Rigid Shape Registration Based on Extended Hamiltonian Learning

Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image analysis. The iterative closest point (ICP) algorithm is one of well known and widely used algorithms in this area. The main purpose of this pape...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 22; no. 5; p. 539
Main Authors Yi, Jin, Zhang, Shiqiang, Cao, Yueqi, Zhang, Erchuan, Sun, Huafei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 12.05.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image analysis. The iterative closest point (ICP) algorithm is one of well known and widely used algorithms in this area. The main purpose of this paper is to incorporate ICP with the fast convergent extended Hamiltonian learning (EHL), so called EHL-ICP algorithm, to perform planar and spatial rigid shape registration. By treating the registration error as the potential for the extended Hamiltonian system, the rigid shape registration is modelled as an optimization problem on the special Euclidean group S E ( n ) ( n = 2 , 3 ) . Our method is robust to initial values and parameters. Compared with some state-of-art methods, our approach shows better efficiency and accuracy by simulation experiments.
AbstractList Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image analysis. The iterative closest point (ICP) algorithm is one of well known and widely used algorithms in this area. The main purpose of this paper is to incorporate ICP with the fast convergent extended Hamiltonian learning (EHL), so called , to perform planar and spatial rigid shape registration. By treating the registration error as the potential for the extended Hamiltonian system, the rigid shape registration is modelled as an optimization problem on the special Euclidean group S E ( n ) ( n = 2 , 3 ) . Our method is robust to initial values and parameters. Compared with some state-of-art methods, our approach shows better efficiency and accuracy by simulation experiments.
Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image analysis. The iterative closest point (ICP) algorithm is one of well known and widely used algorithms in this area. The main purpose of this paper is to incorporate ICP with the fast convergent extended Hamiltonian learning (EHL), so called EHL-ICP algorithm, to perform planar and spatial rigid shape registration. By treating the registration error as the potential for the extended Hamiltonian system, the rigid shape registration is modelled as an optimization problem on the special Euclidean group S E ( n ) ( n = 2 , 3 ) . Our method is robust to initial values and parameters. Compared with some state-of-art methods, our approach shows better efficiency and accuracy by simulation experiments.
Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image analysis. The iterative closest point (ICP) algorithm is one of well known and widely used algorithms in this area. The main purpose of this paper is to incorporate ICP with the fast convergent extended Hamiltonian learning (EHL), so called EHL-ICP algorithm, to perform planar and spatial rigid shape registration. By treating the registration error as the potential for the extended Hamiltonian system, the rigid shape registration is modelled as an optimization problem on the special Euclidean group S E ( n ) ( n = 2 , 3 ) . Our method is robust to initial values and parameters. Compared with some state-of-art methods, our approach shows better efficiency and accuracy by simulation experiments.Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image analysis. The iterative closest point (ICP) algorithm is one of well known and widely used algorithms in this area. The main purpose of this paper is to incorporate ICP with the fast convergent extended Hamiltonian learning (EHL), so called EHL-ICP algorithm, to perform planar and spatial rigid shape registration. By treating the registration error as the potential for the extended Hamiltonian system, the rigid shape registration is modelled as an optimization problem on the special Euclidean group S E ( n ) ( n = 2 , 3 ) . Our method is robust to initial values and parameters. Compared with some state-of-art methods, our approach shows better efficiency and accuracy by simulation experiments.
Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image analysis. The iterative closest point (ICP) algorithm is one of well known and widely used algorithms in this area. The main purpose of this paper is to incorporate ICP with the fast convergent extended Hamiltonian learning (EHL), so called EHL-ICP algorithm , to perform planar and spatial rigid shape registration. By treating the registration error as the potential for the extended Hamiltonian system, the rigid shape registration is modelled as an optimization problem on the special Euclidean group S E ( n ) ( n = 2 , 3 ) . Our method is robust to initial values and parameters. Compared with some state-of-art methods, our approach shows better efficiency and accuracy by simulation experiments.
Author Yi, Jin
Sun, Huafei
Zhang, Shiqiang
Zhang, Erchuan
Cao, Yueqi
AuthorAffiliation 1 Department of Basic Courses, Beijing Union University, Beijing 100081, China; yijin@buu.edu.cn
3 School of Mathematics and Statistics, University of Western Australia, Crawley WA6009, Australia; erchuan.zhang@research.uwa.edu.au
2 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China; 3120181406@bit.edu.cn (S.Z.); 3120181396@bit.edu.cn (Y.C.)
AuthorAffiliation_xml – name: 2 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China; 3120181406@bit.edu.cn (S.Z.); 3120181396@bit.edu.cn (Y.C.)
– name: 1 Department of Basic Courses, Beijing Union University, Beijing 100081, China; yijin@buu.edu.cn
– name: 3 School of Mathematics and Statistics, University of Western Australia, Crawley WA6009, Australia; erchuan.zhang@research.uwa.edu.au
Author_xml – sequence: 1
  givenname: Jin
  orcidid: 0000-0003-0579-8990
  surname: Yi
  fullname: Yi, Jin
– sequence: 2
  givenname: Shiqiang
  surname: Zhang
  fullname: Zhang, Shiqiang
– sequence: 3
  givenname: Yueqi
  orcidid: 0000-0001-8856-2902
  surname: Cao
  fullname: Cao, Yueqi
– sequence: 4
  givenname: Erchuan
  surname: Zhang
  fullname: Zhang, Erchuan
– sequence: 5
  givenname: Huafei
  surname: Sun
  fullname: Sun, Huafei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33286311$$D View this record in MEDLINE/PubMed
BookMark eNptkUtvUzEQRi1URB-w4A-gu6SLUL-uHxtQqQqtFKlSgbU1sSe3rm7sYN-g8u8xTYla1JVHnuMzY32HZC_lhIS8ZfSDEJaeIOe0p72wL8gBo9bOpKB071G9Tw5rvaWUC87UK7IvBDdKMHZAPl3HIYbu2w2ssbvGIdapwBRz6j5DxdC14vxuwhRafQGrOE45RUjdHKGkmIbX5OUSxopvHs4j8uPL-fezi9n86uvl2el85iVV00wrDV5K9DxYHhCNbstIw7zynNIFMiWFwn5pRLBGA2WICkBpoTwCM0wckcutN2S4desSV1B-uwzR3V_kMjgoU_QjOt0LkMb0IaCU2koIQfTa2kVAYZbCNNfHrWu9WawweEztz-MT6dNOijduyL-amWkq-iZ4_yAo-ecG6-RWsXocR0iYN9VxqUwLRvS2oe8ez9oN-ZdAA463gC-51oLLHcKo-5uu26Xb2JP_WB-n-7TamnF85sUf9sekrA
CitedBy_id crossref_primary_10_3390_e25010167
crossref_primary_10_1109_ACCESS_2022_3213815
Cites_doi 10.1007/978-0-387-21554-9
10.1007/s10044-010-0193-7
10.1049/iet-cvi.2011.0178
10.1007/978-3-319-66182-7_34
10.1109/70.704225
10.1109/TNNLS.2011.2178561
10.1109/TVCG.2018.2832136
10.1007/978-3-319-68445-1_6
10.1515/9781400830244
10.1109/42.796284
10.1016/B978-012077790-7/50037-0
10.1088/0031-9155/61/8/3009
10.1155/ASP/2006/71459
10.3390/e16084521
10.1049/iet-cvi.2012.0147
10.1016/j.imavis.2006.05.012
10.1109/TIP.2013.2244608
10.1109/42.959301
10.1142/S0218001409007533
10.1007/s10851-018-0820-2
10.1109/TASE.2009.2021337
10.1109/LSP.2008.2001823
10.1093/acprof:oso/9780198510581.001.0001
10.1007/s10278-016-9915-8
10.1016/j.jvcir.2010.02.005
10.20944/preprints201808.0196.v1
10.1109/TNN.2011.2109395
10.1016/S1077-3142(03)00009-2
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3390/e22050539
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_753a4885dde44794add35799bde38f38
PMC7517035
33286311
10_3390_e22050539
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61179031
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
PQGLB
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c406t-767ac44ec2d92dee87002481c6c200be16436e5f83d987a01ee6aa6736cea1813
IEDL.DBID DOA
ISSN 1099-4300
IngestDate Wed Aug 27 01:25:49 EDT 2025
Thu Aug 21 18:11:20 EDT 2025
Fri Jul 11 04:52:50 EDT 2025
Mon Jul 21 06:04:02 EDT 2025
Tue Jul 01 01:57:55 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords extended Hamiltonian learning
iterative closest point
special Euclidean group
rigid registration
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-767ac44ec2d92dee87002481c6c200be16436e5f83d987a01ee6aa6736cea1813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0579-8990
0000-0001-8856-2902
OpenAccessLink https://doaj.org/article/753a4885dde44794add35799bde38f38
PMID 33286311
PQID 2468339359
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_753a4885dde44794add35799bde38f38
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7517035
proquest_miscellaneous_2468339359
pubmed_primary_33286311
crossref_primary_10_3390_e22050539
crossref_citationtrail_10_3390_e22050539
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200512
PublicationDateYYYYMMDD 2020-05-12
PublicationDate_xml – month: 5
  year: 2020
  text: 20200512
  day: 12
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References ref_36
ref_13
Ying (ref_20) 2013; 7
ref_34
Li (ref_41) 2018; 25
ref_11
Chui (ref_14) 2003; 89
Ying (ref_17) 2009; 6
ref_10
Ying (ref_21) 2011; 14
Brigant (ref_24) 2019; 61
ref_30
Salvi (ref_12) 2007; 25
Wyawahare (ref_9) 2009; 2
Maintz (ref_8) 2009; 33
Kumar (ref_35) 1998; 14
Roche (ref_6) 2001; 20
ref_39
Vandewalle (ref_4) 2006; 1
ref_38
ref_37
Zhu (ref_15) 2012; 6
Fiori (ref_32) 2011; 22
Keszei (ref_40) 2017; 30
Du (ref_19) 2010; 21
Du (ref_16) 2008; 15
Cheng (ref_1) 2013; 22
ref_25
Ying (ref_18) 2009; 23
ref_23
ref_22
Fiori (ref_33) 2012; 23
ref_2
Barbaresco (ref_31) 2014; 16
ref_29
ref_28
ref_27
ref_26
Rueckert (ref_7) 1999; 18
Silva (ref_3) 2016; 61
ref_5
References_xml – ident: ref_28
– ident: ref_36
  doi: 10.1007/978-0-387-21554-9
– ident: ref_5
– volume: 14
  start-page: 127
  year: 2011
  ident: ref_21
  article-title: Iwasawa Decomposition: A New Approach to 2D Affine Registration Problem
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-010-0193-7
– ident: ref_26
– ident: ref_34
– volume: 6
  start-page: 252
  year: 2012
  ident: ref_15
  article-title: Robust Affine Iterative Closest Point Algorithm with Bidirectional Distance
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2011.0178
– ident: ref_38
  doi: 10.1007/978-3-319-66182-7_34
– ident: ref_11
– volume: 14
  start-page: 576
  year: 1998
  ident: ref_35
  article-title: On the generation of smooth three-dimensional rigid body motions
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.704225
– volume: 23
  start-page: 7
  year: 2012
  ident: ref_33
  article-title: Extended Hamiltonian Learning on Riemannian manifolds: Numerical Aspects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2011.2178561
– volume: 25
  start-page: 2255
  year: 2018
  ident: ref_41
  article-title: Robust non-rigid registration with reweighted position and transformation sparsity
  publication-title: IEEE Trans. Vis. Comput. Graph.
  doi: 10.1109/TVCG.2018.2832136
– ident: ref_22
  doi: 10.1007/978-3-319-68445-1_6
– ident: ref_39
– ident: ref_29
  doi: 10.1515/9781400830244
– volume: 18
  start-page: 712
  year: 1999
  ident: ref_7
  article-title: Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.796284
– ident: ref_37
– volume: 33
  start-page: 140
  year: 2009
  ident: ref_8
  article-title: A Survey of Medical Image Registration
  publication-title: Comput. Digit. Eng.
– volume: 2
  start-page: 11
  year: 2009
  ident: ref_9
  article-title: Image Registration Techniques: An Overview
  publication-title: Int. J. Signal Process. Image Process. Pattern Recognit.
– ident: ref_23
– ident: ref_25
  doi: 10.1016/B978-012077790-7/50037-0
– volume: 61
  start-page: 3009
  year: 2016
  ident: ref_3
  article-title: 3D-2D Image Registration for Target Localization in Spine Surgery: Investigation of Similarity Metrics Providing Robustness to Content Mismatch
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/8/3009
– volume: 1
  start-page: 071459
  year: 2006
  ident: ref_4
  article-title: A Frequency Domain Approach to Registration of Aliased Images with Application to Super-resolution
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1155/ASP/2006/71459
– volume: 16
  start-page: 4521
  year: 2014
  ident: ref_31
  article-title: Koszul Information Geometry and Souriau Geometric Temperature/Capacity of Lie Group Thermodynamics
  publication-title: Entropy
  doi: 10.3390/e16084521
– volume: 7
  start-page: 437
  year: 2013
  ident: ref_20
  article-title: Soft Shape Registration Under Lie Group Frame
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2012.0147
– volume: 25
  start-page: 578
  year: 2007
  ident: ref_12
  article-title: A Review of Recent Range Image Registration Methods with Accuracy Evaluation
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2006.05.012
– volume: 22
  start-page: 2081
  year: 2013
  ident: ref_1
  article-title: Real-Time Continuous Image Registration Enabling Ultraprecise 2D Motion Tracking
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2244608
– ident: ref_2
– volume: 20
  start-page: 1038
  year: 2001
  ident: ref_6
  article-title: Rigid Registration of 3D Ultrasound With MR Images: A New Approach Combining Intensity and Gradient Information
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.959301
– volume: 23
  start-page: 1201
  year: 2009
  ident: ref_18
  article-title: Lie Group Framework of Iterative Closest Point Algorithm for n-D Data Registration
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001409007533
– volume: 61
  start-page: 40
  year: 2019
  ident: ref_24
  article-title: A discrete framework to find the optimal matching between manifold-valued curves
  publication-title: J. Math. Imaging Vis.
  doi: 10.1007/s10851-018-0820-2
– ident: ref_10
– volume: 6
  start-page: 559
  year: 2009
  ident: ref_17
  article-title: A Scale Stretch Method Based on ICP for 3D Data Registration
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2009.2021337
– volume: 15
  start-page: 689
  year: 2008
  ident: ref_16
  article-title: Affine Registration of Point Sets Using ICP and ICA
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2008.2001823
– ident: ref_13
– ident: ref_27
  doi: 10.1093/acprof:oso/9780198510581.001.0001
– volume: 30
  start-page: 102
  year: 2017
  ident: ref_40
  article-title: Survey of non-rigid registration tools in medicine
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-016-9915-8
– volume: 21
  start-page: 442
  year: 2010
  ident: ref_19
  article-title: Scaling Iterative Closest Point Algorithm for Registration of m-D Point Sets
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2010.02.005
– ident: ref_30
  doi: 10.20944/preprints201808.0196.v1
– volume: 22
  start-page: 687
  year: 2011
  ident: ref_32
  article-title: Extended Hamiltonian Learning on Riemannian manifolds: Theoretical Aspects
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2011.2109395
– volume: 89
  start-page: 114
  year: 2003
  ident: ref_14
  article-title: A New Point Matching Algorithm for Non-Rigid Registration
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/S1077-3142(03)00009-2
SSID ssj0023216
Score 2.2092032
Snippet Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 539
SubjectTerms extended Hamiltonian learning
iterative closest point
rigid registration
special Euclidean group
Title Rigid Shape Registration Based on Extended Hamiltonian Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/33286311
https://www.proquest.com/docview/2468339359
https://pubmed.ncbi.nlm.nih.gov/PMC7517035
https://doaj.org/article/753a4885dde44794add35799bde38f38
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NQEB5cLl5EcYtLieLBS9Bk8l6Sk1hpLYIiVaG38JZJLUgqWv-_85I0WBG8eAkhGchjlsw3b_kG4FRa0sJIGSSZpSCWRRqoGAsGckorQYk2VbOJu3s5eI5vR2L0rdWX2xNW0wPXijtnOK3YyQSHYezY0DkeUSRZpi1hWmB1zJdz3ryYakotjEJZ8wghF_Xn5I6TsrtlC9mnIun_DVn-3CD5LeP0N2C9gYr-VT3ETViicgsuh5PxxPqPL-qN_CGNW95bv8v5yPp802vmtf2Bm7xgbMce4Dc8quNteO73nq4HQdMEITCca2dBIhNl4phMZLPIEnF8ORqy0EjDDq6Jyx2UJIoUbZYm6iIkkkq53VqGFKdv3IGVclrSHviMRFBoE2mjKFZoVVHRhSFKhhlSFx6czZWTm4Yh3DWqeM25UnB6zFs9enDSir7VtBi_CXWdhlsBx2RdPWD75o1987_s68Hx3D45e75bzlAlTT8_8iiWKVYniz3Yre3VfgoxSiWGoQfJgiUXxrL4ppy8VOzaiQj5Lyj2_2PwB7AWufrcsb1Gh7Aye_-kIwYxM92B5bR_04HVbu_-YdipvJevN6PwC6kR838
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rigid+Shape+Registration+Based+on+Extended+Hamiltonian+Learning&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Yi%2C+Jin&rft.au=Zhang%2C+Shiqiang&rft.au=Cao%2C+Yueqi&rft.au=Zhang%2C+Erchuan&rft.date=2020-05-12&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=22&rft.issue=5&rft.spage=539&rft_id=info:doi/10.3390%2Fe22050539&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e22050539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon