6-MsqwyOUoln1bbV9nmsxIpnJKGATCdb-yg4muICbjEKydNOH8KBzUdm4lalHsBZmj-H-tcGFT6A8HPPJ1_o9G7N6_iucsaMERM3QA2bUVMIo6RYWLEFuUjFS4v9TOLkV8jyDwWw-C8-BOVt4qTAYd8JhkGVt1CYGGa0T1hdlPoR3PTka100nJ5CMswajFCJec514Q9harT5vp3LcsG6HKLtaQ7O004P55Y-mu5qNzTFKtj6ib0zz3SpTeE9RYYwSxdXbIbwlvqSN8ZOc6RoX8GA0O6sZK_JhaYzQEDZ71jWdKlg0V4K78f_Xr-EuSnRzuF8fvIB7BGvfpno2YbC8_BleovOztK86KWPw_bYF-x8nsRph
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LA-ESN%3A+A+Novel+Method+for+Time+Series+Classification&rft.jtitle=Information+%28Basel%29&rft.au=Hui+Sheng&rft.au=Min+Liu&rft.au=Jiyong+Hu&rft.au=Ping+Li&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=2078-2489&rft.volume=14&rft.issue=2&rft.spage=67&rft_id=info:doi/10.3390%2Finfo14020067&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b3825bdf11524856a4dd6259ff2a1edb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon