Bio-Inspired Multi-UAV Path Planning Heuristics: A Review
Despite the rapid advances in autonomous guidance and navigation techniques for unmanned aerial vehicle (UAV) systems, there are still many challenges in finding an optimal path planning algorithm that allows outlining a collision-free navigation route from the vehicle’s current position to a goal p...
Saved in:
Published in | Mathematics (Basel) Vol. 11; no. 10; p. 2356 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-7390 2227-7390 |
DOI | 10.3390/math11102356 |
Cover
Abstract | Despite the rapid advances in autonomous guidance and navigation techniques for unmanned aerial vehicle (UAV) systems, there are still many challenges in finding an optimal path planning algorithm that allows outlining a collision-free navigation route from the vehicle’s current position to a goal point. The challenges grow as the number of UAVs involved in the mission increases. Therefore, this work provides a comprehensive systematic review of the literature on the path planning algorithms for multi-UAV systems. In particular, the review focuses on biologically inspired (bio-inspired) algorithms due to their potential in overcoming the challenges associated with multi-UAV path planning problems. It presents a taxonomy for classifying existing algorithms and describes their evolution in the literature. The work offers a structured and accessible presentation of bio-inspired path planning algorithms for researchers in this subject, especially as no previous review exists with a similar scope. This classification is significant as it facilitates studying bio-inspired multi-UAV path planning algorithms under one framework, shows the main design features of the algorithms clearly to assist in a detailed comparison between them, understanding current research trends, and anticipating future directions. Our review showed that bio-inspired algorithms have a high potential to approach the multi-UAV path planning problem and identified challenges and future research directions that could help improve this dynamic research area. |
---|---|
AbstractList | Despite the rapid advances in autonomous guidance and navigation techniques for unmanned aerial vehicle (UAV) systems, there are still many challenges in finding an optimal path planning algorithm that allows outlining a collision-free navigation route from the vehicle’s current position to a goal point. The challenges grow as the number of UAVs involved in the mission increases. Therefore, this work provides a comprehensive systematic review of the literature on the path planning algorithms for multi-UAV systems. In particular, the review focuses on biologically inspired (bio-inspired) algorithms due to their potential in overcoming the challenges associated with multi-UAV path planning problems. It presents a taxonomy for classifying existing algorithms and describes their evolution in the literature. The work offers a structured and accessible presentation of bio-inspired path planning algorithms for researchers in this subject, especially as no previous review exists with a similar scope. This classification is significant as it facilitates studying bio-inspired multi-UAV path planning algorithms under one framework, shows the main design features of the algorithms clearly to assist in a detailed comparison between them, understanding current research trends, and anticipating future directions. Our review showed that bio-inspired algorithms have a high potential to approach the multi-UAV path planning problem and identified challenges and future research directions that could help improve this dynamic research area. |
Audience | Academic |
Author | Aljalaud, Faten Kurdi, Heba Youcef-Toumi, Kamal |
Author_xml | – sequence: 1 givenname: Faten surname: Aljalaud fullname: Aljalaud, Faten – sequence: 2 givenname: Heba orcidid: 0000-0001-6110-9657 surname: Kurdi fullname: Kurdi, Heba – sequence: 3 givenname: Kamal orcidid: 0000-0001-6755-1534 surname: Youcef-Toumi fullname: Youcef-Toumi, Kamal |
BookMark | eNptkU9P3DAQxS1EJSjl1g8QiSsB_0nimNsW0bISqKgqvVrjyWTxKmtv7WyrfntMt6pQVfvg0fi9n588b9lhiIEYey_4hVKGX25gfhJCcKna7oAdSyl1rcvF4av6iJ3mvOZlGaH6xhwz88HHehny1icaqvvdNPv6cfGteii06mGCEHxYVbe0Sz7PHvNVtai-0A9PP9-xNyNMmU7_nCfs8ePN1-vb-u7zp-X14q7GhndzrY0DqSRh1wzQDsQdKE6OBkLOwQnjEBtEPYJre4lSO9Gbzg0jtpI6geqELffcIcLabpPfQPplI3j7uxHTykIq0SayAjgIDapV2DdcNK6QqeOSG6dRN1BYZ3vWNsXvO8qzXcddCiW-lb0wjW6N6IrqYq9aQYH6MMY5AZY90MZj-fXRl_5Ct9wYYTpeDOd7A6aYc6Lxb0zB7ctw7OvhFLn8R45-htnHUN7x0_9Nz-5Bksw |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e37286 crossref_primary_10_1109_ACCESS_2024_3406133 crossref_primary_10_3390_drones7100636 crossref_primary_10_3390_designs8060136 crossref_primary_10_3390_s24237859 crossref_primary_10_3390_electronics12194026 crossref_primary_10_1007_s11227_024_06574_z crossref_primary_10_3390_drones8080378 crossref_primary_10_1371_journal_pone_0308264 crossref_primary_10_1088_1361_6501_ad761f crossref_primary_10_1016_j_compag_2025_109983 crossref_primary_10_1088_1361_6501_ad66f5 crossref_primary_10_1109_ACCESS_2023_3344455 |
Cites_doi | 10.1177/0954410019829368 10.3390/math10030416 10.1177/1729881420936154 10.1007/s42235-020-0049-9 10.1109/ACC.2015.7170894 10.1016/j.knosys.2011.07.001 10.1016/j.asoc.2017.09.009 10.1111/itor.12783 10.1002/net.21965 10.21629/JSEE.2017.03.12 10.3390/app9101986 10.1177/0142331215583102 10.1504/IJAAC.2015.068041 10.1016/j.tre.2020.102128 10.1016/j.procs.2017.08.128 10.5772/intechopen.74181 10.1109/CDC.2007.4434345 10.1109/ACCESS.2021.3049892 10.1016/j.eswa.2018.08.008 10.1016/j.asoc.2018.06.006 10.1016/j.cad.2015.05.001 10.1016/j.ast.2018.02.031 10.1109/ACCESS.2020.2992217 10.1016/j.swevo.2018.01.011 10.1007/s12652-020-02514-w 10.1109/ACCESS.2020.3026666 10.3390/jmse9090955 10.1016/j.advengsoft.2016.01.008 10.1080/23311916.2018.1502242 10.1007/978-3-319-77042-0 10.1016/j.cor.2010.06.001 10.1007/978-3-319-14705-5_8 10.1007/978-90-481-9707-1 10.1016/j.ast.2013.11.003 10.1109/3477.484436 10.1016/j.neucom.2018.06.032 10.1109/ICSTCC.2017.8107010 10.3390/info11040226 10.1108/IJICC-02-2014-0005 10.1016/j.swevo.2015.10.011 10.1016/j.advengsoft.2013.12.007 10.1016/j.knosys.2018.05.033 10.1109/ACCESS.2019.2962340 10.1007/978-3-319-14705-5 10.1109/TAES.2020.3029624 10.1109/ACCESS.2021.3073420 10.1016/j.comcom.2020.04.050 10.1155/2014/892914 10.1016/j.robot.2016.08.001 10.5897/IJPS11.1745 10.1007/978-0-387-30440-3_344 10.1016/j.ast.2018.01.035 10.4236/jcc.2014.24018 10.1017/S0373463321000825 10.1007/s12559-020-09730-8 10.3390/s21041108 10.1109/ACCESS.2019.2920623 10.1016/j.apenergy.2019.113823 10.1016/j.eswa.2016.04.018 10.1007/s10846-013-9895-6 10.15607/RSS.2013.IX.030 10.1016/j.procs.2019.09.279 10.1142/S2301385020500090 10.3390/aerospace8120363 10.1007/s10489-018-1384-y 10.1016/j.adhoc.2017.09.001 10.1016/j.engappai.2020.103807 10.1016/j.matcom.2018.08.011 10.3390/s23031463 10.1007/s42405-018-0052-0 10.1016/j.procs.2018.01.113 10.1016/j.comcom.2019.10.014 10.1109/ACCESS.2021.3107479 10.3390/app11083417 10.5772/57313 10.1142/S2301385017500029 10.1007/3-540-45712-7_60 10.1016/j.jclinepi.2021.03.001 10.3390/sym10100450 10.1016/j.asoc.2019.105643 10.1016/j.swevo.2019.04.008 10.3390/drones3030066 10.1155/2018/8269698 10.1007/s11831-022-09742-7 10.1023/A:1008855018923 10.1109/MRS.2019.8901059 10.23919/CCC50068.2020.9188762 10.1016/j.cja.2019.03.026 10.1016/j.actaastro.2019.11.016 10.1109/ACCESS.2020.3033408 10.1108/AEAT-05-2017-0124 10.3390/s21072482 10.3390/math10203744 10.3390/rs13224644 10.1016/j.knosys.2015.12.022 10.1147/sj.41.0025 10.3390/drones6050126 10.1016/S1672-6529(14)60162-1 10.1016/j.robot.2017.10.011 10.1007/s00521-017-3272-5 10.1016/j.dt.2019.04.011 10.1287/mnsc.6.1.80 10.1186/s40708-020-0102-9 10.1109/4235.996017 10.1109/TCBB.2015.2443789 10.1631/FITEE.2000228 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math11102356 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_1a0a17a353c84014bc4ce60209b7c74a A750991960 10_3390_math11102356 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c406t-79ba232ec64da5de0ba30ebedec00ab19bcc4cc7fab582c27b1896bdfc52e61c3 |
IEDL.DBID | BENPR |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:23:08 EDT 2025 Sun Jul 13 04:25:34 EDT 2025 Tue Jun 10 20:37:29 EDT 2025 Tue Jul 01 01:53:13 EDT 2025 Thu Apr 24 23:12:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-79ba232ec64da5de0ba30ebedec00ab19bcc4cc7fab582c27b1896bdfc52e61c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6110-9657 0000-0001-6755-1534 |
OpenAccessLink | https://www.proquest.com/docview/2819475916?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 2819475916 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1a0a17a353c84014bc4ce60209b7c74a proquest_journals_2819475916 gale_infotracacademiconefile_A750991960 crossref_primary_10_3390_math11102356 crossref_citationtrail_10_3390_math11102356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_94 Zhu (ref_101) 2014; 32 Radmanesh (ref_85) 2018; 77 Wu (ref_105) 2006; 21 ref_12 Mac (ref_17) 2016; 86 ref_96 Osaba (ref_14) 2019; 48 Page (ref_57) 2021; 134 ref_18 ref_16 ref_15 Pan (ref_78) 2021; 9 Mirjalili (ref_103) 2016; 95 Soukane (ref_13) 2022; 29 Shao (ref_65) 2021; 9 Zhang (ref_115) 2017; 14 Li (ref_108) 2020; 8 Tang (ref_22) 2020; 17 Luan (ref_107) 2019; 16 ref_25 Basiri (ref_7) 2022; 75 ref_24 ref_23 Kurdi (ref_1) 2019; 83 ref_21 Cakici (ref_80) 2016; 38 Wilhelm (ref_81) 2017; 5 Wu (ref_82) 2018; 90 Khan (ref_4) 2016; 12 Liu (ref_66) 2019; 32 Zhang (ref_10) 2020; 21 Mirjalili (ref_104) 2016; 14 ref_29 ref_28 ref_27 Yanmaz (ref_120) 2018; 68 Iscan (ref_113) 2014; 2 ref_71 Fan (ref_79) 2020; 17 Guo (ref_100) 2015; 9 Dorigo (ref_106) 1992; 26 Boukoberine (ref_2) 2019; 255 Skorobogatov (ref_26) 2020; 8 (ref_89) 2018; 62 Adamidis (ref_116) 2002; Volume 2439 ref_77 ref_76 Wang (ref_75) 2021; 2021 ref_73 Bresenham (ref_74) 1965; 4 Yang (ref_88) 2020; 16 Sarno (ref_51) 2020; 167 Yan (ref_50) 2013; 10 Duan (ref_47) 2021; 57 Ziyang (ref_90) 2018; 76 Das (ref_60) 2016; 28 Ghandi (ref_48) 2015; 67–68 Kar (ref_119) 2016; 59 Lee (ref_83) 2018; 19 Deb (ref_72) 2002; 6 Du (ref_93) 2019; 7 Molina (ref_59) 2020; 12 Carbone (ref_54) 2015; Volume 29 Ergezer (ref_36) 2014; 73 Nazarahari (ref_44) 2019; 115 ref_58 ref_56 ref_53 Asma (ref_110) 2019; 159 Raja (ref_20) 2012; 7 Tian (ref_111) 2018; 41 Li (ref_114) 2020; 7 Hu (ref_37) 2017; 28 Edison (ref_95) 2011; 38 ref_67 Ayawli (ref_121) 2018; 2018 Sultan (ref_38) 2021; 9 ref_63 ref_62 Patle (ref_9) 2019; 15 Kurdi (ref_3) 2018; 71 Zhao (ref_11) 2018; 158 Xu (ref_87) 2020; 162 Aggarwal (ref_8) 2020; 149 Mirjalili (ref_97) 2014; 69 Gul (ref_99) 2020; 12 Shen (ref_46) 2020; 144 Dantzig (ref_30) 1959; 6 Yang (ref_68) 2016; 13 Dewangan (ref_86) 2019; 49 ref_35 Yan (ref_69) 2019; 233 Li (ref_91) 2020; 94 ref_34 ref_33 Cao (ref_84) 2019; 22 ref_32 Shen (ref_117) 2014; 2014 Kahng (ref_52) 1997; 4 Luhach (ref_43) 2020; Volume 1045 ref_39 Mohanan (ref_45) 2018; 100 Zhang (ref_6) 2018; 313 (ref_31) 2021; 28 (ref_118) 2020; 8 Zhen (ref_70) 2020; 31 ref_42 ref_41 Teng (ref_64) 2020; 8 ref_102 ref_40 Duan (ref_109) 2014; 7 Lamini (ref_19) 2018; 127 Liu (ref_92) 2020; 8 Faris (ref_98) 2018; 30 ref_49 Gunantara (ref_55) 2018; 5 Asma (ref_61) 2017; 112 Pan (ref_112) 2012; 26 Parker (ref_5) 2009; 24 |
References_xml | – volume: 233 start-page: 4735 year: 2019 ident: ref_69 article-title: Heterogeneous multi-unmanned aerial vehicle task planning: Simultaneous attacks on targets using the Pythagorean hodograph curve publication-title: Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng. doi: 10.1177/0954410019829368 – ident: ref_29 doi: 10.3390/math10030416 – volume: 17 start-page: 172988142093615 year: 2020 ident: ref_22 article-title: Multi-robot path planning using an improved self-adaptive particle swarm optimization publication-title: Int. J. Adv. Robot. Syst. doi: 10.1177/1729881420936154 – volume: 17 start-page: 611 year: 2020 ident: ref_79 article-title: Review and Classification of Bio-inspired Algorithms and Their Applications publication-title: J. Bionic Eng. doi: 10.1007/s42235-020-0049-9 – ident: ref_96 doi: 10.1109/ACC.2015.7170894 – volume: 21 start-page: 898 year: 2006 ident: ref_105 article-title: Differential evolution algorithm with adaptive second mutation publication-title: Control Decis. – volume: 26 start-page: 69 year: 2012 ident: ref_112 article-title: A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.07.001 – volume: 62 start-page: 789 year: 2018 ident: ref_89 article-title: Ant colony optimization for multi-UAV minimum time search in uncertain domains publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.009 – volume: 28 start-page: 1626 year: 2021 ident: ref_31 article-title: Unmanned aerial vehicles/drones in vehicle routing problems: A literature review publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.12783 – ident: ref_34 doi: 10.1002/net.21965 – volume: 28 start-page: 526 year: 2017 ident: ref_37 article-title: Optimal search for moving targets with sensing capabilities using multiple UAVs publication-title: J. Syst. Eng. Electron. doi: 10.21629/JSEE.2017.03.12 – ident: ref_16 – ident: ref_41 doi: 10.3390/app9101986 – volume: 38 start-page: 593 year: 2016 ident: ref_80 article-title: Coordinated guidance for multiple UAVs publication-title: Trans. Inst. Meas. Control doi: 10.1177/0142331215583102 – volume: 9 start-page: 50 year: 2015 ident: ref_100 article-title: The path planning for mobile robot based on bat algorithm publication-title: Int. J. Autom. Control doi: 10.1504/IJAAC.2015.068041 – volume: 144 start-page: 102128 year: 2020 ident: ref_46 article-title: Synergistic path planning of multi-UAVs for air pollution detection of ships in ports publication-title: Transp. Res. Part E-Logist. Transp. Rev. doi: 10.1016/j.tre.2020.102128 – volume: 112 start-page: 1082 year: 2017 ident: ref_61 article-title: Dynamic Distributed PSO joints elites in Multiple Robot Path Planning Systems: Theoretical and practical review of new ideas publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.08.128 – ident: ref_53 doi: 10.5772/intechopen.74181 – ident: ref_94 doi: 10.1109/CDC.2007.4434345 – ident: ref_71 – volume: 9 start-page: 7994 year: 2021 ident: ref_78 article-title: A Deep Learning Trained by Genetic Algorithm to Improve the Efficiency of Path Planning for Data Collection with Multi-UAV publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049892 – volume: 115 start-page: 106 year: 2019 ident: ref_44 article-title: Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.008 – volume: 71 start-page: 110 year: 2018 ident: ref_3 article-title: Autonomous task allocation for multi-UAV systems based on the locust elastic behavior publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.06.006 – volume: 67–68 start-page: 58 year: 2015 ident: ref_48 article-title: Review and taxonomies of assembly and disassembly path planning problems and approaches publication-title: Comput.-Aided Des. doi: 10.1016/j.cad.2015.05.001 – ident: ref_56 – volume: 77 start-page: 168 year: 2018 ident: ref_85 article-title: Grey wolf optimization based sense and avoid algorithm in a Bayesian framework for multiple UAV path planning in an uncertain environment publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.02.031 – volume: 8 start-page: 86316 year: 2020 ident: ref_64 article-title: 3D Optimal Surveillance Trajectory Planning for Multiple UAVs by Using Particle Swarm Optimization With Surveillance Area Priority publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2992217 – volume: 41 start-page: 49 year: 2018 ident: ref_111 article-title: MPSO: Modified particle swarm optimization and its applications publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.01.011 – volume: 12 start-page: 7873 year: 2020 ident: ref_99 article-title: Meta-heuristic approach for solving multi-objective path planning for autonomous guided robot using PSO–GWO optimization algorithm with evolutionary programming publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-020-02514-w – volume: 8 start-page: 176774 year: 2020 ident: ref_118 article-title: Optimized Path-Planning in Continuous Spaces for Unmanned Aerial Vehicles Using Meta-Heuristics publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3026666 – ident: ref_62 doi: 10.3390/jmse9090955 – volume: 2021 start-page: 5525560 year: 2021 ident: ref_75 article-title: Virtual Reality Technology of Multi UAVEarthquake Disaster Path Optimization publication-title: Math. Probl. Eng. – volume: 95 start-page: 51 year: 2016 ident: ref_103 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 5 start-page: 1502242 year: 2018 ident: ref_55 article-title: A review of multi-objective optimization: Methods and its applications publication-title: Cogent Eng. doi: 10.1080/23311916.2018.1502242 – ident: ref_18 doi: 10.1007/978-3-319-77042-0 – volume: 31 start-page: 130 year: 2020 ident: ref_70 article-title: Rotary unmanned aerial vehicles path planning in rough terrain based on multi-objective particle swarm optimization publication-title: J. Syst. Eng. Electron. – volume: 38 start-page: 340 year: 2011 ident: ref_95 article-title: Integrated task assignment and path optimization for cooperating uninhabited aerial vehicles using genetic algorithms publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2010.06.001 – volume: Volume 29 start-page: 223 year: 2015 ident: ref_54 article-title: Motion Planning Using Fast Marching Squared Method publication-title: Motion and Operation Planning of Robotic Systems doi: 10.1007/978-3-319-14705-5_8 – ident: ref_27 doi: 10.1007/978-90-481-9707-1 – volume: 32 start-page: 153 year: 2014 ident: ref_101 article-title: Chaotic predator–prey biogeography-based optimization approach for UCAV path planning publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2013.11.003 – volume: 26 start-page: 29 year: 1992 ident: ref_106 article-title: The Ant System: Optimization by a colony of cooperating agents publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/3477.484436 – volume: 313 start-page: 229 year: 2018 ident: ref_6 article-title: Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.032 – volume: Volume 1045 start-page: 409 year: 2020 ident: ref_43 article-title: Path Planning of Unmanned aerial Vehicles: Current state and future challenges publication-title: First International Conference on Sustainable Technologies for Computational Intelligence – ident: ref_15 doi: 10.1109/ICSTCC.2017.8107010 – ident: ref_24 doi: 10.3390/info11040226 – ident: ref_67 – volume: 7 start-page: 24 year: 2014 ident: ref_109 article-title: Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning publication-title: Int. J. Intell. Comput. Cybern. doi: 10.1108/IJICC-02-2014-0005 – volume: 28 start-page: 14 year: 2016 ident: ref_60 article-title: A hybridization of an improved particle swarm optimization and gravitational search algorithm for multi-robot path planning publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.10.011 – volume: 69 start-page: 46 year: 2014 ident: ref_97 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 158 start-page: 54 year: 2018 ident: ref_11 article-title: Survey on computational-intelligence-based UAV path planning publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.05.033 – volume: 8 start-page: 2995 year: 2020 ident: ref_108 article-title: Trajectory Planning for UAV Based on Improved ACO Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962340 – ident: ref_49 doi: 10.1007/978-3-319-14705-5 – volume: 57 start-page: 706 year: 2021 ident: ref_47 article-title: Dynamic Discrete Pigeon-Inspired Optimization for Multi-UAV Cooperative Search-Attack Mission Planning publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2020.3029624 – volume: 9 start-page: 60668 year: 2021 ident: ref_65 article-title: Efficient Trajectory Planning for UAVs Using Hierarchical Optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3073420 – volume: 162 start-page: 196 year: 2020 ident: ref_87 article-title: Optimized multi-UAV cooperative path planning under the complex confrontation environment publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.04.050 – volume: 2014 start-page: 1 year: 2014 ident: ref_117 article-title: Lifecycle-Based Swarm Optimization Method for Numerical Optimization publication-title: Discret. Dyn. Nat. Soc. doi: 10.1155/2014/892914 – volume: 86 start-page: 13 year: 2016 ident: ref_17 article-title: Heuristic approaches in robot path planning: A survey publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2016.08.001 – volume: 7 start-page: 1314 year: 2012 ident: ref_20 article-title: Optimal path planning of mobile robots: A review publication-title: Int. J. Phys. Sci. doi: 10.5897/IJPS11.1745 – volume: 24 start-page: 5783 year: 2009 ident: ref_5 article-title: Path Planning and Motion Coordination in Multiple Mobile Robot Teams publication-title: Encycl. Complex. Syst. Sci. doi: 10.1007/978-0-387-30440-3_344 – volume: 76 start-page: 402 year: 2018 ident: ref_90 article-title: Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2018.01.035 – volume: 2 start-page: 137 year: 2014 ident: ref_113 article-title: Parameter Analysis on Fruit Fly Optimization Algorithm publication-title: J. Comput. Commun. doi: 10.4236/jcc.2014.24018 – volume: 75 start-page: 364 year: 2022 ident: ref_7 article-title: A survey on the application of path-planning algorithms for multi-rotor UAVs in precision agriculture publication-title: J. Navig. doi: 10.1017/S0373463321000825 – volume: 12 start-page: 897 year: 2020 ident: ref_59 article-title: Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration versus Algorithmic Behavior, Critical Analysis and Recommendations publication-title: Cogn. Comput. doi: 10.1007/s12559-020-09730-8 – ident: ref_42 doi: 10.3390/s21041108 – volume: 7 start-page: 73480 year: 2019 ident: ref_93 article-title: Evolutionary Planning of Multi-UAV Search for Missing Tourists publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920623 – volume: 255 start-page: 113823 year: 2019 ident: ref_2 article-title: A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113823 – volume: 22 start-page: S5175 year: 2019 ident: ref_84 article-title: Multi-base multi-UAV cooperative reconnaissance path planning with genetic algorithm publication-title: Clust. Comput. J. Netw. Softw. Tools Appl. – volume: 59 start-page: 20 year: 2016 ident: ref_119 article-title: Bio inspired computing—A review of algorithms and scope of applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.04.018 – volume: 73 start-page: 737 year: 2014 ident: ref_36 article-title: 3D Path Planning for Multiple UAVs for Maximum Information Collection publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-013-9895-6 – ident: ref_23 doi: 10.15607/RSS.2013.IX.030 – volume: 159 start-page: 1103 year: 2019 ident: ref_110 article-title: PSO-based Dynamic Distributed Algorithm for Automatic Task Clustering in a Robotic Swarm publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.09.279 – volume: 8 start-page: 149 year: 2020 ident: ref_26 article-title: Multiple UAV Systems: A Survey publication-title: Unmanned Syst. doi: 10.1142/S2301385020500090 – ident: ref_39 doi: 10.3390/aerospace8120363 – volume: 49 start-page: 2201 year: 2019 ident: ref_86 article-title: Three dimensional path planning using Grey wolf optimizer for UAVs publication-title: Appl. Intell. doi: 10.1007/s10489-018-1384-y – volume: 68 start-page: 1 year: 2018 ident: ref_120 article-title: Drone networks: Communications, coordination, and sensing publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2017.09.001 – volume: 16 start-page: 991 year: 2020 ident: ref_88 article-title: Three-Dimensional Uav Cooperative Path Planning Based on the Mp-Cgwo Algorithm publication-title: Int. J. Innov. Comput. Inf. Control – volume: 94 start-page: 103807 year: 2020 ident: ref_91 article-title: Path planning of multiple UAVs with online changing tasks by an ORPFOA algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103807 – volume: 16 start-page: 294 year: 2019 ident: ref_107 article-title: A novel method to solve supplier selection problem: Hybrid algorithm of genetic algorithm and ant colony optimization publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2018.08.011 – ident: ref_33 doi: 10.3390/s23031463 – volume: 19 start-page: 785 year: 2018 ident: ref_83 article-title: A Mini-drone Development, Genetic Vector Field-Based Multi-agent Path Planning, and Flight Tests publication-title: Int. J. Aeronaut. Space Sci. doi: 10.1007/s42405-018-0052-0 – volume: 127 start-page: 180 year: 2018 ident: ref_19 article-title: Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.01.113 – volume: 149 start-page: 270 year: 2020 ident: ref_8 article-title: Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.10.014 – volume: 9 start-page: 118815 year: 2021 ident: ref_38 article-title: Communication among Heterogeneous Unmanned Aerial Vehicles (UAVs): Classification, Trends, and Analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3107479 – ident: ref_58 – ident: ref_73 doi: 10.3390/app11083417 – volume: 10 start-page: 399 year: 2013 ident: ref_50 article-title: A Survey and Analysis of Multi-Robot Coordination publication-title: Int. J. Adv. Robot. Syst. doi: 10.5772/57313 – volume: 5 start-page: 19 year: 2017 ident: ref_81 article-title: Heterogeneous Aerial Platform Adaptive Mission Planning Using Genetic Algorithms publication-title: Unmanned Syst. doi: 10.1142/S2301385017500029 – volume: Volume 2439 start-page: 621 year: 2002 ident: ref_116 article-title: The LifeCycle Model: Combining Particle Swarm Optimisation, Genetic Algorithms and HillClimbers publication-title: Parallel Problem Solving from Nature—PPSN VII. doi: 10.1007/3-540-45712-7_60 – volume: 134 start-page: 178 year: 2021 ident: ref_57 article-title: The PRISMA 2020 statement: An updated guideline for reporting systematic reviews publication-title: J. Clin. Epidemiol. doi: 10.1016/j.jclinepi.2021.03.001 – ident: ref_21 doi: 10.3390/sym10100450 – volume: 83 start-page: 105643 year: 2019 ident: ref_1 article-title: Adaptive task allocation for multi-UAV systems based on bacteria foraging behaviour publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105643 – volume: 48 start-page: 220 year: 2019 ident: ref_14 article-title: Bio-inspired computation: Where we stand and what’s next publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.04.008 – ident: ref_28 doi: 10.3390/drones3030066 – volume: 2018 start-page: 8269698 year: 2018 ident: ref_121 article-title: An Overview of Nature-Inspired, Conventional, and Hybrid Methods of Autonomous Vehicle Path Planning publication-title: J. Adv. Transp. doi: 10.1155/2018/8269698 – volume: 12 start-page: 187 year: 2016 ident: ref_4 article-title: Cooperative robots to observe moving targets: A review publication-title: IEEE Trans. Cybern. – volume: 29 start-page: 4233 year: 2022 ident: ref_13 article-title: UAV Path Planning Using Optimization Approaches: A Survey publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-022-09742-7 – ident: ref_76 – volume: 4 start-page: 7 year: 1997 ident: ref_52 article-title: Cooperative Mobile Robotics: Antecedents and Directions publication-title: Auton. Robots doi: 10.1023/A:1008855018923 – ident: ref_40 doi: 10.1109/MRS.2019.8901059 – ident: ref_25 doi: 10.23919/CCC50068.2020.9188762 – volume: 32 start-page: 1504 year: 2019 ident: ref_66 article-title: Collision free 4D path planning for multiple UAVs based on spatial refined voting mechanism and PSO approach publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2019.03.026 – volume: 167 start-page: 404 year: 2020 ident: ref_51 article-title: Path planning and guidance algorithms for SAR formation reconfiguration: Comparison between centralized and decentralized approaches publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2019.11.016 – volume: 8 start-page: 197407 year: 2020 ident: ref_92 article-title: Three-Dimensional Mountain Complex Terrain and Heterogeneous Multi-UAV Cooperative Combat Mission Planning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3033408 – ident: ref_102 – ident: ref_63 – volume: 90 start-page: 1403 year: 2018 ident: ref_82 article-title: A distributed and integrated method for cooperative mission planning of multiple heterogeneous UAVs publication-title: Aircr. Eng. Aerosp. Technol. doi: 10.1108/AEAT-05-2017-0124 – ident: ref_35 doi: 10.3390/s21072482 – ident: ref_32 doi: 10.3390/math10203744 – ident: ref_77 doi: 10.3390/rs13224644 – volume: 14 start-page: 120 year: 2016 ident: ref_104 article-title: SCA: A Sine Cosine Algorithm for solving optimization problems publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 4 start-page: 25 year: 1965 ident: ref_74 article-title: Algorithm for computer control of a digital plotter publication-title: IBM Syst. J. doi: 10.1147/sj.41.0025 – ident: ref_12 doi: 10.3390/drones6050126 – volume: 13 start-page: 84 year: 2016 ident: ref_68 article-title: Bio-inspired collision-free 4D trajectory generation for UAVs using tau strategy publication-title: J. Bionic Eng. doi: 10.1016/S1672-6529(14)60162-1 – volume: 100 start-page: 171 year: 2018 ident: ref_45 article-title: A survey of robotic motion planning in dynamic environments publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2017.10.011 – volume: 30 start-page: 413 year: 2018 ident: ref_98 article-title: Grey wolf optimizer: A review of recent variants and applications publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3272-5 – volume: 15 start-page: 582 year: 2019 ident: ref_9 article-title: A review: On path planning strategies for navigation of mobile robot publication-title: Def. Technol. doi: 10.1016/j.dt.2019.04.011 – volume: 6 start-page: 80 year: 1959 ident: ref_30 article-title: The Truck Dispatching Problem publication-title: Manag. Sci. doi: 10.1287/mnsc.6.1.80 – volume: 7 start-page: 1 year: 2020 ident: ref_114 article-title: Improved fruit fly algorithm on structural optimization publication-title: Brain Inform. doi: 10.1186/s40708-020-0102-9 – volume: 6 start-page: 182 year: 2002 ident: ref_72 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 14 start-page: 97 year: 2017 ident: ref_115 article-title: Three-Dimensional Path Planning for Uninhabited Combat Aerial Vehicle Based on Predator-Prey Pigeon-Inspired Optimization in Dynamic Environment publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2015.2443789 – volume: 21 start-page: 1671 year: 2020 ident: ref_10 article-title: A review of cooperative path planning of an unmanned aerial vehicle group publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.2000228 |
SSID | ssj0000913849 |
Score | 2.3165004 |
Snippet | Despite the rapid advances in autonomous guidance and navigation techniques for unmanned aerial vehicle (UAV) systems, there are still many challenges in... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2356 |
SubjectTerms | ACO Algorithms Analysis Autonomous navigation bio-inspired algorithms Biomimetics Classification Collision avoidance Drone aircraft Literature reviews metaheuristics multi-UAV Path planning Robots Systematic review Taxonomy Traveling salesman problem Trends unmanned aerial vehicle Unmanned aerial vehicles |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NSwMxEA3iSQ_iJ1ar5KB4kKXJJtlsvG3FUoWKByu9hXwtCrIV2_5_J7vbUg_Fi9dlWJI3ycwbkrxB6Irm3gsm06SEbJJwwQjEQRUSAYuHG-KttbFQHD1nwzF_mojJWquveCeskQdugOtRQwyVhgnmoBah3DruQgYkR1npJK-pEVFkrZiqY7CiLOequenOoK7vAf97h30d5V2yXzmolurfFJDrLDPYR3stPcRFM6wDtBWqQ7Q7Wmmrzo6Q6n9Mk8cqnpAHj-sHtMm4eMMvYISXPYjwMCxaDeY7XODmBOAYjQcPr_fDpG2AkDjIs_NEKmuA8QSXcW-ED8QaRgB1HxwhxlJlHaDhZGmsyFOXSktzlVlfOpGGjDp2graraRVOEZYmBGMNJ0bl3JcCfuQDcDtgP8xlhnTQ7RIS7Vp18Nik4lNDlRAB1OsAdtD1yvqrUcXYYNeP6K5sopZ1_QE8rFsP67883EE30Tc67jgYkjPtwwGYWNSu0kUkPQoiCUyiu3SfbrfiTMeTwihqSLOz_xjNOdqJHeebO49dtD3_XoQL4CVze1kvwR9yHd5S priority: 102 providerName: Directory of Open Access Journals |
Title | Bio-Inspired Multi-UAV Path Planning Heuristics: A Review |
URI | https://www.proquest.com/docview/2819475916 https://doaj.org/article/1a0a17a353c84014bc4ce60209b7c74a |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9tAEB7xuLSHilKqhtLIB6oe0Ip1vGt7kaoqqQihEhFCpOK2mn2EVkIJhfD_O2Ov0_ZAr_bI8s57dna_ATjM6xB0UQ3EnKKJULqQ5AdNFJqUR6EMzjkuFC-m5WSmvt3omw2Ydndh-Fhl5xMbRx2WnvfIj7nhw9h0efnl_pfgqVHcXe1GaGAarRA-NxBjm7BNLrkmvd8enU4vr9a7LoyCWSvTnoAvqN4_przwB9k7w76U_8SmBsL_OUfdRJ_xDrxKaWM2bOX8GjbiYhdeXqwxVx_fgBn9XIrzBXfOY8iai7ViNvyeXRJR1s0myibxKWEzn2TDrO0M7MFsfHr9dSLSYAThKf6uRGUcUiYUfakC6hClw0KSNEL0UqLLjfNeeV_N0el64AeVy2tTujD3ehDL3BdvYWuxXMR3kFUYIzpUEk2twlzTh0KknI-yosKXKHtw1LHE-oQazsMr7ixVD8xA-zcDe_BxTX3fomU8Qzdi7q5pGOO6ebB8uLXJZGyOEvMKC114qkJz5WhNsaT01rjKVwp78IllY9kS6Zc8pgsFtDDGtLJDToYMeRhaxEEnPptM9NH-Uaj9_79-Dy94xnx7yvEAtlYPT_EDZSIr14fNenzWT0rWb-r53ynp3tY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOiKdIKeADFQdk1bu2d9eVEEqBkNCm4tCg3ly_ApWqpG1SVfwpfiMz-whwKLde1yNrZzyeh8f-BuB1VsWoZZnzKXoTrrQUaAdN4hqVRzkRvfeUKI4PiuFEfTnSR2vwq3sLQ9cqO5tYG-o4D3RGvk0FH8Kmy4r3Z-ecukZRdbVrodGoxV76eYUp2-Ld6COu71aeDz4dfhjytqsAD-i8lrw03mEYkUKhotMxCe-kQFZiCkI4nxkfggqhnDqvqzzkpc8qU_g4DTpPRRYkznsLbispDbWKqAafV2c6hLFZKdPcr6fxbYw6f6A1IVCZ4h_PVzcIuM4N1L5t8ADut0Ep6zda9BDW0uwR3BuvEF0Xj8Hsnsz5aEZ1-RRZ_WyXT_rf2FckYl3nIzZMly3y8w7rs6bu8AQmNyKgp7A-m8_SM2ClS8l5p4QzlYpTjRPFhBElxlwyFE704G0nEhtaTHJqjXFqMTchAdq_BdiDrRX1WYPFcQ3dLkl3RUMI2vWH-cV3225ImznhstJJLQPmuJnyyFMqMHg2vgylcj14Q2tjaZ_jLwXXPldAxggxy_Yp1DJov5CJzW75bGsAFvaPum78f_gV3Bkejvft_uhg7zncpW72zX3KTVhfXlymFxjzLP3LWtEYHN-0Zv8GlF0Wmw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIiE4IJ4iUGAPVByQFe_aXq-REEopIaG06oGg3ly_FipVSWlSIf4av46ZfQQ4lFuvuyNrZzyex874G4AXeRWjErpgNXoTJpXgaAdNYgqVRzoevfeUKO4flJOZ_HikjjbgV38Xhtoqe5vYGOq4CPSPfEgFH8Kmy8th3bVFHO6O3559ZzRBiiqt_TiNVkX20s8fmL4t30x3ca-3i2L8_vO7CesmDLCAjmzFtPEOQ4oUShmdiol7JziyFVPg3Pnc-BBkCLp2XlVFKLTPK1P6WAdVpDIPAte9Bte10IYSv2r8Yf1_h_A2K2naXnshDB9iBPoNLQsBzJT_eMFmWMBlLqHxc-M7cLsLULNRq1F3YSPN78Gt_TW66_I-mJ2TBZvOqUafYtZc4WWz0ZfsEImyfgpSNkkXHQr062yUtTWIBzC7EgE9hM35Yp4eQaZdSs47yZ2pZKwVLhQTRpcYf4lQOj6AV71IbOjwyWlMxqnFPIUEaP8W4AC219RnLS7HJXQ7JN01DaFpNw8W519tdzht7rjLtRNKBMx3c-mRp1RiIG28Dlq6AbykvbF05vGTguuuLiBjhJ5lRxR2GbRlyMRWv322MwZL-0d1H___9XO4gTptP00P9p7ATRps37ZWbsHm6vwiPcXwZ-WfNXqWwfFVK_ZvSTYa2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-Inspired+Multi-UAV+Path+Planning+Heuristics%3A+A+Review&rft.jtitle=Mathematics+%28Basel%29&rft.au=Aljalaud%2C+Faten&rft.au=Kurdi%2C+Heba&rft.au=Youcef-Toumi%2C+Kamal&rft.date=2023-05-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=10&rft.spage=2356&rft_id=info:doi/10.3390%2Fmath11102356&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |