Miniaturization perspectives of electrostatic propulsion for small spacecraft platforms

In-space electric propulsion technologies have advanced significantly in the last decade, while there has been increasing interest in economical propulsion systems with growing demand for commercial and scientific applications using small spacecraft platforms. Electrostatic propulsion, in particular...

Full description

Saved in:
Bibliographic Details
Published inProgress in aerospace sciences Vol. 126; p. 100742
Main Authors Yeo, Suk Hyun, Ogawa, Hideaki, Kahnfeld, Daniel, Schneider, Ralf
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.10.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In-space electric propulsion technologies have advanced significantly in the last decade, while there has been increasing interest in economical propulsion systems with growing demand for commercial and scientific applications using small spacecraft platforms. Electrostatic propulsion, in particular, offers advantages over other propulsion systems in various aspects, including long operational lifetime, high specific impulse, and light weight. However, electric propulsion systems are subject to drawbacks such as system complexity and wall erosion, which represent obstacles toward miniaturization to be utilized for small spacecraft. New ideas are continuously explored to overcome such challenges and improve the performance. This article presents a comprehensive review of electrostatic propulsion systems, with particular focus on Gridded Ion Engine (GIE), Hall Effect Thruster (HET), and Cusped Field Thruster (CFT) systems, with respect to their operational principles, applications, and characteristics. State-of-the-art technologies and novel concepts are discussed including research efforts for miniaturization, along with the latest available data of their performance and features. While GIE and HET are mature and well understood, the power consumption of miniaturized thrusters is relatively high, leaving room for improvement toward practical application. CFT, on the other hand, features appreciable performance even in miniaturized form, offering promise to serve for small spacecraft platforms.
AbstractList In-space electric propulsion technologies have advanced significantly in the last decade, while there has been increasing interest in economical propulsion systems with growing demand for commercial and scientific applications using small spacecraft platforms. Electrostatic propulsion, in particular, offers advantages over other propulsion systems in various aspects, including long operational lifetime, high specific impulse, and light weight. However, electric propulsion systems are subject to drawbacks such as system complexity and wall erosion, which represent obstacles toward miniaturization to be utilized for small spacecraft. New ideas are continuously explored to overcome such challenges and improve the performance. This article presents a comprehensive review of electrostatic propulsion systems, with particular focus on Gridded Ion Engine (GIE), Hall Effect Thruster (HET), and Cusped Field Thruster (CFT) systems, with respect to their operational principles, applications, and characteristics. State-of-the-art technologies and novel concepts are discussed including research efforts for miniaturization, along with the latest available data of their performance and features. While GIE and HET are mature and well understood, the power consumption of miniaturized thrusters is relatively high, leaving room for improvement toward practical application. CFT, on the other hand, features appreciable performance even in miniaturized form, offering promise to serve for small spacecraft platforms.
ArticleNumber 100742
Author Yeo, Suk Hyun
Kahnfeld, Daniel
Ogawa, Hideaki
Schneider, Ralf
Author_xml – sequence: 1
  givenname: Suk Hyun
  orcidid: 0000-0002-8788-5491
  surname: Yeo
  fullname: Yeo, Suk Hyun
  email: suk.hyun.yeo@student.rmit.edu.au
  organization: RMIT University, Melbourne, Victoria 3001, Australia
– sequence: 2
  givenname: Hideaki
  orcidid: 0000-0002-7584-0077
  surname: Ogawa
  fullname: Ogawa, Hideaki
  email: hideaki.ogawa@aero.kyushu-u.ac.jp
  organization: Kyushu University, Fukuoka 819-0395, Japan
– sequence: 3
  givenname: Daniel
  orcidid: 0000-0002-5900-4423
  surname: Kahnfeld
  fullname: Kahnfeld, Daniel
  email: kahnfeldd@uni-greifswald.de
  organization: University of Greifswald, Greifswald 17498, Germany
– sequence: 4
  givenname: Ralf
  orcidid: 0000-0002-4492-8869
  surname: Schneider
  fullname: Schneider, Ralf
  email: schneider@uni-greifswald.de
  organization: University of Greifswald, Greifswald 17498, Germany
BookMark eNqFkMtKAzEUhoNUsK2-ggy4nprbXAoulOINKm4UlyFmTiDDdBKTTEGf3oyjGzddheT83zk53wLNetsDQucErwgm5WW7chK8DcqsKKYkPeKK0yM0J3XFclJRPkNzzKoyx5ySE7QIocUYs3VdzNHbk-mNjIM3XzIa22cOfHCgotlDyKzOoEuX1D2mssqct27owhjU1mdhJ7suC04qUF7qmLlOxlTYhVN0rGUX4Oz3XKLXu9uXzUO-fb5_3Nxsc8VxGfOKypppDowyjmGNNaZlxXXFuK5LVlRlw-FdkYLyoiZrWidISiWBrUeeN2yJLqa-6WcfA4QoWjv4Po0UtChrlmRQnlJXU0qlTYIHLZSJP_tGL00nCBajStGKP5ViVCkmlQkv_-HOm530n4fB6wmEpGBvwIuUgF5BY3zSKhprDrX4Bgd9lTM
CitedBy_id crossref_primary_10_3390_aerospace12030211
crossref_primary_10_1016_j_enss_2024_03_001
crossref_primary_10_1021_acsami_2c12716
crossref_primary_10_2514_1_G007858
crossref_primary_10_1016_j_vacuum_2023_112650
crossref_primary_10_1088_1361_6595_acfb37
crossref_primary_10_1016_j_actaastro_2023_05_031
crossref_primary_10_1016_j_enconman_2022_115524
crossref_primary_10_1016_j_jallcom_2023_173202
crossref_primary_10_1088_1742_6596_2388_1_012048
crossref_primary_10_3390_rs17030513
crossref_primary_10_1016_j_ast_2022_108011
crossref_primary_10_3390_electronics13101810
crossref_primary_10_1016_j_jmrt_2023_03_125
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125895
crossref_primary_10_1007_s42496_024_00203_x
crossref_primary_10_1088_1361_6463_acefe0
crossref_primary_10_1088_1361_6463_ac5d04
crossref_primary_10_1016_j_fuel_2022_126822
crossref_primary_10_1108_PRT_11_2024_0116
crossref_primary_10_3390_act13100384
crossref_primary_10_3390_app13095600
crossref_primary_10_1109_TAES_2024_3446758
crossref_primary_10_1016_j_ijmecsci_2022_107671
crossref_primary_10_3390_mi13122236
Cites_doi 10.1016/j.actaastro.2018.12.023
10.1109/TPS.2014.2360015
10.2514/6.2006-4469
10.3390/aerospace7090120
10.1088/0022-3727/48/37/375203
10.1017/S0022377817000125
10.2514/1.B34173
10.1016/j.actaastro.2017.08.001
10.1063/1.1568344
10.1109/TPS.2010.2056936
10.1103/PhysRevLett.111.115002
10.7567/JJAP.56.050312
10.1016/j.vacuum.2018.06.056
10.1109/TPS.2014.2355223
10.1063/1.5007734
10.1109/TPS.2014.2321095
10.1063/1.2162809
10.1063/1.1409344
10.1063/1.1943327
10.2514/6.2018-2729
10.2514/6.2007-5199
10.2514/6.2010-6617
10.1063/1.4937353
10.2514/1.15952
10.1063/1.4932196
10.1063/1.1515106
10.3390/aerospace4040055
10.2514/1.41386
10.2514/1.B37929
10.1088/0963-0252/25/3/033002
10.3390/aerospace7060067
10.1063/1.4995285
10.2514/6.2007-5250
10.3390/aerospace7050058
10.2514/6.2000-3273
10.1063/1.863955
10.1002/ctpp.201900028
10.2514/6.2010-7104
10.1063/1.4932077
10.1088/1361-6463/aa7bbf
10.2514/6.2019-4076
10.1088/0022-3727/49/28/285201
10.1063/1.1144869
10.1140/epjd/e2020-100595-0
10.2514/1.16376
10.21236/ADA437488
10.1063/1.2718522
10.1109/TPS.2008.2002032
10.1016/j.vacuum.2015.02.007
10.1088/1361-6595/aaf29a
10.1109/TPS.2017.2786402
10.1016/j.vacuum.2017.06.030
10.2514/1.B36459
10.1088/0022-3727/49/46/465001
10.2514/6.2017-4729
10.1063/1.1566474
10.1140/epjst/e2016-60247-y
10.1016/j.proeng.2017.03.296
10.1109/TPS.2011.2162652
10.2514/1.B35709
10.1088/1361-6595/aa660d
10.1063/1.4904965
10.1007/s41614-019-0030-4
10.1016/j.vacuum.2012.04.012
10.2174/1876534301104010016
10.1063/1.2987090
10.2514/3.5781
10.21236/ADA549666
10.1016/j.paerosci.2020.100627
10.2514/6.2010-6623
10.2514/6.2008-4631
10.2514/6.2010-6942
10.2514/1.15954
10.1016/S0094-5765(00)00087-4
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Oct 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 1, 2021
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
DOI 10.1016/j.paerosci.2021.100742
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-1724
ExternalDocumentID 10_1016_j_paerosci_2021_100742
S0376042121000464
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASUFR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSZ
T5K
TAE
TN5
UNMZH
XPP
XWC
ZMT
~G-
186
29P
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
RIG
SET
SEW
SSH
T9H
WUQ
7TB
8FD
EFKBS
FR3
H8D
L7M
ID FETCH-LOGICAL-c406t-72a83f4e32340e90f02674f734f863576d4ebc1524581928406aacae39c4064d3
IEDL.DBID .~1
ISSN 0376-0421
IngestDate Fri Jul 25 07:56:02 EDT 2025
Tue Jul 01 04:15:24 EDT 2025
Thu Apr 24 22:50:39 EDT 2025
Fri Feb 23 02:46:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cusped Field Thruster
Electrostatic propulsion
Miniaturization
Gridded Ion Engine
Hall Effect Thruster
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-72a83f4e32340e90f02674f734f863576d4ebc1524581928406aacae39c4064d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7584-0077
0000-0002-4492-8869
0000-0002-5900-4423
0000-0002-8788-5491
PQID 2568310024
PQPubID 2045413
ParticipantIDs proquest_journals_2568310024
crossref_citationtrail_10_1016_j_paerosci_2021_100742
crossref_primary_10_1016_j_paerosci_2021_100742
elsevier_sciencedirect_doi_10_1016_j_paerosci_2021_100742
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress in aerospace sciences
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References (b39) 2019
(b76) 2021
Yeo, Ogawa (b157) 2018
H.J. Leiter, R. Killinger, H. Bassner, J. Müller, R. Kukies, P. Box, Development of the radio frequeny ion thruster RIT XT–a status report, in: Proceedings of the 27th International Electric Propulsion Conference, Pasadena, California, USA, IEPC–01–104, 2001.
I. Mikellides, I. Katz, R. Hofer, D. Goebel, K. de Grys, A. Mathers, Magnetic shielding of the acceleration channel walls in a long-life Hall thruster, in: Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, Tennessee, USA, 2010.
Luna, Lewis, Park, Bosher, Guarducci, Cannat (b26) 2019
Gamero-Castanõ, Katz (b68) 2005
Foust (b14) 2021
Koizumi, Komurasaki, Aoyama, Yamaguchi (b60) 2014; 12
Hu, Liu, Mao, Yu, Gao (b163) 2015; 22
(b79) 2021
Ma, Liu, Hu, Yu, Chen, Sun, Zhao (b153) 2015; 115
(b18) 1988
E.T. Dale, B. Jorns, Frequency scaling of the hall thruster breathing mode, in: Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, Indiana, USA, AIAA 2019–4076, 2019.
Singh, Malik (b170) 2011; 4
N. Wallace, P. Jameson, C. Saunders, M. Fehringer, C. Edwards, R. Floberghagen, The GOCE Ion Propulsion Assembly–Lessons Learnt from the First 22 Months of Flight Operations, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–327, 2011.
R. Killinger, H. Bassner, J. Mueller, R. Kukies, RITA ion propulsion for ARTEMIS lifetime test results, in: Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, Nevada, USA, AIAA–2000–3273, 2000.
Hofer, Jankovsky, Gallimore (b88) 2006; 22
Hall, Jorns, Gallimore, Goebel (b98) 2020; 36
Rovey, Lyne, Mundahl, Rasmont, Glascock, Wainwright, Berg (b51) 2020; 118
Singh, Malik, Nishida (b172) 2013; 20
H. Leiter, B. Lotz, D. Feili, M. Tartz, H. Neumann, D.M. Di Cara, Design development and test of the RIT-
Singh, Malik (b169) 2011; 39
Z. Tianping, S. Mingming, L. Jianfei, Z. Haocheng, The electric propulsion development in LIP, in: Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C. USA, IEPC–2013–48, 2013.
(b96) 2019
Ding, Sun, Li, Wei, Xu, Peng, Su, Yu (b109) 2017; 143
D.M. Goebel, I.G. Mikellides, J.E. Polk, J. Young, W.G. Tighe, K.-R. Chien, Keeper wear mechanisms in the XIPS© 25-cm neutralizer cathode assembly, in: Proceedings of the 31st International Electric Propulsion Conference, Ann Arbor, Michigan, USA, IEPC–2009–153, 2009.
Smirnov, Raitses, Fisch (b121) 2002; 92
(b53) 2019
Tani, Tsukizaki, Koda, Nishiyama, Kuninaka (b43) 2019; 157
Koizumi, Komurasaki, Aoyama, Yamaguchi (b61) 2018; 34
Saevets, Kim, Grdlichko, Smirnov (b92) 2017; 185
R. Heidemann, S. Weis, A. Genovese, A. Lazurenko, H. Stalzer, E. Bosch, P. Holtmann, Development of the low power HEMPT EV0, in: Proceedings of the 36th International Electric Propulsion Conference, Vienna, Austria, IEPC–2019–A873, 2019.
(b84) 2019
Vaudolon, Vial, Cornu, Habbassi (b85) 2019
Rayman, Varghese, Lehman, Livesay (b20) 2000; 47
Raitses, Smirnov, Staack, Fisch (b65) 2006; 13
R. Hofer, High-specific impulse operation of the BPT-4000 hall thruster for NASA science missions, in: Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, Tennessee, USA, 2010.
Keller, Köhler, Hey, Berger, Braxmaier, Feili, Weise, Johann (b164) 2015; 43
Matlock (b128) 2012
Duras, Kahnfeld, Bandelow, Kemnitz, Luskoẅ, Matthias, Koch, Schneider (b137) 2017; 83
Koehne, Lindner, Schreitmueller, Wichman, Zeyfang (b102) 1970; 8
(b97) 2019
Mazouffre, Tsikata, Vaudolon (b116) 2014; 116
Matyash, Schneider (b142) 2013
Fahey, Muffatti, Ogawa (b158) 2017; 4
Dale, Jorns, Gallimore (b120) 2020; 7
A. Kapulkin, V. Balabanov, M. Rubanovich, E. Behar, L. Rabinovich, A. Warshavsky, CAMILA hall thruster: new results, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–046, 2011.
Chodura (b112) 1982; 25
H. Koizumi, H. Kuninaka, Ion Beam Extraction and Electron Emission from the Miniature Microwave Discharge Ion Engine
Boyd (b5) 2011
S.J. Hall, B.J. Jorns, A.D. Gallimore, H. Kamhawi, T.W. Haag, J.A. Mackey, J.H. Gilland, P.Y. Peterson, M. Baird, High-power performance of a 100-kW class nested Hall thruster, in: Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, USA, IEPC–2017–228, 2017.
Potrivitu, Sun, b. Rohaizat, Cherkun, Xu, Huang, Xu (b126) 2020; 7
NRIT-2.5 – a New Optimized Microthruster of Giessen University, in: Proceedings of the 31st International Electric Propulsion Conference, Michigan, USA, IEPC–2015–90/ISTS–2015–b–90, 2009.
N. Koch, S. Weis, M. Schirra, A. Lazurenko, B. van Reijen, J. Haderspeck, A. Genovese, P. Holtmann, Development, qualification and delivery status of the HEMPT based ion propulsion system for smallgeo, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–148, 2011.
Yongjie, Wuji, Liqiu, Guoshun, Hong, Daren (b110) 2016; 49
C. Boniface, J.-M. Charbonnier, L. Lefebvre, V. Leroi, T. and Lienart, An Overview of Electric Propulsion Activities at CNES, in: Proceedings of the 35th International Electric Propulsion Conference, Georgia, USA, IEPC-2017-102, 2017.
Duchemin, Rabin, Balika, Coduti, Vial, Vuglec, Cavelan, Leroi (b81) 2019
Collingwood, Gabriel, Corbett, Wallace, Jameson (b50) 2009; SERIES 8
DelPozzo, Williams (b13) 2020
Grimaud, Mazouffre (b114) 2017; 122
(b23) 2017
Matyash, Schneider, Mutzke, Kalentev, Taccogna, Koch, Schirra (b135) 2010; 38
Dale, Jorns (b175) 2019
K. Holste, W. Gärtner, P. Köhler, P. Dietz, J. Konrad, S. Schippers, P.J. Klar, A. Müller, P.R. Schreiner, In search of alternative propellants for ion thrusters, in: Proceedings of the 34th International Electric Propulsion Conference, Kobe, Japan, IEPC–2015–320/ISTS–2015–b–320, 2015.
(b19) 2007
Ahedo, Parra (b66) 2005; 12
N. Koch, M. Schirra, S. Weis, A. Lazurenko, B. van Reijen, J. Haderspeck, A. Genovese, P. Holtmann, R. Schneider, K. Matyash, et al. The HEMPT concept – a survey on theoretical considerations and experimental evidences, in: Proceeding of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, 11, 2011.
Groh, Loeb (b36) 1994; 65
P. Lascombes, Electric propulsion for small satellites orbit control and deorbiting: The example of a hall effect thruster, in: Proceedings of the 15th International Conference on Space Operations, Marseille, France, 2018.
Ding, Sun, Wei, Li, Su, Peng, Yu (b107) 2017; 139
H. Lee, E. Lee, S. Choi, S. So, E.H. Kim, S. Kang, Y. Kim, Y. Jeong, A.M. Al Sayegh, M.L. Cerrón, Development of low power hall effect propulsion system with improved system efficiency for small satellite applications, in: Proceeding of Space Propulsion 2018 Conference, Seville, Spain, SP2018–00181, 2018.
Ding, Peng, Sun, Wei, Zeng, Wang, Yu (b106) 2017; 226
Sazbo (b83) 2021
X-the new modular high precision micro ion propulsion system, in: Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, Ohio, USA, AIAA 2007-5250, 2007.
Dey, Toyoda, Yamamoto, Nakashima (b58) 2015; 86
C. Clauss, D. Tilley, D. Barnhart, Benefits of low-power stationary plasma thruster propulsion for small satellites, in: Proceedings of the 9th AIAA/USU Conference on Small Satellites, Logan, Utah, USA, 1995.
Goebel, Katz (b1) 2008
Liu, Niu, Li, Yu (b161) 2020; 74
Gonzalez del Amo (b77) 2017
A.V. Loyan, T.A. Maksymenko, Performance investigation of SPT-20M low power hall effect thruster, in: Proceedings of the 30th International Electric Propulsion Conference, Florence, Italy, IEPC–2007–100, 2007.
Vaudolon, Mazouffre, Hénaux, Harribey, Rossi (b117) 2015; 107
Kahnfeld, Heidemann, Duras, Matthias, Bandelow, Lüskow, Kemnitz, Matyash, Schneider (b141) 2018; 27
Cybulski, Shellhammer, Lovell, Domino, Kotnik, Cybulski, Loveli (b17) 1965
Dunaevsky, Raitses, Fisch (b67) 2003; 10
Singh (b168) 2020
Hu, Liu, Gao, Mao, Yu (b155) 2016; 49
Sekerak, Gallimore, Brown, Hofer, Polk (b140) 2016; 32
D. Lev, R.M. Myers, K.M. e. a. Lemmer, The technological and commercial expansion of electric propulsion in the past 24 years, in: Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, USA, IEPC-2017-242, 2017.
Ikeda, Togawa, Tahara, Watanabe (b125) 2013; 88
M.R. Nakles, W.A. Hargus Jr, J.J. Delgado, R.L. Corey, A performance comparison of xenon and krypton propellant on an spt-100 hall thruster, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC-2011-003, 2011.
Hruby, Demmons, Courtney, Tsay, Szabo, Hruby (b40) 2019
R. Hofer, T. Randolph, D. Oh, J. Snyder, K. de Grys, Evaluation of a 4.5 kw commercial hall thruster system for NASA science missions, in: Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, California, USA, 2006.
Talbert (b24) 2020
(b52) 2019
M. Titov, A.V. Loyan, O. Rybalov, T.A. Maksymenko, The comparison of results of tests of low-power hall thrusters: SPT and TAL, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–199, 2011.
Garrigues, Mazouffre, Vaudolon, Tsikata (b176) 2015
Matthias, Kahnfeld, Schneider, Suk, Ogawa (b129) 2019; 59
Hey (b134) 2018
Ding, Sun, Peng, Xu, Wei, Li, Li, Su, Yu (b111) 2017; 56
S. Weis, A. Lazurenko, B. van Reijen, J. e. a. Haderspeck, Overview, qualification and delivery status of the HEMPT based ion propulsion system for smallgeo, in: Proceedings of the 34th International Electric Propulsion Conference, Kobe, Japan, IEPC–2015–345, 2015.
Kieckhafer, King (b10) 2007; 23
S.J. Hall, B. Jorns, A. Gallimore, R.R. Hofer, Expanded thruster mass model incorporating nested Hall thrusters, in: Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, Georgia, USA, 2017.
A. Genovese, A. Lazurenko, N. Koch, S. e. a. Weis, Endurance testing of HEMPT-based ion propulsion modules for smallgeo, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–141, 2011.
H.
Ding (10.1016/j.paerosci.2021.100742_b107) 2017; 139
Singh (10.1016/j.paerosci.2021.100742_b168) 2020
Koizumi (10.1016/j.paerosci.2021.100742_b61) 2018; 34
Smirnov (10.1016/j.paerosci.2021.100742_b121) 2002; 92
Ikeda (10.1016/j.paerosci.2021.100742_b125) 2013; 88
10.1016/j.paerosci.2021.100742_b147
10.1016/j.paerosci.2021.100742_b148
10.1016/j.paerosci.2021.100742_b145
Dale (10.1016/j.paerosci.2021.100742_b120) 2020; 7
10.1016/j.paerosci.2021.100742_b146
Ding (10.1016/j.paerosci.2021.100742_b108) 2017; 50
DelPozzo (10.1016/j.paerosci.2021.100742_b13) 2020
Mazouffre (10.1016/j.paerosci.2021.100742_b116) 2014; 116
10.1016/j.paerosci.2021.100742_b150
Hofer (10.1016/j.paerosci.2021.100742_b88) 2006; 22
10.1016/j.paerosci.2021.100742_b154
(10.1016/j.paerosci.2021.100742_b76) 2021
10.1016/j.paerosci.2021.100742_b152
10.1016/j.paerosci.2021.100742_b32
10.1016/j.paerosci.2021.100742_b33
(10.1016/j.paerosci.2021.100742_b79) 2021
10.1016/j.paerosci.2021.100742_b35
(10.1016/j.paerosci.2021.100742_b18) 1988
10.1016/j.paerosci.2021.100742_b37
10.1016/j.paerosci.2021.100742_b38
Koch (10.1016/j.paerosci.2021.100742_b149) 2005
Matyash (10.1016/j.paerosci.2021.100742_b135) 2010; 38
Tani (10.1016/j.paerosci.2021.100742_b43) 2019; 157
Luna (10.1016/j.paerosci.2021.100742_b26) 2019
Collingwood (10.1016/j.paerosci.2021.100742_b50) 2009; SERIES 8
10.1016/j.paerosci.2021.100742_b156
Ultes (10.1016/j.paerosci.2021.100742_b8) 2021
Kieckhafer (10.1016/j.paerosci.2021.100742_b10) 2007; 23
10.1016/j.paerosci.2021.100742_b162
Yoshikawa (10.1016/j.paerosci.2021.100742_b42) 2014
10.1016/j.paerosci.2021.100742_b160
(10.1016/j.paerosci.2021.100742_b97) 2019
10.1016/j.paerosci.2021.100742_b165
Yim (10.1016/j.paerosci.2021.100742_b70) 2008; 104
Singh (10.1016/j.paerosci.2021.100742_b172) 2013; 20
10.1016/j.paerosci.2021.100742_b44
10.1016/j.paerosci.2021.100742_b45
10.1016/j.paerosci.2021.100742_b46
(10.1016/j.paerosci.2021.100742_b94) 2019
Groh (10.1016/j.paerosci.2021.100742_b36) 1994; 65
10.1016/j.paerosci.2021.100742_b48
10.1016/j.paerosci.2021.100742_b49
10.1016/j.paerosci.2021.100742_b90
10.1016/j.paerosci.2021.100742_b91
Hu (10.1016/j.paerosci.2021.100742_b155) 2016; 49
10.1016/j.paerosci.2021.100742_b93
Foust (10.1016/j.paerosci.2021.100742_b14) 2021
Keller (10.1016/j.paerosci.2021.100742_b164) 2015; 43
Liu (10.1016/j.paerosci.2021.100742_b161) 2020; 74
Ahedo (10.1016/j.paerosci.2021.100742_b66) 2005; 12
10.1016/j.paerosci.2021.100742_b123
10.1016/j.paerosci.2021.100742_b124
David (10.1016/j.paerosci.2021.100742_b2) 2020
Garrigues (10.1016/j.paerosci.2021.100742_b176) 2015
Kahnfeld (10.1016/j.paerosci.2021.100742_b136) 2019; 3
Bering (10.1016/j.paerosci.2021.100742_b34) 2004; 2004
10.1016/j.paerosci.2021.100742_b133
(10.1016/j.paerosci.2021.100742_b23) 2017
(10.1016/j.paerosci.2021.100742_b53) 2019
10.1016/j.paerosci.2021.100742_b130
10.1016/j.paerosci.2021.100742_b131
10.1016/j.paerosci.2021.100742_b11
(10.1016/j.paerosci.2021.100742_b19) 2007
10.1016/j.paerosci.2021.100742_b99
10.1016/j.paerosci.2021.100742_b12
Saevets (10.1016/j.paerosci.2021.100742_b92) 2017; 185
Doerner (10.1016/j.paerosci.2021.100742_b22) 2003; 93
Mazouffre (10.1016/j.paerosci.2021.100742_b9) 2016; 25
(10.1016/j.paerosci.2021.100742_b47) 2020
Gonzalez del Amo (10.1016/j.paerosci.2021.100742_b77) 2017
Matlock (10.1016/j.paerosci.2021.100742_b128) 2012
Cybulski (10.1016/j.paerosci.2021.100742_b17) 1965
Hall (10.1016/j.paerosci.2021.100742_b98) 2020; 36
10.1016/j.paerosci.2021.100742_b138
10.1016/j.paerosci.2021.100742_b28
10.1016/j.paerosci.2021.100742_b29
Talbert (10.1016/j.paerosci.2021.100742_b24) 2020
Ding (10.1016/j.paerosci.2021.100742_b106) 2017; 226
Warner (10.1016/j.paerosci.2021.100742_b31) 2010; 26
10.1016/j.paerosci.2021.100742_b143
10.1016/j.paerosci.2021.100742_b144
10.1016/j.paerosci.2021.100742_b21
Koizumi (10.1016/j.paerosci.2021.100742_b60) 2014; 12
Yalin (10.1016/j.paerosci.2021.100742_b69) 2007
Gurciullo (10.1016/j.paerosci.2021.100742_b4) 2019
Matyash (10.1016/j.paerosci.2021.100742_b142) 2013
Yan (10.1016/j.paerosci.2021.100742_b30) 2013
10.1016/j.paerosci.2021.100742_b27
Grimaud (10.1016/j.paerosci.2021.100742_b114) 2017; 122
10.1016/j.paerosci.2021.100742_b71
Dale (10.1016/j.paerosci.2021.100742_b175) 2019
10.1016/j.paerosci.2021.100742_b73
(10.1016/j.paerosci.2021.100742_b95) 2019
10.1016/j.paerosci.2021.100742_b74
Smolyakov (10.1016/j.paerosci.2021.100742_b171) 2013; 111
(10.1016/j.paerosci.2021.100742_b52) 2019
(10.1016/j.paerosci.2021.100742_b82) 2021
10.1016/j.paerosci.2021.100742_b104
Liu (10.1016/j.paerosci.2021.100742_b159) 2015; 48
10.1016/j.paerosci.2021.100742_b101
Potrivitu (10.1016/j.paerosci.2021.100742_b126) 2020; 7
Hu (10.1016/j.paerosci.2021.100742_b163) 2015; 22
10.1016/j.paerosci.2021.100742_b105
Duchemin (10.1016/j.paerosci.2021.100742_b81) 2019
Mazouffre (10.1016/j.paerosci.2021.100742_b103) 2018; 46
(10.1016/j.paerosci.2021.100742_b78) 2015
Chodura (10.1016/j.paerosci.2021.100742_b112) 1982; 25
Choueiri (10.1016/j.paerosci.2021.100742_b72) 2001; 8
Ding (10.1016/j.paerosci.2021.100742_b109) 2017; 143
Hallouin (10.1016/j.paerosci.2021.100742_b119) 2020; 7
Kahnfeld (10.1016/j.paerosci.2021.100742_b141) 2018; 27
Raitses (10.1016/j.paerosci.2021.100742_b65) 2006; 13
Yeo (10.1016/j.paerosci.2021.100742_b157) 2018
Pigeon (10.1016/j.paerosci.2021.100742_b122) 2015
Fahey (10.1016/j.paerosci.2021.100742_b158) 2017; 4
Lev (10.1016/j.paerosci.2021.100742_b132) 2016; 14
Dunaevsky (10.1016/j.paerosci.2021.100742_b67) 2003; 10
10.1016/j.paerosci.2021.100742_b80
Duras (10.1016/j.paerosci.2021.100742_b137) 2017; 83
Martinez (10.1016/j.paerosci.2021.100742_b54) 2019
Matthias (10.1016/j.paerosci.2021.100742_b129) 2019; 59
Koehne (10.1016/j.paerosci.2021.100742_b102) 1970; 8
Koizumi (10.1016/j.paerosci.2021.100742_b64) 2016; 14
Kramer (10.1016/j.paerosci.2021.100742_b151) 2020
Goebel (10.1016/j.paerosci.2021.100742_b1) 2008
Sazbo (10.1016/j.paerosci.2021.100742_b83) 2021
Ma (10.1016/j.paerosci.2021.100742_b153) 2015; 115
10.1016/j.paerosci.2021.100742_b86
Singh (10.1016/j.paerosci.2021.100742_b169) 2011; 39
10.1016/j.paerosci.2021.100742_b87
Snyder (10.1016/j.paerosci.2021.100742_b25) 2012; 28
Ley (10.1016/j.paerosci.2021.100742_b15) 2009
10.1016/j.paerosci.2021.100742_b167
Levchenko (10.1016/j.paerosci.2021.100742_b16) 2018; 5
Rovey (10.1016/j.paerosci.2021.100742_b51) 2020; 118
10.1016/j.paerosci.2021.100742_b174
Gamero-Castanõ (10.1016/j.paerosci.2021.100742_b68) 2005
Yoshimoto (10.1016/j.paerosci.2021.100742_b62) 2016; 14
Hey (10.1016/j.paerosci.2021.100742_b134) 2018
Liu (10.1016/j.paerosci.2021.100742_b139) 2014; 43
10.1016/j.paerosci.2021.100742_b56
Estublier (10.1016/j.paerosci.2021.100742_b75) 2008; 36
10.1016/j.paerosci.2021.100742_b57
Hruby (10.1016/j.paerosci.2021.100742_b40) 2019
Shirasaka (10.1016/j.paerosci.2021.100742_b59) 2012; 10
Vaudolon (10.1016/j.paerosci.2021.100742_b117) 2015; 107
Grimaud (10.1016/j.paerosci.2021.100742_b113) 2018; 155
Sekerak (10.1016/j.paerosci.2021.100742_b173) 2014; 43
10.1016/j.paerosci.2021.100742_b63
Singh (10.1016/j.paerosci.2021.100742_b170) 2011; 4
Boyd (10.1016/j.paerosci.2021.100742_b5) 2011
Yongjie (10.1016/j.paerosci.2021.100742_b110) 2016; 49
(10.1016/j.paerosci.2021.100742_b96) 2019
Grimaud (10.1016/j.paerosci.2021.100742_b115) 2017; 26
Sekerak (10.1016/j.paerosci.2021.100742_b140) 2016; 32
Lee (10.1016/j.paerosci.2021.100742_b127) 2019
10.1016/j.paerosci.2021.100742_b100
Smirnov (10.1016/j.paerosci.2021.100742_b118) 2007; 14
Ding (10.1016/j.paerosci.2021.100742_b111) 2017; 56
10.1016/j.paerosci.2021.100742_b3
(10.1016/j.paerosci.2021.100742_b39) 2019
Dey (10.1016/j.paerosci.2021.100742_b58) 2015; 86
Hofer (10.1016/j.paerosci.2021.100742_b89) 2006; 22
Vaudolon (10.1016/j.paerosci.2021.100742_b85) 2019
Keller (10.1016/j.paerosci.2021.100742_b166) 2014
10.1016/j.paerosci.2021.100742_b6
Rayman (10.1016/j.paerosci.2021.100742_b20) 2000; 47
Tsukizaki (10.1016/j.paerosci.2021.100742_b41) 2010; 8
(10.1016/j.paerosci.2021.100742_b55) 2021
(10.1016/j.paerosci.2021.100742_b84) 2019
10.1016/j.paerosci.2021.100742_b7
References_xml – year: 2020
  ident: b24
  article-title: Double asteroid redirection test (DART) mission
– volume: 107
  year: 2015
  ident: b117
  article-title: Optimization of a wall-less hall thruster
  publication-title: Appl. Phys. Lett.
– volume: 39
  start-page: 1910
  year: 2011
  end-page: 1918
  ident: b169
  article-title: Growth of low-frequency electrostatic and electromagnetic instabilities in a hall thruster
  publication-title: IEEE Trans. Plasma Sci.
– reference: R.W. Conversano, D.M. Goebel, R.R. Hofer, T.S. Matlock, R.E. Wirz, Magnetically shielded miniature hall thruster: development and initial testing, in: Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C. USA, IEPC–2013–201, 2013.
– reference: I. Mikellides, I. Katz, R. Hofer, D. Goebel, K. de Grys, A. Mathers, Magnetic shielding of the acceleration channel walls in a long-life Hall thruster, in: Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, Tennessee, USA, 2010.
– volume: 139
  start-page: 521
  year: 2017
  end-page: 527
  ident: b107
  article-title: A 200 w hall thruster with hollow indented anode
  publication-title: Acta Astronaut.
– volume: 14
  start-page: Pb_217
  year: 2016
  end-page: Pb_223
  ident: b132
  article-title: The development of CAM200 low power hall thruster
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn.
– volume: 43
  start-page: 127
  year: 2014
  end-page: 129
  ident: b139
  article-title: Plume control of a cusped field thruster
  publication-title: IEEE Trans. Plasma Sci.
– volume: 92
  start-page: 5673
  year: 2002
  end-page: 5679
  ident: b121
  article-title: Parametric investigation of miniaturized cylindrical and annular hall thrusters
  publication-title: J. Appl. Phys.
– volume: 8
  start-page: 873
  year: 1970
  end-page: 879
  ident: b102
  article-title: Further investigations on low-density hall accelerators
  publication-title: AIAA J.
– start-page: 301
  year: 2009
  end-page: 332
  ident: b15
  article-title: 4. Subsystem of spececraft
  publication-title: Handbook of Space Technology, Vol. 22
– volume: 38
  start-page: 2274
  year: 2010
  end-page: 2280
  ident: b135
  article-title: Kinetic simulations of SPT and HEMP thrusters including the near-field plume region
  publication-title: IEEE Trans. Plasma Sci.
– reference: G. Janes, T. Wilson, Electrostatic acceleration of neutral plasmas–momentum transfer through magnetic fields, in: Proceeding of the 3rd Symposium on Advanced Propulsion Concepts, Ohio, USA, 1962.
– reference: S. Weis, N. Koch, M. Schirra, A. Lazurenko, B. van Reijen, J. e. a. Haderspeck, Architecture, functional features and operational characteristics of the HEMPT based ion propulsion system for smallgeo, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–223, 2011.
– year: 2015
  ident: b176
  article-title: Azimuthal micro-instability inside a wall-less hall thruster
  publication-title: Proceedings of the 2015 IEEE International Conference on Plasma Sciences (ICOPS)
– reference: H. Bassner, R. Killinger, H. Leiter, J. Müller, Development steps of the RF-ion thrusters RIT, in: Proceedings of the 27th International Electric Propulsion Conference, Pasadena, California, USA, IEPC–01–105, 2001.
– year: 2005
  ident: b68
  article-title: Estimation of hall thruster erosion using hphall
  publication-title: Proceedings of the 29th International Electric Propulsion Conference
– volume: 49
  year: 2016
  ident: b110
  article-title: Computer simulations of hall thrusters without wall losses designed using two permanent magnetic rings
  publication-title: J. Phys. D: Appl. Phys.
– year: 2014
  ident: b166
  article-title: Feasibility of a Down-Scaled HEMP Thruster
– year: 2019
  ident: b97
  article-title: Busek space propulsion and systems, BHT-8000 busek hall effect thruster
– volume: 185
  start-page: 85
  year: 2017
  end-page: 90
  ident: b92
  article-title: Investigation of a low-power thruster on krypton propellant
  publication-title: Procedia Eng.
– reference: G. Kornfeld, N. Koch, G. Coustou, First test results of the HEMP thruster concept, in: Proceedings of the 28th International Electric Propulsion Conference, Toulouse, France, IEPC–2003–112, 2003.
– year: 2019
  ident: b96
  article-title: Busek space propulsion and systems, bht-1500 busek hall effect thruster
– volume: 56
  start-page: 50312
  year: 2017
  ident: b111
  article-title: Experimental test of 200 w hall thruster with titanium wall
  publication-title: Japan. J. Appl. Phys.
– year: 2021
  ident: b55
  article-title: NPT30
– volume: 12
  start-page: Tb_19
  year: 2014
  end-page: Tb_24
  ident: b60
  article-title: Engineering model of the miniature ion propulsion system for the nano-satellite: Hodoyoshi-4
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn.
– reference: D. Courtney, P. Lozano, M. Martinez-Sanchez, Continued investigation of diverging cusped field thruster, in: Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartford, CT, AIAA–2008–4631, 2008.
– volume: 20
  year: 2013
  ident: b172
  article-title: High frequency electromagnetic resistive instability in a hall thruster under the effect of ionization
  publication-title: Phys. Plasmas
– reference: P. Saevets, D. Semenenko, R. Albertoni, G. Scremin, Development of a long-life low-power hall thruster, in: Proceedings of the 35th International Electric Propulsion Conference, Georgia, USA, IEPC–2017–38, 2017.
– year: 2019
  ident: b40
  article-title: Overview of busek electric propulsion
  publication-title: Proceedings of the 36th International Electric Propulsion Conference
– volume: 14
  start-page: 57106
  year: 2007
  ident: b118
  article-title: Experimental and theoretical studies of cylindrical hall thrusters
  publication-title: Phys. Plasmas
– reference: J.E. Foster, Compact plasma accelerator for micropropulsion applications, in: Proceedings of the 27th International Electric Propulsion Conference, Pasadena, California, USA, IEPC–01–221, 2001.
– year: 2021
  ident: b79
  article-title: Pps®1350-e
– year: 2013
  ident: b142
  article-title: Particle in cell simulation of plasma thrusters
  publication-title: 2013 19th IEEE Pulsed Power Conference (PPC)
– reference: R. Killinger, H. Bassner, J. Mueller, R. Kukies, RITA ion propulsion for ARTEMIS lifetime test results, in: Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, Nevada, USA, AIAA–2000–3273, 2000.
– volume: 83
  year: 2017
  ident: b137
  article-title: Ion angular distribution simulation of the highly efficient multistage plasma thruster
  publication-title: J. Plasma Phys.
– volume: 14
  start-page: Pb_13
  year: 2016
  end-page: Pb_22
  ident: b64
  article-title: Initial flight operations of the miniature propulsion system installed on small space probe: PROCYON
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn.
– year: 2019
  ident: b85
  article-title: Pps®x00 thruster development status at safran
– year: 2007
  ident: b69
  article-title: Differential sputter yields of boron nitride, quartz, and kapton due to low energy xe
  publication-title: Proceeding of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
– volume: 23
  start-page: 21
  year: 2007
  end-page: 26
  ident: b10
  article-title: Energetics of propellant options for high-power hall thrusters
  publication-title: J. Propul. Power
– volume: 93
  start-page: 5816
  year: 2003
  end-page: 5823
  ident: b22
  article-title: Sputtering yield measurements during low energy xenon plasma bombardment
  publication-title: J. Appl. Phys.
– year: 2012
  ident: b128
  article-title: An Exploration of Prominent Cusped-Field Thruster Phenomena: The Hollow Conical Plume and Anode Current Bifurcation
– year: 2017
  ident: b77
  article-title: European Space agency (ESA) electric propulsion activities
– volume: 155
  start-page: 514
  year: 2018
  end-page: 523
  ident: b113
  article-title: Performance comparison between standard and magnetically shielded 200-w hall thrusters with BN-sio2 and graphite channel walls
  publication-title: Vacuum
– year: 2018
  ident: b157
  article-title: Investigation of influence of magnet thickness on performance of cusped field thruster via multi-objective design optimization
  publication-title: Proceedings of the Asia-Pacific International Symposium on Aerosp. Technology 2018
– volume: 115
  start-page: 101
  year: 2015
  end-page: 107
  ident: b153
  article-title: Experimental study on a variable magnet length cusped field thruster
  publication-title: Vacuum
– reference: H.J. Leiter, R. Killinger, H. Bassner, J. Müller, R. Kukies, P. Box, Development of the radio frequeny ion thruster RIT XT–a status report, in: Proceedings of the 27th International Electric Propulsion Conference, Pasadena, California, USA, IEPC–01–104, 2001.
– reference: S.J. Hall, B.J. Jorns, A.D. Gallimore, H. Kamhawi, T.W. Haag, J.A. Mackey, J.H. Gilland, P.Y. Peterson, M. Baird, High-power performance of a 100-kW class nested Hall thruster, in: Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, USA, IEPC–2017–228, 2017.
– start-page: Tk_29
  year: 2014
  end-page: Tk_33
  ident: b42
  article-title: Hayabusa2-the next asteroid sample return mission of japan
– volume: 59
  year: 2019
  ident: b129
  article-title: Particle-in-cell simulation of an optimized high-efficiency multistage plasma thruster
  publication-title: Contrib. Plasma Phys.
– reference: S.J. Hall, S.E. Cusson, A.D. Gallimore, 30-kW performance of a 100-kw class nested-channel hall thruster, in: Proceedings of the Joint Conference of 30th International Symposium on Space Technology and Sci. 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, IEPC–2015–125/ISTS–2015–b–125, 2015.
– reference: V. Kim, K. Kozubsky, V.M. Murashko, A. Semenkin, History of the Hall thrusters development in USSR, in: Proceedings of the 30th International Electric Propulsion Conference, Florence, Italy, IEPC–2007–142, 2007.
– volume: 26
  year: 2017
  ident: b115
  article-title: Ion behavior in low-power magnetically shielded and unshielded hall thrusters
  publication-title: Plasma Sources. Sci. Technol.
– volume: 46
  start-page: 330
  year: 2018
  end-page: 337
  ident: b103
  article-title: Characteristics and performances of a 100-w hall thruster for microspacecraft
  publication-title: EEE Trans. Plasma Sci.
– volume: 8
  start-page: Pb 67
  year: 2010
  end-page: Pb 72
  ident: b41
  article-title: Improvement of the thrust force of the ECR ion thruster
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn.
– reference: A. Genovese, A. Lazurenko, N. Koch, S. e. a. Weis, Endurance testing of HEMPT-based ion propulsion modules for smallgeo, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–141, 2011.
– volume: 25
  year: 2016
  ident: b9
  article-title: Electric propulsion for satellites and spacecraft: established technologies and novel approaches
  publication-title: Plasma Sources. Sci. Technol.
– volume: 22
  start-page: 721
  year: 2006
  end-page: 731
  ident: b88
  article-title: High-specific impulse hall thrusters, part 1: Influence of current density and magnetic field
  publication-title: J. Propul. Power
– volume: 2004
  start-page: 92
  year: 2004
  end-page: 106
  ident: b34
  article-title: The use of RF waves in space propulsion systems
  publication-title: URSI Radio Sci. Bull.
– volume: 43
  start-page: 72
  year: 2014
  end-page: 85
  ident: b173
  article-title: Azimuthal spoke propagation in hall effect thrusters
  publication-title: IEEE Trans. Plasma Sci.
– volume: 50
  year: 2017
  ident: b108
  article-title: Application of hollow anodes in a hall thruster with double-peak magnetic fields
  publication-title: J. Phys. D: Appl. Phys.
– year: 2020
  ident: b47
  article-title: Electric propulsion systems and components
– volume: 48
  year: 2015
  ident: b159
  article-title: Effect of the variable cross-section channel on performance of a cusped field thruster at low power
  publication-title: J. Phys. D: Appl. Phys.
– volume: 34
  start-page: 960
  year: 2018
  end-page: 968
  ident: b61
  article-title: Development and flight operation of a miniature ion propulsion system
  publication-title: J. Propuls. Power
– reference: R. Hofer, High-specific impulse operation of the BPT-4000 hall thruster for NASA science missions, in: Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, Tennessee, USA, 2010.
– reference: T.A. Trudel, S.G. Bilén, M.M. Micci, Design and performance testing of a 1-cm miniature radio-frequency ion thruster, in: Proceedings of the 31st International Electric Propulsion Conference, Michigan, USA, IEPC–2009–167, 2009.
– volume: 74
  start-page: 1
  year: 2020
  end-page: 8
  ident: b161
  article-title: Simulation study of influence of exit magnetic separatrix angle on plume divergence control
  publication-title: Eur. Phys. J. D
– year: 2019
  ident: b53
  article-title: NPT30-i2 smart electric propulsion system
– volume: 22
  year: 2015
  ident: b163
  article-title: The effects of magnetic field in plume region on the performance of multi-cusped field thruster
  publication-title: Phys. Plasmas
– volume: 7
  start-page: 67
  year: 2020
  ident: b126
  article-title: A review of low-power electric propulsion research at the space propulsion centre Singapore
  publication-title: Aerospace
– reference: S. Weis, A. Lazurenko, A. Genovese, R. Heidemann, P. Holtmann, H. Stalzer, N. Püttmann, T. Wolf, B. Wollenhaupt, Overview, qualification and delivery status of the HEMP-thruster based ion propulsion system for smallgeo, in: Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, USA, IEPC–2017–197, 2017.
– volume: 49
  year: 2016
  ident: b155
  article-title: An experimental study of the effect of magnet length on the performance of a multi-cusped field thruster
  publication-title: J. Phys. D: Appl. Phys.
– reference: K. Holste, W. Gärtner, P. Köhler, P. Dietz, J. Konrad, S. Schippers, P.J. Klar, A. Müller, P.R. Schreiner, In search of alternative propellants for ion thrusters, in: Proceedings of the 34th International Electric Propulsion Conference, Kobe, Japan, IEPC–2015–320/ISTS–2015–b–320, 2015.
– year: 2021
  ident: b83
  article-title: Electric propulsion research accelerates toward the future
– volume: 111
  year: 2013
  ident: b171
  article-title: Sheath-induced instabilities in plasmas with e
  publication-title: Phys. Rev. Lett.
– reference: N. Wallace, P. Jameson, C. Saunders, M. Fehringer, C. Edwards, R. Floberghagen, The GOCE Ion Propulsion Assembly–Lessons Learnt from the First 22 Months of Flight Operations, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–327, 2011.
– year: 2007
  ident: b19
  article-title: Dawn launch mission to vesta and ceres
– volume: 143
  start-page: 251
  year: 2017
  end-page: 261
  ident: b109
  article-title: Influence of hollow anode position on the performance of a hall-effect thruster with double-peak magnetic field
  publication-title: Vacuum
– reference: C. Boniface, J.-M. Charbonnier, L. Lefebvre, V. Leroi, T. and Lienart, An Overview of Electric Propulsion Activities at CNES, in: Proceedings of the 35th International Electric Propulsion Conference, Georgia, USA, IEPC-2017-102, 2017.
– volume: 226
  start-page: 2945
  year: 2017
  end-page: 2953
  ident: b106
  article-title: Performance characteristics of no-wall-losses hall thruster
  publication-title: Eur. Phys. J. Spec. Top.
– volume: 32
  start-page: 903
  year: 2016
  end-page: 917
  ident: b140
  article-title: Mode transitions in hall-effect thrusters induced by variable magnetic field strength
  publication-title: J. Propul. Power
– volume: 36
  start-page: 2262
  year: 2008
  end-page: 2270
  ident: b75
  article-title: The SMART-1 spacecraft potential investigations
  publication-title: IEEE Trans. Plasma Sci.
– volume: 7
  start-page: 120
  year: 2020
  ident: b120
  article-title: Future directions for electric propulsion research
  publication-title: Aerospace
– volume: 26
  start-page: 130
  year: 2010
  end-page: 134
  ident: b31
  article-title: Ignition and plume characteristics of low-current cerium and lanthanum hexaboride hollow cathodes
  publication-title: J. Propul. Power
– volume: 3
  year: 2019
  ident: b136
  article-title: Numerical modeling of high efficiency multistage plasma thrusters for space applications
  publication-title: Rev. Mod. Plasma Phys.
– year: 2019
  ident: b39
  article-title: Busek space propulsion and systems, BIT-3 RF ion thruster
– reference: J. Degremont, E. Bosch, HEMPT strategy to address current and future space market, in: Proceedings of the 36th International Electric Propulsion Conference, Vienna, Austria, IEPC–2019–A826, 2019.
– year: 2019
  ident: b127
  article-title: Development and performance test of a 50 W-class hall thruster
  publication-title: Proceedings of the 36th International Electric Propulsion Conference
– volume: 4
  year: 2011
  ident: b170
  article-title: Resistive instabilities in a hall thruster under the presence of collisions and thermal motion of electrons
  publication-title: Open Plasma Phys. J.
– reference: M.R. Nakles, W.A. Hargus Jr, J.J. Delgado, R.L. Corey, A performance comparison of xenon and krypton propellant on an spt-100 hall thruster, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC-2011-003, 2011.
– reference: M. Patterson, S. Benson, NEXT ion propulsion system development status and performance, in: Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, Ohio, USA, AIAA–2007–5199, 2007.
– reference: Z. Tianping, W. Xiaoyong, J. Haocheng, Initial flight test results of the LIPS-200 electric propulsion system on SJ-9A satellite, in: Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C. USA, IEPC–2013–47, 2013.
– volume: 5
  start-page: 11104
  year: 2018
  ident: b16
  article-title: Space micropropulsion systems for cubesats and small satellites: from proximate targets to furthermost frontiers
  publication-title: Appl. Phys. Rev.
– volume: 28
  start-page: 371
  year: 2012
  end-page: 379
  ident: b25
  article-title: Performance evaluation of the T6 ion engine
  publication-title: J. Propuls. Power
– volume: 22
  start-page: 732
  year: 2006
  end-page: 740
  ident: b89
  article-title: High-specific impulse hall thrusters, part 2: efficiency analysis
  publication-title: J. Propul. Power
– year: 1965
  ident: b17
  article-title: Results from SERT I Ion Rocket Flight Test
– volume: 118
  year: 2020
  ident: b51
  article-title: Review of multimode space propulsion
  publication-title: Prog. Aerosp. Sci.
– volume: 10
  start-page: 2574
  year: 2003
  end-page: 2577
  ident: b67
  article-title: Secondary electron emission from dielectric materials of a hall thruster with segmented electrodes
  publication-title: Phys. Plasmas
– year: 2011
  ident: b5
  article-title: Simulation of Electric Propulsion Thrusters
– volume: 12
  start-page: 73503
  year: 2005
  ident: b66
  article-title: Partial trapping of secondary-electron emission in a hall thruster plasma
  publication-title: Phys. Plasmas
– reference: P. Lascombes, Electric propulsion for small satellites orbit control and deorbiting: The example of a hall effect thruster, in: Proceedings of the 15th International Conference on Space Operations, Marseille, France, 2018.
– year: 2019
  ident: b54
  article-title: Development and testing of the NPT30-i2 iodine ion thruster
  publication-title: Proceedings of the 36th International Electric Propulsion Conference
– reference: D.M. Goebel, I.G. Mikellides, J.E. Polk, J. Young, W.G. Tighe, K.-R. Chien, Keeper wear mechanisms in the XIPS© 25-cm neutralizer cathode assembly, in: Proceedings of the 31st International Electric Propulsion Conference, Ann Arbor, Michigan, USA, IEPC–2009–153, 2009.
– year: 2005
  ident: b149
  article-title: Development & test status of the thales high efficiency multistage plasma (hemp) thruster family
  publication-title: Proceedings of the 29th International Electric Propulsion Conference
– year: 2020
  ident: b151
  article-title: Heinrich hertz satellite mission (h2sat)
– reference: H. Leiter, R. Killinger, M. Boss, M. Braeg, M. Gollor, S. Weis, D. Feili, M. Tartz, H. Neumann, J. Haderspeck10, et al. RIT-
– year: 2019
  ident: b95
  article-title: Busek space propulsion and systems, BHT-600 busek hall effect thruster
– reference: A.V. Loyan, T.A. Maksymenko, Performance investigation of SPT-20M low power hall effect thruster, in: Proceedings of the 30th International Electric Propulsion Conference, Florence, Italy, IEPC–2007–100, 2007.
– volume: 36
  start-page: 912
  year: 2020
  end-page: 919
  ident: b98
  article-title: Operation of a high-power nested hall thruster with reduced cathode flow fraction
  publication-title: J. Propul. Power
– volume: 116
  year: 2014
  ident: b116
  article-title: Development and experimental characterization of a wall-less hall thruster
  publication-title: J. Appl. Phys.
– reference: G. Kornfeld, N. Koch, H.-P. Harmann, Physics and evolution of HEMP-thrusters, in: Proceedings of the 30th International Electric Propulsion Conference, Florence, Italy, IEPC–2007–108, 2007.
– volume: 47
  start-page: 475
  year: 2000
  end-page: 487
  ident: b20
  article-title: Results from the deep space 1 technology validation mission
  publication-title: Acta Astronaut.
– year: 2019
  ident: b84
  article-title: Eurostar neo test paves the way for flight of pps®5000
– volume: 13
  start-page: 14502
  year: 2006
  ident: b65
  article-title: Measurements of secondary electron emission effects in the hall thruster discharge
  publication-title: Phys. Plasmas
– reference: N. Koch, M. Schirra, S. Weis, A. Lazurenko, B. van Reijen, J. Haderspeck, A. Genovese, P. Holtmann, R. Schneider, K. Matyash, et al. The HEMPT concept – a survey on theoretical considerations and experimental evidences, in: Proceeding of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, 11, 2011.
– reference: A. Lazurenko, A. Genovese, R. Heidemann, J. e. a. Haderspeck, Qualification test results of HEMP thruster modules, in: Proceedings of the 34th International Electric Propulsion Conference, Kobe, Japan, IEPC–2015–347, 2015.
– volume: SERIES 8
  year: 2009
  ident: b50
  article-title: Development of a differential radio frequency ion thruster for precision spacecraft control
  publication-title: J. Plasma Fusion Res.
– reference: T. Matlock, S. Gildea, F. Hu, N. Becker, P. Lozano, M. Martinez-Sanchez, Magnetic field effects on the plume of a diverging cusped-field thruster, in: Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, Tennessee, USA, 2010.
– volume: 65
  start-page: 1741
  year: 1994
  end-page: 1744
  ident: b36
  article-title: State of the art of radio-frequency ion sources for space propulsion
  publication-title: Rev. Sci. Instrum.
– year: 2019
  ident: b4
  article-title: Experimental performance and plume characterisation of a miniaturised 50w hall thruster
  publication-title: Proceedings of the 36th International Electric Propulsion Conference
– volume: 88
  start-page: 63
  year: 2013
  end-page: 69
  ident: b125
  article-title: Performance characteristics of very low power cylindrical hall thrusters for the nano-satellite PROITERES-3
  publication-title: Vacuum
– reference: A. Kapulkin, V. Balabanov, M. Rubanovich, E. Behar, L. Rabinovich, A. Warshavsky, CAMILA hall thruster: new results, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–046, 2011.
– reference: Z. Tianping, S. Mingming, L. Jianfei, Z. Haocheng, The electric propulsion development in LIP, in: Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C. USA, IEPC–2013–48, 2013.
– volume: 14
  start-page: Pf_35
  year: 2016
  end-page: Pf_43
  ident: b62
  article-title: Cluster launch of hodoyoshi-3 and-4 satellites from yasny by dnepr launch vehicle
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn.
– year: 2019
  ident: b81
  article-title: Qualification status of the pps®5000 hall thruster unit
  publication-title: Proceedings of the 36th International Electric Propulsion Conference
– volume: 43
  start-page: 45
  year: 2015
  end-page: 53
  ident: b164
  article-title: Parametric study of HEMP-thruster downscaling to
  publication-title: IEEE Trans. Plasma Sci.
– reference: A. Keller, P. Köhler, W. Gärtner, B. Lotz, D. Feili, P. Dold, M. Berger, C. Braxmaier, D. Weise, U. Johann, Feasibility of a Down-scaled HEMP-thruster, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–138, 2011.
– reference: H. Leiter, B. Lotz, D. Feili, M. Tartz, H. Neumann, D.M. Di Cara, Design development and test of the RIT-
– year: 2019
  ident: b94
  article-title: Busek space propulsion and systems, bht-200 busek hall effect thruster
– volume: 27
  year: 2018
  ident: b141
  article-title: Breathing modes in HEMP thrusters
  publication-title: Plasma Sources. Sci. Technol.
– volume: 4
  start-page: 55
  year: 2017
  ident: b158
  article-title: High fidelity multi-objective design optimization of a downscaled cusped field thruster
  publication-title: Aerospace
– reference: X mini ion engine system, in: Proceedings of the 31st International Electric Propulsion Conference, Michigan, USA, IEPC–2009–179, 2009.
– reference: 1, in: Proceedings of the 31st International Electric Propulsion Conference, Ann Arbor, Michigan, USA, IEPC–2009–178, 2009.
– reference: M. Titov, A.V. Loyan, O. Rybalov, T.A. Maksymenko, The comparison of results of tests of low-power hall thrusters: SPT and TAL, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–199, 2011.
– year: 2021
  ident: b76
  article-title: Pps®1350-g
– reference: S.J. Hall, B. Jorns, A. Gallimore, R.R. Hofer, Expanded thruster mass model incorporating nested Hall thrusters, in: Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Atlanta, Georgia, USA, 2017.
– volume: 86
  year: 2015
  ident: b58
  article-title: Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion
  publication-title: Rev. Sci. Instrum.
– year: 2020
  ident: b2
  article-title: Ion propulsion technology: Nasa’s evolutionary xenon thruster (NEXT) development and long duration tests results and its applications
  publication-title: Proceedings of the 2020 Advances in Science and Engineering Technology International Conferences
– reference: E.T. Dale, B. Jorns, Frequency scaling of the hall thruster breathing mode, in: Proceedings of the AIAA Propulsion and Energy 2019 Forum, Indianapolis, Indiana, USA, AIAA 2019–4076, 2019.
– year: 1988
  ident: b18
  article-title: Deep space 1 launch
– reference: H. Leiter, C. Altmann, R. Kukies, J. Kuhmann, J.P. Porst, M. Berger, M. Rath, Evolution of the AIRBUS DS GmbH radio frequency ion thruster family, in: Proceedings of the Joint Conference of 30th International Symposium on Space Technology and Sci. 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, IEPC–2015–90/ISTS–2015–b–20, 2015.
– year: 2019
  ident: b52
  article-title: NPT30 intelligent propulsion system
– reference: S.H. Yeo, H. Ogawa, Analysis of effects of magnet configurations for downscaled cusped field thruster via surrogate assisted evolutionary algorithms, in: Proceedings of the 18th Australian Space Research Conference, Gold Coast, Australia, 2018.
– reference: D. Feili, B. Lotz, S. Bonnet, B.K. Meyer, H.W. Loeb, N. Puetmann,
– year: 2019
  ident: b175
  article-title: Wo-zone hall thruster breathing mode mechanism, part II: Experiment
  publication-title: Proceedings of the 36th International Electric Propulsion Conference
– year: 2015
  ident: b122
  article-title: A low power cylindrical hall thruster for next generation microsatellites
– year: 2015
  ident: b78
  article-title: What is artes?
– year: 2021
  ident: b82
  article-title: Pps®5000
– volume: 25
  start-page: 1628
  year: 1982
  ident: b112
  article-title: Plasma–wall transition in an oblique magnetic field
  publication-title: Phys. Fluids
– reference: H. Lee, E. Lee, S. Choi, S. So, E.H. Kim, S. Kang, Y. Kim, Y. Jeong, A.M. Al Sayegh, M.L. Cerrón, Development of low power hall effect propulsion system with improved system efficiency for small satellite applications, in: Proceeding of Space Propulsion 2018 Conference, Seville, Spain, SP2018–00181, 2018.
– reference: NRIT-2.5 – a New Optimized Microthruster of Giessen University, in: Proceedings of the 31st International Electric Propulsion Conference, Michigan, USA, IEPC–2015–90/ISTS–2015–b–90, 2009.
– year: 2008
  ident: b1
  article-title: Fundamentals of Electric Propulsion: Ion and Hall Thrusters, Vol. 1
– reference: X-the new modular high precision micro ion propulsion system, in: Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, Ohio, USA, AIAA 2007-5250, 2007.
– reference: D. Lev, R.M. Myers, K.M. e. a. Lemmer, The technological and commercial expansion of electric propulsion in the past 24 years, in: Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, USA, IEPC-2017-242, 2017.
– reference: P.-Y.C.R. Taunay, S.G. Bilén, M.M. Micci, Numerical simulations of a miniature microwave ion thruster, in: Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C. USA, IEPC–2013–194, 2013.
– year: 2019
  ident: b26
  article-title: T7 thruster design and performance
  publication-title: Proceedings of the 36th International Electric Propulsion Conference
– volume: 10
  start-page: Tt_7
  year: 2012
  end-page: Tt_12
  ident: b59
  article-title: Realization of the concept of reasonably reliable systems engineering in the design of nano-satellites
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn.
– reference: S. Weis, A. Lazurenko, B. van Reijen, J. e. a. Haderspeck, Overview, qualification and delivery status of the HEMPT based ion propulsion system for smallgeo, in: Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C. USA, IEPC–2013–299, 2013.
– reference: C. Clauss, D. Tilley, D. Barnhart, Benefits of low-power stationary plasma thruster propulsion for small satellites, in: Proceedings of the 9th AIAA/USU Conference on Small Satellites, Logan, Utah, USA, 1995.
– reference: H. Koizumi, H. Kuninaka, Ion Beam Extraction and Electron Emission from the Miniature Microwave Discharge Ion Engine
– volume: 8
  start-page: 5025
  year: 2001
  end-page: 5033
  ident: b72
  article-title: Fundamental difference between the two hall thruster variants
  publication-title: Phys. Plasmas
– reference: R. Heidemann, S. Weis, A. Genovese, A. Lazurenko, H. Stalzer, E. Bosch, P. Holtmann, Development of the low power HEMPT EV0, in: Proceedings of the 36th International Electric Propulsion Conference, Vienna, Austria, IEPC–2019–A873, 2019.
– volume: 157
  start-page: 425
  year: 2019
  end-page: 434
  ident: b43
  article-title: Performance improvement of the
  publication-title: Acta Astronaut.
– year: 2021
  ident: b8
  article-title: Heinrich hertz–innovation, kommunikation, geostation
– reference: A. Leufroy, T. Gibert, A. Bouchoule, Characteristics of a permanent magnet low-power hall thruster, in: Proceedings of the 31st International Electric Propulsion Conference, Michigan, USA, IEPC–2009–083, 2009.
– reference: C.V. Young, A.W. Smith, M.A. Cappelli, Preliminary characterization of a diverging cusped field (DCF) thruster, in: Proceedings of the 31st International Electric Propulsion Conference, Michigan, USA, IEPC–2009–166, 2009.
– volume: 104
  year: 2008
  ident: b70
  article-title: Modeling low energy sputtering of hexagonal boron nitride by xenon ions
  publication-title: J. Appl. Phys.
– reference: R. Funase, T. Inamori, S. Ikari, N. Ozaki, H. Koizumi, Initial operation results of a 50kg-class deep space exploration micro-spacecraft PROCYON, in: Proceedings of the 29th AIAA/USU Conference on Small Satellites, Logan, Utah, USA, SSC15–V–5, 2015.
– year: 2018
  ident: b134
  article-title: Micro Newton Thruster Development
– year: 2020
  ident: b168
  article-title: Hall thruster: An electric propulsion through plasmas
  publication-title: Selected Topics in Plasma Physics
– volume: 122
  year: 2017
  ident: b114
  article-title: Conducting wall hall thrusters in magnetic shielding and standard configurations
  publication-title: J. Appl. Phys.
– reference: S. Weis, A. Lazurenko, B. van Reijen, J. e. a. Haderspeck, Overview, qualification and delivery status of the HEMPT based ion propulsion system for smallgeo, in: Proceedings of the 34th International Electric Propulsion Conference, Kobe, Japan, IEPC–2015–345, 2015.
– reference: R. Hofer, T. Randolph, D. Oh, J. Snyder, K. de Grys, Evaluation of a 4.5 kw commercial hall thruster system for NASA science missions, in: Proceedings of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Sacramento, California, USA, 2006.
– reference: N. Koch, S. Weis, M. Schirra, A. Lazurenko, B. van Reijen, J. Haderspeck, A. Genovese, P. Holtmann, Development, qualification and delivery status of the HEMPT based ion propulsion system for smallgeo, in: Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, IEPC–2011–148, 2011.
– year: 2017
  ident: b23
  article-title: Nasa’s evolutionary xenon thruster – commerical (NEXT-c)
– reference: A. Daykin-Iliopoulos, I. Golosnoy, S. Gabriel, Thermal profile of a lanthanum hexaboride heaterless hollow cathode, in: Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, USA, IEPC–2017–291, 2017.
– year: 2013
  ident: b30
  article-title: Development and primary in-flight experience of electric propulsion system on satellite SJ-9a
– volume: 7
  start-page: 58
  year: 2020
  ident: b119
  article-title: Far-field plume characterization of a 100-w class hall thruster
  publication-title: Aerospace
– year: 2021
  ident: b14
  article-title: Spacex surpasses 1, 000-satellite mark in latest starlink launch
– year: 2020
  ident: b13
  article-title: Nano/microsatellite market forecast
– volume: 157
  start-page: 425
  year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b43
  article-title: Performance improvement of the μ10 microwave discharge ion thruster by expansion of the plasma production volume
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.12.023
– year: 2021
  ident: 10.1016/j.paerosci.2021.100742_b82
– year: 2017
  ident: 10.1016/j.paerosci.2021.100742_b23
– year: 2007
  ident: 10.1016/j.paerosci.2021.100742_b19
– ident: 10.1016/j.paerosci.2021.100742_b165
– volume: 43
  start-page: 127
  year: 2014
  ident: 10.1016/j.paerosci.2021.100742_b139
  article-title: Plume control of a cusped field thruster
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2014.2360015
– ident: 10.1016/j.paerosci.2021.100742_b90
  doi: 10.2514/6.2006-4469
– year: 2018
  ident: 10.1016/j.paerosci.2021.100742_b157
  article-title: Investigation of influence of magnet thickness on performance of cusped field thruster via multi-objective design optimization
– ident: 10.1016/j.paerosci.2021.100742_b63
– volume: 7
  start-page: 120
  year: 2020
  ident: 10.1016/j.paerosci.2021.100742_b120
  article-title: Future directions for electric propulsion research
  publication-title: Aerospace
  doi: 10.3390/aerospace7090120
– ident: 10.1016/j.paerosci.2021.100742_b11
– volume: 48
  year: 2015
  ident: 10.1016/j.paerosci.2021.100742_b159
  article-title: Effect of the variable cross-section channel on performance of a cusped field thruster at low power
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/48/37/375203
– ident: 10.1016/j.paerosci.2021.100742_b145
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b96
– volume: 83
  year: 2017
  ident: 10.1016/j.paerosci.2021.100742_b137
  article-title: Ion angular distribution simulation of the highly efficient multistage plasma thruster
  publication-title: J. Plasma Phys.
  doi: 10.1017/S0022377817000125
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b84
– volume: 28
  start-page: 371
  year: 2012
  ident: 10.1016/j.paerosci.2021.100742_b25
  article-title: Performance evaluation of the T6 ion engine
  publication-title: J. Propuls. Power
  doi: 10.2514/1.B34173
– volume: 139
  start-page: 521
  year: 2017
  ident: 10.1016/j.paerosci.2021.100742_b107
  article-title: A 200 w hall thruster with hollow indented anode
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.08.001
– volume: 10
  start-page: 2574
  year: 2003
  ident: 10.1016/j.paerosci.2021.100742_b67
  article-title: Secondary electron emission from dielectric materials of a hall thruster with segmented electrodes
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1568344
– year: 1965
  ident: 10.1016/j.paerosci.2021.100742_b17
– volume: 14
  start-page: Pf_35
  year: 2016
  ident: 10.1016/j.paerosci.2021.100742_b62
  article-title: Cluster launch of hodoyoshi-3 and-4 satellites from yasny by dnepr launch vehicle
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn.
– volume: 14
  start-page: Pb_217
  year: 2016
  ident: 10.1016/j.paerosci.2021.100742_b132
  article-title: The development of CAM200 low power hall thruster
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn.
– start-page: Tk_29
  year: 2014
  ident: 10.1016/j.paerosci.2021.100742_b42
– volume: 38
  start-page: 2274
  year: 2010
  ident: 10.1016/j.paerosci.2021.100742_b135
  article-title: Kinetic simulations of SPT and HEMP thrusters including the near-field plume region
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2010.2056936
– ident: 10.1016/j.paerosci.2021.100742_b80
– ident: 10.1016/j.paerosci.2021.100742_b131
– year: 2008
  ident: 10.1016/j.paerosci.2021.100742_b1
– volume: 111
  year: 2013
  ident: 10.1016/j.paerosci.2021.100742_b171
  article-title: Sheath-induced instabilities in plasmas with e0, ×, b0 drift
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.115002
– start-page: 301
  year: 2009
  ident: 10.1016/j.paerosci.2021.100742_b15
  article-title: 4. Subsystem of spececraft
– volume: 56
  start-page: 50312
  year: 2017
  ident: 10.1016/j.paerosci.2021.100742_b111
  article-title: Experimental test of 200 w hall thruster with titanium wall
  publication-title: Japan. J. Appl. Phys.
  doi: 10.7567/JJAP.56.050312
– ident: 10.1016/j.paerosci.2021.100742_b28
– ident: 10.1016/j.paerosci.2021.100742_b45
– volume: 155
  start-page: 514
  year: 2018
  ident: 10.1016/j.paerosci.2021.100742_b113
  article-title: Performance comparison between standard and magnetically shielded 200-w hall thrusters with BN-sio2 and graphite channel walls
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2018.06.056
– volume: 43
  start-page: 72
  year: 2014
  ident: 10.1016/j.paerosci.2021.100742_b173
  article-title: Azimuthal spoke propagation in hall effect thrusters
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2014.2355223
– volume: 5
  start-page: 11104
  year: 2018
  ident: 10.1016/j.paerosci.2021.100742_b16
  article-title: Space micropropulsion systems for cubesats and small satellites: from proximate targets to furthermost frontiers
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.5007734
– year: 2005
  ident: 10.1016/j.paerosci.2021.100742_b68
  article-title: Estimation of hall thruster erosion using hphall
– volume: 43
  start-page: 45
  year: 2015
  ident: 10.1016/j.paerosci.2021.100742_b164
  article-title: Parametric study of HEMP-thruster downscaling to μn thrust levels
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2014.2321095
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b85
– year: 2015
  ident: 10.1016/j.paerosci.2021.100742_b122
– volume: 13
  start-page: 14502
  year: 2006
  ident: 10.1016/j.paerosci.2021.100742_b65
  article-title: Measurements of secondary electron emission effects in the hall thruster discharge
  publication-title: Phys. Plasmas
  doi: 10.1063/1.2162809
– volume: 8
  start-page: 5025
  year: 2001
  ident: 10.1016/j.paerosci.2021.100742_b72
  article-title: Fundamental difference between the two hall thruster variants
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1409344
– volume: 12
  start-page: 73503
  year: 2005
  ident: 10.1016/j.paerosci.2021.100742_b66
  article-title: Partial trapping of secondary-electron emission in a hall thruster plasma
  publication-title: Phys. Plasmas
  doi: 10.1063/1.1943327
– year: 2020
  ident: 10.1016/j.paerosci.2021.100742_b151
– ident: 10.1016/j.paerosci.2021.100742_b6
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b53
– ident: 10.1016/j.paerosci.2021.100742_b104
  doi: 10.2514/6.2018-2729
– ident: 10.1016/j.paerosci.2021.100742_b21
  doi: 10.2514/6.2007-5199
– ident: 10.1016/j.paerosci.2021.100742_b27
– ident: 10.1016/j.paerosci.2021.100742_b57
  doi: 10.2514/6.2010-6617
– volume: 86
  year: 2015
  ident: 10.1016/j.paerosci.2021.100742_b58
  article-title: Development of a miniature microwave electron cyclotron resonance plasma ion thruster for exospheric micro-propulsion
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4937353
– year: 2015
  ident: 10.1016/j.paerosci.2021.100742_b176
  article-title: Azimuthal micro-instability inside a wall-less hall thruster
– volume: 22
  start-page: 721
  year: 2006
  ident: 10.1016/j.paerosci.2021.100742_b88
  article-title: High-specific impulse hall thrusters, part 1: Influence of current density and magnetic field
  publication-title: J. Propul. Power
  doi: 10.2514/1.15952
– volume: 107
  year: 2015
  ident: 10.1016/j.paerosci.2021.100742_b117
  article-title: Optimization of a wall-less hall thruster
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4932196
– volume: 92
  start-page: 5673
  year: 2002
  ident: 10.1016/j.paerosci.2021.100742_b121
  article-title: Parametric investigation of miniaturized cylindrical and annular hall thrusters
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1515106
– ident: 10.1016/j.paerosci.2021.100742_b101
– volume: 4
  start-page: 55
  year: 2017
  ident: 10.1016/j.paerosci.2021.100742_b158
  article-title: High fidelity multi-objective design optimization of a downscaled cusped field thruster
  publication-title: Aerospace
  doi: 10.3390/aerospace4040055
– volume: SERIES 8
  year: 2009
  ident: 10.1016/j.paerosci.2021.100742_b50
  article-title: Development of a differential radio frequency ion thruster for precision spacecraft control
  publication-title: J. Plasma Fusion Res.
– volume: 26
  start-page: 130
  year: 2010
  ident: 10.1016/j.paerosci.2021.100742_b31
  article-title: Ignition and plume characteristics of low-current cerium and lanthanum hexaboride hollow cathodes
  publication-title: J. Propul. Power
  doi: 10.2514/1.41386
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b54
  article-title: Development and testing of the NPT30-i2 iodine ion thruster
– volume: 36
  start-page: 912
  year: 2020
  ident: 10.1016/j.paerosci.2021.100742_b98
  article-title: Operation of a high-power nested hall thruster with reduced cathode flow fraction
  publication-title: J. Propul. Power
  doi: 10.2514/1.B37929
– volume: 12
  start-page: Tb_19
  year: 2014
  ident: 10.1016/j.paerosci.2021.100742_b60
  article-title: Engineering model of the miniature ion propulsion system for the nano-satellite: Hodoyoshi-4
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn.
– ident: 10.1016/j.paerosci.2021.100742_b3
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b26
  article-title: T7 thruster design and performance
– volume: 25
  year: 2016
  ident: 10.1016/j.paerosci.2021.100742_b9
  article-title: Electric propulsion for satellites and spacecraft: established technologies and novel approaches
  publication-title: Plasma Sources. Sci. Technol.
  doi: 10.1088/0963-0252/25/3/033002
– year: 2007
  ident: 10.1016/j.paerosci.2021.100742_b69
  article-title: Differential sputter yields of boron nitride, quartz, and kapton due to low energy xe+ bombardment
– volume: 7
  start-page: 67
  year: 2020
  ident: 10.1016/j.paerosci.2021.100742_b126
  article-title: A review of low-power electric propulsion research at the space propulsion centre Singapore
  publication-title: Aerospace
  doi: 10.3390/aerospace7060067
– volume: 122
  year: 2017
  ident: 10.1016/j.paerosci.2021.100742_b114
  article-title: Conducting wall hall thrusters in magnetic shielding and standard configurations
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4995285
– ident: 10.1016/j.paerosci.2021.100742_b160
– ident: 10.1016/j.paerosci.2021.100742_b48
  doi: 10.2514/6.2007-5250
– volume: 7
  start-page: 58
  year: 2020
  ident: 10.1016/j.paerosci.2021.100742_b119
  article-title: Far-field plume characterization of a 100-w class hall thruster
  publication-title: Aerospace
  doi: 10.3390/aerospace7050058
– ident: 10.1016/j.paerosci.2021.100742_b143
– ident: 10.1016/j.paerosci.2021.100742_b35
  doi: 10.2514/6.2000-3273
– volume: 25
  start-page: 1628
  year: 1982
  ident: 10.1016/j.paerosci.2021.100742_b112
  article-title: Plasma–wall transition in an oblique magnetic field
  publication-title: Phys. Fluids
  doi: 10.1063/1.863955
– volume: 59
  year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b129
  article-title: Particle-in-cell simulation of an optimized high-efficiency multistage plasma thruster
  publication-title: Contrib. Plasma Phys.
  doi: 10.1002/ctpp.201900028
– year: 2021
  ident: 10.1016/j.paerosci.2021.100742_b14
– ident: 10.1016/j.paerosci.2021.100742_b162
  doi: 10.2514/6.2010-7104
– year: 2020
  ident: 10.1016/j.paerosci.2021.100742_b24
– ident: 10.1016/j.paerosci.2021.100742_b148
– volume: 22
  year: 2015
  ident: 10.1016/j.paerosci.2021.100742_b163
  article-title: The effects of magnetic field in plume region on the performance of multi-cusped field thruster
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4932077
– year: 1988
  ident: 10.1016/j.paerosci.2021.100742_b18
– ident: 10.1016/j.paerosci.2021.100742_b123
– volume: 50
  year: 2017
  ident: 10.1016/j.paerosci.2021.100742_b108
  article-title: Application of hollow anodes in a hall thruster with double-peak magnetic fields
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aa7bbf
– year: 2013
  ident: 10.1016/j.paerosci.2021.100742_b30
– ident: 10.1016/j.paerosci.2021.100742_b154
– ident: 10.1016/j.paerosci.2021.100742_b174
  doi: 10.2514/6.2019-4076
– ident: 10.1016/j.paerosci.2021.100742_b33
– ident: 10.1016/j.paerosci.2021.100742_b73
– volume: 49
  year: 2016
  ident: 10.1016/j.paerosci.2021.100742_b155
  article-title: An experimental study of the effect of magnet length on the performance of a multi-cusped field thruster
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/49/28/285201
– volume: 2004
  start-page: 92
  year: 2004
  ident: 10.1016/j.paerosci.2021.100742_b34
  article-title: The use of RF waves in space propulsion systems
  publication-title: URSI Radio Sci. Bull.
– year: 2020
  ident: 10.1016/j.paerosci.2021.100742_b168
  article-title: Hall thruster: An electric propulsion through plasmas
– year: 2015
  ident: 10.1016/j.paerosci.2021.100742_b78
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b52
– year: 2005
  ident: 10.1016/j.paerosci.2021.100742_b149
  article-title: Development & test status of the thales high efficiency multistage plasma (hemp) thruster family
– volume: 65
  start-page: 1741
  year: 1994
  ident: 10.1016/j.paerosci.2021.100742_b36
  article-title: State of the art of radio-frequency ion sources for space propulsion
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1144869
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b175
  article-title: Wo-zone hall thruster breathing mode mechanism, part II: Experiment
– volume: 74
  start-page: 1
  year: 2020
  ident: 10.1016/j.paerosci.2021.100742_b161
  article-title: Simulation study of influence of exit magnetic separatrix angle on plume divergence control
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2020-100595-0
– volume: 23
  start-page: 21
  year: 2007
  ident: 10.1016/j.paerosci.2021.100742_b10
  article-title: Energetics of propellant options for high-power hall thrusters
  publication-title: J. Propul. Power
  doi: 10.2514/1.16376
– ident: 10.1016/j.paerosci.2021.100742_b44
– ident: 10.1016/j.paerosci.2021.100742_b74
  doi: 10.21236/ADA437488
– volume: 14
  start-page: 57106
  year: 2007
  ident: 10.1016/j.paerosci.2021.100742_b118
  article-title: Experimental and theoretical studies of cylindrical hall thrusters
  publication-title: Phys. Plasmas
  doi: 10.1063/1.2718522
– ident: 10.1016/j.paerosci.2021.100742_b29
– volume: 36
  start-page: 2262
  year: 2008
  ident: 10.1016/j.paerosci.2021.100742_b75
  article-title: The SMART-1 spacecraft potential investigations
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2008.2002032
– volume: 115
  start-page: 101
  year: 2015
  ident: 10.1016/j.paerosci.2021.100742_b153
  article-title: Experimental study on a variable magnet length cusped field thruster
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2015.02.007
– year: 2014
  ident: 10.1016/j.paerosci.2021.100742_b166
– volume: 27
  year: 2018
  ident: 10.1016/j.paerosci.2021.100742_b141
  article-title: Breathing modes in HEMP thrusters
  publication-title: Plasma Sources. Sci. Technol.
  doi: 10.1088/1361-6595/aaf29a
– volume: 8
  start-page: Pb 67
  year: 2010
  ident: 10.1016/j.paerosci.2021.100742_b41
  article-title: Improvement of the thrust force of the ECR ion thruster μ10
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn.
– volume: 46
  start-page: 330
  year: 2018
  ident: 10.1016/j.paerosci.2021.100742_b103
  article-title: Characteristics and performances of a 100-w hall thruster for microspacecraft
  publication-title: EEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2017.2786402
– ident: 10.1016/j.paerosci.2021.100742_b93
– ident: 10.1016/j.paerosci.2021.100742_b38
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b81
  article-title: Qualification status of the pps®5000 hall thruster unit
– ident: 10.1016/j.paerosci.2021.100742_b49
– year: 2017
  ident: 10.1016/j.paerosci.2021.100742_b77
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b40
  article-title: Overview of busek electric propulsion
– volume: 143
  start-page: 251
  year: 2017
  ident: 10.1016/j.paerosci.2021.100742_b109
  article-title: Influence of hollow anode position on the performance of a hall-effect thruster with double-peak magnetic field
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2017.06.030
– year: 2018
  ident: 10.1016/j.paerosci.2021.100742_b134
– volume: 34
  start-page: 960
  year: 2018
  ident: 10.1016/j.paerosci.2021.100742_b61
  article-title: Development and flight operation of a miniature ion propulsion system
  publication-title: J. Propuls. Power
  doi: 10.2514/1.B36459
– year: 2012
  ident: 10.1016/j.paerosci.2021.100742_b128
– year: 2020
  ident: 10.1016/j.paerosci.2021.100742_b2
  article-title: Ion propulsion technology: Nasa’s evolutionary xenon thruster (NEXT) development and long duration tests results and its applications
– year: 2011
  ident: 10.1016/j.paerosci.2021.100742_b5
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b94
– volume: 49
  year: 2016
  ident: 10.1016/j.paerosci.2021.100742_b110
  article-title: Computer simulations of hall thrusters without wall losses designed using two permanent magnetic rings
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/49/46/465001
– ident: 10.1016/j.paerosci.2021.100742_b100
  doi: 10.2514/6.2017-4729
– volume: 10
  start-page: Tt_7
  year: 2012
  ident: 10.1016/j.paerosci.2021.100742_b59
  article-title: Realization of the concept of reasonably reliable systems engineering in the design of nano-satellites
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn.
– ident: 10.1016/j.paerosci.2021.100742_b146
– ident: 10.1016/j.paerosci.2021.100742_b152
– volume: 93
  start-page: 5816
  year: 2003
  ident: 10.1016/j.paerosci.2021.100742_b22
  article-title: Sputtering yield measurements during low energy xenon plasma bombardment
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1566474
– year: 2021
  ident: 10.1016/j.paerosci.2021.100742_b83
– volume: 226
  start-page: 2945
  year: 2017
  ident: 10.1016/j.paerosci.2021.100742_b106
  article-title: Performance characteristics of no-wall-losses hall thruster
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2016-60247-y
– volume: 14
  start-page: Pb_13
  year: 2016
  ident: 10.1016/j.paerosci.2021.100742_b64
  article-title: Initial flight operations of the miniature propulsion system installed on small space probe: PROCYON
  publication-title: Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn.
– volume: 185
  start-page: 85
  year: 2017
  ident: 10.1016/j.paerosci.2021.100742_b92
  article-title: Investigation of a low-power thruster on krypton propellant
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.03.296
– volume: 39
  start-page: 1910
  year: 2011
  ident: 10.1016/j.paerosci.2021.100742_b169
  article-title: Growth of low-frequency electrostatic and electromagnetic instabilities in a hall thruster
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2011.2162652
– ident: 10.1016/j.paerosci.2021.100742_b56
– ident: 10.1016/j.paerosci.2021.100742_b138
– volume: 32
  start-page: 903
  year: 2016
  ident: 10.1016/j.paerosci.2021.100742_b140
  article-title: Mode transitions in hall-effect thrusters induced by variable magnetic field strength
  publication-title: J. Propul. Power
  doi: 10.2514/1.B35709
– year: 2020
  ident: 10.1016/j.paerosci.2021.100742_b47
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b95
– year: 2021
  ident: 10.1016/j.paerosci.2021.100742_b79
– ident: 10.1016/j.paerosci.2021.100742_b167
– ident: 10.1016/j.paerosci.2021.100742_b130
– ident: 10.1016/j.paerosci.2021.100742_b144
– volume: 26
  year: 2017
  ident: 10.1016/j.paerosci.2021.100742_b115
  article-title: Ion behavior in low-power magnetically shielded and unshielded hall thrusters
  publication-title: Plasma Sources. Sci. Technol.
  doi: 10.1088/1361-6595/aa660d
– year: 2021
  ident: 10.1016/j.paerosci.2021.100742_b8
– volume: 116
  year: 2014
  ident: 10.1016/j.paerosci.2021.100742_b116
  article-title: Development and experimental characterization of a wall-less hall thruster
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4904965
– volume: 3
  year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b136
  article-title: Numerical modeling of high efficiency multistage plasma thrusters for space applications
  publication-title: Rev. Mod. Plasma Phys.
  doi: 10.1007/s41614-019-0030-4
– ident: 10.1016/j.paerosci.2021.100742_b46
– ident: 10.1016/j.paerosci.2021.100742_b147
– year: 2020
  ident: 10.1016/j.paerosci.2021.100742_b13
– year: 2013
  ident: 10.1016/j.paerosci.2021.100742_b142
  article-title: Particle in cell simulation of plasma thrusters
– volume: 88
  start-page: 63
  year: 2013
  ident: 10.1016/j.paerosci.2021.100742_b125
  article-title: Performance characteristics of very low power cylindrical hall thrusters for the nano-satellite PROITERES-3
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2012.04.012
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b97
– ident: 10.1016/j.paerosci.2021.100742_b124
– volume: 20
  year: 2013
  ident: 10.1016/j.paerosci.2021.100742_b172
  article-title: High frequency electromagnetic resistive instability in a hall thruster under the effect of ionization
  publication-title: Phys. Plasmas
– ident: 10.1016/j.paerosci.2021.100742_b91
– ident: 10.1016/j.paerosci.2021.100742_b105
– volume: 4
  year: 2011
  ident: 10.1016/j.paerosci.2021.100742_b170
  article-title: Resistive instabilities in a hall thruster under the presence of collisions and thermal motion of electrons
  publication-title: Open Plasma Phys. J.
  doi: 10.2174/1876534301104010016
– ident: 10.1016/j.paerosci.2021.100742_b32
– year: 2021
  ident: 10.1016/j.paerosci.2021.100742_b76
– volume: 104
  year: 2008
  ident: 10.1016/j.paerosci.2021.100742_b70
  article-title: Modeling low energy sputtering of hexagonal boron nitride by xenon ions
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2987090
– year: 2021
  ident: 10.1016/j.paerosci.2021.100742_b55
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b127
  article-title: Development and performance test of a 50 W-class hall thruster
– ident: 10.1016/j.paerosci.2021.100742_b99
– volume: 8
  start-page: 873
  year: 1970
  ident: 10.1016/j.paerosci.2021.100742_b102
  article-title: Further investigations on low-density hall accelerators
  publication-title: AIAA J.
  doi: 10.2514/3.5781
– ident: 10.1016/j.paerosci.2021.100742_b7
– ident: 10.1016/j.paerosci.2021.100742_b12
  doi: 10.21236/ADA549666
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b39
– volume: 118
  year: 2020
  ident: 10.1016/j.paerosci.2021.100742_b51
  article-title: Review of multimode space propulsion
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2020.100627
– ident: 10.1016/j.paerosci.2021.100742_b133
– year: 2019
  ident: 10.1016/j.paerosci.2021.100742_b4
  article-title: Experimental performance and plume characterisation of a miniaturised 50w hall thruster
– ident: 10.1016/j.paerosci.2021.100742_b86
  doi: 10.2514/6.2010-6623
– ident: 10.1016/j.paerosci.2021.100742_b156
  doi: 10.2514/6.2008-4631
– ident: 10.1016/j.paerosci.2021.100742_b87
  doi: 10.2514/6.2010-6942
– volume: 22
  start-page: 732
  year: 2006
  ident: 10.1016/j.paerosci.2021.100742_b89
  article-title: High-specific impulse hall thrusters, part 2: efficiency analysis
  publication-title: J. Propul. Power
  doi: 10.2514/1.15954
– ident: 10.1016/j.paerosci.2021.100742_b150
– volume: 47
  start-page: 475
  year: 2000
  ident: 10.1016/j.paerosci.2021.100742_b20
  article-title: Results from the deep space 1 technology validation mission
  publication-title: Acta Astronaut.
  doi: 10.1016/S0094-5765(00)00087-4
– ident: 10.1016/j.paerosci.2021.100742_b37
– ident: 10.1016/j.paerosci.2021.100742_b71
SSID ssj0003985
Score 2.4671657
SecondaryResourceType review_article
Snippet In-space electric propulsion technologies have advanced significantly in the last decade, while there has been increasing interest in economical propulsion...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100742
SubjectTerms Commercial spacecraft
Cusped Field Thruster
Electric propulsion
Electrostatic propulsion
Gridded Ion Engine
Hall effect
Hall Effect Thruster
Ion engines
Miniaturization
Performance enhancement
Platforms
Power consumption
Propulsion systems
Spacecraft propulsion
Specific impulse
Thrusters
Weight reduction
Title Miniaturization perspectives of electrostatic propulsion for small spacecraft platforms
URI https://dx.doi.org/10.1016/j.paerosci.2021.100742
https://www.proquest.com/docview/2568310024
Volume 126
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT4MwFG6WedGD8WeczqUHrwxGS4HjsrhMzXbRxd2aAm3CMjciePVvt68UN03MDnKD9BHyWt57hfd9H0J3oWR666N8ZxCo0KFSeE4Us8hhhCWJzihEGPWG6YxN5vRxESxaaNRgYaCt0sb-OqabaG2vuNabbpHn7rMH_RzwQ3NgIJDACUppCKu8_7lt8yCxkeWEwQ6M3kEJL_uFkIYzUu8T_YFpGKD-XwnqV6g2-Wd8go5t4YiH9bOdopZcn6GjHTrBc_Q6zdc5EHVabCUutkjKEm8Utpo3ACLKU1wY8S74WoZ15YrLN7FaYR1gUl1JClXhYiUqKGnLCzQf37-MJo4VTnBSnZ8rJ_RFRBSVxCfUk7GnQGaKqpBQFQH_HMuoTFKduWkAfGh6j8eESIUkMdjTjFyi9nqzllcIp4wCWlUlWaxoFmUi0IcnMykGaRJ4rIOCxls8taziIG6x4k372JI3XubgZV57uYPcb7ui5tXYaxE3k8F_rBCug_9e224ze9y-oyXXxR6orOki5foft75Bh3BW9_d1Ubt6_5C3uk6pkp5ZiD10MHx4msy-AJsE6FA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROLQcUKGteLY-0GPYbOx4kwMHBEXLY7kAgptxElvKalkiEoS48Kf4g8w4TqGVKg4VOSYay_rGmUcyMx_A5sBITH1sFPRjOwiE0WGQpDIJJJdZhh6Fa8feMDqRw3NxeBlfzsBT1wtDZZXe9rc23Vlrf6fn0exVZdk7Dameg35o9l0LpPCVlUfm4R7ztnr7YA-V_DOK9n-d7Q4DTy0Q5OjBmmAQ6YRbYXjERWjS0BIRk7ADLmxCE9pkIUyWo28TMU0MwyxIap1rw1OSFwXHdT_AnEBzQbQJW48vdSU8dTygtLuAtveqLXm8VWnjhlRiYhr1XYWCiP7lEf_yDc7h7X-GBR-psp0WjEWYMdMlmH81v_ALXIzKaUmTQX0zJ6teWjdrdmOZJ9mhrqUyZ5VjC6PPcwxDZVZf68mEoUXLMXTVtmHVRDcUQ9df4fxd4PwGs9ObqVkGlktB7bE2K1IriqTQMV6hKYzu51kcyhWIO7RU7seYE5vGRHX1amPVoawIZdWivAK933JVO8jjTYm0U4b640gq9DZvyq532lPeKNQKo0uidcOoaPU_lv4BH4dno2N1fHBytAaf6ElbXLgOs83tndnAIKnJvrtDyeDqvd-CZyoVIYk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Miniaturization+perspectives+of+electrostatic+propulsion+for+small+spacecraft+platforms&rft.jtitle=Progress+in+aerospace+sciences&rft.au=Yeo%2C+Suk+Hyun&rft.au=Ogawa%2C+Hideaki&rft.au=Kahnfeld%2C+Daniel&rft.au=Schneider%2C+Ralf&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0376-0421&rft.eissn=1873-1724&rft.volume=126&rft_id=info:doi/10.1016%2Fj.paerosci.2021.100742&rft.externalDocID=S0376042121000464
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-0421&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-0421&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-0421&client=summon