Miniaturization perspectives of electrostatic propulsion for small spacecraft platforms
In-space electric propulsion technologies have advanced significantly in the last decade, while there has been increasing interest in economical propulsion systems with growing demand for commercial and scientific applications using small spacecraft platforms. Electrostatic propulsion, in particular...
Saved in:
Published in | Progress in aerospace sciences Vol. 126; p. 100742 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.10.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In-space electric propulsion technologies have advanced significantly in the last decade, while there has been increasing interest in economical propulsion systems with growing demand for commercial and scientific applications using small spacecraft platforms. Electrostatic propulsion, in particular, offers advantages over other propulsion systems in various aspects, including long operational lifetime, high specific impulse, and light weight. However, electric propulsion systems are subject to drawbacks such as system complexity and wall erosion, which represent obstacles toward miniaturization to be utilized for small spacecraft. New ideas are continuously explored to overcome such challenges and improve the performance. This article presents a comprehensive review of electrostatic propulsion systems, with particular focus on Gridded Ion Engine (GIE), Hall Effect Thruster (HET), and Cusped Field Thruster (CFT) systems, with respect to their operational principles, applications, and characteristics. State-of-the-art technologies and novel concepts are discussed including research efforts for miniaturization, along with the latest available data of their performance and features. While GIE and HET are mature and well understood, the power consumption of miniaturized thrusters is relatively high, leaving room for improvement toward practical application. CFT, on the other hand, features appreciable performance even in miniaturized form, offering promise to serve for small spacecraft platforms. |
---|---|
AbstractList | In-space electric propulsion technologies have advanced significantly in the last decade, while there has been increasing interest in economical propulsion systems with growing demand for commercial and scientific applications using small spacecraft platforms. Electrostatic propulsion, in particular, offers advantages over other propulsion systems in various aspects, including long operational lifetime, high specific impulse, and light weight. However, electric propulsion systems are subject to drawbacks such as system complexity and wall erosion, which represent obstacles toward miniaturization to be utilized for small spacecraft. New ideas are continuously explored to overcome such challenges and improve the performance. This article presents a comprehensive review of electrostatic propulsion systems, with particular focus on Gridded Ion Engine (GIE), Hall Effect Thruster (HET), and Cusped Field Thruster (CFT) systems, with respect to their operational principles, applications, and characteristics. State-of-the-art technologies and novel concepts are discussed including research efforts for miniaturization, along with the latest available data of their performance and features. While GIE and HET are mature and well understood, the power consumption of miniaturized thrusters is relatively high, leaving room for improvement toward practical application. CFT, on the other hand, features appreciable performance even in miniaturized form, offering promise to serve for small spacecraft platforms. |
ArticleNumber | 100742 |
Author | Yeo, Suk Hyun Kahnfeld, Daniel Ogawa, Hideaki Schneider, Ralf |
Author_xml | – sequence: 1 givenname: Suk Hyun orcidid: 0000-0002-8788-5491 surname: Yeo fullname: Yeo, Suk Hyun email: suk.hyun.yeo@student.rmit.edu.au organization: RMIT University, Melbourne, Victoria 3001, Australia – sequence: 2 givenname: Hideaki orcidid: 0000-0002-7584-0077 surname: Ogawa fullname: Ogawa, Hideaki email: hideaki.ogawa@aero.kyushu-u.ac.jp organization: Kyushu University, Fukuoka 819-0395, Japan – sequence: 3 givenname: Daniel orcidid: 0000-0002-5900-4423 surname: Kahnfeld fullname: Kahnfeld, Daniel email: kahnfeldd@uni-greifswald.de organization: University of Greifswald, Greifswald 17498, Germany – sequence: 4 givenname: Ralf orcidid: 0000-0002-4492-8869 surname: Schneider fullname: Schneider, Ralf email: schneider@uni-greifswald.de organization: University of Greifswald, Greifswald 17498, Germany |
BookMark | eNqFkMtKAzEUhoNUsK2-ggy4nprbXAoulOINKm4UlyFmTiDDdBKTTEGf3oyjGzddheT83zk53wLNetsDQucErwgm5WW7chK8DcqsKKYkPeKK0yM0J3XFclJRPkNzzKoyx5ySE7QIocUYs3VdzNHbk-mNjIM3XzIa22cOfHCgotlDyKzOoEuX1D2mssqct27owhjU1mdhJ7suC04qUF7qmLlOxlTYhVN0rGUX4Oz3XKLXu9uXzUO-fb5_3Nxsc8VxGfOKypppDowyjmGNNaZlxXXFuK5LVlRlw-FdkYLyoiZrWidISiWBrUeeN2yJLqa-6WcfA4QoWjv4Po0UtChrlmRQnlJXU0qlTYIHLZSJP_tGL00nCBajStGKP5ViVCkmlQkv_-HOm530n4fB6wmEpGBvwIuUgF5BY3zSKhprDrX4Bgd9lTM |
CitedBy_id | crossref_primary_10_3390_aerospace12030211 crossref_primary_10_1016_j_enss_2024_03_001 crossref_primary_10_1021_acsami_2c12716 crossref_primary_10_2514_1_G007858 crossref_primary_10_1016_j_vacuum_2023_112650 crossref_primary_10_1088_1361_6595_acfb37 crossref_primary_10_1016_j_actaastro_2023_05_031 crossref_primary_10_1016_j_enconman_2022_115524 crossref_primary_10_1016_j_jallcom_2023_173202 crossref_primary_10_1088_1742_6596_2388_1_012048 crossref_primary_10_3390_rs17030513 crossref_primary_10_1016_j_ast_2022_108011 crossref_primary_10_3390_electronics13101810 crossref_primary_10_1016_j_jmrt_2023_03_125 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125895 crossref_primary_10_1007_s42496_024_00203_x crossref_primary_10_1088_1361_6463_acefe0 crossref_primary_10_1088_1361_6463_ac5d04 crossref_primary_10_1016_j_fuel_2022_126822 crossref_primary_10_1108_PRT_11_2024_0116 crossref_primary_10_3390_act13100384 crossref_primary_10_3390_app13095600 crossref_primary_10_1109_TAES_2024_3446758 crossref_primary_10_1016_j_ijmecsci_2022_107671 crossref_primary_10_3390_mi13122236 |
Cites_doi | 10.1016/j.actaastro.2018.12.023 10.1109/TPS.2014.2360015 10.2514/6.2006-4469 10.3390/aerospace7090120 10.1088/0022-3727/48/37/375203 10.1017/S0022377817000125 10.2514/1.B34173 10.1016/j.actaastro.2017.08.001 10.1063/1.1568344 10.1109/TPS.2010.2056936 10.1103/PhysRevLett.111.115002 10.7567/JJAP.56.050312 10.1016/j.vacuum.2018.06.056 10.1109/TPS.2014.2355223 10.1063/1.5007734 10.1109/TPS.2014.2321095 10.1063/1.2162809 10.1063/1.1409344 10.1063/1.1943327 10.2514/6.2018-2729 10.2514/6.2007-5199 10.2514/6.2010-6617 10.1063/1.4937353 10.2514/1.15952 10.1063/1.4932196 10.1063/1.1515106 10.3390/aerospace4040055 10.2514/1.41386 10.2514/1.B37929 10.1088/0963-0252/25/3/033002 10.3390/aerospace7060067 10.1063/1.4995285 10.2514/6.2007-5250 10.3390/aerospace7050058 10.2514/6.2000-3273 10.1063/1.863955 10.1002/ctpp.201900028 10.2514/6.2010-7104 10.1063/1.4932077 10.1088/1361-6463/aa7bbf 10.2514/6.2019-4076 10.1088/0022-3727/49/28/285201 10.1063/1.1144869 10.1140/epjd/e2020-100595-0 10.2514/1.16376 10.21236/ADA437488 10.1063/1.2718522 10.1109/TPS.2008.2002032 10.1016/j.vacuum.2015.02.007 10.1088/1361-6595/aaf29a 10.1109/TPS.2017.2786402 10.1016/j.vacuum.2017.06.030 10.2514/1.B36459 10.1088/0022-3727/49/46/465001 10.2514/6.2017-4729 10.1063/1.1566474 10.1140/epjst/e2016-60247-y 10.1016/j.proeng.2017.03.296 10.1109/TPS.2011.2162652 10.2514/1.B35709 10.1088/1361-6595/aa660d 10.1063/1.4904965 10.1007/s41614-019-0030-4 10.1016/j.vacuum.2012.04.012 10.2174/1876534301104010016 10.1063/1.2987090 10.2514/3.5781 10.21236/ADA549666 10.1016/j.paerosci.2020.100627 10.2514/6.2010-6623 10.2514/6.2008-4631 10.2514/6.2010-6942 10.2514/1.15954 10.1016/S0094-5765(00)00087-4 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Oct 1, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Oct 1, 2021 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D L7M |
DOI | 10.1016/j.paerosci.2021.100742 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-1724 |
ExternalDocumentID | 10_1016_j_paerosci_2021_100742 S0376042121000464 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASUFR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SST SSZ T5K TAE TN5 UNMZH XPP XWC ZMT ~G- 186 29P 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SET SEW SSH T9H WUQ 7TB 8FD EFKBS FR3 H8D L7M |
ID | FETCH-LOGICAL-c406t-72a83f4e32340e90f02674f734f863576d4ebc1524581928406aacae39c4064d3 |
IEDL.DBID | .~1 |
ISSN | 0376-0421 |
IngestDate | Fri Jul 25 07:56:02 EDT 2025 Tue Jul 01 04:15:24 EDT 2025 Thu Apr 24 22:50:39 EDT 2025 Fri Feb 23 02:46:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cusped Field Thruster Electrostatic propulsion Miniaturization Gridded Ion Engine Hall Effect Thruster |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-72a83f4e32340e90f02674f734f863576d4ebc1524581928406aacae39c4064d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7584-0077 0000-0002-4492-8869 0000-0002-5900-4423 0000-0002-8788-5491 |
PQID | 2568310024 |
PQPubID | 2045413 |
ParticipantIDs | proquest_journals_2568310024 crossref_citationtrail_10_1016_j_paerosci_2021_100742 crossref_primary_10_1016_j_paerosci_2021_100742 elsevier_sciencedirect_doi_10_1016_j_paerosci_2021_100742 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 2021-10-00 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Progress in aerospace sciences |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | (b39) 2019 (b76) 2021 Yeo, Ogawa (b157) 2018 H.J. Leiter, R. Killinger, H. Bassner, J. Müller, R. Kukies, P. Box, Development of the radio frequeny ion thruster RIT XT–a status report, in: Proceedings of the 27th International Electric Propulsion Conference, Pasadena, California, USA, IEPC–01–104, 2001. I. Mikellides, I. Katz, R. Hofer, D. Goebel, K. de Grys, A. Mathers, Magnetic shielding of the acceleration channel walls in a long-life Hall thruster, in: Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, Tennessee, USA, 2010. Luna, Lewis, Park, Bosher, Guarducci, Cannat (b26) 2019 Gamero-Castanõ, Katz (b68) 2005 Foust (b14) 2021 Koizumi, Komurasaki, Aoyama, Yamaguchi (b60) 2014; 12 Hu, Liu, Mao, Yu, Gao (b163) 2015; 22 (b79) 2021 Ma, Liu, Hu, Yu, Chen, Sun, Zhao (b153) 2015; 115 (b18) 1988 E.T. Dale, B. Jorns, Frequency scaling of the hall thruster breathing mode, in: Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, Indiana, USA, AIAA 2019–4076, 2019. Singh, Malik (b170) 2011; 4 N. Wallace, P. Jameson, C. Saunders, M. Fehringer, C. Edwards, R. Floberghagen, The GOCE Ion Propulsion Assembly–Lessons Learnt from the First 22 Months of Flight Operations, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–327, 2011. R. Killinger, H. Bassner, J. Mueller, R. Kukies, RITA ion propulsion for ARTEMIS lifetime test results, in: Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, Nevada, USA, AIAA–2000–3273, 2000. Hofer, Jankovsky, Gallimore (b88) 2006; 22 Hall, Jorns, Gallimore, Goebel (b98) 2020; 36 Rovey, Lyne, Mundahl, Rasmont, Glascock, Wainwright, Berg (b51) 2020; 118 Singh, Malik, Nishida (b172) 2013; 20 H. Leiter, B. Lotz, D. Feili, M. Tartz, H. Neumann, D.M. Di Cara, Design development and test of the RIT- Singh, Malik (b169) 2011; 39 Z. Tianping, S. Mingming, L. Jianfei, Z. Haocheng, The electric propulsion development in LIP, in: Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C. USA, IEPC–2013–48, 2013. (b96) 2019 Ding, Sun, Li, Wei, Xu, Peng, Su, Yu (b109) 2017; 143 D.M. Goebel, I.G. Mikellides, J.E. Polk, J. Young, W.G. Tighe, K.-R. Chien, Keeper wear mechanisms in the XIPS© 25-cm neutralizer cathode assembly, in: Proceedings of the 31st International Electric Propulsion Conference, Ann Arbor, Michigan, USA, IEPC–2009–153, 2009. Smirnov, Raitses, Fisch (b121) 2002; 92 (b53) 2019 Tani, Tsukizaki, Koda, Nishiyama, Kuninaka (b43) 2019; 157 Koizumi, Komurasaki, Aoyama, Yamaguchi (b61) 2018; 34 Saevets, Kim, Grdlichko, Smirnov (b92) 2017; 185 R. Heidemann, S. Weis, A. Genovese, A. Lazurenko, H. Stalzer, E. Bosch, P. Holtmann, Development of the low power HEMPT EV0, in: Proceedings of the 36th International Electric Propulsion Conference, Vienna, Austria, IEPC–2019–A873, 2019. (b84) 2019 Vaudolon, Vial, Cornu, Habbassi (b85) 2019 Rayman, Varghese, Lehman, Livesay (b20) 2000; 47 Raitses, Smirnov, Staack, Fisch (b65) 2006; 13 R. Hofer, High-specific impulse operation of the BPT-4000 hall thruster for NASA science missions, in: Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, Tennessee, USA, 2010. Keller, Köhler, Hey, Berger, Braxmaier, Feili, Weise, Johann (b164) 2015; 43 Matlock (b128) 2012 Duras, Kahnfeld, Bandelow, Kemnitz, Luskoẅ, Matthias, Koch, Schneider (b137) 2017; 83 Koehne, Lindner, Schreitmueller, Wichman, Zeyfang (b102) 1970; 8 (b97) 2019 Mazouffre, Tsikata, Vaudolon (b116) 2014; 116 Matyash, Schneider (b142) 2013 Fahey, Muffatti, Ogawa (b158) 2017; 4 Dale, Jorns, Gallimore (b120) 2020; 7 A. Kapulkin, V. Balabanov, M. Rubanovich, E. Behar, L. Rabinovich, A. Warshavsky, CAMILA hall thruster: new results, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–046, 2011. Chodura (b112) 1982; 25 H. Koizumi, H. Kuninaka, Ion Beam Extraction and Electron Emission from the Miniature Microwave Discharge Ion Engine Boyd (b5) 2011 S.J. Hall, B.J. Jorns, A.D. Gallimore, H. Kamhawi, T.W. Haag, J.A. Mackey, J.H. Gilland, P.Y. Peterson, M. Baird, High-power performance of a 100-kW class nested Hall thruster, in: Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, USA, IEPC–2017–228, 2017. Potrivitu, Sun, b. Rohaizat, Cherkun, Xu, Huang, Xu (b126) 2020; 7 NRIT-2.5 – a New Optimized Microthruster of Giessen University, in: Proceedings of the 31st International Electric Propulsion Conference, Michigan, USA, IEPC–2015–90/ISTS–2015–b–90, 2009. N. Koch, S. Weis, M. Schirra, A. Lazurenko, B. van Reijen, J. Haderspeck, A. Genovese, P. Holtmann, Development, qualification and delivery status of the HEMPT based ion propulsion system for smallgeo, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–148, 2011. Yongjie, Wuji, Liqiu, Guoshun, Hong, Daren (b110) 2016; 49 C. Boniface, J.-M. Charbonnier, L. Lefebvre, V. Leroi, T. and Lienart, An Overview of Electric Propulsion Activities at CNES, in: Proceedings of the 35th International Electric Propulsion Conference, Georgia, USA, IEPC-2017-102, 2017. Duchemin, Rabin, Balika, Coduti, Vial, Vuglec, Cavelan, Leroi (b81) 2019 Collingwood, Gabriel, Corbett, Wallace, Jameson (b50) 2009; SERIES 8 DelPozzo, Williams (b13) 2020 Grimaud, Mazouffre (b114) 2017; 122 (b23) 2017 Matyash, Schneider, Mutzke, Kalentev, Taccogna, Koch, Schirra (b135) 2010; 38 Dale, Jorns (b175) 2019 K. Holste, W. Gärtner, P. Köhler, P. Dietz, J. Konrad, S. Schippers, P.J. Klar, A. Müller, P.R. Schreiner, In search of alternative propellants for ion thrusters, in: Proceedings of the 34th International Electric Propulsion Conference, Kobe, Japan, IEPC–2015–320/ISTS–2015–b–320, 2015. (b19) 2007 Ahedo, Parra (b66) 2005; 12 N. Koch, M. Schirra, S. Weis, A. Lazurenko, B. van Reijen, J. Haderspeck, A. Genovese, P. Holtmann, R. Schneider, K. Matyash, et al. The HEMPT concept – a survey on theoretical considerations and experimental evidences, in: Proceeding of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, 11, 2011. Groh, Loeb (b36) 1994; 65 P. Lascombes, Electric propulsion for small satellites orbit control and deorbiting: The example of a hall effect thruster, in: Proceedings of the 15th International Conference on Space Operations, Marseille, France, 2018. Ding, Sun, Wei, Li, Su, Peng, Yu (b107) 2017; 139 H. Lee, E. Lee, S. Choi, S. So, E.H. Kim, S. Kang, Y. Kim, Y. Jeong, A.M. Al Sayegh, M.L. Cerrón, Development of low power hall effect propulsion system with improved system efficiency for small satellite applications, in: Proceeding of Space Propulsion 2018 Conference, Seville, Spain, SP2018–00181, 2018. Ding, Peng, Sun, Wei, Zeng, Wang, Yu (b106) 2017; 226 Sazbo (b83) 2021 X-the new modular high precision micro ion propulsion system, in: Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, Ohio, USA, AIAA 2007-5250, 2007. Dey, Toyoda, Yamamoto, Nakashima (b58) 2015; 86 C. Clauss, D. Tilley, D. Barnhart, Benefits of low-power stationary plasma thruster propulsion for small satellites, in: Proceedings of the 9th AIAA/USU Conference on Small Satellites, Logan, Utah, USA, 1995. Goebel, Katz (b1) 2008 Liu, Niu, Li, Yu (b161) 2020; 74 Gonzalez del Amo (b77) 2017 A.V. Loyan, T.A. Maksymenko, Performance investigation of SPT-20M low power hall effect thruster, in: Proceedings of the 30th International Electric Propulsion Conference, Florence, Italy, IEPC–2007–100, 2007. Vaudolon, Mazouffre, Hénaux, Harribey, Rossi (b117) 2015; 107 Kahnfeld, Heidemann, Duras, Matthias, Bandelow, Lüskow, Kemnitz, Matyash, Schneider (b141) 2018; 27 Cybulski, Shellhammer, Lovell, Domino, Kotnik, Cybulski, Loveli (b17) 1965 Dunaevsky, Raitses, Fisch (b67) 2003; 10 Singh (b168) 2020 Hu, Liu, Gao, Mao, Yu (b155) 2016; 49 Sekerak, Gallimore, Brown, Hofer, Polk (b140) 2016; 32 D. Lev, R.M. Myers, K.M. e. a. Lemmer, The technological and commercial expansion of electric propulsion in the past 24 years, in: Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, USA, IEPC-2017-242, 2017. Ikeda, Togawa, Tahara, Watanabe (b125) 2013; 88 M.R. Nakles, W.A. Hargus Jr, J.J. Delgado, R.L. Corey, A performance comparison of xenon and krypton propellant on an spt-100 hall thruster, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC-2011-003, 2011. Hruby, Demmons, Courtney, Tsay, Szabo, Hruby (b40) 2019 R. Hofer, T. Randolph, D. Oh, J. Snyder, K. de Grys, Evaluation of a 4.5 kw commercial hall thruster system for NASA science missions, in: Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, California, USA, 2006. Talbert (b24) 2020 (b52) 2019 M. Titov, A.V. Loyan, O. Rybalov, T.A. Maksymenko, The comparison of results of tests of low-power hall thrusters: SPT and TAL, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–199, 2011. Garrigues, Mazouffre, Vaudolon, Tsikata (b176) 2015 Matthias, Kahnfeld, Schneider, Suk, Ogawa (b129) 2019; 59 Hey (b134) 2018 Ding, Sun, Peng, Xu, Wei, Li, Li, Su, Yu (b111) 2017; 56 S. Weis, A. Lazurenko, B. van Reijen, J. e. a. Haderspeck, Overview, qualification and delivery status of the HEMPT based ion propulsion system for smallgeo, in: Proceedings of the 34th International Electric Propulsion Conference, Kobe, Japan, IEPC–2015–345, 2015. Kieckhafer, King (b10) 2007; 23 S.J. Hall, B. Jorns, A. Gallimore, R.R. Hofer, Expanded thruster mass model incorporating nested Hall thrusters, in: Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, Georgia, USA, 2017. A. Genovese, A. Lazurenko, N. Koch, S. e. a. Weis, Endurance testing of HEMPT-based ion propulsion modules for smallgeo, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–141, 2011. H. Ding (10.1016/j.paerosci.2021.100742_b107) 2017; 139 Singh (10.1016/j.paerosci.2021.100742_b168) 2020 Koizumi (10.1016/j.paerosci.2021.100742_b61) 2018; 34 Smirnov (10.1016/j.paerosci.2021.100742_b121) 2002; 92 Ikeda (10.1016/j.paerosci.2021.100742_b125) 2013; 88 10.1016/j.paerosci.2021.100742_b147 10.1016/j.paerosci.2021.100742_b148 10.1016/j.paerosci.2021.100742_b145 Dale (10.1016/j.paerosci.2021.100742_b120) 2020; 7 10.1016/j.paerosci.2021.100742_b146 Ding (10.1016/j.paerosci.2021.100742_b108) 2017; 50 DelPozzo (10.1016/j.paerosci.2021.100742_b13) 2020 Mazouffre (10.1016/j.paerosci.2021.100742_b116) 2014; 116 10.1016/j.paerosci.2021.100742_b150 Hofer (10.1016/j.paerosci.2021.100742_b88) 2006; 22 10.1016/j.paerosci.2021.100742_b154 (10.1016/j.paerosci.2021.100742_b76) 2021 10.1016/j.paerosci.2021.100742_b152 10.1016/j.paerosci.2021.100742_b32 10.1016/j.paerosci.2021.100742_b33 (10.1016/j.paerosci.2021.100742_b79) 2021 10.1016/j.paerosci.2021.100742_b35 (10.1016/j.paerosci.2021.100742_b18) 1988 10.1016/j.paerosci.2021.100742_b37 10.1016/j.paerosci.2021.100742_b38 Koch (10.1016/j.paerosci.2021.100742_b149) 2005 Matyash (10.1016/j.paerosci.2021.100742_b135) 2010; 38 Tani (10.1016/j.paerosci.2021.100742_b43) 2019; 157 Luna (10.1016/j.paerosci.2021.100742_b26) 2019 Collingwood (10.1016/j.paerosci.2021.100742_b50) 2009; SERIES 8 10.1016/j.paerosci.2021.100742_b156 Ultes (10.1016/j.paerosci.2021.100742_b8) 2021 Kieckhafer (10.1016/j.paerosci.2021.100742_b10) 2007; 23 10.1016/j.paerosci.2021.100742_b162 Yoshikawa (10.1016/j.paerosci.2021.100742_b42) 2014 10.1016/j.paerosci.2021.100742_b160 (10.1016/j.paerosci.2021.100742_b97) 2019 10.1016/j.paerosci.2021.100742_b165 Yim (10.1016/j.paerosci.2021.100742_b70) 2008; 104 Singh (10.1016/j.paerosci.2021.100742_b172) 2013; 20 10.1016/j.paerosci.2021.100742_b44 10.1016/j.paerosci.2021.100742_b45 10.1016/j.paerosci.2021.100742_b46 (10.1016/j.paerosci.2021.100742_b94) 2019 Groh (10.1016/j.paerosci.2021.100742_b36) 1994; 65 10.1016/j.paerosci.2021.100742_b48 10.1016/j.paerosci.2021.100742_b49 10.1016/j.paerosci.2021.100742_b90 10.1016/j.paerosci.2021.100742_b91 Hu (10.1016/j.paerosci.2021.100742_b155) 2016; 49 10.1016/j.paerosci.2021.100742_b93 Foust (10.1016/j.paerosci.2021.100742_b14) 2021 Keller (10.1016/j.paerosci.2021.100742_b164) 2015; 43 Liu (10.1016/j.paerosci.2021.100742_b161) 2020; 74 Ahedo (10.1016/j.paerosci.2021.100742_b66) 2005; 12 10.1016/j.paerosci.2021.100742_b123 10.1016/j.paerosci.2021.100742_b124 David (10.1016/j.paerosci.2021.100742_b2) 2020 Garrigues (10.1016/j.paerosci.2021.100742_b176) 2015 Kahnfeld (10.1016/j.paerosci.2021.100742_b136) 2019; 3 Bering (10.1016/j.paerosci.2021.100742_b34) 2004; 2004 10.1016/j.paerosci.2021.100742_b133 (10.1016/j.paerosci.2021.100742_b23) 2017 (10.1016/j.paerosci.2021.100742_b53) 2019 10.1016/j.paerosci.2021.100742_b130 10.1016/j.paerosci.2021.100742_b131 10.1016/j.paerosci.2021.100742_b11 (10.1016/j.paerosci.2021.100742_b19) 2007 10.1016/j.paerosci.2021.100742_b99 10.1016/j.paerosci.2021.100742_b12 Saevets (10.1016/j.paerosci.2021.100742_b92) 2017; 185 Doerner (10.1016/j.paerosci.2021.100742_b22) 2003; 93 Mazouffre (10.1016/j.paerosci.2021.100742_b9) 2016; 25 (10.1016/j.paerosci.2021.100742_b47) 2020 Gonzalez del Amo (10.1016/j.paerosci.2021.100742_b77) 2017 Matlock (10.1016/j.paerosci.2021.100742_b128) 2012 Cybulski (10.1016/j.paerosci.2021.100742_b17) 1965 Hall (10.1016/j.paerosci.2021.100742_b98) 2020; 36 10.1016/j.paerosci.2021.100742_b138 10.1016/j.paerosci.2021.100742_b28 10.1016/j.paerosci.2021.100742_b29 Talbert (10.1016/j.paerosci.2021.100742_b24) 2020 Ding (10.1016/j.paerosci.2021.100742_b106) 2017; 226 Warner (10.1016/j.paerosci.2021.100742_b31) 2010; 26 10.1016/j.paerosci.2021.100742_b143 10.1016/j.paerosci.2021.100742_b144 10.1016/j.paerosci.2021.100742_b21 Koizumi (10.1016/j.paerosci.2021.100742_b60) 2014; 12 Yalin (10.1016/j.paerosci.2021.100742_b69) 2007 Gurciullo (10.1016/j.paerosci.2021.100742_b4) 2019 Matyash (10.1016/j.paerosci.2021.100742_b142) 2013 Yan (10.1016/j.paerosci.2021.100742_b30) 2013 10.1016/j.paerosci.2021.100742_b27 Grimaud (10.1016/j.paerosci.2021.100742_b114) 2017; 122 10.1016/j.paerosci.2021.100742_b71 Dale (10.1016/j.paerosci.2021.100742_b175) 2019 10.1016/j.paerosci.2021.100742_b73 (10.1016/j.paerosci.2021.100742_b95) 2019 10.1016/j.paerosci.2021.100742_b74 Smolyakov (10.1016/j.paerosci.2021.100742_b171) 2013; 111 (10.1016/j.paerosci.2021.100742_b52) 2019 (10.1016/j.paerosci.2021.100742_b82) 2021 10.1016/j.paerosci.2021.100742_b104 Liu (10.1016/j.paerosci.2021.100742_b159) 2015; 48 10.1016/j.paerosci.2021.100742_b101 Potrivitu (10.1016/j.paerosci.2021.100742_b126) 2020; 7 Hu (10.1016/j.paerosci.2021.100742_b163) 2015; 22 10.1016/j.paerosci.2021.100742_b105 Duchemin (10.1016/j.paerosci.2021.100742_b81) 2019 Mazouffre (10.1016/j.paerosci.2021.100742_b103) 2018; 46 (10.1016/j.paerosci.2021.100742_b78) 2015 Chodura (10.1016/j.paerosci.2021.100742_b112) 1982; 25 Choueiri (10.1016/j.paerosci.2021.100742_b72) 2001; 8 Ding (10.1016/j.paerosci.2021.100742_b109) 2017; 143 Hallouin (10.1016/j.paerosci.2021.100742_b119) 2020; 7 Kahnfeld (10.1016/j.paerosci.2021.100742_b141) 2018; 27 Raitses (10.1016/j.paerosci.2021.100742_b65) 2006; 13 Yeo (10.1016/j.paerosci.2021.100742_b157) 2018 Pigeon (10.1016/j.paerosci.2021.100742_b122) 2015 Fahey (10.1016/j.paerosci.2021.100742_b158) 2017; 4 Lev (10.1016/j.paerosci.2021.100742_b132) 2016; 14 Dunaevsky (10.1016/j.paerosci.2021.100742_b67) 2003; 10 10.1016/j.paerosci.2021.100742_b80 Duras (10.1016/j.paerosci.2021.100742_b137) 2017; 83 Martinez (10.1016/j.paerosci.2021.100742_b54) 2019 Matthias (10.1016/j.paerosci.2021.100742_b129) 2019; 59 Koehne (10.1016/j.paerosci.2021.100742_b102) 1970; 8 Koizumi (10.1016/j.paerosci.2021.100742_b64) 2016; 14 Kramer (10.1016/j.paerosci.2021.100742_b151) 2020 Goebel (10.1016/j.paerosci.2021.100742_b1) 2008 Sazbo (10.1016/j.paerosci.2021.100742_b83) 2021 Ma (10.1016/j.paerosci.2021.100742_b153) 2015; 115 10.1016/j.paerosci.2021.100742_b86 Singh (10.1016/j.paerosci.2021.100742_b169) 2011; 39 10.1016/j.paerosci.2021.100742_b87 Snyder (10.1016/j.paerosci.2021.100742_b25) 2012; 28 Ley (10.1016/j.paerosci.2021.100742_b15) 2009 10.1016/j.paerosci.2021.100742_b167 Levchenko (10.1016/j.paerosci.2021.100742_b16) 2018; 5 Rovey (10.1016/j.paerosci.2021.100742_b51) 2020; 118 10.1016/j.paerosci.2021.100742_b174 Gamero-Castanõ (10.1016/j.paerosci.2021.100742_b68) 2005 Yoshimoto (10.1016/j.paerosci.2021.100742_b62) 2016; 14 Hey (10.1016/j.paerosci.2021.100742_b134) 2018 Liu (10.1016/j.paerosci.2021.100742_b139) 2014; 43 10.1016/j.paerosci.2021.100742_b56 Estublier (10.1016/j.paerosci.2021.100742_b75) 2008; 36 10.1016/j.paerosci.2021.100742_b57 Hruby (10.1016/j.paerosci.2021.100742_b40) 2019 Shirasaka (10.1016/j.paerosci.2021.100742_b59) 2012; 10 Vaudolon (10.1016/j.paerosci.2021.100742_b117) 2015; 107 Grimaud (10.1016/j.paerosci.2021.100742_b113) 2018; 155 Sekerak (10.1016/j.paerosci.2021.100742_b173) 2014; 43 10.1016/j.paerosci.2021.100742_b63 Singh (10.1016/j.paerosci.2021.100742_b170) 2011; 4 Boyd (10.1016/j.paerosci.2021.100742_b5) 2011 Yongjie (10.1016/j.paerosci.2021.100742_b110) 2016; 49 (10.1016/j.paerosci.2021.100742_b96) 2019 Grimaud (10.1016/j.paerosci.2021.100742_b115) 2017; 26 Sekerak (10.1016/j.paerosci.2021.100742_b140) 2016; 32 Lee (10.1016/j.paerosci.2021.100742_b127) 2019 10.1016/j.paerosci.2021.100742_b100 Smirnov (10.1016/j.paerosci.2021.100742_b118) 2007; 14 Ding (10.1016/j.paerosci.2021.100742_b111) 2017; 56 10.1016/j.paerosci.2021.100742_b3 (10.1016/j.paerosci.2021.100742_b39) 2019 Dey (10.1016/j.paerosci.2021.100742_b58) 2015; 86 Hofer (10.1016/j.paerosci.2021.100742_b89) 2006; 22 Vaudolon (10.1016/j.paerosci.2021.100742_b85) 2019 Keller (10.1016/j.paerosci.2021.100742_b166) 2014 10.1016/j.paerosci.2021.100742_b6 Rayman (10.1016/j.paerosci.2021.100742_b20) 2000; 47 Tsukizaki (10.1016/j.paerosci.2021.100742_b41) 2010; 8 (10.1016/j.paerosci.2021.100742_b55) 2021 (10.1016/j.paerosci.2021.100742_b84) 2019 10.1016/j.paerosci.2021.100742_b7 |
References_xml | – year: 2020 ident: b24 article-title: Double asteroid redirection test (DART) mission – volume: 107 year: 2015 ident: b117 article-title: Optimization of a wall-less hall thruster publication-title: Appl. Phys. Lett. – volume: 39 start-page: 1910 year: 2011 end-page: 1918 ident: b169 article-title: Growth of low-frequency electrostatic and electromagnetic instabilities in a hall thruster publication-title: IEEE Trans. Plasma Sci. – reference: R.W. Conversano, D.M. Goebel, R.R. Hofer, T.S. Matlock, R.E. Wirz, Magnetically shielded miniature hall thruster: development and initial testing, in: Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C. USA, IEPC–2013–201, 2013. – reference: I. Mikellides, I. Katz, R. Hofer, D. Goebel, K. de Grys, A. Mathers, Magnetic shielding of the acceleration channel walls in a long-life Hall thruster, in: Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, Tennessee, USA, 2010. – volume: 139 start-page: 521 year: 2017 end-page: 527 ident: b107 article-title: A 200 w hall thruster with hollow indented anode publication-title: Acta Astronaut. – volume: 14 start-page: Pb_217 year: 2016 end-page: Pb_223 ident: b132 article-title: The development of CAM200 low power hall thruster publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. – volume: 43 start-page: 127 year: 2014 end-page: 129 ident: b139 article-title: Plume control of a cusped field thruster publication-title: IEEE Trans. Plasma Sci. – volume: 92 start-page: 5673 year: 2002 end-page: 5679 ident: b121 article-title: Parametric investigation of miniaturized cylindrical and annular hall thrusters publication-title: J. Appl. Phys. – volume: 8 start-page: 873 year: 1970 end-page: 879 ident: b102 article-title: Further investigations on low-density hall accelerators publication-title: AIAA J. – start-page: 301 year: 2009 end-page: 332 ident: b15 article-title: 4. Subsystem of spececraft publication-title: Handbook of Space Technology, Vol. 22 – volume: 38 start-page: 2274 year: 2010 end-page: 2280 ident: b135 article-title: Kinetic simulations of SPT and HEMP thrusters including the near-field plume region publication-title: IEEE Trans. Plasma Sci. – reference: G. Janes, T. Wilson, Electrostatic acceleration of neutral plasmas–momentum transfer through magnetic fields, in: Proceeding of the 3rd Symposium on Advanced Propulsion Concepts, Ohio, USA, 1962. – reference: S. Weis, N. Koch, M. Schirra, A. Lazurenko, B. van Reijen, J. e. a. Haderspeck, Architecture, functional features and operational characteristics of the HEMPT based ion propulsion system for smallgeo, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–223, 2011. – year: 2015 ident: b176 article-title: Azimuthal micro-instability inside a wall-less hall thruster publication-title: Proceedings of the 2015 IEEE International Conference on Plasma Sciences (ICOPS) – reference: H. Bassner, R. Killinger, H. Leiter, J. Müller, Development steps of the RF-ion thrusters RIT, in: Proceedings of the 27th International Electric Propulsion Conference, Pasadena, California, USA, IEPC–01–105, 2001. – year: 2005 ident: b68 article-title: Estimation of hall thruster erosion using hphall publication-title: Proceedings of the 29th International Electric Propulsion Conference – volume: 49 year: 2016 ident: b110 article-title: Computer simulations of hall thrusters without wall losses designed using two permanent magnetic rings publication-title: J. Phys. D: Appl. Phys. – year: 2014 ident: b166 article-title: Feasibility of a Down-Scaled HEMP Thruster – year: 2019 ident: b97 article-title: Busek space propulsion and systems, BHT-8000 busek hall effect thruster – volume: 185 start-page: 85 year: 2017 end-page: 90 ident: b92 article-title: Investigation of a low-power thruster on krypton propellant publication-title: Procedia Eng. – reference: G. Kornfeld, N. Koch, G. Coustou, First test results of the HEMP thruster concept, in: Proceedings of the 28th International Electric Propulsion Conference, Toulouse, France, IEPC–2003–112, 2003. – year: 2019 ident: b96 article-title: Busek space propulsion and systems, bht-1500 busek hall effect thruster – volume: 56 start-page: 50312 year: 2017 ident: b111 article-title: Experimental test of 200 w hall thruster with titanium wall publication-title: Japan. J. Appl. Phys. – year: 2021 ident: b55 article-title: NPT30 – volume: 12 start-page: Tb_19 year: 2014 end-page: Tb_24 ident: b60 article-title: Engineering model of the miniature ion propulsion system for the nano-satellite: Hodoyoshi-4 publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. – reference: D. Courtney, P. Lozano, M. Martinez-Sanchez, Continued investigation of diverging cusped field thruster, in: Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartford, CT, AIAA–2008–4631, 2008. – volume: 20 year: 2013 ident: b172 article-title: High frequency electromagnetic resistive instability in a hall thruster under the effect of ionization publication-title: Phys. Plasmas – reference: P. Saevets, D. Semenenko, R. Albertoni, G. Scremin, Development of a long-life low-power hall thruster, in: Proceedings of the 35th International Electric Propulsion Conference, Georgia, USA, IEPC–2017–38, 2017. – year: 2019 ident: b40 article-title: Overview of busek electric propulsion publication-title: Proceedings of the 36th International Electric Propulsion Conference – volume: 14 start-page: 57106 year: 2007 ident: b118 article-title: Experimental and theoretical studies of cylindrical hall thrusters publication-title: Phys. Plasmas – reference: J.E. Foster, Compact plasma accelerator for micropropulsion applications, in: Proceedings of the 27th International Electric Propulsion Conference, Pasadena, California, USA, IEPC–01–221, 2001. – year: 2021 ident: b79 article-title: Pps®1350-e – year: 2013 ident: b142 article-title: Particle in cell simulation of plasma thrusters publication-title: 2013 19th IEEE Pulsed Power Conference (PPC) – reference: R. Killinger, H. Bassner, J. Mueller, R. Kukies, RITA ion propulsion for ARTEMIS lifetime test results, in: Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, Nevada, USA, AIAA–2000–3273, 2000. – volume: 83 year: 2017 ident: b137 article-title: Ion angular distribution simulation of the highly efficient multistage plasma thruster publication-title: J. Plasma Phys. – volume: 14 start-page: Pb_13 year: 2016 end-page: Pb_22 ident: b64 article-title: Initial flight operations of the miniature propulsion system installed on small space probe: PROCYON publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. – year: 2019 ident: b85 article-title: Pps®x00 thruster development status at safran – year: 2007 ident: b69 article-title: Differential sputter yields of boron nitride, quartz, and kapton due to low energy xe publication-title: Proceeding of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit – volume: 23 start-page: 21 year: 2007 end-page: 26 ident: b10 article-title: Energetics of propellant options for high-power hall thrusters publication-title: J. Propul. Power – volume: 93 start-page: 5816 year: 2003 end-page: 5823 ident: b22 article-title: Sputtering yield measurements during low energy xenon plasma bombardment publication-title: J. Appl. Phys. – year: 2012 ident: b128 article-title: An Exploration of Prominent Cusped-Field Thruster Phenomena: The Hollow Conical Plume and Anode Current Bifurcation – year: 2017 ident: b77 article-title: European Space agency (ESA) electric propulsion activities – volume: 155 start-page: 514 year: 2018 end-page: 523 ident: b113 article-title: Performance comparison between standard and magnetically shielded 200-w hall thrusters with BN-sio2 and graphite channel walls publication-title: Vacuum – year: 2018 ident: b157 article-title: Investigation of influence of magnet thickness on performance of cusped field thruster via multi-objective design optimization publication-title: Proceedings of the Asia-Pacific International Symposium on Aerosp. Technology 2018 – volume: 115 start-page: 101 year: 2015 end-page: 107 ident: b153 article-title: Experimental study on a variable magnet length cusped field thruster publication-title: Vacuum – reference: H.J. Leiter, R. Killinger, H. Bassner, J. Müller, R. Kukies, P. Box, Development of the radio frequeny ion thruster RIT XT–a status report, in: Proceedings of the 27th International Electric Propulsion Conference, Pasadena, California, USA, IEPC–01–104, 2001. – reference: S.J. Hall, B.J. Jorns, A.D. Gallimore, H. Kamhawi, T.W. Haag, J.A. Mackey, J.H. Gilland, P.Y. Peterson, M. Baird, High-power performance of a 100-kW class nested Hall thruster, in: Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, USA, IEPC–2017–228, 2017. – start-page: Tk_29 year: 2014 end-page: Tk_33 ident: b42 article-title: Hayabusa2-the next asteroid sample return mission of japan – volume: 59 year: 2019 ident: b129 article-title: Particle-in-cell simulation of an optimized high-efficiency multistage plasma thruster publication-title: Contrib. Plasma Phys. – reference: S.J. Hall, S.E. Cusson, A.D. Gallimore, 30-kW performance of a 100-kw class nested-channel hall thruster, in: Proceedings of the Joint Conference of 30th International Symposium on Space Technology and Sci. 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, IEPC–2015–125/ISTS–2015–b–125, 2015. – reference: V. Kim, K. Kozubsky, V.M. Murashko, A. Semenkin, History of the Hall thrusters development in USSR, in: Proceedings of the 30th International Electric Propulsion Conference, Florence, Italy, IEPC–2007–142, 2007. – volume: 26 year: 2017 ident: b115 article-title: Ion behavior in low-power magnetically shielded and unshielded hall thrusters publication-title: Plasma Sources. Sci. Technol. – volume: 46 start-page: 330 year: 2018 end-page: 337 ident: b103 article-title: Characteristics and performances of a 100-w hall thruster for microspacecraft publication-title: EEE Trans. Plasma Sci. – volume: 8 start-page: Pb 67 year: 2010 end-page: Pb 72 ident: b41 article-title: Improvement of the thrust force of the ECR ion thruster publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. – reference: A. Genovese, A. Lazurenko, N. Koch, S. e. a. Weis, Endurance testing of HEMPT-based ion propulsion modules for smallgeo, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–141, 2011. – volume: 25 year: 2016 ident: b9 article-title: Electric propulsion for satellites and spacecraft: established technologies and novel approaches publication-title: Plasma Sources. Sci. Technol. – volume: 22 start-page: 721 year: 2006 end-page: 731 ident: b88 article-title: High-specific impulse hall thrusters, part 1: Influence of current density and magnetic field publication-title: J. Propul. Power – volume: 2004 start-page: 92 year: 2004 end-page: 106 ident: b34 article-title: The use of RF waves in space propulsion systems publication-title: URSI Radio Sci. Bull. – volume: 43 start-page: 72 year: 2014 end-page: 85 ident: b173 article-title: Azimuthal spoke propagation in hall effect thrusters publication-title: IEEE Trans. Plasma Sci. – volume: 50 year: 2017 ident: b108 article-title: Application of hollow anodes in a hall thruster with double-peak magnetic fields publication-title: J. Phys. D: Appl. Phys. – year: 2020 ident: b47 article-title: Electric propulsion systems and components – volume: 48 year: 2015 ident: b159 article-title: Effect of the variable cross-section channel on performance of a cusped field thruster at low power publication-title: J. Phys. D: Appl. Phys. – volume: 34 start-page: 960 year: 2018 end-page: 968 ident: b61 article-title: Development and flight operation of a miniature ion propulsion system publication-title: J. Propuls. Power – reference: R. Hofer, High-specific impulse operation of the BPT-4000 hall thruster for NASA science missions, in: Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, Tennessee, USA, 2010. – reference: T.A. Trudel, S.G. Bilén, M.M. Micci, Design and performance testing of a 1-cm miniature radio-frequency ion thruster, in: Proceedings of the 31st International Electric Propulsion Conference, Michigan, USA, IEPC–2009–167, 2009. – volume: 74 start-page: 1 year: 2020 end-page: 8 ident: b161 article-title: Simulation study of influence of exit magnetic separatrix angle on plume divergence control publication-title: Eur. Phys. J. D – year: 2019 ident: b53 article-title: NPT30-i2 smart electric propulsion system – volume: 22 year: 2015 ident: b163 article-title: The effects of magnetic field in plume region on the performance of multi-cusped field thruster publication-title: Phys. Plasmas – volume: 7 start-page: 67 year: 2020 ident: b126 article-title: A review of low-power electric propulsion research at the space propulsion centre Singapore publication-title: Aerospace – reference: S. Weis, A. Lazurenko, A. Genovese, R. Heidemann, P. Holtmann, H. Stalzer, N. Püttmann, T. Wolf, B. Wollenhaupt, Overview, qualification and delivery status of the HEMP-thruster based ion propulsion system for smallgeo, in: Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, USA, IEPC–2017–197, 2017. – volume: 49 year: 2016 ident: b155 article-title: An experimental study of the effect of magnet length on the performance of a multi-cusped field thruster publication-title: J. Phys. D: Appl. Phys. – reference: K. Holste, W. Gärtner, P. Köhler, P. Dietz, J. Konrad, S. Schippers, P.J. Klar, A. Müller, P.R. Schreiner, In search of alternative propellants for ion thrusters, in: Proceedings of the 34th International Electric Propulsion Conference, Kobe, Japan, IEPC–2015–320/ISTS–2015–b–320, 2015. – year: 2021 ident: b83 article-title: Electric propulsion research accelerates toward the future – volume: 111 year: 2013 ident: b171 article-title: Sheath-induced instabilities in plasmas with e publication-title: Phys. Rev. Lett. – reference: N. Wallace, P. Jameson, C. Saunders, M. Fehringer, C. Edwards, R. Floberghagen, The GOCE Ion Propulsion Assembly–Lessons Learnt from the First 22 Months of Flight Operations, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–327, 2011. – year: 2007 ident: b19 article-title: Dawn launch mission to vesta and ceres – volume: 143 start-page: 251 year: 2017 end-page: 261 ident: b109 article-title: Influence of hollow anode position on the performance of a hall-effect thruster with double-peak magnetic field publication-title: Vacuum – reference: C. Boniface, J.-M. Charbonnier, L. Lefebvre, V. Leroi, T. and Lienart, An Overview of Electric Propulsion Activities at CNES, in: Proceedings of the 35th International Electric Propulsion Conference, Georgia, USA, IEPC-2017-102, 2017. – volume: 226 start-page: 2945 year: 2017 end-page: 2953 ident: b106 article-title: Performance characteristics of no-wall-losses hall thruster publication-title: Eur. Phys. J. Spec. Top. – volume: 32 start-page: 903 year: 2016 end-page: 917 ident: b140 article-title: Mode transitions in hall-effect thrusters induced by variable magnetic field strength publication-title: J. Propul. Power – volume: 36 start-page: 2262 year: 2008 end-page: 2270 ident: b75 article-title: The SMART-1 spacecraft potential investigations publication-title: IEEE Trans. Plasma Sci. – volume: 7 start-page: 120 year: 2020 ident: b120 article-title: Future directions for electric propulsion research publication-title: Aerospace – volume: 26 start-page: 130 year: 2010 end-page: 134 ident: b31 article-title: Ignition and plume characteristics of low-current cerium and lanthanum hexaboride hollow cathodes publication-title: J. Propul. Power – volume: 3 year: 2019 ident: b136 article-title: Numerical modeling of high efficiency multistage plasma thrusters for space applications publication-title: Rev. Mod. Plasma Phys. – year: 2019 ident: b39 article-title: Busek space propulsion and systems, BIT-3 RF ion thruster – reference: J. Degremont, E. Bosch, HEMPT strategy to address current and future space market, in: Proceedings of the 36th International Electric Propulsion Conference, Vienna, Austria, IEPC–2019–A826, 2019. – year: 2019 ident: b127 article-title: Development and performance test of a 50 W-class hall thruster publication-title: Proceedings of the 36th International Electric Propulsion Conference – volume: 4 year: 2011 ident: b170 article-title: Resistive instabilities in a hall thruster under the presence of collisions and thermal motion of electrons publication-title: Open Plasma Phys. J. – reference: M.R. Nakles, W.A. Hargus Jr, J.J. Delgado, R.L. Corey, A performance comparison of xenon and krypton propellant on an spt-100 hall thruster, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC-2011-003, 2011. – reference: M. Patterson, S. Benson, NEXT ion propulsion system development status and performance, in: Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, Ohio, USA, AIAA–2007–5199, 2007. – reference: Z. Tianping, W. Xiaoyong, J. Haocheng, Initial flight test results of the LIPS-200 electric propulsion system on SJ-9A satellite, in: Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C. USA, IEPC–2013–47, 2013. – volume: 5 start-page: 11104 year: 2018 ident: b16 article-title: Space micropropulsion systems for cubesats and small satellites: from proximate targets to furthermost frontiers publication-title: Appl. Phys. Rev. – volume: 28 start-page: 371 year: 2012 end-page: 379 ident: b25 article-title: Performance evaluation of the T6 ion engine publication-title: J. Propuls. Power – volume: 22 start-page: 732 year: 2006 end-page: 740 ident: b89 article-title: High-specific impulse hall thrusters, part 2: efficiency analysis publication-title: J. Propul. Power – year: 1965 ident: b17 article-title: Results from SERT I Ion Rocket Flight Test – volume: 118 year: 2020 ident: b51 article-title: Review of multimode space propulsion publication-title: Prog. Aerosp. Sci. – volume: 10 start-page: 2574 year: 2003 end-page: 2577 ident: b67 article-title: Secondary electron emission from dielectric materials of a hall thruster with segmented electrodes publication-title: Phys. Plasmas – year: 2011 ident: b5 article-title: Simulation of Electric Propulsion Thrusters – volume: 12 start-page: 73503 year: 2005 ident: b66 article-title: Partial trapping of secondary-electron emission in a hall thruster plasma publication-title: Phys. Plasmas – reference: P. Lascombes, Electric propulsion for small satellites orbit control and deorbiting: The example of a hall effect thruster, in: Proceedings of the 15th International Conference on Space Operations, Marseille, France, 2018. – year: 2019 ident: b54 article-title: Development and testing of the NPT30-i2 iodine ion thruster publication-title: Proceedings of the 36th International Electric Propulsion Conference – reference: D.M. Goebel, I.G. Mikellides, J.E. Polk, J. Young, W.G. Tighe, K.-R. Chien, Keeper wear mechanisms in the XIPS© 25-cm neutralizer cathode assembly, in: Proceedings of the 31st International Electric Propulsion Conference, Ann Arbor, Michigan, USA, IEPC–2009–153, 2009. – year: 2005 ident: b149 article-title: Development & test status of the thales high efficiency multistage plasma (hemp) thruster family publication-title: Proceedings of the 29th International Electric Propulsion Conference – year: 2020 ident: b151 article-title: Heinrich hertz satellite mission (h2sat) – reference: H. Leiter, R. Killinger, M. Boss, M. Braeg, M. Gollor, S. Weis, D. Feili, M. Tartz, H. Neumann, J. Haderspeck10, et al. RIT- – year: 2019 ident: b95 article-title: Busek space propulsion and systems, BHT-600 busek hall effect thruster – reference: A.V. Loyan, T.A. Maksymenko, Performance investigation of SPT-20M low power hall effect thruster, in: Proceedings of the 30th International Electric Propulsion Conference, Florence, Italy, IEPC–2007–100, 2007. – volume: 36 start-page: 912 year: 2020 end-page: 919 ident: b98 article-title: Operation of a high-power nested hall thruster with reduced cathode flow fraction publication-title: J. Propul. Power – volume: 116 year: 2014 ident: b116 article-title: Development and experimental characterization of a wall-less hall thruster publication-title: J. Appl. Phys. – reference: G. Kornfeld, N. Koch, H.-P. Harmann, Physics and evolution of HEMP-thrusters, in: Proceedings of the 30th International Electric Propulsion Conference, Florence, Italy, IEPC–2007–108, 2007. – volume: 47 start-page: 475 year: 2000 end-page: 487 ident: b20 article-title: Results from the deep space 1 technology validation mission publication-title: Acta Astronaut. – year: 2019 ident: b84 article-title: Eurostar neo test paves the way for flight of pps®5000 – volume: 13 start-page: 14502 year: 2006 ident: b65 article-title: Measurements of secondary electron emission effects in the hall thruster discharge publication-title: Phys. Plasmas – reference: N. Koch, M. Schirra, S. Weis, A. Lazurenko, B. van Reijen, J. Haderspeck, A. Genovese, P. Holtmann, R. Schneider, K. Matyash, et al. The HEMPT concept – a survey on theoretical considerations and experimental evidences, in: Proceeding of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, 11, 2011. – reference: A. Lazurenko, A. Genovese, R. Heidemann, J. e. a. Haderspeck, Qualification test results of HEMP thruster modules, in: Proceedings of the 34th International Electric Propulsion Conference, Kobe, Japan, IEPC–2015–347, 2015. – volume: SERIES 8 year: 2009 ident: b50 article-title: Development of a differential radio frequency ion thruster for precision spacecraft control publication-title: J. Plasma Fusion Res. – reference: T. Matlock, S. Gildea, F. Hu, N. Becker, P. Lozano, M. Martinez-Sanchez, Magnetic field effects on the plume of a diverging cusped-field thruster, in: Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, Tennessee, USA, 2010. – volume: 65 start-page: 1741 year: 1994 end-page: 1744 ident: b36 article-title: State of the art of radio-frequency ion sources for space propulsion publication-title: Rev. Sci. Instrum. – year: 2019 ident: b4 article-title: Experimental performance and plume characterisation of a miniaturised 50w hall thruster publication-title: Proceedings of the 36th International Electric Propulsion Conference – volume: 88 start-page: 63 year: 2013 end-page: 69 ident: b125 article-title: Performance characteristics of very low power cylindrical hall thrusters for the nano-satellite PROITERES-3 publication-title: Vacuum – reference: A. Kapulkin, V. Balabanov, M. Rubanovich, E. Behar, L. Rabinovich, A. Warshavsky, CAMILA hall thruster: new results, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–046, 2011. – reference: Z. Tianping, S. Mingming, L. Jianfei, Z. Haocheng, The electric propulsion development in LIP, in: Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C. USA, IEPC–2013–48, 2013. – volume: 14 start-page: Pf_35 year: 2016 end-page: Pf_43 ident: b62 article-title: Cluster launch of hodoyoshi-3 and-4 satellites from yasny by dnepr launch vehicle publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. – year: 2019 ident: b81 article-title: Qualification status of the pps®5000 hall thruster unit publication-title: Proceedings of the 36th International Electric Propulsion Conference – volume: 43 start-page: 45 year: 2015 end-page: 53 ident: b164 article-title: Parametric study of HEMP-thruster downscaling to publication-title: IEEE Trans. Plasma Sci. – reference: A. Keller, P. Köhler, W. Gärtner, B. Lotz, D. Feili, P. Dold, M. Berger, C. Braxmaier, D. Weise, U. Johann, Feasibility of a Down-scaled HEMP-thruster, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–138, 2011. – reference: H. Leiter, B. Lotz, D. Feili, M. Tartz, H. Neumann, D.M. Di Cara, Design development and test of the RIT- – year: 2019 ident: b94 article-title: Busek space propulsion and systems, bht-200 busek hall effect thruster – volume: 27 year: 2018 ident: b141 article-title: Breathing modes in HEMP thrusters publication-title: Plasma Sources. Sci. Technol. – volume: 4 start-page: 55 year: 2017 ident: b158 article-title: High fidelity multi-objective design optimization of a downscaled cusped field thruster publication-title: Aerospace – reference: X mini ion engine system, in: Proceedings of the 31st International Electric Propulsion Conference, Michigan, USA, IEPC–2009–179, 2009. – reference: 1, in: Proceedings of the 31st International Electric Propulsion Conference, Ann Arbor, Michigan, USA, IEPC–2009–178, 2009. – reference: M. Titov, A.V. Loyan, O. Rybalov, T.A. Maksymenko, The comparison of results of tests of low-power hall thrusters: SPT and TAL, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–199, 2011. – year: 2021 ident: b76 article-title: Pps®1350-g – reference: S.J. Hall, B. Jorns, A. Gallimore, R.R. Hofer, Expanded thruster mass model incorporating nested Hall thrusters, in: Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, Georgia, USA, 2017. – volume: 86 year: 2015 ident: b58 article-title: Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion publication-title: Rev. Sci. Instrum. – year: 2020 ident: b2 article-title: Ion propulsion technology: Nasa’s evolutionary xenon thruster (NEXT) development and long duration tests results and its applications publication-title: Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences – reference: E.T. Dale, B. Jorns, Frequency scaling of the hall thruster breathing mode, in: Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, Indiana, USA, AIAA 2019–4076, 2019. – year: 1988 ident: b18 article-title: Deep space 1 launch – reference: H. Leiter, C. Altmann, R. Kukies, J. Kuhmann, J.P. Porst, M. Berger, M. Rath, Evolution of the AIRBUS DS GmbH radio frequency ion thruster family, in: Proceedings of the Joint Conference of 30th International Symposium on Space Technology and Sci. 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, IEPC–2015–90/ISTS–2015–b–20, 2015. – year: 2019 ident: b52 article-title: NPT30 intelligent propulsion system – reference: S.H. Yeo, H. Ogawa, Analysis of effects of magnet configurations for downscaled cusped field thruster via surrogate assisted evolutionary algorithms, in: Proceedings of the 18th Australian Space Research Conference, Gold Coast, Australia, 2018. – reference: D. Feili, B. Lotz, S. Bonnet, B.K. Meyer, H.W. Loeb, N. Puetmann, – year: 2019 ident: b175 article-title: Wo-zone hall thruster breathing mode mechanism, part II: Experiment publication-title: Proceedings of the 36th International Electric Propulsion Conference – year: 2015 ident: b122 article-title: A low power cylindrical hall thruster for next generation microsatellites – year: 2015 ident: b78 article-title: What is artes? – year: 2021 ident: b82 article-title: Pps®5000 – volume: 25 start-page: 1628 year: 1982 ident: b112 article-title: Plasma–wall transition in an oblique magnetic field publication-title: Phys. Fluids – reference: H. Lee, E. Lee, S. Choi, S. So, E.H. Kim, S. Kang, Y. Kim, Y. Jeong, A.M. Al Sayegh, M.L. Cerrón, Development of low power hall effect propulsion system with improved system efficiency for small satellite applications, in: Proceeding of Space Propulsion 2018 Conference, Seville, Spain, SP2018–00181, 2018. – reference: NRIT-2.5 – a New Optimized Microthruster of Giessen University, in: Proceedings of the 31st International Electric Propulsion Conference, Michigan, USA, IEPC–2015–90/ISTS–2015–b–90, 2009. – year: 2008 ident: b1 article-title: Fundamentals of Electric Propulsion: Ion and Hall Thrusters, Vol. 1 – reference: X-the new modular high precision micro ion propulsion system, in: Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, Ohio, USA, AIAA 2007-5250, 2007. – reference: D. Lev, R.M. Myers, K.M. e. a. Lemmer, The technological and commercial expansion of electric propulsion in the past 24 years, in: Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, USA, IEPC-2017-242, 2017. – reference: P.-Y.C.R. Taunay, S.G. Bilén, M.M. Micci, Numerical simulations of a miniature microwave ion thruster, in: Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C. USA, IEPC–2013–194, 2013. – year: 2019 ident: b26 article-title: T7 thruster design and performance publication-title: Proceedings of the 36th International Electric Propulsion Conference – volume: 10 start-page: Tt_7 year: 2012 end-page: Tt_12 ident: b59 article-title: Realization of the concept of reasonably reliable systems engineering in the design of nano-satellites publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. – reference: S. Weis, A. Lazurenko, B. van Reijen, J. e. a. Haderspeck, Overview, qualification and delivery status of the HEMPT based ion propulsion system for smallgeo, in: Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C. USA, IEPC–2013–299, 2013. – reference: C. Clauss, D. Tilley, D. Barnhart, Benefits of low-power stationary plasma thruster propulsion for small satellites, in: Proceedings of the 9th AIAA/USU Conference on Small Satellites, Logan, Utah, USA, 1995. – reference: H. Koizumi, H. Kuninaka, Ion Beam Extraction and Electron Emission from the Miniature Microwave Discharge Ion Engine – volume: 8 start-page: 5025 year: 2001 end-page: 5033 ident: b72 article-title: Fundamental difference between the two hall thruster variants publication-title: Phys. Plasmas – reference: R. Heidemann, S. Weis, A. Genovese, A. Lazurenko, H. Stalzer, E. Bosch, P. Holtmann, Development of the low power HEMPT EV0, in: Proceedings of the 36th International Electric Propulsion Conference, Vienna, Austria, IEPC–2019–A873, 2019. – volume: 157 start-page: 425 year: 2019 end-page: 434 ident: b43 article-title: Performance improvement of the publication-title: Acta Astronaut. – year: 2021 ident: b8 article-title: Heinrich hertz–innovation, kommunikation, geostation – reference: A. Leufroy, T. Gibert, A. Bouchoule, Characteristics of a permanent magnet low-power hall thruster, in: Proceedings of the 31st International Electric Propulsion Conference, Michigan, USA, IEPC–2009–083, 2009. – reference: C.V. Young, A.W. Smith, M.A. Cappelli, Preliminary characterization of a diverging cusped field (DCF) thruster, in: Proceedings of the 31st International Electric Propulsion Conference, Michigan, USA, IEPC–2009–166, 2009. – volume: 104 year: 2008 ident: b70 article-title: Modeling low energy sputtering of hexagonal boron nitride by xenon ions publication-title: J. Appl. Phys. – reference: R. Funase, T. Inamori, S. Ikari, N. Ozaki, H. Koizumi, Initial operation results of a 50kg-class deep space exploration micro-spacecraft PROCYON, in: Proceedings of the 29th AIAA/USU Conference on Small Satellites, Logan, Utah, USA, SSC15–V–5, 2015. – year: 2018 ident: b134 article-title: Micro Newton Thruster Development – year: 2020 ident: b168 article-title: Hall thruster: An electric propulsion through plasmas publication-title: Selected Topics in Plasma Physics – volume: 122 year: 2017 ident: b114 article-title: Conducting wall hall thrusters in magnetic shielding and standard configurations publication-title: J. Appl. Phys. – reference: S. Weis, A. Lazurenko, B. van Reijen, J. e. a. Haderspeck, Overview, qualification and delivery status of the HEMPT based ion propulsion system for smallgeo, in: Proceedings of the 34th International Electric Propulsion Conference, Kobe, Japan, IEPC–2015–345, 2015. – reference: R. Hofer, T. Randolph, D. Oh, J. Snyder, K. de Grys, Evaluation of a 4.5 kw commercial hall thruster system for NASA science missions, in: Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, California, USA, 2006. – reference: N. Koch, S. Weis, M. Schirra, A. Lazurenko, B. van Reijen, J. Haderspeck, A. Genovese, P. Holtmann, Development, qualification and delivery status of the HEMPT based ion propulsion system for smallgeo, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–148, 2011. – year: 2017 ident: b23 article-title: Nasa’s evolutionary xenon thruster – commerical (NEXT-c) – reference: A. Daykin-Iliopoulos, I. Golosnoy, S. Gabriel, Thermal profile of a lanthanum hexaboride heaterless hollow cathode, in: Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, USA, IEPC–2017–291, 2017. – year: 2013 ident: b30 article-title: Development and primary in-flight experience of electric propulsion system on satellite SJ-9a – volume: 7 start-page: 58 year: 2020 ident: b119 article-title: Far-field plume characterization of a 100-w class hall thruster publication-title: Aerospace – year: 2021 ident: b14 article-title: Spacex surpasses 1, 000-satellite mark in latest starlink launch – year: 2020 ident: b13 article-title: Nano/microsatellite market forecast – volume: 157 start-page: 425 year: 2019 ident: 10.1016/j.paerosci.2021.100742_b43 article-title: Performance improvement of the μ10 microwave discharge ion thruster by expansion of the plasma production volume publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.12.023 – year: 2021 ident: 10.1016/j.paerosci.2021.100742_b82 – year: 2017 ident: 10.1016/j.paerosci.2021.100742_b23 – year: 2007 ident: 10.1016/j.paerosci.2021.100742_b19 – ident: 10.1016/j.paerosci.2021.100742_b165 – volume: 43 start-page: 127 year: 2014 ident: 10.1016/j.paerosci.2021.100742_b139 article-title: Plume control of a cusped field thruster publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2014.2360015 – ident: 10.1016/j.paerosci.2021.100742_b90 doi: 10.2514/6.2006-4469 – year: 2018 ident: 10.1016/j.paerosci.2021.100742_b157 article-title: Investigation of influence of magnet thickness on performance of cusped field thruster via multi-objective design optimization – ident: 10.1016/j.paerosci.2021.100742_b63 – volume: 7 start-page: 120 year: 2020 ident: 10.1016/j.paerosci.2021.100742_b120 article-title: Future directions for electric propulsion research publication-title: Aerospace doi: 10.3390/aerospace7090120 – ident: 10.1016/j.paerosci.2021.100742_b11 – volume: 48 year: 2015 ident: 10.1016/j.paerosci.2021.100742_b159 article-title: Effect of the variable cross-section channel on performance of a cusped field thruster at low power publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/48/37/375203 – ident: 10.1016/j.paerosci.2021.100742_b145 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b96 – volume: 83 year: 2017 ident: 10.1016/j.paerosci.2021.100742_b137 article-title: Ion angular distribution simulation of the highly efficient multistage plasma thruster publication-title: J. Plasma Phys. doi: 10.1017/S0022377817000125 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b84 – volume: 28 start-page: 371 year: 2012 ident: 10.1016/j.paerosci.2021.100742_b25 article-title: Performance evaluation of the T6 ion engine publication-title: J. Propuls. Power doi: 10.2514/1.B34173 – volume: 139 start-page: 521 year: 2017 ident: 10.1016/j.paerosci.2021.100742_b107 article-title: A 200 w hall thruster with hollow indented anode publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.08.001 – volume: 10 start-page: 2574 year: 2003 ident: 10.1016/j.paerosci.2021.100742_b67 article-title: Secondary electron emission from dielectric materials of a hall thruster with segmented electrodes publication-title: Phys. Plasmas doi: 10.1063/1.1568344 – year: 1965 ident: 10.1016/j.paerosci.2021.100742_b17 – volume: 14 start-page: Pf_35 year: 2016 ident: 10.1016/j.paerosci.2021.100742_b62 article-title: Cluster launch of hodoyoshi-3 and-4 satellites from yasny by dnepr launch vehicle publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. – volume: 14 start-page: Pb_217 year: 2016 ident: 10.1016/j.paerosci.2021.100742_b132 article-title: The development of CAM200 low power hall thruster publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. – start-page: Tk_29 year: 2014 ident: 10.1016/j.paerosci.2021.100742_b42 – volume: 38 start-page: 2274 year: 2010 ident: 10.1016/j.paerosci.2021.100742_b135 article-title: Kinetic simulations of SPT and HEMP thrusters including the near-field plume region publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2010.2056936 – ident: 10.1016/j.paerosci.2021.100742_b80 – ident: 10.1016/j.paerosci.2021.100742_b131 – year: 2008 ident: 10.1016/j.paerosci.2021.100742_b1 – volume: 111 year: 2013 ident: 10.1016/j.paerosci.2021.100742_b171 article-title: Sheath-induced instabilities in plasmas with e0, ×, b0 drift publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.115002 – start-page: 301 year: 2009 ident: 10.1016/j.paerosci.2021.100742_b15 article-title: 4. Subsystem of spececraft – volume: 56 start-page: 50312 year: 2017 ident: 10.1016/j.paerosci.2021.100742_b111 article-title: Experimental test of 200 w hall thruster with titanium wall publication-title: Japan. J. Appl. Phys. doi: 10.7567/JJAP.56.050312 – ident: 10.1016/j.paerosci.2021.100742_b28 – ident: 10.1016/j.paerosci.2021.100742_b45 – volume: 155 start-page: 514 year: 2018 ident: 10.1016/j.paerosci.2021.100742_b113 article-title: Performance comparison between standard and magnetically shielded 200-w hall thrusters with BN-sio2 and graphite channel walls publication-title: Vacuum doi: 10.1016/j.vacuum.2018.06.056 – volume: 43 start-page: 72 year: 2014 ident: 10.1016/j.paerosci.2021.100742_b173 article-title: Azimuthal spoke propagation in hall effect thrusters publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2014.2355223 – volume: 5 start-page: 11104 year: 2018 ident: 10.1016/j.paerosci.2021.100742_b16 article-title: Space micropropulsion systems for cubesats and small satellites: from proximate targets to furthermost frontiers publication-title: Appl. Phys. Rev. doi: 10.1063/1.5007734 – year: 2005 ident: 10.1016/j.paerosci.2021.100742_b68 article-title: Estimation of hall thruster erosion using hphall – volume: 43 start-page: 45 year: 2015 ident: 10.1016/j.paerosci.2021.100742_b164 article-title: Parametric study of HEMP-thruster downscaling to μn thrust levels publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2014.2321095 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b85 – year: 2015 ident: 10.1016/j.paerosci.2021.100742_b122 – volume: 13 start-page: 14502 year: 2006 ident: 10.1016/j.paerosci.2021.100742_b65 article-title: Measurements of secondary electron emission effects in the hall thruster discharge publication-title: Phys. Plasmas doi: 10.1063/1.2162809 – volume: 8 start-page: 5025 year: 2001 ident: 10.1016/j.paerosci.2021.100742_b72 article-title: Fundamental difference between the two hall thruster variants publication-title: Phys. Plasmas doi: 10.1063/1.1409344 – volume: 12 start-page: 73503 year: 2005 ident: 10.1016/j.paerosci.2021.100742_b66 article-title: Partial trapping of secondary-electron emission in a hall thruster plasma publication-title: Phys. Plasmas doi: 10.1063/1.1943327 – year: 2020 ident: 10.1016/j.paerosci.2021.100742_b151 – ident: 10.1016/j.paerosci.2021.100742_b6 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b53 – ident: 10.1016/j.paerosci.2021.100742_b104 doi: 10.2514/6.2018-2729 – ident: 10.1016/j.paerosci.2021.100742_b21 doi: 10.2514/6.2007-5199 – ident: 10.1016/j.paerosci.2021.100742_b27 – ident: 10.1016/j.paerosci.2021.100742_b57 doi: 10.2514/6.2010-6617 – volume: 86 year: 2015 ident: 10.1016/j.paerosci.2021.100742_b58 article-title: Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4937353 – year: 2015 ident: 10.1016/j.paerosci.2021.100742_b176 article-title: Azimuthal micro-instability inside a wall-less hall thruster – volume: 22 start-page: 721 year: 2006 ident: 10.1016/j.paerosci.2021.100742_b88 article-title: High-specific impulse hall thrusters, part 1: Influence of current density and magnetic field publication-title: J. Propul. Power doi: 10.2514/1.15952 – volume: 107 year: 2015 ident: 10.1016/j.paerosci.2021.100742_b117 article-title: Optimization of a wall-less hall thruster publication-title: Appl. Phys. Lett. doi: 10.1063/1.4932196 – volume: 92 start-page: 5673 year: 2002 ident: 10.1016/j.paerosci.2021.100742_b121 article-title: Parametric investigation of miniaturized cylindrical and annular hall thrusters publication-title: J. Appl. Phys. doi: 10.1063/1.1515106 – ident: 10.1016/j.paerosci.2021.100742_b101 – volume: 4 start-page: 55 year: 2017 ident: 10.1016/j.paerosci.2021.100742_b158 article-title: High fidelity multi-objective design optimization of a downscaled cusped field thruster publication-title: Aerospace doi: 10.3390/aerospace4040055 – volume: SERIES 8 year: 2009 ident: 10.1016/j.paerosci.2021.100742_b50 article-title: Development of a differential radio frequency ion thruster for precision spacecraft control publication-title: J. Plasma Fusion Res. – volume: 26 start-page: 130 year: 2010 ident: 10.1016/j.paerosci.2021.100742_b31 article-title: Ignition and plume characteristics of low-current cerium and lanthanum hexaboride hollow cathodes publication-title: J. Propul. Power doi: 10.2514/1.41386 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b54 article-title: Development and testing of the NPT30-i2 iodine ion thruster – volume: 36 start-page: 912 year: 2020 ident: 10.1016/j.paerosci.2021.100742_b98 article-title: Operation of a high-power nested hall thruster with reduced cathode flow fraction publication-title: J. Propul. Power doi: 10.2514/1.B37929 – volume: 12 start-page: Tb_19 year: 2014 ident: 10.1016/j.paerosci.2021.100742_b60 article-title: Engineering model of the miniature ion propulsion system for the nano-satellite: Hodoyoshi-4 publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. – ident: 10.1016/j.paerosci.2021.100742_b3 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b26 article-title: T7 thruster design and performance – volume: 25 year: 2016 ident: 10.1016/j.paerosci.2021.100742_b9 article-title: Electric propulsion for satellites and spacecraft: established technologies and novel approaches publication-title: Plasma Sources. Sci. Technol. doi: 10.1088/0963-0252/25/3/033002 – year: 2007 ident: 10.1016/j.paerosci.2021.100742_b69 article-title: Differential sputter yields of boron nitride, quartz, and kapton due to low energy xe+ bombardment – volume: 7 start-page: 67 year: 2020 ident: 10.1016/j.paerosci.2021.100742_b126 article-title: A review of low-power electric propulsion research at the space propulsion centre Singapore publication-title: Aerospace doi: 10.3390/aerospace7060067 – volume: 122 year: 2017 ident: 10.1016/j.paerosci.2021.100742_b114 article-title: Conducting wall hall thrusters in magnetic shielding and standard configurations publication-title: J. Appl. Phys. doi: 10.1063/1.4995285 – ident: 10.1016/j.paerosci.2021.100742_b160 – ident: 10.1016/j.paerosci.2021.100742_b48 doi: 10.2514/6.2007-5250 – volume: 7 start-page: 58 year: 2020 ident: 10.1016/j.paerosci.2021.100742_b119 article-title: Far-field plume characterization of a 100-w class hall thruster publication-title: Aerospace doi: 10.3390/aerospace7050058 – ident: 10.1016/j.paerosci.2021.100742_b143 – ident: 10.1016/j.paerosci.2021.100742_b35 doi: 10.2514/6.2000-3273 – volume: 25 start-page: 1628 year: 1982 ident: 10.1016/j.paerosci.2021.100742_b112 article-title: Plasma–wall transition in an oblique magnetic field publication-title: Phys. Fluids doi: 10.1063/1.863955 – volume: 59 year: 2019 ident: 10.1016/j.paerosci.2021.100742_b129 article-title: Particle-in-cell simulation of an optimized high-efficiency multistage plasma thruster publication-title: Contrib. Plasma Phys. doi: 10.1002/ctpp.201900028 – year: 2021 ident: 10.1016/j.paerosci.2021.100742_b14 – ident: 10.1016/j.paerosci.2021.100742_b162 doi: 10.2514/6.2010-7104 – year: 2020 ident: 10.1016/j.paerosci.2021.100742_b24 – ident: 10.1016/j.paerosci.2021.100742_b148 – volume: 22 year: 2015 ident: 10.1016/j.paerosci.2021.100742_b163 article-title: The effects of magnetic field in plume region on the performance of multi-cusped field thruster publication-title: Phys. Plasmas doi: 10.1063/1.4932077 – year: 1988 ident: 10.1016/j.paerosci.2021.100742_b18 – ident: 10.1016/j.paerosci.2021.100742_b123 – volume: 50 year: 2017 ident: 10.1016/j.paerosci.2021.100742_b108 article-title: Application of hollow anodes in a hall thruster with double-peak magnetic fields publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aa7bbf – year: 2013 ident: 10.1016/j.paerosci.2021.100742_b30 – ident: 10.1016/j.paerosci.2021.100742_b154 – ident: 10.1016/j.paerosci.2021.100742_b174 doi: 10.2514/6.2019-4076 – ident: 10.1016/j.paerosci.2021.100742_b33 – ident: 10.1016/j.paerosci.2021.100742_b73 – volume: 49 year: 2016 ident: 10.1016/j.paerosci.2021.100742_b155 article-title: An experimental study of the effect of magnet length on the performance of a multi-cusped field thruster publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/49/28/285201 – volume: 2004 start-page: 92 year: 2004 ident: 10.1016/j.paerosci.2021.100742_b34 article-title: The use of RF waves in space propulsion systems publication-title: URSI Radio Sci. Bull. – year: 2020 ident: 10.1016/j.paerosci.2021.100742_b168 article-title: Hall thruster: An electric propulsion through plasmas – year: 2015 ident: 10.1016/j.paerosci.2021.100742_b78 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b52 – year: 2005 ident: 10.1016/j.paerosci.2021.100742_b149 article-title: Development & test status of the thales high efficiency multistage plasma (hemp) thruster family – volume: 65 start-page: 1741 year: 1994 ident: 10.1016/j.paerosci.2021.100742_b36 article-title: State of the art of radio-frequency ion sources for space propulsion publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1144869 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b175 article-title: Wo-zone hall thruster breathing mode mechanism, part II: Experiment – volume: 74 start-page: 1 year: 2020 ident: 10.1016/j.paerosci.2021.100742_b161 article-title: Simulation study of influence of exit magnetic separatrix angle on plume divergence control publication-title: Eur. Phys. J. D doi: 10.1140/epjd/e2020-100595-0 – volume: 23 start-page: 21 year: 2007 ident: 10.1016/j.paerosci.2021.100742_b10 article-title: Energetics of propellant options for high-power hall thrusters publication-title: J. Propul. Power doi: 10.2514/1.16376 – ident: 10.1016/j.paerosci.2021.100742_b44 – ident: 10.1016/j.paerosci.2021.100742_b74 doi: 10.21236/ADA437488 – volume: 14 start-page: 57106 year: 2007 ident: 10.1016/j.paerosci.2021.100742_b118 article-title: Experimental and theoretical studies of cylindrical hall thrusters publication-title: Phys. Plasmas doi: 10.1063/1.2718522 – ident: 10.1016/j.paerosci.2021.100742_b29 – volume: 36 start-page: 2262 year: 2008 ident: 10.1016/j.paerosci.2021.100742_b75 article-title: The SMART-1 spacecraft potential investigations publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2008.2002032 – volume: 115 start-page: 101 year: 2015 ident: 10.1016/j.paerosci.2021.100742_b153 article-title: Experimental study on a variable magnet length cusped field thruster publication-title: Vacuum doi: 10.1016/j.vacuum.2015.02.007 – year: 2014 ident: 10.1016/j.paerosci.2021.100742_b166 – volume: 27 year: 2018 ident: 10.1016/j.paerosci.2021.100742_b141 article-title: Breathing modes in HEMP thrusters publication-title: Plasma Sources. Sci. Technol. doi: 10.1088/1361-6595/aaf29a – volume: 8 start-page: Pb 67 year: 2010 ident: 10.1016/j.paerosci.2021.100742_b41 article-title: Improvement of the thrust force of the ECR ion thruster μ10 publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. – volume: 46 start-page: 330 year: 2018 ident: 10.1016/j.paerosci.2021.100742_b103 article-title: Characteristics and performances of a 100-w hall thruster for microspacecraft publication-title: EEE Trans. Plasma Sci. doi: 10.1109/TPS.2017.2786402 – ident: 10.1016/j.paerosci.2021.100742_b93 – ident: 10.1016/j.paerosci.2021.100742_b38 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b81 article-title: Qualification status of the pps®5000 hall thruster unit – ident: 10.1016/j.paerosci.2021.100742_b49 – year: 2017 ident: 10.1016/j.paerosci.2021.100742_b77 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b40 article-title: Overview of busek electric propulsion – volume: 143 start-page: 251 year: 2017 ident: 10.1016/j.paerosci.2021.100742_b109 article-title: Influence of hollow anode position on the performance of a hall-effect thruster with double-peak magnetic field publication-title: Vacuum doi: 10.1016/j.vacuum.2017.06.030 – year: 2018 ident: 10.1016/j.paerosci.2021.100742_b134 – volume: 34 start-page: 960 year: 2018 ident: 10.1016/j.paerosci.2021.100742_b61 article-title: Development and flight operation of a miniature ion propulsion system publication-title: J. Propuls. Power doi: 10.2514/1.B36459 – year: 2012 ident: 10.1016/j.paerosci.2021.100742_b128 – year: 2020 ident: 10.1016/j.paerosci.2021.100742_b2 article-title: Ion propulsion technology: Nasa’s evolutionary xenon thruster (NEXT) development and long duration tests results and its applications – year: 2011 ident: 10.1016/j.paerosci.2021.100742_b5 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b94 – volume: 49 year: 2016 ident: 10.1016/j.paerosci.2021.100742_b110 article-title: Computer simulations of hall thrusters without wall losses designed using two permanent magnetic rings publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/49/46/465001 – ident: 10.1016/j.paerosci.2021.100742_b100 doi: 10.2514/6.2017-4729 – volume: 10 start-page: Tt_7 year: 2012 ident: 10.1016/j.paerosci.2021.100742_b59 article-title: Realization of the concept of reasonably reliable systems engineering in the design of nano-satellites publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. – ident: 10.1016/j.paerosci.2021.100742_b146 – ident: 10.1016/j.paerosci.2021.100742_b152 – volume: 93 start-page: 5816 year: 2003 ident: 10.1016/j.paerosci.2021.100742_b22 article-title: Sputtering yield measurements during low energy xenon plasma bombardment publication-title: J. Appl. Phys. doi: 10.1063/1.1566474 – year: 2021 ident: 10.1016/j.paerosci.2021.100742_b83 – volume: 226 start-page: 2945 year: 2017 ident: 10.1016/j.paerosci.2021.100742_b106 article-title: Performance characteristics of no-wall-losses hall thruster publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2016-60247-y – volume: 14 start-page: Pb_13 year: 2016 ident: 10.1016/j.paerosci.2021.100742_b64 article-title: Initial flight operations of the miniature propulsion system installed on small space probe: PROCYON publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn. – volume: 185 start-page: 85 year: 2017 ident: 10.1016/j.paerosci.2021.100742_b92 article-title: Investigation of a low-power thruster on krypton propellant publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.03.296 – volume: 39 start-page: 1910 year: 2011 ident: 10.1016/j.paerosci.2021.100742_b169 article-title: Growth of low-frequency electrostatic and electromagnetic instabilities in a hall thruster publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2011.2162652 – ident: 10.1016/j.paerosci.2021.100742_b56 – ident: 10.1016/j.paerosci.2021.100742_b138 – volume: 32 start-page: 903 year: 2016 ident: 10.1016/j.paerosci.2021.100742_b140 article-title: Mode transitions in hall-effect thrusters induced by variable magnetic field strength publication-title: J. Propul. Power doi: 10.2514/1.B35709 – year: 2020 ident: 10.1016/j.paerosci.2021.100742_b47 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b95 – year: 2021 ident: 10.1016/j.paerosci.2021.100742_b79 – ident: 10.1016/j.paerosci.2021.100742_b167 – ident: 10.1016/j.paerosci.2021.100742_b130 – ident: 10.1016/j.paerosci.2021.100742_b144 – volume: 26 year: 2017 ident: 10.1016/j.paerosci.2021.100742_b115 article-title: Ion behavior in low-power magnetically shielded and unshielded hall thrusters publication-title: Plasma Sources. Sci. Technol. doi: 10.1088/1361-6595/aa660d – year: 2021 ident: 10.1016/j.paerosci.2021.100742_b8 – volume: 116 year: 2014 ident: 10.1016/j.paerosci.2021.100742_b116 article-title: Development and experimental characterization of a wall-less hall thruster publication-title: J. Appl. Phys. doi: 10.1063/1.4904965 – volume: 3 year: 2019 ident: 10.1016/j.paerosci.2021.100742_b136 article-title: Numerical modeling of high efficiency multistage plasma thrusters for space applications publication-title: Rev. Mod. Plasma Phys. doi: 10.1007/s41614-019-0030-4 – ident: 10.1016/j.paerosci.2021.100742_b46 – ident: 10.1016/j.paerosci.2021.100742_b147 – year: 2020 ident: 10.1016/j.paerosci.2021.100742_b13 – year: 2013 ident: 10.1016/j.paerosci.2021.100742_b142 article-title: Particle in cell simulation of plasma thrusters – volume: 88 start-page: 63 year: 2013 ident: 10.1016/j.paerosci.2021.100742_b125 article-title: Performance characteristics of very low power cylindrical hall thrusters for the nano-satellite PROITERES-3 publication-title: Vacuum doi: 10.1016/j.vacuum.2012.04.012 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b97 – ident: 10.1016/j.paerosci.2021.100742_b124 – volume: 20 year: 2013 ident: 10.1016/j.paerosci.2021.100742_b172 article-title: High frequency electromagnetic resistive instability in a hall thruster under the effect of ionization publication-title: Phys. Plasmas – ident: 10.1016/j.paerosci.2021.100742_b91 – ident: 10.1016/j.paerosci.2021.100742_b105 – volume: 4 year: 2011 ident: 10.1016/j.paerosci.2021.100742_b170 article-title: Resistive instabilities in a hall thruster under the presence of collisions and thermal motion of electrons publication-title: Open Plasma Phys. J. doi: 10.2174/1876534301104010016 – ident: 10.1016/j.paerosci.2021.100742_b32 – year: 2021 ident: 10.1016/j.paerosci.2021.100742_b76 – volume: 104 year: 2008 ident: 10.1016/j.paerosci.2021.100742_b70 article-title: Modeling low energy sputtering of hexagonal boron nitride by xenon ions publication-title: J. Appl. Phys. doi: 10.1063/1.2987090 – year: 2021 ident: 10.1016/j.paerosci.2021.100742_b55 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b127 article-title: Development and performance test of a 50 W-class hall thruster – ident: 10.1016/j.paerosci.2021.100742_b99 – volume: 8 start-page: 873 year: 1970 ident: 10.1016/j.paerosci.2021.100742_b102 article-title: Further investigations on low-density hall accelerators publication-title: AIAA J. doi: 10.2514/3.5781 – ident: 10.1016/j.paerosci.2021.100742_b7 – ident: 10.1016/j.paerosci.2021.100742_b12 doi: 10.21236/ADA549666 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b39 – volume: 118 year: 2020 ident: 10.1016/j.paerosci.2021.100742_b51 article-title: Review of multimode space propulsion publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2020.100627 – ident: 10.1016/j.paerosci.2021.100742_b133 – year: 2019 ident: 10.1016/j.paerosci.2021.100742_b4 article-title: Experimental performance and plume characterisation of a miniaturised 50w hall thruster – ident: 10.1016/j.paerosci.2021.100742_b86 doi: 10.2514/6.2010-6623 – ident: 10.1016/j.paerosci.2021.100742_b156 doi: 10.2514/6.2008-4631 – ident: 10.1016/j.paerosci.2021.100742_b87 doi: 10.2514/6.2010-6942 – volume: 22 start-page: 732 year: 2006 ident: 10.1016/j.paerosci.2021.100742_b89 article-title: High-specific impulse hall thrusters, part 2: efficiency analysis publication-title: J. Propul. Power doi: 10.2514/1.15954 – ident: 10.1016/j.paerosci.2021.100742_b150 – volume: 47 start-page: 475 year: 2000 ident: 10.1016/j.paerosci.2021.100742_b20 article-title: Results from the deep space 1 technology validation mission publication-title: Acta Astronaut. doi: 10.1016/S0094-5765(00)00087-4 – ident: 10.1016/j.paerosci.2021.100742_b37 – ident: 10.1016/j.paerosci.2021.100742_b71 |
SSID | ssj0003985 |
Score | 2.4671657 |
SecondaryResourceType | review_article |
Snippet | In-space electric propulsion technologies have advanced significantly in the last decade, while there has been increasing interest in economical propulsion... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 100742 |
SubjectTerms | Commercial spacecraft Cusped Field Thruster Electric propulsion Electrostatic propulsion Gridded Ion Engine Hall effect Hall Effect Thruster Ion engines Miniaturization Performance enhancement Platforms Power consumption Propulsion systems Spacecraft propulsion Specific impulse Thrusters Weight reduction |
Title | Miniaturization perspectives of electrostatic propulsion for small spacecraft platforms |
URI | https://dx.doi.org/10.1016/j.paerosci.2021.100742 https://www.proquest.com/docview/2568310024 |
Volume | 126 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT4MwFG6WedGD8WeczqUHrwxGS4HjsrhMzXbRxd2aAm3CMjciePVvt68UN03MDnKD9BHyWt57hfd9H0J3oWR666N8ZxCo0KFSeE4Us8hhhCWJzihEGPWG6YxN5vRxESxaaNRgYaCt0sb-OqabaG2vuNabbpHn7rMH_RzwQ3NgIJDACUppCKu8_7lt8yCxkeWEwQ6M3kEJL_uFkIYzUu8T_YFpGKD-XwnqV6g2-Wd8go5t4YiH9bOdopZcn6GjHTrBc_Q6zdc5EHVabCUutkjKEm8Utpo3ACLKU1wY8S74WoZ15YrLN7FaYR1gUl1JClXhYiUqKGnLCzQf37-MJo4VTnBSnZ8rJ_RFRBSVxCfUk7GnQGaKqpBQFQH_HMuoTFKduWkAfGh6j8eESIUkMdjTjFyi9nqzllcIp4wCWlUlWaxoFmUi0IcnMykGaRJ4rIOCxls8taziIG6x4k372JI3XubgZV57uYPcb7ui5tXYaxE3k8F_rBCug_9e224ze9y-oyXXxR6orOki5foft75Bh3BW9_d1Ubt6_5C3uk6pkp5ZiD10MHx4msy-AJsE6FA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcUKGteLY-0GPYbOx4kwMHBEXLY7kAgptxElvKalkiEoS48Kf4g8w4TqGVKg4VOSYay_rGmUcyMx_A5sBITH1sFPRjOwiE0WGQpDIJJJdZhh6Fa8feMDqRw3NxeBlfzsBT1wtDZZXe9rc23Vlrf6fn0exVZdk7Dameg35o9l0LpPCVlUfm4R7ztnr7YA-V_DOK9n-d7Q4DTy0Q5OjBmmAQ6YRbYXjERWjS0BIRk7ADLmxCE9pkIUyWo28TMU0MwyxIap1rw1OSFwXHdT_AnEBzQbQJW48vdSU8dTygtLuAtveqLXm8VWnjhlRiYhr1XYWCiP7lEf_yDc7h7X-GBR-psp0WjEWYMdMlmH81v_ALXIzKaUmTQX0zJ6teWjdrdmOZJ9mhrqUyZ5VjC6PPcwxDZVZf68mEoUXLMXTVtmHVRDcUQ9df4fxd4PwGs9ObqVkGlktB7bE2K1IriqTQMV6hKYzu51kcyhWIO7RU7seYE5vGRHX1amPVoawIZdWivAK933JVO8jjTYm0U4b640gq9DZvyq532lPeKNQKo0uidcOoaPU_lv4BH4dno2N1fHBytAaf6ElbXLgOs83tndnAIKnJvrtDyeDqvd-CZyoVIYk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Miniaturization+perspectives+of+electrostatic+propulsion+for+small+spacecraft+platforms&rft.jtitle=Progress+in+aerospace+sciences&rft.au=Yeo%2C+Suk+Hyun&rft.au=Ogawa%2C+Hideaki&rft.au=Kahnfeld%2C+Daniel&rft.au=Schneider%2C+Ralf&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0376-0421&rft.eissn=1873-1724&rft.volume=126&rft_id=info:doi/10.1016%2Fj.paerosci.2021.100742&rft.externalDocID=S0376042121000464 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-0421&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-0421&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-0421&client=summon |