Effects of Thermal Variables of Solidification on the Microstructure, Hardness, and Microhardness of Cu-Al-Ni-Fe Alloys
Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum–bro...
Saved in:
Published in | Materials Vol. 12; no. 8; p. 1267 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.04.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum–bronze alloys have been the subject of many studies due to the formations of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of aluminum bronze alloys, specifically Cu–10wt%Al–5wt%Ni–5wt%Fe (hypoeutectoid bronze) and Cu–14wt%Al–5wt%Ni–5wi%Fe (hypereutectoid bronze), were directionally solidified upward under transient heat flow conditions. The experimental parameters measured included solidification thermal parameters such as the tip growth rate (VL) and cooling rate (TR), optical microscopy, scanning electron microscopy (SEM) analysis, hardness, and microhardness. We observed that the hardness and microhardness values vary according to the thermal parameters and solidification. We also observed that the Cu–14wt%Al–5wt%Ni–5wi%Fe alloy presented higher hardness values and a more refined structure than the Cu–10wt%Al–5wt%Ni–5wt%Fe alloy. SEM analysis proved the presence of specific intermetallics for each alloy. |
---|---|
AbstractList | Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum-bronze alloys have been the subject of many studies due to the formations of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of aluminum bronze alloys, specifically Cu-10wt%Al-5wt%Ni-5wt%Fe (hypoeutectoid bronze) and Cu-14wt%Al-5wt%Ni-5wi%Fe (hypereutectoid bronze), were directionally solidified upward under transient heat flow conditions. The experimental parameters measured included solidification thermal parameters such as the tip growth rate (VL) and cooling rate (TR), optical microscopy, scanning electron microscopy (SEM) analysis, hardness, and microhardness. We observed that the hardness and microhardness values vary according to the thermal parameters and solidification. We also observed that the Cu-14wt%Al-5wt%Ni-5wi%Fe alloy presented higher hardness values and a more refined structure than the Cu-10wt%Al-5wt%Ni-5wt%Fe alloy. SEM analysis proved the presence of specific intermetallics for each alloy.Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum-bronze alloys have been the subject of many studies due to the formations of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of aluminum bronze alloys, specifically Cu-10wt%Al-5wt%Ni-5wt%Fe (hypoeutectoid bronze) and Cu-14wt%Al-5wt%Ni-5wi%Fe (hypereutectoid bronze), were directionally solidified upward under transient heat flow conditions. The experimental parameters measured included solidification thermal parameters such as the tip growth rate (VL) and cooling rate (TR), optical microscopy, scanning electron microscopy (SEM) analysis, hardness, and microhardness. We observed that the hardness and microhardness values vary according to the thermal parameters and solidification. We also observed that the Cu-14wt%Al-5wt%Ni-5wi%Fe alloy presented higher hardness values and a more refined structure than the Cu-10wt%Al-5wt%Ni-5wt%Fe alloy. SEM analysis proved the presence of specific intermetallics for each alloy. Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum–bronze alloys have been the subject of many studies due to the formations of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of aluminum bronze alloys, specifically Cu–10wt%Al–5wt%Ni–5wt%Fe (hypoeutectoid bronze) and Cu–14wt%Al–5wt%Ni–5wi%Fe (hypereutectoid bronze), were directionally solidified upward under transient heat flow conditions. The experimental parameters measured included solidification thermal parameters such as the tip growth rate (V L ) and cooling rate (T R ), optical microscopy, scanning electron microscopy (SEM) analysis, hardness, and microhardness. We observed that the hardness and microhardness values vary according to the thermal parameters and solidification. We also observed that the Cu–14wt%Al–5wt%Ni–5wi%Fe alloy presented higher hardness values and a more refined structure than the Cu–10wt%Al–5wt%Ni–5wt%Fe alloy. SEM analysis proved the presence of specific intermetallics for each alloy. Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum–bronze alloys have been the subject of many studies due to the formations of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of aluminum bronze alloys, specifically Cu–10wt%Al–5wt%Ni–5wt%Fe (hypoeutectoid bronze) and Cu–14wt%Al–5wt%Ni–5wi%Fe (hypereutectoid bronze), were directionally solidified upward under transient heat flow conditions. The experimental parameters measured included solidification thermal parameters such as the tip growth rate (VL) and cooling rate (TR), optical microscopy, scanning electron microscopy (SEM) analysis, hardness, and microhardness. We observed that the hardness and microhardness values vary according to the thermal parameters and solidification. We also observed that the Cu–14wt%Al–5wt%Ni–5wi%Fe alloy presented higher hardness values and a more refined structure than the Cu–10wt%Al–5wt%Ni–5wt%Fe alloy. SEM analysis proved the presence of specific intermetallics for each alloy. Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum-bronze alloys have been the subject of many studies due to the formations of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of aluminum bronze alloys, specifically Cu-10wt%Al-5wt%Ni-5wt%Fe (hypoeutectoid bronze) and Cu-14wt%Al-5wt%Ni-5wi%Fe (hypereutectoid bronze), were directionally solidified upward under transient heat flow conditions. The experimental parameters measured included solidification thermal parameters such as the tip growth rate (V ) and cooling rate (T ), optical microscopy, scanning electron microscopy (SEM) analysis, hardness, and microhardness. We observed that the hardness and microhardness values vary according to the thermal parameters and solidification. We also observed that the Cu-14wt%Al-5wt%Ni-5wi%Fe alloy presented higher hardness values and a more refined structure than the Cu-10wt%Al-5wt%Ni-5wt%Fe alloy. SEM analysis proved the presence of specific intermetallics for each alloy. |
Author | Teram, Rogério Nascimento, Maurício Silva Couto, Antonio Augusto Santos, Givanildo Alves dos Santos, Vinícius Torres dos Silva, Márcio Rodrigues da |
AuthorAffiliation | 2 Salvador Arena Foundation Educational Center, 09850-550 São Bernardo do Campo, Brazil; vinicius.santos@termomecanica.com.br (V.T.d.S.); marcio.rdrgs.slv@gmail.com (M.R.d.S.) 5 Department of Engineering, Mackenzie Presbyterian University, UPM, 01302-907 São Paulo, Brazil 1 Department of Mechanics, Federal Institute of Education, Science and Technology of São Paulo, 01109-010 São Paulo, Brazil; givanildo@ifsp.edu.br (G.A.d.S.); rogerioteram@ifsp.edu.br (R.T.) 4 Nuclear and Energy Research Institute, Center for Materials Science and Technology, IPEN, 05508-000 São Paulo, Brazil; aacouto@ipen.br 3 Department of Research and Development, Termomecanica São Paulo S.A., 09612-000 São Bernardo do Campo, Brazil |
AuthorAffiliation_xml | – name: 1 Department of Mechanics, Federal Institute of Education, Science and Technology of São Paulo, 01109-010 São Paulo, Brazil; givanildo@ifsp.edu.br (G.A.d.S.); rogerioteram@ifsp.edu.br (R.T.) – name: 5 Department of Engineering, Mackenzie Presbyterian University, UPM, 01302-907 São Paulo, Brazil – name: 3 Department of Research and Development, Termomecanica São Paulo S.A., 09612-000 São Bernardo do Campo, Brazil – name: 2 Salvador Arena Foundation Educational Center, 09850-550 São Bernardo do Campo, Brazil; vinicius.santos@termomecanica.com.br (V.T.d.S.); marcio.rdrgs.slv@gmail.com (M.R.d.S.) – name: 4 Nuclear and Energy Research Institute, Center for Materials Science and Technology, IPEN, 05508-000 São Paulo, Brazil; aacouto@ipen.br |
Author_xml | – sequence: 1 givenname: Maurício Silva surname: Nascimento fullname: Nascimento, Maurício Silva – sequence: 2 givenname: Givanildo Alves dos orcidid: 0000-0002-7064-3314 surname: Santos fullname: Santos, Givanildo Alves dos – sequence: 3 givenname: Rogério surname: Teram fullname: Teram, Rogério – sequence: 4 givenname: Vinícius Torres dos surname: Santos fullname: Santos, Vinícius Torres dos – sequence: 5 givenname: Márcio Rodrigues da orcidid: 0000-0002-2709-7178 surname: Silva fullname: Silva, Márcio Rodrigues da – sequence: 6 givenname: Antonio Augusto surname: Couto fullname: Couto, Antonio Augusto |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31003410$$D View this record in MEDLINE/PubMed |
BookMark | eNptkV1PFTEQhhuDEQRu_AFmE2-IYbUfu93tjcnJCYgJ6AXobdNtp56SbovtLoZ_bw_nCEhsmrSdefpmZt7XaCfEAAi9IfgDYwJ_HBWhuCeUdy_QHhGC10Q0zc6T-y46zPkal8UY6al4hXYZKY-G4D30-8Ra0FOuoq2uVpBG5asfKjk1eLgPXkbvjLNOq8nFUJU9raC6cDrFPKVZT3OC4-pMJRMg5-NKBbPJrrahtchyrhe-_urqU6gW3se7fIBeWuUzHG7PffT99ORqeVaff_v8Zbk4r3WD-VR3VOPWtK2gihLV9dpqji2zlFkAbvpeDRgaIIYLbnjHaCeGYTCMK9IaahnbR582ujfzMILREKakvLxJblTpTkbl5L-Z4FbyZ7yVvCUt5bwIHG0FUvw1Q57k6LIG71WAOGdJKSlD7ljfFfTdM_Q6zimU9iRtm563mAhaqLdPK3oo5a8nBXi_AdYjzgnsA0KwXHsuHz0vMH4GazfdW1W6cf5_X_4ATUWuBA |
CitedBy_id | crossref_primary_10_3390_ma18020234 crossref_primary_10_1016_j_rinma_2023_100485 crossref_primary_10_1088_1361_6528_ada3de crossref_primary_10_4028_www_scientific_net_DDF_413_194 crossref_primary_10_1016_j_matchar_2025_114795 crossref_primary_10_3390_app12146974 crossref_primary_10_1007_s13538_021_00926_3 crossref_primary_10_1016_j_msea_2020_139773 crossref_primary_10_1088_1757_899X_1222_1_012014 crossref_primary_10_3390_met14101134 crossref_primary_10_3390_met13030459 crossref_primary_10_3390_met14101186 crossref_primary_10_3390_app14146001 crossref_primary_10_1016_j_jmrt_2023_06_030 crossref_primary_10_1016_j_triboint_2020_106519 crossref_primary_10_3390_ma17235757 crossref_primary_10_4028_www_scientific_net_DDF_412_185 crossref_primary_10_1088_1757_899X_1222_1_012008 crossref_primary_10_1088_1361_665X_acbdd5 crossref_primary_10_1016_j_mtcomm_2023_106551 crossref_primary_10_3390_ma16175905 crossref_primary_10_1016_j_corsci_2023_111656 crossref_primary_10_1088_1742_6596_2927_1_012010 crossref_primary_10_1080_02670836_2020_1834681 |
Cites_doi | 10.2478/afe-2013-0063 10.1590/1980-5373-mr-2017-0864 10.1007/BF02662362 10.4028/www.scientific.net/MSF.899.424 10.1016/j.matdes.2006.09.009 10.1007/BF02642870 10.1007/BF02586225 10.1007/978-981-10-1602-8_19 10.1016/j.corsci.2005.05.053 10.1007/BF00548728 10.4028/www.scientific.net/DDF.371.78 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma12081267 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest SciTech Premium Collection Materials Research Database Materials Science Database (Proquest) Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC6515266 31003410 10_3390_ma12081267 |
Genre | Journal Article |
GeographicLocations | Hungary United States--US |
GeographicLocations_xml | – name: United States--US – name: Hungary |
GroupedDBID | 29M 2WC 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS NPM PQGLB 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c406t-72c05d5592a21a78cfc60f3f23fee6d88ab0e4e1d696d673279bbbd36a15d2f33 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 14:07:30 EDT 2025 Fri Jul 11 11:09:15 EDT 2025 Fri Jul 25 12:03:07 EDT 2025 Mon Jul 21 05:45:52 EDT 2025 Tue Jul 01 03:56:02 EDT 2025 Thu Apr 24 23:06:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | solidification thermal parameters specific intermetallics hardness microhardness Cu-Al-Ni-Fe bronze alloys |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-72c05d5592a21a78cfc60f3f23fee6d88ab0e4e1d696d673279bbbd36a15d2f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7064-3314 0000-0002-2709-7178 |
OpenAccessLink | https://www.proquest.com/docview/2548650192?pq-origsite=%requestingapplication% |
PMID | 31003410 |
PQID | 2548650192 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6515266 proquest_miscellaneous_2211947387 proquest_journals_2548650192 pubmed_primary_31003410 crossref_primary_10_3390_ma12081267 crossref_citationtrail_10_3390_ma12081267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190418 |
PublicationDateYYYYMMDD | 2019-04-18 |
PublicationDate_xml | – month: 4 year: 2019 text: 20190418 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Nascimento (ref_20) 2017; 22 Dlouhy (ref_12) 2018; 48 Wharton (ref_2) 2005; 47 Jahanafrooz (ref_9) 1983; 14a ref_13 ref_22 ref_10 ref_21 Pisarek (ref_11) 2013; 13 Nascimento (ref_14) 2018; 21 Osorio (ref_18) 2006; 37 ref_1 Miranda (ref_15) 2017; 899 ref_3 Culpan (ref_4) 1978; 13 ref_17 Miranda (ref_16) 2017; 371 Santos (ref_19) 2007; 28 ref_5 Hasan (ref_8) 1982; 13 ref_7 ref_6 |
References_xml | – ident: ref_7 – volume: 48 start-page: 599 year: 2018 ident: ref_12 article-title: Influence of heat treatment on the microstructure and mechanical properties of aluminum bronze publication-title: Mater. Technol. – volume: 13 start-page: 72 year: 2013 ident: ref_11 article-title: Model of Cu–Al-Fe-Ni Bronze Crystallization publication-title: Arch. Foundry Eng. doi: 10.2478/afe-2013-0063 – ident: ref_6 – volume: 22 start-page: e11774 year: 2017 ident: ref_20 article-title: Correlação entre variáveis térmicas de solidificação, microestrutura e resistência mecânica da liga Al-10%Si-2%Cu publication-title: Matéria – ident: ref_5 – volume: 21 start-page: e20170864 year: 2018 ident: ref_14 article-title: An Experimental Study of the Solidification Thermal Parameters Influence upon Microstructure and Mechanical Properties of Al-Si-Cu Alloys publication-title: Mater. Res. doi: 10.1590/1980-5373-mr-2017-0864 – ident: ref_3 – volume: 14a start-page: 1951 year: 1983 ident: ref_9 article-title: Microstructural Development in Complex Nickel-Aluminum Bronze publication-title: Met. Trans A doi: 10.1007/BF02662362 – volume: 899 start-page: 424 year: 2017 ident: ref_15 article-title: The Influence of the Sintering Temperature on the Grain Growth of Tungsten Carbide in the Composite WC-8Ni publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.899.424 – ident: ref_10 – volume: 28 start-page: 2425 year: 2007 ident: ref_19 article-title: Design of mechanical properties of a Zn27Al alloy based on microstructure dendritic array spacing publication-title: Mater. Des. doi: 10.1016/j.matdes.2006.09.009 – volume: 13 start-page: 1337 year: 1982 ident: ref_8 article-title: The Morphology, Crystallography, and Chemistry of Phases in As-Cast Nickel Aluminum Bronze publication-title: Met. Trans. A doi: 10.1007/BF02642870 – volume: 37 start-page: 2525 year: 2006 ident: ref_18 article-title: Effect of dendritic arm spacing on mechanical properties and corrosion resistance of Al 9 Wt Pct Si and Zn 27 Wt Pct Al alloys publication-title: Metall. Mater. Trans A doi: 10.1007/BF02586225 – ident: ref_13 – ident: ref_17 doi: 10.1007/978-981-10-1602-8_19 – ident: ref_1 – ident: ref_22 – volume: 47 start-page: 3336 year: 2005 ident: ref_2 article-title: The Corrosion of nickel–aluminum bronze in seawater publication-title: Corros. Sci. doi: 10.1016/j.corsci.2005.05.053 – ident: ref_21 – volume: 13 start-page: 1647 year: 1978 ident: ref_4 article-title: Microstructural characterization of cast nickel aluminum bronze publication-title: J. Mater. Sci. doi: 10.1007/BF00548728 – volume: 371 start-page: 78 year: 2017 ident: ref_16 article-title: Microstructural Evolution of Composite 8 WC-(Co, Ni): Effect of the Addition of SiC publication-title: Defect Diffus. Forum doi: 10.4028/www.scientific.net/DDF.371.78 |
SSID | ssj0000331829 |
Score | 2.3146074 |
Snippet | Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1267 |
SubjectTerms | Alloys Aluminum bronzes Bronze Cooling Cooling rate Coordination compounds Copper Copper base alloys Corrosion resistance Directional solidification Ductility Flow velocity Heat Heat transmission Intermetallic compounds Iron Microhardness Microstructure Nickel base alloys Optical microscopy Parameters Phase transitions Quaternary systems Scanning electron microscopy Solids Stainless steel Temperature Thermocouples Thermodynamic properties |
Title | Effects of Thermal Variables of Solidification on the Microstructure, Hardness, and Microhardness of Cu-Al-Ni-Fe Alloys |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31003410 https://www.proquest.com/docview/2548650192 https://www.proquest.com/docview/2211947387 https://pubmed.ncbi.nlm.nih.gov/PMC6515266 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZr-7I9jO5ns3VFY3sZVNSWLEt-KmlpWgYNY1tH3oysHzTg2W3TMPbf985W3HQbgxCIJGyTT777Tid9R8hHLS2eywssc1KyzAbDTMgK-JK5Ft4H6fBw8vk0P7vIPs_kLC64LeK2ypVN7Ay1ay2ukR9AIKOBTQAhOby6Zlg1CrOrsYTGBtkCE6wh-No6Opl--TqssiQC5iwvel1SAfH9wU-TcnCDvCssv-aJ_qKXf-6SXHM7k23yNPJFOu4BfkYe-eY5ebKmIviC_OoViBe0DRRQB0tb0x8QAuOhqK7xW1vPHW4J6lCg8AHWR89xK14vH7u88fsUc_ho9_apaVzfexmb8CLHSzau2XTOJp6O67r9vXhJLiYn34_PWKynwCy47VumuE0kQFJww1OjtA02T4IIXATvc6e1qRKf-dTlRe5yJbgqqqpyIjepdDwI8YpsNm3jdwiVNnHA9LjPIKJRFcQchQ5KKWPR6zs3Ip9W_21po9g41ryoSwg6EIfyHocR-TCMveolNv45ancFURlfs0V5PylG5P3QDS8IZj1M49sljEENu0wJDZd43SM63AazG-DGkxFRD7AeBqD49sOeZn7ZiXBjCXkgN2_-_1hvyWNgWF36KdW7ZBNA9e-AxdxWe2RDT0734oSFX6ez9A591fa3 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAcEG8WChgBB6RaTewkdg4VWhWWLe3uhRb1ljp-qCuFpO12VfVP9Td2Jq9uAXGrFOUQW4mVefgbe_wNIR9VbPBcnmeRjWMWGa-Z9lEKtzhRwjkfWzycPJkm44Pox2F8uEKuurMwmFbZ-cTaUdvK4Br5JgQyCtAEAJIvJ6cMq0bh7mpXQqNRi113eQEh23xr5yvI9xPno2_722PWVhVgBiavcya5CWIYWMo1D7VUxpsk8MJz4Z1LrFI6D1zkQpukiU2k4DLN89yKRIex5R4XQMHlr0VCpGhRavS9X9MJBFgITxsWVGgPNn_rkMOky-sy9kvz3l9g9s-czKVJbvSIPGzRKR026vSYrLjyCXmwxFn4lFw0fMdzWnkKOgZ-vaC_IODGI1j1w59VMbOYgFTLnMIFGJNOMPGvIatdnLkNihkD6GU3qC5t03rcPsKXbC_YsGDTGRs5OiyK6nL-jBzcyX9-TlbLqnQvCY1NYAFXchdB_CRziHBS5aWU2iDGsHZAPnf_NjMttTlW2CgyCHFQDtmNHAbkQ9_3pCH0-Gev9U5EWWvU8-xGBQfkfd8M5oh7LLp01QL6IGNeJIWCV7xoJNp_BvdSADQEAyJvybrvgFTft1vK2XFN-Y0F6wFKvfr_sN6Re-P9yV62tzPdfU3uA7arN75CtU5WQcDuDeCn8_xtrbSUHN21lVwDvyYw9w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6ULYg-SL2vrTqiPggdNplcJnkQWdsurbVLUSt9SydzoQsxqW6X0r_mr_Oc3LpV8a0Q8pAZkiHnMt-ZOfMdgNdJpOlcnuOhiSIeaqe4cmGKtyhOAmtdZOhw8sE03j0KPx5HxyvwqzsLQ2mVnU-sHbWpNK2RjzCQSRBNICAZuTYt4nB78v7sB6cKUrTT2pXTaFRk315eYPg2f7e3jbJ-I8Rk5-vWLm8rDHCNE9k5l0J7EQ4yFUr4Siba6dhzgROBszY2SaJyz4bWN3Eam1gGQqZ5npsgVn5khKPFUHT_qxKjIm8Aqx92poef-xUeL0B7EWnDiRoEqTf6rnyBU7Coi9ovzYJ_Qds_MzSXprzJGtxtsSobN8p1D1ZseR_uLDEYPoCLhv14zirHUOPQyxfsG4bfdCCrfvilKmaG0pFqDWB4IeJkB5QG2FDXLn7aTUb5A-RzN5kqTdN62j6il2wt-Ljg0xmfWDYuiupy_hCObuRPP4JBWZX2CbBIewZRprAhRlMyx3gnTZyUUmlCHMYM4W33bzPdEp1TvY0iw4CH5JBdyWEIr_q-Zw29xz97bXQiyloTn2dXCjmEl30zGiftuKjSVgvsQ_x5oQwSfMXjRqL9Z2hnBSGENwR5TdZ9ByL-vt5Szk5rAnAqX4_A6un_h_UCbqGFZJ_2pvvrcBuBXr0L5icbMED52mcIps7z563WMji5aUP5DcQUNok |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Thermal+Variables+of+Solidification+on+the+Microstructure%2C+Hardness%2C+and+Microhardness+of+Cu-Al-Ni-Fe+Alloys&rft.jtitle=Materials&rft.au=Nascimento%2C+Maur%C3%ADcio+Silva&rft.au=Santos%2C+Givanildo+Alves+Dos&rft.au=Teram%2C+Rog%C3%A9rio&rft.au=Santos%2C+Vin%C3%ADcius+Torres+Dos&rft.date=2019-04-18&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=12&rft.issue=8&rft_id=info:doi/10.3390%2Fma12081267&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |