Effects of Thermal Variables of Solidification on the Microstructure, Hardness, and Microhardness of Cu-Al-Ni-Fe Alloys

Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum–bro...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 12; no. 8; p. 1267
Main Authors Nascimento, Maurício Silva, Santos, Givanildo Alves dos, Teram, Rogério, Santos, Vinícius Torres dos, Silva, Márcio Rodrigues da, Couto, Antonio Augusto
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.04.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum–bronze alloys have been the subject of many studies due to the formations of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of aluminum bronze alloys, specifically Cu–10wt%Al–5wt%Ni–5wt%Fe (hypoeutectoid bronze) and Cu–14wt%Al–5wt%Ni–5wi%Fe (hypereutectoid bronze), were directionally solidified upward under transient heat flow conditions. The experimental parameters measured included solidification thermal parameters such as the tip growth rate (VL) and cooling rate (TR), optical microscopy, scanning electron microscopy (SEM) analysis, hardness, and microhardness. We observed that the hardness and microhardness values vary according to the thermal parameters and solidification. We also observed that the Cu–14wt%Al–5wt%Ni–5wi%Fe alloy presented higher hardness values and a more refined structure than the Cu–10wt%Al–5wt%Ni–5wt%Fe alloy. SEM analysis proved the presence of specific intermetallics for each alloy.
AbstractList Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum-bronze alloys have been the subject of many studies due to the formations of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of aluminum bronze alloys, specifically Cu-10wt%Al-5wt%Ni-5wt%Fe (hypoeutectoid bronze) and Cu-14wt%Al-5wt%Ni-5wi%Fe (hypereutectoid bronze), were directionally solidified upward under transient heat flow conditions. The experimental parameters measured included solidification thermal parameters such as the tip growth rate (VL) and cooling rate (TR), optical microscopy, scanning electron microscopy (SEM) analysis, hardness, and microhardness. We observed that the hardness and microhardness values vary according to the thermal parameters and solidification. We also observed that the Cu-14wt%Al-5wt%Ni-5wi%Fe alloy presented higher hardness values and a more refined structure than the Cu-10wt%Al-5wt%Ni-5wt%Fe alloy. SEM analysis proved the presence of specific intermetallics for each alloy.Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum-bronze alloys have been the subject of many studies due to the formations of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of aluminum bronze alloys, specifically Cu-10wt%Al-5wt%Ni-5wt%Fe (hypoeutectoid bronze) and Cu-14wt%Al-5wt%Ni-5wi%Fe (hypereutectoid bronze), were directionally solidified upward under transient heat flow conditions. The experimental parameters measured included solidification thermal parameters such as the tip growth rate (VL) and cooling rate (TR), optical microscopy, scanning electron microscopy (SEM) analysis, hardness, and microhardness. We observed that the hardness and microhardness values vary according to the thermal parameters and solidification. We also observed that the Cu-14wt%Al-5wt%Ni-5wi%Fe alloy presented higher hardness values and a more refined structure than the Cu-10wt%Al-5wt%Ni-5wt%Fe alloy. SEM analysis proved the presence of specific intermetallics for each alloy.
Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum–bronze alloys have been the subject of many studies due to the formations of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of aluminum bronze alloys, specifically Cu–10wt%Al–5wt%Ni–5wt%Fe (hypoeutectoid bronze) and Cu–14wt%Al–5wt%Ni–5wi%Fe (hypereutectoid bronze), were directionally solidified upward under transient heat flow conditions. The experimental parameters measured included solidification thermal parameters such as the tip growth rate (V L ) and cooling rate (T R ), optical microscopy, scanning electron microscopy (SEM) analysis, hardness, and microhardness. We observed that the hardness and microhardness values vary according to the thermal parameters and solidification. We also observed that the Cu–14wt%Al–5wt%Ni–5wi%Fe alloy presented higher hardness values and a more refined structure than the Cu–10wt%Al–5wt%Ni–5wt%Fe alloy. SEM analysis proved the presence of specific intermetallics for each alloy.
Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum–bronze alloys have been the subject of many studies due to the formations of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of aluminum bronze alloys, specifically Cu–10wt%Al–5wt%Ni–5wt%Fe (hypoeutectoid bronze) and Cu–14wt%Al–5wt%Ni–5wi%Fe (hypereutectoid bronze), were directionally solidified upward under transient heat flow conditions. The experimental parameters measured included solidification thermal parameters such as the tip growth rate (VL) and cooling rate (TR), optical microscopy, scanning electron microscopy (SEM) analysis, hardness, and microhardness. We observed that the hardness and microhardness values vary according to the thermal parameters and solidification. We also observed that the Cu–14wt%Al–5wt%Ni–5wi%Fe alloy presented higher hardness values and a more refined structure than the Cu–10wt%Al–5wt%Ni–5wt%Fe alloy. SEM analysis proved the presence of specific intermetallics for each alloy.
Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations of nickel aluminum-bronze alloys have been the subject of many studies due to the formations of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of aluminum bronze alloys, specifically Cu-10wt%Al-5wt%Ni-5wt%Fe (hypoeutectoid bronze) and Cu-14wt%Al-5wt%Ni-5wi%Fe (hypereutectoid bronze), were directionally solidified upward under transient heat flow conditions. The experimental parameters measured included solidification thermal parameters such as the tip growth rate (V ) and cooling rate (T ), optical microscopy, scanning electron microscopy (SEM) analysis, hardness, and microhardness. We observed that the hardness and microhardness values vary according to the thermal parameters and solidification. We also observed that the Cu-14wt%Al-5wt%Ni-5wi%Fe alloy presented higher hardness values and a more refined structure than the Cu-10wt%Al-5wt%Ni-5wt%Fe alloy. SEM analysis proved the presence of specific intermetallics for each alloy.
Author Teram, Rogério
Nascimento, Maurício Silva
Couto, Antonio Augusto
Santos, Givanildo Alves dos
Santos, Vinícius Torres dos
Silva, Márcio Rodrigues da
AuthorAffiliation 2 Salvador Arena Foundation Educational Center, 09850-550 São Bernardo do Campo, Brazil; vinicius.santos@termomecanica.com.br (V.T.d.S.); marcio.rdrgs.slv@gmail.com (M.R.d.S.)
5 Department of Engineering, Mackenzie Presbyterian University, UPM, 01302-907 São Paulo, Brazil
1 Department of Mechanics, Federal Institute of Education, Science and Technology of São Paulo, 01109-010 São Paulo, Brazil; givanildo@ifsp.edu.br (G.A.d.S.); rogerioteram@ifsp.edu.br (R.T.)
4 Nuclear and Energy Research Institute, Center for Materials Science and Technology, IPEN, 05508-000 São Paulo, Brazil; aacouto@ipen.br
3 Department of Research and Development, Termomecanica São Paulo S.A., 09612-000 São Bernardo do Campo, Brazil
AuthorAffiliation_xml – name: 1 Department of Mechanics, Federal Institute of Education, Science and Technology of São Paulo, 01109-010 São Paulo, Brazil; givanildo@ifsp.edu.br (G.A.d.S.); rogerioteram@ifsp.edu.br (R.T.)
– name: 5 Department of Engineering, Mackenzie Presbyterian University, UPM, 01302-907 São Paulo, Brazil
– name: 3 Department of Research and Development, Termomecanica São Paulo S.A., 09612-000 São Bernardo do Campo, Brazil
– name: 2 Salvador Arena Foundation Educational Center, 09850-550 São Bernardo do Campo, Brazil; vinicius.santos@termomecanica.com.br (V.T.d.S.); marcio.rdrgs.slv@gmail.com (M.R.d.S.)
– name: 4 Nuclear and Energy Research Institute, Center for Materials Science and Technology, IPEN, 05508-000 São Paulo, Brazil; aacouto@ipen.br
Author_xml – sequence: 1
  givenname: Maurício Silva
  surname: Nascimento
  fullname: Nascimento, Maurício Silva
– sequence: 2
  givenname: Givanildo Alves dos
  orcidid: 0000-0002-7064-3314
  surname: Santos
  fullname: Santos, Givanildo Alves dos
– sequence: 3
  givenname: Rogério
  surname: Teram
  fullname: Teram, Rogério
– sequence: 4
  givenname: Vinícius Torres dos
  surname: Santos
  fullname: Santos, Vinícius Torres dos
– sequence: 5
  givenname: Márcio Rodrigues da
  orcidid: 0000-0002-2709-7178
  surname: Silva
  fullname: Silva, Márcio Rodrigues da
– sequence: 6
  givenname: Antonio Augusto
  surname: Couto
  fullname: Couto, Antonio Augusto
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31003410$$D View this record in MEDLINE/PubMed
BookMark eNptkV1PFTEQhhuDEQRu_AFmE2-IYbUfu93tjcnJCYgJ6AXobdNtp56SbovtLoZ_bw_nCEhsmrSdefpmZt7XaCfEAAi9IfgDYwJ_HBWhuCeUdy_QHhGC10Q0zc6T-y46zPkal8UY6al4hXYZKY-G4D30-8Ra0FOuoq2uVpBG5asfKjk1eLgPXkbvjLNOq8nFUJU9raC6cDrFPKVZT3OC4-pMJRMg5-NKBbPJrrahtchyrhe-_urqU6gW3se7fIBeWuUzHG7PffT99ORqeVaff_v8Zbk4r3WD-VR3VOPWtK2gihLV9dpqji2zlFkAbvpeDRgaIIYLbnjHaCeGYTCMK9IaahnbR582ujfzMILREKakvLxJblTpTkbl5L-Z4FbyZ7yVvCUt5bwIHG0FUvw1Q57k6LIG71WAOGdJKSlD7ljfFfTdM_Q6zimU9iRtm563mAhaqLdPK3oo5a8nBXi_AdYjzgnsA0KwXHsuHz0vMH4GazfdW1W6cf5_X_4ATUWuBA
CitedBy_id crossref_primary_10_3390_ma18020234
crossref_primary_10_1016_j_rinma_2023_100485
crossref_primary_10_1088_1361_6528_ada3de
crossref_primary_10_4028_www_scientific_net_DDF_413_194
crossref_primary_10_1016_j_matchar_2025_114795
crossref_primary_10_3390_app12146974
crossref_primary_10_1007_s13538_021_00926_3
crossref_primary_10_1016_j_msea_2020_139773
crossref_primary_10_1088_1757_899X_1222_1_012014
crossref_primary_10_3390_met14101134
crossref_primary_10_3390_met13030459
crossref_primary_10_3390_met14101186
crossref_primary_10_3390_app14146001
crossref_primary_10_1016_j_jmrt_2023_06_030
crossref_primary_10_1016_j_triboint_2020_106519
crossref_primary_10_3390_ma17235757
crossref_primary_10_4028_www_scientific_net_DDF_412_185
crossref_primary_10_1088_1757_899X_1222_1_012008
crossref_primary_10_1088_1361_665X_acbdd5
crossref_primary_10_1016_j_mtcomm_2023_106551
crossref_primary_10_3390_ma16175905
crossref_primary_10_1016_j_corsci_2023_111656
crossref_primary_10_1088_1742_6596_2927_1_012010
crossref_primary_10_1080_02670836_2020_1834681
Cites_doi 10.2478/afe-2013-0063
10.1590/1980-5373-mr-2017-0864
10.1007/BF02662362
10.4028/www.scientific.net/MSF.899.424
10.1016/j.matdes.2006.09.009
10.1007/BF02642870
10.1007/BF02586225
10.1007/978-981-10-1602-8_19
10.1016/j.corsci.2005.05.053
10.1007/BF00548728
10.4028/www.scientific.net/DDF.371.78
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma12081267
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest SciTech Premium Collection
Materials Research Database
Materials Science Database (Proquest)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC6515266
31003410
10_3390_ma12081267
Genre Journal Article
GeographicLocations Hungary
United States--US
GeographicLocations_xml – name: United States--US
– name: Hungary
GroupedDBID 29M
2WC
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
NPM
PQGLB
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c406t-72c05d5592a21a78cfc60f3f23fee6d88ab0e4e1d696d673279bbbd36a15d2f33
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 14:07:30 EDT 2025
Fri Jul 11 11:09:15 EDT 2025
Fri Jul 25 12:03:07 EDT 2025
Mon Jul 21 05:45:52 EDT 2025
Tue Jul 01 03:56:02 EDT 2025
Thu Apr 24 23:06:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords solidification thermal parameters
specific intermetallics
hardness
microhardness
Cu-Al-Ni-Fe bronze alloys
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-72c05d5592a21a78cfc60f3f23fee6d88ab0e4e1d696d673279bbbd36a15d2f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7064-3314
0000-0002-2709-7178
OpenAccessLink https://www.proquest.com/docview/2548650192?pq-origsite=%requestingapplication%
PMID 31003410
PQID 2548650192
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6515266
proquest_miscellaneous_2211947387
proquest_journals_2548650192
pubmed_primary_31003410
crossref_primary_10_3390_ma12081267
crossref_citationtrail_10_3390_ma12081267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190418
PublicationDateYYYYMMDD 2019-04-18
PublicationDate_xml – month: 4
  year: 2019
  text: 20190418
  day: 18
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Nascimento (ref_20) 2017; 22
Dlouhy (ref_12) 2018; 48
Wharton (ref_2) 2005; 47
Jahanafrooz (ref_9) 1983; 14a
ref_13
ref_22
ref_10
ref_21
Pisarek (ref_11) 2013; 13
Nascimento (ref_14) 2018; 21
Osorio (ref_18) 2006; 37
ref_1
Miranda (ref_15) 2017; 899
ref_3
Culpan (ref_4) 1978; 13
ref_17
Miranda (ref_16) 2017; 371
Santos (ref_19) 2007; 28
ref_5
Hasan (ref_8) 1982; 13
ref_7
ref_6
References_xml – ident: ref_7
– volume: 48
  start-page: 599
  year: 2018
  ident: ref_12
  article-title: Influence of heat treatment on the microstructure and mechanical properties of aluminum bronze
  publication-title: Mater. Technol.
– volume: 13
  start-page: 72
  year: 2013
  ident: ref_11
  article-title: Model of Cu–Al-Fe-Ni Bronze Crystallization
  publication-title: Arch. Foundry Eng.
  doi: 10.2478/afe-2013-0063
– ident: ref_6
– volume: 22
  start-page: e11774
  year: 2017
  ident: ref_20
  article-title: Correlação entre variáveis térmicas de solidificação, microestrutura e resistência mecânica da liga Al-10%Si-2%Cu
  publication-title: Matéria
– ident: ref_5
– volume: 21
  start-page: e20170864
  year: 2018
  ident: ref_14
  article-title: An Experimental Study of the Solidification Thermal Parameters Influence upon Microstructure and Mechanical Properties of Al-Si-Cu Alloys
  publication-title: Mater. Res.
  doi: 10.1590/1980-5373-mr-2017-0864
– ident: ref_3
– volume: 14a
  start-page: 1951
  year: 1983
  ident: ref_9
  article-title: Microstructural Development in Complex Nickel-Aluminum Bronze
  publication-title: Met. Trans A
  doi: 10.1007/BF02662362
– volume: 899
  start-page: 424
  year: 2017
  ident: ref_15
  article-title: The Influence of the Sintering Temperature on the Grain Growth of Tungsten Carbide in the Composite WC-8Ni
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.899.424
– ident: ref_10
– volume: 28
  start-page: 2425
  year: 2007
  ident: ref_19
  article-title: Design of mechanical properties of a Zn27Al alloy based on microstructure dendritic array spacing
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2006.09.009
– volume: 13
  start-page: 1337
  year: 1982
  ident: ref_8
  article-title: The Morphology, Crystallography, and Chemistry of Phases in As-Cast Nickel Aluminum Bronze
  publication-title: Met. Trans. A
  doi: 10.1007/BF02642870
– volume: 37
  start-page: 2525
  year: 2006
  ident: ref_18
  article-title: Effect of dendritic arm spacing on mechanical properties and corrosion resistance of Al 9 Wt Pct Si and Zn 27 Wt Pct Al alloys
  publication-title: Metall. Mater. Trans A
  doi: 10.1007/BF02586225
– ident: ref_13
– ident: ref_17
  doi: 10.1007/978-981-10-1602-8_19
– ident: ref_1
– ident: ref_22
– volume: 47
  start-page: 3336
  year: 2005
  ident: ref_2
  article-title: The Corrosion of nickel–aluminum bronze in seawater
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2005.05.053
– ident: ref_21
– volume: 13
  start-page: 1647
  year: 1978
  ident: ref_4
  article-title: Microstructural characterization of cast nickel aluminum bronze
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF00548728
– volume: 371
  start-page: 78
  year: 2017
  ident: ref_16
  article-title: Microstructural Evolution of Composite 8 WC-(Co, Ni): Effect of the Addition of SiC
  publication-title: Defect Diffus. Forum
  doi: 10.4028/www.scientific.net/DDF.371.78
SSID ssj0000331829
Score 2.3146074
Snippet Aluminum bronze is a complex group of copper-based alloys that may include up to 14% aluminum, but lower amounts of nickel and iron are also added, as they...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1267
SubjectTerms Alloys
Aluminum bronzes
Bronze
Cooling
Cooling rate
Coordination compounds
Copper
Copper base alloys
Corrosion resistance
Directional solidification
Ductility
Flow velocity
Heat
Heat transmission
Intermetallic compounds
Iron
Microhardness
Microstructure
Nickel base alloys
Optical microscopy
Parameters
Phase transitions
Quaternary systems
Scanning electron microscopy
Solids
Stainless steel
Temperature
Thermocouples
Thermodynamic properties
Title Effects of Thermal Variables of Solidification on the Microstructure, Hardness, and Microhardness of Cu-Al-Ni-Fe Alloys
URI https://www.ncbi.nlm.nih.gov/pubmed/31003410
https://www.proquest.com/docview/2548650192
https://www.proquest.com/docview/2211947387
https://pubmed.ncbi.nlm.nih.gov/PMC6515266
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZr-7I9jO5ns3VFY3sZVNSWLEt-KmlpWgYNY1tH3oysHzTg2W3TMPbf985W3HQbgxCIJGyTT777Tid9R8hHLS2eywssc1KyzAbDTMgK-JK5Ft4H6fBw8vk0P7vIPs_kLC64LeK2ypVN7Ay1ay2ukR9AIKOBTQAhOby6Zlg1CrOrsYTGBtkCE6wh-No6Opl--TqssiQC5iwvel1SAfH9wU-TcnCDvCssv-aJ_qKXf-6SXHM7k23yNPJFOu4BfkYe-eY5ebKmIviC_OoViBe0DRRQB0tb0x8QAuOhqK7xW1vPHW4J6lCg8AHWR89xK14vH7u88fsUc_ho9_apaVzfexmb8CLHSzau2XTOJp6O67r9vXhJLiYn34_PWKynwCy47VumuE0kQFJww1OjtA02T4IIXATvc6e1qRKf-dTlRe5yJbgqqqpyIjepdDwI8YpsNm3jdwiVNnHA9LjPIKJRFcQchQ5KKWPR6zs3Ip9W_21po9g41ryoSwg6EIfyHocR-TCMveolNv45ancFURlfs0V5PylG5P3QDS8IZj1M49sljEENu0wJDZd43SM63AazG-DGkxFRD7AeBqD49sOeZn7ZiXBjCXkgN2_-_1hvyWNgWF36KdW7ZBNA9e-AxdxWe2RDT0734oSFX6ez9A591fa3
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAcEG8WChgBB6RaTewkdg4VWhWWLe3uhRb1ljp-qCuFpO12VfVP9Td2Jq9uAXGrFOUQW4mVefgbe_wNIR9VbPBcnmeRjWMWGa-Z9lEKtzhRwjkfWzycPJkm44Pox2F8uEKuurMwmFbZ-cTaUdvK4Br5JgQyCtAEAJIvJ6cMq0bh7mpXQqNRi113eQEh23xr5yvI9xPno2_722PWVhVgBiavcya5CWIYWMo1D7VUxpsk8MJz4Z1LrFI6D1zkQpukiU2k4DLN89yKRIex5R4XQMHlr0VCpGhRavS9X9MJBFgITxsWVGgPNn_rkMOky-sy9kvz3l9g9s-czKVJbvSIPGzRKR026vSYrLjyCXmwxFn4lFw0fMdzWnkKOgZ-vaC_IODGI1j1w59VMbOYgFTLnMIFGJNOMPGvIatdnLkNihkD6GU3qC5t03rcPsKXbC_YsGDTGRs5OiyK6nL-jBzcyX9-TlbLqnQvCY1NYAFXchdB_CRziHBS5aWU2iDGsHZAPnf_NjMttTlW2CgyCHFQDtmNHAbkQ9_3pCH0-Gev9U5EWWvU8-xGBQfkfd8M5oh7LLp01QL6IGNeJIWCV7xoJNp_BvdSADQEAyJvybrvgFTft1vK2XFN-Y0F6wFKvfr_sN6Re-P9yV62tzPdfU3uA7arN75CtU5WQcDuDeCn8_xtrbSUHN21lVwDvyYw9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6ULYg-SL2vrTqiPggdNplcJnkQWdsurbVLUSt9SydzoQsxqW6X0r_mr_Oc3LpV8a0Q8pAZkiHnMt-ZOfMdgNdJpOlcnuOhiSIeaqe4cmGKtyhOAmtdZOhw8sE03j0KPx5HxyvwqzsLQ2mVnU-sHbWpNK2RjzCQSRBNICAZuTYt4nB78v7sB6cKUrTT2pXTaFRk315eYPg2f7e3jbJ-I8Rk5-vWLm8rDHCNE9k5l0J7EQ4yFUr4Siba6dhzgROBszY2SaJyz4bWN3Eam1gGQqZ5npsgVn5khKPFUHT_qxKjIm8Aqx92poef-xUeL0B7EWnDiRoEqTf6rnyBU7Coi9ovzYJ_Qds_MzSXprzJGtxtsSobN8p1D1ZseR_uLDEYPoCLhv14zirHUOPQyxfsG4bfdCCrfvilKmaG0pFqDWB4IeJkB5QG2FDXLn7aTUb5A-RzN5kqTdN62j6il2wt-Ljg0xmfWDYuiupy_hCObuRPP4JBWZX2CbBIewZRprAhRlMyx3gnTZyUUmlCHMYM4W33bzPdEp1TvY0iw4CH5JBdyWEIr_q-Zw29xz97bXQiyloTn2dXCjmEl30zGiftuKjSVgvsQ_x5oQwSfMXjRqL9Z2hnBSGENwR5TdZ9ByL-vt5Szk5rAnAqX4_A6un_h_UCbqGFZJ_2pvvrcBuBXr0L5icbMED52mcIps7z563WMji5aUP5DcQUNok
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Thermal+Variables+of+Solidification+on+the+Microstructure%2C+Hardness%2C+and+Microhardness+of+Cu-Al-Ni-Fe+Alloys&rft.jtitle=Materials&rft.au=Nascimento%2C+Maur%C3%ADcio+Silva&rft.au=Santos%2C+Givanildo+Alves+Dos&rft.au=Teram%2C+Rog%C3%A9rio&rft.au=Santos%2C+Vin%C3%ADcius+Torres+Dos&rft.date=2019-04-18&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=12&rft.issue=8&rft_id=info:doi/10.3390%2Fma12081267&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon