LA-ESN: A Novel Method for Time Series Classification
Time-series data is an appealing study topic in data mining and has a broad range of applications. Many approaches have been employed to handle time series classification (TSC) challenges with promising results, among which deep neural network methods have become mainstream. Echo State Networks (ESN...
Saved in:
Published in | Information (Basel) Vol. 14; no. 2; p. 67 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Time-series data is an appealing study topic in data mining and has a broad range of applications. Many approaches have been employed to handle time series classification (TSC) challenges with promising results, among which deep neural network methods have become mainstream. Echo State Networks (ESN) and Convolutional Neural Networks (CNN) are commonly utilized as deep neural network methods in TSC research. However, ESN and CNN can only extract local dependencies relations of time series, resulting in long-term temporal data dependence needing to be more challenging to capture. As a result, an encoder and decoder architecture named LA-ESN is proposed for TSC tasks. In LA-ESN, the encoder is composed of ESN, which is utilized to obtain the time series matrix representation. Meanwhile, the decoder consists of a one-dimensional CNN (1D CNN), a Long Short-Term Memory network (LSTM) and an Attention Mechanism (AM), which can extract local information and global dependencies from the representation. Finally, many comparative experimental studies were conducted on 128 univariate datasets from different domains, and three evaluation metrics including classification accuracy, mean error and mean rank were exploited to evaluate the performance. In comparison to other approaches, LA-ESN produced good results. |
---|---|
AbstractList | Time-series data is an appealing study topic in data mining and has a broad range of applications. Many approaches have been employed to handle time series classification (TSC) challenges with promising results, among which deep neural network methods have become mainstream. Echo State Networks (ESN) and Convolutional Neural Networks (CNN) are commonly utilized as deep neural network methods in TSC research. However, ESN and CNN can only extract local dependencies relations of time series, resulting in long-term temporal data dependence needing to be more challenging to capture. As a result, an encoder and decoder architecture named LA-ESN is proposed for TSC tasks. In LA-ESN, the encoder is composed of ESN, which is utilized to obtain the time series matrix representation. Meanwhile, the decoder consists of a one-dimensional CNN (1D CNN), a Long Short-Term Memory network (LSTM) and an Attention Mechanism (AM), which can extract local information and global dependencies from the representation. Finally, many comparative experimental studies were conducted on 128 univariate datasets from different domains, and three evaluation metrics including classification accuracy, mean error and mean rank were exploited to evaluate the performance. In comparison to other approaches, LA-ESN produced good results. |
Audience | Academic |
Author | Sheng, Hui Yi, Yugen Liu, Min Li, Ping Hu, Jiyong Peng, Yali |
Author_xml | – sequence: 1 givenname: Hui surname: Sheng fullname: Sheng, Hui – sequence: 2 givenname: Min surname: Liu fullname: Liu, Min – sequence: 3 givenname: Jiyong surname: Hu fullname: Hu, Jiyong – sequence: 4 givenname: Ping surname: Li fullname: Li, Ping – sequence: 5 givenname: Yali surname: Peng fullname: Peng, Yali – sequence: 6 givenname: Yugen orcidid: 0000-0001-9828-0319 surname: Yi fullname: Yi, Yugen |
BookMark | eNptUcFOGzEQtSqQSCE3PmClXrvUHq_Xu71FES2RAhyAszWxx6mjzZraC1L_voZQCVWMD2ON3nua9-YzOxrjSIydC34hZc-_hdFH0XDgvNWf2Ay47mpouv7o3f-EzXPe8VJad00nZkytF_Xl3c33alHdxGcaqmuafkVX-Ziq-7Cn6o5SoFwtB8w5-GBxCnE8Y8ceh0zzt37KHn5c3i-v6vXtz9Vysa5tw9up1l4CIYHwypetuPPcWy6gBbJSoFAEIBF7sp23FoG4lrTpHfauR8u9PGWrg66LuDOPKewx_TERg3kdxLQ1mKZgBzIb2YHaOC-EKk5Vi41zLajee0BBblO0vhy0HlP8_UR5Mrv4lMayvgGte8Xbtu0K6uKA2mIRfcl0SmjLc7QPtiTuQ5kvtILiAjpZCHAg2BRzTuSNDdNrSIUYBiO4eTmPeX-eQvr6H-mftw_hfwFOwpDZ |
CitedBy_id | crossref_primary_10_1002_cjce_25350 crossref_primary_10_3390_s23136223 crossref_primary_10_1016_j_sciaf_2024_e02299 crossref_primary_10_1007_s12530_023_09547_4 crossref_primary_10_1016_j_vlsi_2023_05_002 crossref_primary_10_1016_j_asoc_2024_111715 |
Cites_doi | 10.1109/SII52469.2022.9708877 10.1007/s10618-015-0418-x 10.1016/j.patrec.2014.03.009 10.1016/j.ins.2017.05.028 10.1007/s11704-015-4478-2 10.1109/ITC-CSCC52171.2021.9501420 10.1109/IJCNN52387.2021.9533440 10.1016/j.neunet.2019.04.014 10.1016/j.ins.2021.04.074 10.1109/TNNLS.2014.2333876 10.1016/j.engstruct.2020.111564 10.1007/s10618-019-00619-1 10.1109/ICICIP53388.2021.9642214 10.1007/s10618-020-00710-y 10.1007/s10618-014-0377-7 10.3390/s21020603 10.1016/j.asoc.2021.107314 10.1016/j.patcog.2022.108811 10.1109/IJCNN.2017.7966039 10.1109/TCYB.2019.2919648 10.1016/j.ins.2018.10.039 10.1016/j.ins.2019.04.024 10.1109/TKDE.2015.2416723 10.1016/j.comnet.2018.11.031 10.1016/j.ins.2013.02.030 10.1007/s10618-014-0361-2 10.1109/TPAMI.2013.72 10.1109/LGRS.2020.3014418 10.1109/IJCNN48605.2020.9206725 10.2307/j.ctv14jx6sm 10.1109/ACCESS.2019.2916828 10.1007/978-3-319-08010-9_33 10.1109/ICAICA52286.2021.9497898 10.1109/ICIC54025.2021.9632918 10.1109/ICST50505.2020.9732811 10.1109/JAS.2019.1911747 10.1007/s10618-015-0425-y |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3390/info14020067 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2078-2489 |
ExternalDocumentID | oai_doaj_org_article_b3825bdf11524856a4dd6259ff2a1edb A752262283 10_3390_info14020067 |
GroupedDBID | .4I 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABUWG ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 MK~ ML~ MODMG M~E OK1 P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC XH6 PMFND 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c406t-7f32eae21f5f0670df0fc01262ec31a15e223aa9ec8fcca2e073eb9da9d9ac0f3 |
IEDL.DBID | DOA |
ISSN | 2078-2489 |
IngestDate | Wed Aug 27 01:23:46 EDT 2025 Sun Jul 13 05:38:09 EDT 2025 Tue Jun 10 20:25:26 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 Tue Jul 01 04:24:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-7f32eae21f5f0670df0fc01262ec31a15e223aa9ec8fcca2e073eb9da9d9ac0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9828-0319 |
OpenAccessLink | https://doaj.org/article/b3825bdf11524856a4dd6259ff2a1edb |
PQID | 2779506668 |
PQPubID | 2032384 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b3825bdf11524856a4dd6259ff2a1edb proquest_journals_2779506668 gale_infotracacademiconefile_A752262283 crossref_citationtrail_10_3390_info14020067 crossref_primary_10_3390_info14020067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Information (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Kate (ref_20) 2016; 30 Baydogan (ref_15) 2013; 35 Wang (ref_30) 2022; 130 ref_13 ref_35 ref_12 ref_11 ref_33 Zheng (ref_31) 2016; 10 Arul (ref_18) 2021; 228 Bagnall (ref_38) 2015; 27 Dau (ref_34) 2019; 6 (ref_42) 2006; 7 Benavoli (ref_39) 2016; 17 Karim (ref_23) 2019; 7 Marteau (ref_8) 2014; 26 Ku (ref_25) 2020; 18 Lines (ref_37) 2015; 29 Forestier (ref_2) 2019; 33 Wang (ref_7) 2021; 570 ref_24 Deng (ref_16) 2013; 239 ref_40 ref_1 Wan (ref_6) 2017; 411 Ma (ref_22) 2019; 51 ref_29 Gustavo (ref_10) 2013; 28 ref_28 Holm (ref_41) 1979; 6 ref_27 (ref_36) 2015; 29 Karim (ref_21) 2019; 116 ref_26 ref_9 Ji (ref_17) 2019; 148 Baydogan (ref_19) 2016; 30 Mori (ref_5) 2019; 492 (ref_14) 2014; 45 ref_4 Fawaz (ref_32) 2020; 34 Xiao (ref_3) 2018; 479 |
References_xml | – ident: ref_12 doi: 10.1109/SII52469.2022.9708877 – volume: 30 start-page: 283 year: 2016 ident: ref_20 article-title: Using dynamic time warping distances as features for improved time series classification publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-015-0418-x – volume: 28 start-page: 634 year: 2013 ident: ref_10 article-title: CID: An efficient complexity-invariant distance for time series publication-title: Data Min. Knowl. Discov. – volume: 45 start-page: 99 year: 2014 ident: ref_14 article-title: Using derivatives in a longest common subsequence dissimilarity measure for time series classification publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2014.03.009 – volume: 411 start-page: 151 year: 2017 ident: ref_6 article-title: A formal approach to chart patterns classification in financial time series publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.05.028 – volume: 10 start-page: 96 year: 2016 ident: ref_31 article-title: Exploiting multi-channels deep convolutional neural networks for multivariate time series classification publication-title: Front. Comput. Sci. doi: 10.1007/s11704-015-4478-2 – ident: ref_4 doi: 10.1109/ITC-CSCC52171.2021.9501420 – ident: ref_27 doi: 10.1109/IJCNN52387.2021.9533440 – volume: 7 start-page: 1 year: 2006 ident: ref_42 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 116 start-page: 237 year: 2019 ident: ref_21 article-title: Multivariate LSTM-FCNs for time series classification publication-title: Neural Networks doi: 10.1016/j.neunet.2019.04.014 – volume: 17 start-page: 152 year: 2016 ident: ref_39 article-title: Should we really use post-hoc tests based on mean-ranks? publication-title: J. Mach. Learn. Res. – volume: 570 start-page: 744 year: 2021 ident: ref_7 article-title: Echo state network with a global reversible autoencoder for time series classification publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.04.074 – volume: 26 start-page: 1121 year: 2014 ident: ref_8 article-title: On Recursive Edit Distance Kernels with Application to Time Series Classification publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2014.2333876 – volume: 228 start-page: 111564 year: 2021 ident: ref_18 article-title: Applications of shapelet transform to time series classification of earthquake, wind and wave data publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.111564 – ident: ref_40 – volume: 6 start-page: 65 year: 1979 ident: ref_41 article-title: A simple sequentially rejective multiple test procedure publication-title: Scand. J. Stat. – volume: 33 start-page: 917 year: 2019 ident: ref_2 article-title: Deep learning for time series classification: A review publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-019-00619-1 – ident: ref_28 doi: 10.1109/ICICIP53388.2021.9642214 – volume: 34 start-page: 1936 year: 2020 ident: ref_32 article-title: InceptionTime: Finding AlexNet for time series classification publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-020-00710-y – volume: 29 start-page: 1505 year: 2015 ident: ref_36 article-title: The BOSS is concerned with time series classification in the presence of noise publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-014-0377-7 – ident: ref_24 doi: 10.3390/s21020603 – ident: ref_29 doi: 10.1016/j.asoc.2021.107314 – volume: 130 start-page: 1 year: 2022 ident: ref_30 article-title: Discriminative and regularized echo state network for time series classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108811 – ident: ref_35 doi: 10.1109/IJCNN.2017.7966039 – volume: 51 start-page: 1613 year: 2019 ident: ref_22 article-title: Convolutional Multitimescale Echo State Network publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2919648 – volume: 479 start-page: 526 year: 2018 ident: ref_3 article-title: Novel dynamic multiple classification system for network traffic publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.10.039 – volume: 492 start-page: 204 year: 2019 ident: ref_5 article-title: Early classification of time series using multi-objective optimization techniques publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.04.024 – volume: 27 start-page: 2522 year: 2015 ident: ref_38 article-title: Time-Series Classification with COTE: The Collective of Transformation-Based Ensembles publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2015.2416723 – volume: 148 start-page: 231 year: 2019 ident: ref_17 article-title: A fast shapelet selection algorithm for time series classification publication-title: Comput. Networks doi: 10.1016/j.comnet.2018.11.031 – volume: 239 start-page: 142 year: 2013 ident: ref_16 article-title: A time series forest for classification and feature extraction publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.02.030 – volume: 29 start-page: 565 year: 2015 ident: ref_37 article-title: Time series classification with ensembles of elastic distance measures publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-014-0361-2 – volume: 35 start-page: 2796 year: 2013 ident: ref_15 article-title: A Bag-of-Features Framework to Classify Time Series publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.72 – volume: 18 start-page: 2057 year: 2020 ident: ref_25 article-title: Attention-Based Convolutional Neural Network for Earthquake Event Classification publication-title: IEEE Geosci. Remote. Sens. Lett. doi: 10.1109/LGRS.2020.3014418 – ident: ref_26 doi: 10.1109/IJCNN48605.2020.9206725 – ident: ref_1 doi: 10.2307/j.ctv14jx6sm – volume: 7 start-page: 67718 year: 2019 ident: ref_23 article-title: Insights into LSTM Fully Convolutional Networks for Time Series Classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2916828 – ident: ref_33 doi: 10.1007/978-3-319-08010-9_33 – ident: ref_9 doi: 10.1109/ICAICA52286.2021.9497898 – ident: ref_13 doi: 10.1109/ICIC54025.2021.9632918 – ident: ref_11 doi: 10.1109/ICST50505.2020.9732811 – volume: 6 start-page: 1293 year: 2019 ident: ref_34 article-title: The UCR time series archive publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2019.1911747 – volume: 30 start-page: 476 year: 2016 ident: ref_19 article-title: Time series representation and similarity based on local autopatterns publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-015-0425-y |
SSID | ssj0000778481 |
Score | 2.2775192 |
Snippet | Time-series data is an appealing study topic in data mining and has a broad range of applications. Many approaches have been employed to handle time series... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 67 |
SubjectTerms | Algorithms Analysis Artificial neural networks Classification Coders Control engineering convolutional neural network Data mining Deep learning echo state network Efficiency long short-term memory network Matrix representation Medical research Methods Neural networks Optimization techniques Performance evaluation Rankings Time series time series classification |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL3oQn7haJQfFgwSzzzRepJWKiBZRC96WPL2UVm319zuTpo-LXnfDsptJZuabzXwfIaeCG6l16pmpPGeFrDyTha2Y00KlruRchQ65x1511y_u38q3WHAbx2OVM58YHLUdGayRX2ZCyBKT7db1xydD1Sj8uxolNFbJGrjgFoCvtU639_Q8r7JwIZAvfnriPQd8f4l2SxE08SAtv4hFgbL_L8ccos3tFtmMaSJtT-26TVbccIdsLJEH7pLyoc26L70r2qa90Y8b0McgBk0hC6XY2EGx8OXGNMhe4oGgYIM90r_tvt7csSiCwAzE2gkTPs-cclnqS489NdZzbyCqVJkzearS0kGAV0o60_JgjczBnnVaWiWtVIb7fJ80hqOhOyDU6MJmAgCx4QaAjtZeKu8yrw3XtijzhFzMpqM2kSEchSoGNSAFnLx6efIScjYf_TFlxvhjXAdndj4G-azDhdHXex23R61zQKraeshPkWOtUoW1iMy8z2DJWJ2Qc7RLeDC8klGxeQA-DPmr6rbAPBKpfBLSnJmujttxXC8Wz-H_t4_IOurJT2ssTdKYfH27Y8g6JvokLq1fZejXFg priority: 102 providerName: ProQuest |
Title | LA-ESN: A Novel Method for Time Series Classification |
URI | https://www.proquest.com/docview/2779506668 https://doaj.org/article/b3825bdf11524856a4dd6259ff2a1edb |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEB58XPQgPrE-Sg6KB1nMPtN422qrSFvEB3hb8jyVVmz19zuTXbUX8eJpYQkhO98mM1-Y-QbgRHAjtY59ZArPo0wWPpKZLSKnhYpdzrkKFXLDUXH7nN295C8Lrb4oJ6yWB64Nd6FT5DDaeoxcSH2rUJm1FLN7n-BkVtPpiz5vgUyFM1gI0omvM91T5PUXhFdMZImHlvI_PihI9f92IAcv09-EjSY8ZGW9rC1YcpNtWF8QDdyBfFBGvcfRJSvZaPrhxmwYmkAzjD4ZFXQwuvByMxbaXVIiULD9Ljz3e09Xt1HT_CAy6GPnkfBp4pRLYp97qqWxnnuD3qRInEljFecOHbtS0pmORxQSh3vVaWmVtFIZ7tM9WJlMJ24fmNGZTQQSYcMNEhytvVTeJV4brm2Wpy04_zJHZRplcGpQMa6QIZDxqkXjteD0e_RrrYjxy7guWfZ7DOlYhxeIbtWgW_2FbgvOCJcwMS7JqKZoAD-MdKuqUlD8SBI-LTj6gq5qtuGsSoSQOTG0zsF_rOYQ1qjbfH0DcwQr87d3d4wxyVy3YbnTv2nDank9HDzis9sb3T-0w0_5CYdm4pk |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiKcIFPCBigOy6vU-HCMhFKAhpUkutFJvxk8uVVKaAOJP8RuZ8e6mvZRbr2vL2p2HZ8br-T6AV0p47VyRuG-S4JVuEtdVaHh0yhaxFsLmDrnZvJkcV19O6pMt-Nv3wtC1yn5PzBt1WHo6I9-TSumaku3h-7MfnFij6O9qT6HRmsVh_PMbS7bVu4NPqN9dKcf7Rx8nvGMV4B6D15qrVMpooyxSnahJJSSRPG7TjYy-LGxRR4yY1urohwk_T0Z0guh0sDpo60Uqcd0bcLMqS00eNRx_3pzpCKUInb69X4_jYo-spKASTWQi-4vIlwkCrgoDObaN78HdLillo9aK7sNWXDyAO5egCh9CPR3x_a_zt2zE5stf8ZTNMvU0w5yXURsJo2O2uGKZZJOuH2WNP4LjaxHOY9heLBfxCTDvqiAVlt9eeCyrnEvapiiT88KFqi4H8KYXh_EdHjnRYpwarEtIeOay8Aawu5l91uJwXDHvA0l2M4fQs_OD5fl30zmjcSXWxS4kzIYJ0a2xVQhUB6Yk0UCDG8Br0kteGF_J265VAT-M0LLMSFHWSsBBA9jpVWc651-ZC1N9-v_hl3BrcjSbmunB_PAZ3CYm-_Z0Zwe21-c_43PMd9buRTYyBt-u26r_AeV9FM8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK7gkhg9GJ9xEbUPEg-msz09j6ZNjFlkNyAwISoJt7GfXsgusKvGv-avs6pnZuGCN64znc50VXW9pqo-gDdKOG1tFrmrouCFriLXha94sMpkoRTCpA65o7raOyk-n5ana_C374WhsspeJyZF7eeOcuQjqZQuydneHsWuLOJ4d_rx_IITghT9ae3hNFoROQh_fmP4tviwv4u83pJyOvn2aY93CAPcoSFbchVzGUyQWSwjNaz4KKJDlV3J4PLMZGVA62mMDm474lFlwAsRrPZGe22ciDnuewfWFUZFYgDrO5P6-MsqwyOUoln1bbV9nmsxIpnJKGATCdb-yg4muICbjEKydNOH8KBzUdm4lalHsBZmj-H-tcGFT6A8HPPJ1_o9G7N6_iucsaMERM3QA2bUVMIo6RYWLEFuUjFS4v9TOLkV8jyDwWw-C8-BOVt4qTAYd8JhkGVt1CYGGa0T1hdlPoR3PTka100nJ5CMswajFCJec514Q9harT5vp3LcsG6HKLtaQ7O004P55Y-mu5qNzTFKtj6ib0zz3SpTeE9RYYwSxdXbIbwlvqSN8ZOc6RoX8GA0O6sZK_JhaYzQEDZ71jWdKlg0V4K78f_Xr-EuSnRzuF8fvIB7BGvfpno2YbC8_BleovOztK86KWPw_bYF-x8nsRph |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LA-ESN%3A+A+Novel+Method+for+Time+Series+Classification&rft.jtitle=Information+%28Basel%29&rft.au=Hui+Sheng&rft.au=Min+Liu&rft.au=Jiyong+Hu&rft.au=Ping+Li&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=2078-2489&rft.volume=14&rft.issue=2&rft.spage=67&rft_id=info:doi/10.3390%2Finfo14020067&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b3825bdf11524856a4dd6259ff2a1edb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon |