Rigid Shape Registration Based on Extended Hamiltonian Learning
Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image analysis. The iterative closest point (ICP) algorithm is one of well known and widely used algorithms in this area. The main purpose of this pape...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 22; no. 5; p. 539 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
12.05.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image analysis. The iterative closest point (ICP) algorithm is one of well known and widely used algorithms in this area. The main purpose of this paper is to incorporate ICP with the fast convergent extended Hamiltonian learning (EHL), so called EHL-ICP algorithm, to perform planar and spatial rigid shape registration. By treating the registration error as the potential for the extended Hamiltonian system, the rigid shape registration is modelled as an optimization problem on the special Euclidean group S E ( n ) ( n = 2 , 3 ) . Our method is robust to initial values and parameters. Compared with some state-of-art methods, our approach shows better efficiency and accuracy by simulation experiments. |
---|---|
AbstractList | Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image analysis. The iterative closest point (ICP) algorithm is one of well known and widely used algorithms in this area. The main purpose of this paper is to incorporate ICP with the fast convergent extended Hamiltonian learning (EHL), so called
, to perform planar and spatial rigid shape registration. By treating the registration error as the potential for the extended Hamiltonian system, the rigid shape registration is modelled as an optimization problem on the special Euclidean group S E ( n ) ( n = 2 , 3 ) . Our method is robust to initial values and parameters. Compared with some state-of-art methods, our approach shows better efficiency and accuracy by simulation experiments. Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image analysis. The iterative closest point (ICP) algorithm is one of well known and widely used algorithms in this area. The main purpose of this paper is to incorporate ICP with the fast convergent extended Hamiltonian learning (EHL), so called EHL-ICP algorithm, to perform planar and spatial rigid shape registration. By treating the registration error as the potential for the extended Hamiltonian system, the rigid shape registration is modelled as an optimization problem on the special Euclidean group S E ( n ) ( n = 2 , 3 ) . Our method is robust to initial values and parameters. Compared with some state-of-art methods, our approach shows better efficiency and accuracy by simulation experiments. Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image analysis. The iterative closest point (ICP) algorithm is one of well known and widely used algorithms in this area. The main purpose of this paper is to incorporate ICP with the fast convergent extended Hamiltonian learning (EHL), so called EHL-ICP algorithm, to perform planar and spatial rigid shape registration. By treating the registration error as the potential for the extended Hamiltonian system, the rigid shape registration is modelled as an optimization problem on the special Euclidean group S E ( n ) ( n = 2 , 3 ) . Our method is robust to initial values and parameters. Compared with some state-of-art methods, our approach shows better efficiency and accuracy by simulation experiments.Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image analysis. The iterative closest point (ICP) algorithm is one of well known and widely used algorithms in this area. The main purpose of this paper is to incorporate ICP with the fast convergent extended Hamiltonian learning (EHL), so called EHL-ICP algorithm, to perform planar and spatial rigid shape registration. By treating the registration error as the potential for the extended Hamiltonian system, the rigid shape registration is modelled as an optimization problem on the special Euclidean group S E ( n ) ( n = 2 , 3 ) . Our method is robust to initial values and parameters. Compared with some state-of-art methods, our approach shows better efficiency and accuracy by simulation experiments. Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image analysis. The iterative closest point (ICP) algorithm is one of well known and widely used algorithms in this area. The main purpose of this paper is to incorporate ICP with the fast convergent extended Hamiltonian learning (EHL), so called EHL-ICP algorithm , to perform planar and spatial rigid shape registration. By treating the registration error as the potential for the extended Hamiltonian system, the rigid shape registration is modelled as an optimization problem on the special Euclidean group S E ( n ) ( n = 2 , 3 ) . Our method is robust to initial values and parameters. Compared with some state-of-art methods, our approach shows better efficiency and accuracy by simulation experiments. |
Author | Yi, Jin Sun, Huafei Zhang, Shiqiang Zhang, Erchuan Cao, Yueqi |
AuthorAffiliation | 1 Department of Basic Courses, Beijing Union University, Beijing 100081, China; yijin@buu.edu.cn 3 School of Mathematics and Statistics, University of Western Australia, Crawley WA6009, Australia; erchuan.zhang@research.uwa.edu.au 2 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China; 3120181406@bit.edu.cn (S.Z.); 3120181396@bit.edu.cn (Y.C.) |
AuthorAffiliation_xml | – name: 2 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China; 3120181406@bit.edu.cn (S.Z.); 3120181396@bit.edu.cn (Y.C.) – name: 1 Department of Basic Courses, Beijing Union University, Beijing 100081, China; yijin@buu.edu.cn – name: 3 School of Mathematics and Statistics, University of Western Australia, Crawley WA6009, Australia; erchuan.zhang@research.uwa.edu.au |
Author_xml | – sequence: 1 givenname: Jin orcidid: 0000-0003-0579-8990 surname: Yi fullname: Yi, Jin – sequence: 2 givenname: Shiqiang surname: Zhang fullname: Zhang, Shiqiang – sequence: 3 givenname: Yueqi orcidid: 0000-0001-8856-2902 surname: Cao fullname: Cao, Yueqi – sequence: 4 givenname: Erchuan surname: Zhang fullname: Zhang, Erchuan – sequence: 5 givenname: Huafei surname: Sun fullname: Sun, Huafei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33286311$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtvUzEQRi1URB-w4A-gu6SLUL-uHxtQqQqtFKlSgbU1sSe3rm7sYN-g8u8xTYla1JVHnuMzY32HZC_lhIS8ZfSDEJaeIOe0p72wL8gBo9bOpKB071G9Tw5rvaWUC87UK7IvBDdKMHZAPl3HIYbu2w2ssbvGIdapwBRz6j5DxdC14vxuwhRafQGrOE45RUjdHKGkmIbX5OUSxopvHs4j8uPL-fezi9n86uvl2el85iVV00wrDV5K9DxYHhCNbstIw7zynNIFMiWFwn5pRLBGA2WICkBpoTwCM0wckcutN2S4desSV1B-uwzR3V_kMjgoU_QjOt0LkMb0IaCU2koIQfTa2kVAYZbCNNfHrWu9WawweEztz-MT6dNOijduyL-amWkq-iZ4_yAo-ecG6-RWsXocR0iYN9VxqUwLRvS2oe8ez9oN-ZdAA463gC-51oLLHcKo-5uu26Xb2JP_WB-n-7TamnF85sUf9sekrA |
CitedBy_id | crossref_primary_10_3390_e25010167 crossref_primary_10_1109_ACCESS_2022_3213815 |
Cites_doi | 10.1007/978-0-387-21554-9 10.1007/s10044-010-0193-7 10.1049/iet-cvi.2011.0178 10.1007/978-3-319-66182-7_34 10.1109/70.704225 10.1109/TNNLS.2011.2178561 10.1109/TVCG.2018.2832136 10.1007/978-3-319-68445-1_6 10.1515/9781400830244 10.1109/42.796284 10.1016/B978-012077790-7/50037-0 10.1088/0031-9155/61/8/3009 10.1155/ASP/2006/71459 10.3390/e16084521 10.1049/iet-cvi.2012.0147 10.1016/j.imavis.2006.05.012 10.1109/TIP.2013.2244608 10.1109/42.959301 10.1142/S0218001409007533 10.1007/s10851-018-0820-2 10.1109/TASE.2009.2021337 10.1109/LSP.2008.2001823 10.1093/acprof:oso/9780198510581.001.0001 10.1007/s10278-016-9915-8 10.1016/j.jvcir.2010.02.005 10.20944/preprints201808.0196.v1 10.1109/TNN.2011.2109395 10.1016/S1077-3142(03)00009-2 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3390/e22050539 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_753a4885dde44794add35799bde38f38 PMC7517035 33286311 10_3390_e22050539 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61179031 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM PQGLB 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c406t-767ac44ec2d92dee87002481c6c200be16436e5f83d987a01ee6aa6736cea1813 |
IEDL.DBID | DOA |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:25:49 EDT 2025 Thu Aug 21 18:11:20 EDT 2025 Fri Jul 11 04:52:50 EDT 2025 Mon Jul 21 06:04:02 EDT 2025 Tue Jul 01 01:57:55 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | extended Hamiltonian learning iterative closest point special Euclidean group rigid registration |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-767ac44ec2d92dee87002481c6c200be16436e5f83d987a01ee6aa6736cea1813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0579-8990 0000-0001-8856-2902 |
OpenAccessLink | https://doaj.org/article/753a4885dde44794add35799bde38f38 |
PMID | 33286311 |
PQID | 2468339359 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_753a4885dde44794add35799bde38f38 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7517035 proquest_miscellaneous_2468339359 pubmed_primary_33286311 crossref_primary_10_3390_e22050539 crossref_citationtrail_10_3390_e22050539 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200512 |
PublicationDateYYYYMMDD | 2020-05-12 |
PublicationDate_xml | – month: 5 year: 2020 text: 20200512 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationTitleAlternate | Entropy (Basel) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | ref_36 ref_13 Ying (ref_20) 2013; 7 ref_34 Li (ref_41) 2018; 25 ref_11 Chui (ref_14) 2003; 89 Ying (ref_17) 2009; 6 ref_10 Ying (ref_21) 2011; 14 Brigant (ref_24) 2019; 61 ref_30 Salvi (ref_12) 2007; 25 Wyawahare (ref_9) 2009; 2 Maintz (ref_8) 2009; 33 Kumar (ref_35) 1998; 14 Roche (ref_6) 2001; 20 ref_39 Vandewalle (ref_4) 2006; 1 ref_38 ref_37 Zhu (ref_15) 2012; 6 Fiori (ref_32) 2011; 22 Keszei (ref_40) 2017; 30 Du (ref_19) 2010; 21 Du (ref_16) 2008; 15 Cheng (ref_1) 2013; 22 ref_25 Ying (ref_18) 2009; 23 ref_23 ref_22 Fiori (ref_33) 2012; 23 ref_2 Barbaresco (ref_31) 2014; 16 ref_29 ref_28 ref_27 ref_26 Rueckert (ref_7) 1999; 18 Silva (ref_3) 2016; 61 ref_5 |
References_xml | – ident: ref_28 – ident: ref_36 doi: 10.1007/978-0-387-21554-9 – ident: ref_5 – volume: 14 start-page: 127 year: 2011 ident: ref_21 article-title: Iwasawa Decomposition: A New Approach to 2D Affine Registration Problem publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-010-0193-7 – ident: ref_26 – ident: ref_34 – volume: 6 start-page: 252 year: 2012 ident: ref_15 article-title: Robust Affine Iterative Closest Point Algorithm with Bidirectional Distance publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2011.0178 – ident: ref_38 doi: 10.1007/978-3-319-66182-7_34 – ident: ref_11 – volume: 14 start-page: 576 year: 1998 ident: ref_35 article-title: On the generation of smooth three-dimensional rigid body motions publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.704225 – volume: 23 start-page: 7 year: 2012 ident: ref_33 article-title: Extended Hamiltonian Learning on Riemannian manifolds: Numerical Aspects publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2011.2178561 – volume: 25 start-page: 2255 year: 2018 ident: ref_41 article-title: Robust non-rigid registration with reweighted position and transformation sparsity publication-title: IEEE Trans. Vis. Comput. Graph. doi: 10.1109/TVCG.2018.2832136 – ident: ref_22 doi: 10.1007/978-3-319-68445-1_6 – ident: ref_39 – ident: ref_29 doi: 10.1515/9781400830244 – volume: 18 start-page: 712 year: 1999 ident: ref_7 article-title: Nonrigid Registration Using Free-Form Deformations: Application to Breast MR Images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.796284 – ident: ref_37 – volume: 33 start-page: 140 year: 2009 ident: ref_8 article-title: A Survey of Medical Image Registration publication-title: Comput. Digit. Eng. – volume: 2 start-page: 11 year: 2009 ident: ref_9 article-title: Image Registration Techniques: An Overview publication-title: Int. J. Signal Process. Image Process. Pattern Recognit. – ident: ref_23 – ident: ref_25 doi: 10.1016/B978-012077790-7/50037-0 – volume: 61 start-page: 3009 year: 2016 ident: ref_3 article-title: 3D-2D Image Registration for Target Localization in Spine Surgery: Investigation of Similarity Metrics Providing Robustness to Content Mismatch publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/8/3009 – volume: 1 start-page: 071459 year: 2006 ident: ref_4 article-title: A Frequency Domain Approach to Registration of Aliased Images with Application to Super-resolution publication-title: EURASIP J. Adv. Signal Process. doi: 10.1155/ASP/2006/71459 – volume: 16 start-page: 4521 year: 2014 ident: ref_31 article-title: Koszul Information Geometry and Souriau Geometric Temperature/Capacity of Lie Group Thermodynamics publication-title: Entropy doi: 10.3390/e16084521 – volume: 7 start-page: 437 year: 2013 ident: ref_20 article-title: Soft Shape Registration Under Lie Group Frame publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2012.0147 – volume: 25 start-page: 578 year: 2007 ident: ref_12 article-title: A Review of Recent Range Image Registration Methods with Accuracy Evaluation publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2006.05.012 – volume: 22 start-page: 2081 year: 2013 ident: ref_1 article-title: Real-Time Continuous Image Registration Enabling Ultraprecise 2D Motion Tracking publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2244608 – ident: ref_2 – volume: 20 start-page: 1038 year: 2001 ident: ref_6 article-title: Rigid Registration of 3D Ultrasound With MR Images: A New Approach Combining Intensity and Gradient Information publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.959301 – volume: 23 start-page: 1201 year: 2009 ident: ref_18 article-title: Lie Group Framework of Iterative Closest Point Algorithm for n-D Data Registration publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001409007533 – volume: 61 start-page: 40 year: 2019 ident: ref_24 article-title: A discrete framework to find the optimal matching between manifold-valued curves publication-title: J. Math. Imaging Vis. doi: 10.1007/s10851-018-0820-2 – ident: ref_10 – volume: 6 start-page: 559 year: 2009 ident: ref_17 article-title: A Scale Stretch Method Based on ICP for 3D Data Registration publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2009.2021337 – volume: 15 start-page: 689 year: 2008 ident: ref_16 article-title: Affine Registration of Point Sets Using ICP and ICA publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2008.2001823 – ident: ref_13 – ident: ref_27 doi: 10.1093/acprof:oso/9780198510581.001.0001 – volume: 30 start-page: 102 year: 2017 ident: ref_40 article-title: Survey of non-rigid registration tools in medicine publication-title: J. Digit. Imaging doi: 10.1007/s10278-016-9915-8 – volume: 21 start-page: 442 year: 2010 ident: ref_19 article-title: Scaling Iterative Closest Point Algorithm for Registration of m-D Point Sets publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2010.02.005 – ident: ref_30 doi: 10.20944/preprints201808.0196.v1 – volume: 22 start-page: 687 year: 2011 ident: ref_32 article-title: Extended Hamiltonian Learning on Riemannian manifolds: Theoretical Aspects publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2011.2109395 – volume: 89 start-page: 114 year: 2003 ident: ref_14 article-title: A New Point Matching Algorithm for Non-Rigid Registration publication-title: Comput. Vis. Image Underst. doi: 10.1016/S1077-3142(03)00009-2 |
SSID | ssj0023216 |
Score | 2.2092032 |
Snippet | Shape registration, finding the correct alignment of two sets of data, plays a significant role in computer vision such as objection recognition and image... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 539 |
SubjectTerms | extended Hamiltonian learning iterative closest point rigid registration special Euclidean group |
Title | Rigid Shape Registration Based on Extended Hamiltonian Learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33286311 https://www.proquest.com/docview/2468339359 https://pubmed.ncbi.nlm.nih.gov/PMC7517035 https://doaj.org/article/753a4885dde44794add35799bde38f38 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NQEB5cLl5EcYtLieLBS9Bk8l6Sk1hpLYIiVaG38JZJLUgqWv-_85I0WBG8eAkhGchjlsw3b_kG4FRa0sJIGSSZpSCWRRqoGAsGckorQYk2VbOJu3s5eI5vR2L0rdWX2xNW0wPXijtnOK3YyQSHYezY0DkeUSRZpi1hWmB1zJdz3ryYakotjEJZ8wghF_Xn5I6TsrtlC9mnIun_DVn-3CD5LeP0N2C9gYr-VT3ETViicgsuh5PxxPqPL-qN_CGNW95bv8v5yPp802vmtf2Bm7xgbMce4Dc8quNteO73nq4HQdMEITCca2dBIhNl4phMZLPIEnF8ORqy0EjDDq6Jyx2UJIoUbZYm6iIkkkq53VqGFKdv3IGVclrSHviMRFBoE2mjKFZoVVHRhSFKhhlSFx6czZWTm4Yh3DWqeM25UnB6zFs9enDSir7VtBi_CXWdhlsBx2RdPWD75o1987_s68Hx3D45e75bzlAlTT8_8iiWKVYniz3Yre3VfgoxSiWGoQfJgiUXxrL4ppy8VOzaiQj5Lyj2_2PwB7AWufrcsb1Gh7Aye_-kIwYxM92B5bR_04HVbu_-YdipvJevN6PwC6kR838 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rigid+Shape+Registration+Based+on+Extended+Hamiltonian+Learning&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Yi%2C+Jin&rft.au=Zhang%2C+Shiqiang&rft.au=Cao%2C+Yueqi&rft.au=Zhang%2C+Erchuan&rft.date=2020-05-12&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=22&rft.issue=5&rft.spage=539&rft_id=info:doi/10.3390%2Fe22050539&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_e22050539 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |