Methane and hydrogen sulfide production during co-digestion of forage radish and dairy manure
Forage radish, a winter cover crop, was investigated as a co-substrate to increase biogas production from dairy manure-based anaerobic digestion. Batch digesters (300 cm3) were operated under mesophilic conditions during two experiments (BMP1; BMP2). In BMP1, the effect of co-digesting radish and ma...
Saved in:
Published in | Biomass & bioenergy Vol. 80; pp. 44 - 51 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Forage radish, a winter cover crop, was investigated as a co-substrate to increase biogas production from dairy manure-based anaerobic digestion. Batch digesters (300 cm3) were operated under mesophilic conditions during two experiments (BMP1; BMP2). In BMP1, the effect of co-digesting radish and manure on CH4 and H2S production was determined by increasing the mass fraction of fresh above-ground radish in the manure-based co-digestion mixture from 0 to 100%. Results showed that forage radish had 1.5-fold higher CH4 potential than dairy manure on a volatile solids basis. While no synergistic effect on CH4 production resulted from co-digestion, increasing the radish fraction in the co-digestion mixture significantly increased CH4 production. Initial H2S production increased as the radish fraction increased, but the sulfur-containing compounds were rapidly utilized, resulting in all treatments having similar H2S concentrations (0.10–0.14%) and higher CH4 content (48–70%) in the biogas over time. The 100% radish digester had the highest specific CH4 yield (372 ± 12 L kg−1 VS). The co-digestion mixture containing 40% radish had a lower specific CH4 yield (345 ± 2 L kg−1 VS) but also showed significantly less H2S production at start-up and high quality biogas (58% CH4). Results from BMP2 showed that the radish harvest date (October versus December) did not significantly influence radish C:N mass ratios or CH4 production during co-digestion with dairy manure. These results suggest that dairy farmers could utilize forage radish, a readily available substrate that does not compete with food supply, to increase CH4 production of manure digesters in the fall/winter.
•Effect of co-digesting forage radish and dairy manure on CH4 and H2S determined.•Forage radish had 1.5 times more CH4 production than dairy manure.•Radish fraction in mixture had a positive linear relationship with CH4 production.•Harvest date of the radish crop did not influence CH4 production. |
---|---|
AbstractList | Forage radish, a winter cover crop, was investigated as a co-substrate to increase biogas production from dairy manure-based anaerobic digestion. Batch digesters (300 cm3) were operated under mesophilic conditions during two experiments (BMP1; BMP2). In BMP1, the effect of co-digesting radish and manure on CH4 and H2S production was determined by increasing the mass fraction of fresh above-ground radish in the manure-based co-digestion mixture from 0 to 100%. Results showed that forage radish had 1.5-fold higher CH4 potential than dairy manure on a volatile solids basis. While no synergistic effect on CH4 production resulted from co-digestion, increasing the radish fraction in the co-digestion mixture significantly increased CH4 production. Initial H2S production increased as the radish fraction increased, but the sulfur-containing compounds were rapidly utilized, resulting in all treatments having similar H2S concentrations (0.10–0.14%) and higher CH4 content (48–70%) in the biogas over time. The 100% radish digester had the highest specific CH4 yield (372 ± 12 L kg−1 VS). The co-digestion mixture containing 40% radish had a lower specific CH4 yield (345 ± 2 L kg−1 VS) but also showed significantly less H2S production at start-up and high quality biogas (58% CH4). Results from BMP2 showed that the radish harvest date (October versus December) did not significantly influence radish C:N mass ratios or CH4 production during co-digestion with dairy manure. These results suggest that dairy farmers could utilize forage radish, a readily available substrate that does not compete with food supply, to increase CH4 production of manure digesters in the fall/winter. Forage radish, a winter cover crop, was investigated as a co-substrate to increase biogas production from dairy manure-based anaerobic digestion. Batch digesters (300 cm3) were operated under mesophilic conditions during two experiments (BMP1; BMP2). In BMP1, the effect of co-digesting radish and manure on CH4 and H2S production was determined by increasing the mass fraction of fresh above-ground radish in the manure-based co-digestion mixture from 0 to 100%. Results showed that forage radish had 1.5-fold higher CH4 potential than dairy manure on a volatile solids basis. While no synergistic effect on CH4 production resulted from co-digestion, increasing the radish fraction in the co-digestion mixture significantly increased CH4 production. Initial H2S production increased as the radish fraction increased, but the sulfur-containing compounds were rapidly utilized, resulting in all treatments having similar H2S concentrations (0.10–0.14%) and higher CH4 content (48–70%) in the biogas over time. The 100% radish digester had the highest specific CH4 yield (372 ± 12 L kg−1 VS). The co-digestion mixture containing 40% radish had a lower specific CH4 yield (345 ± 2 L kg−1 VS) but also showed significantly less H2S production at start-up and high quality biogas (58% CH4). Results from BMP2 showed that the radish harvest date (October versus December) did not significantly influence radish C:N mass ratios or CH4 production during co-digestion with dairy manure. These results suggest that dairy farmers could utilize forage radish, a readily available substrate that does not compete with food supply, to increase CH4 production of manure digesters in the fall/winter. •Effect of co-digesting forage radish and dairy manure on CH4 and H2S determined.•Forage radish had 1.5 times more CH4 production than dairy manure.•Radish fraction in mixture had a positive linear relationship with CH4 production.•Harvest date of the radish crop did not influence CH4 production. |
Author | Lansing, Stephanie Weil, Ray R. Belle, Ashley J. Mulbry, Walter |
Author_xml | – sequence: 1 givenname: Ashley J. surname: Belle fullname: Belle, Ashley J. email: abelle@umd.edu organization: Department of Environmental Science and Technology, University of Maryland, 1449 Animal Science/Ag Engineering Building, College Park, MD 20742, USA – sequence: 2 givenname: Stephanie orcidid: 0000-0001-9169-3823 surname: Lansing fullname: Lansing, Stephanie email: slansing@umd.edu organization: Department of Environmental Science and Technology, University of Maryland, 1449 Animal Science/Ag Engineering Building, College Park, MD 20742, USA – sequence: 3 givenname: Walter surname: Mulbry fullname: Mulbry, Walter email: walter.mulbry@ars.usda.gov organization: United States Department of Agriculture-Agricultural Research Service, Sustainable Agricultural Systems Laboratory, Beltsville, MD 20705, USA – sequence: 4 givenname: Ray R. surname: Weil fullname: Weil, Ray R. email: rweil@umd.edu organization: Department of Environmental Science and Technology, University of Maryland, 1449 Animal Science/Ag Engineering Building, College Park, MD 20742, USA |
BookMark | eNqFkMFu1DAURS1UJKaFXwAv2SQ8O44TSyxAFS2ViljQLivLYz9nPMrExU4qzd_jdGDDpgvLknXu87vnnJxNcUJC3jOoGTD5aV9vQzyUgzUH1tYgauDqFdmwvmsqrkCdkQ0oySrVNuINOc95D8AECLYhDz9w3pkJqZkc3R1digNONC-jDw7pY4pusXOIE3VLCtNAbaxcGDA_v0VPfUxmQJqMC3n3PMSZkI70YKYl4Vvy2psx47u_9wW5v_p2d_m9uv15fXP59bayAuRcSex6pyT03AP2jDdb1_dMMc-49NZ2njmhjN1y3pnOomttK51UoumUhS2a5oJ8PM0tC_9eynb6ELLFcSzN4pI160pzzlvRF_TzCbUp5pzQaxtms9aZkwmjZqBXq3qv_1nVq1UNQherJS7_iz-mcDDp-HLwwynoTdRmSCHr-18rAMCZbNlKfDkRWEw9BUw624BT6RsS2lm7GF765A_noKKj |
CitedBy_id | crossref_primary_10_1002_ep_12587 crossref_primary_10_1111_gfs_12358 crossref_primary_10_1016_j_biombioe_2024_107497 crossref_primary_10_1515_revce_2018_0048 crossref_primary_10_2134_agronj2016_10_0613 crossref_primary_10_3390_en12234464 crossref_primary_10_3390_app11136069 crossref_primary_10_3390_fermentation9020094 crossref_primary_10_1002_ese3_528 crossref_primary_10_3390_fermentation9020169 crossref_primary_10_1007_s11771_018_3807_7 crossref_primary_10_1111_gcbb_13093 crossref_primary_10_1016_j_cej_2016_03_086 |
Cites_doi | 10.1016/j.biortech.2014.04.110 10.1016/j.biombioe.2013.03.009 10.1007/s11104-009-0223-7 10.1016/j.biombioe.2013.10.008 10.1002/jsfa.2742 10.1016/j.biortech.2008.02.044 10.2134/agronj2011.0128 10.1016/j.wasman.2014.07.015 10.1016/j.biosystemseng.2012.03.008 10.1016/j.biombioe.2003.08.006 10.1016/j.biortech.2014.09.036 10.1016/j.still.2011.08.001 10.2166/wst.2011.557 10.1016/j.biortech.2010.07.018 10.1016/j.apenergy.2010.01.004 10.13031/2013.37068 10.1016/j.procbio.2006.01.012 10.1016/j.biortech.2013.11.004 10.1016/j.jenvman.2014.04.004 10.1016/j.biortech.2012.10.138 10.3168/jds.2010-4124 10.1016/j.biortech.2014.08.005 10.1016/j.biortech.2012.06.112 10.1016/j.biortech.2010.01.027 10.1016/j.cej.2014.02.008 10.1016/j.biombioe.2007.11.013 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | FBQ AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.biombioe.2015.04.029 |
DatabaseName | AGRIS CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1873-2909 |
EndPage | 51 |
ExternalDocumentID | 10_1016_j_biombioe_2015_04_029 US201500216519 S0961953415001658 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SES SEW SPC SPCBC SSA SSG SSJ SSR SSZ T5K VH1 WUQ ~G- ~KM ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c406t-6e78d96082f0e8123bd88191f126fcc7f1d49acb227a7ced5c56d694379c0bea3 |
IEDL.DBID | .~1 |
ISSN | 0961-9534 |
IngestDate | Fri Jul 11 11:24:28 EDT 2025 Thu Apr 24 23:10:09 EDT 2025 Tue Jul 01 01:49:40 EDT 2025 Wed Dec 27 19:26:32 EST 2023 Fri Feb 23 02:27:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biogas Biochemical methane potential (BMP) Raphanus sativus L Anaerobic digestion Cover crop |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-6e78d96082f0e8123bd88191f126fcc7f1d49acb227a7ced5c56d694379c0bea3 |
Notes | http://handle.nal.usda.gov/10113/61548 http://dx.doi.org/10.1016/j.biombioe.2015.04.029 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9169-3823 |
PQID | 1753422548 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1753422548 crossref_citationtrail_10_1016_j_biombioe_2015_04_029 crossref_primary_10_1016_j_biombioe_2015_04_029 fao_agris_US201500216519 elsevier_sciencedirect_doi_10_1016_j_biombioe_2015_04_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Biomass & bioenergy |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bruni, Jensen, Pedersen, Angelidaki (bib12) 2010; 87 Carvalho, Di Berardino, Duarte (bib16) October 3–7, 2011 Navaneethan, Topczewski, Royer, Zitomer (bib9) 2011; 63 Ragaglini, Dragoni, Simone, Bonari (bib11) 2014; 152 Ward, Hobbs, Holliman, Jones (bib4) 2008; 99 Weil, White, Lawley (bib21) 2009 Belle, Lansing, Mulbry, Weil (bib25) 2015; 178 Peu, Picard, Girault, Labreuche, Beline, Dabert (bib19) June 25–28, 2013 El-Mashad, Zhang (bib1) 2010; 101 Klavon, Lansing, Moss, Mulbry, Felton (bib2) 2013; 54 Zhang, Xiao, Peng, Su, Tan (bib8) 2013; 129 Weil, Kremen (bib20) 2007; 87 Lehtomäki, Viinikainen, Rintala (bib13) 2008; 32 Chen, Weil (bib23) 2011; 117 Wang, Thompson, Parsons, Rogers, Dunn (bib3) 2011; 94 Al Seadi, Rutz, Prassl, Kottner, Finsterwalder, Volk (bib6) 2008 Nielsen, Feilberg (bib17) 2012; 112 Molinuevo-Salces, Larsen, Ahring, Uellendahl (bib18) 2013; 59 Persson, Wellinger (bib32) October 13 2006 Deublein, Steinhauser (bib33) 2011 Moody, Burns, Bishop, Sell, Spajic (bib26) 2011; 27 Hidalgo, Martin-Marroquin (bib29) 2014; 142 Bah, Zhang, Wu, Qi, Kizito, Dong (bib7) 2014; 34 Gunaseelan (bib14) 2004; 26 Pages-Diaz, Pereda-Reyes, Taherzadeh, Sarvari-Horvath (bib5) 2014; 245 Allen, Wall, Herrmann, Murphy (bib31) 2014; 170 Dias, Fragoso, Duarte (bib30) 2014; 164 Peu, Picard, Diara, Girault, Beline, Bridoux (bib15) 2012; 121 Chen, Weil (bib22) 2010; 331 APHA/AWWA/WEF (bib28) 2005 Masse, Gilbert, Savoie, Belanger, Parent, Babineau (bib10) 2010; 101 Raposo, Banks, Siegert, Heaven, Borja (bib27) 2006; 41 Lawley, Teasdale, Weil (bib24) 2012; 104 Weil (10.1016/j.biombioe.2015.04.029_bib21) 2009 Dias (10.1016/j.biombioe.2015.04.029_bib30) 2014; 164 El-Mashad (10.1016/j.biombioe.2015.04.029_bib1) 2010; 101 Navaneethan (10.1016/j.biombioe.2015.04.029_bib9) 2011; 63 Peu (10.1016/j.biombioe.2015.04.029_bib19) 2013 Wang (10.1016/j.biombioe.2015.04.029_bib3) 2011; 94 Al Seadi (10.1016/j.biombioe.2015.04.029_bib6) 2008 Bah (10.1016/j.biombioe.2015.04.029_bib7) 2014; 34 Masse (10.1016/j.biombioe.2015.04.029_bib10) 2010; 101 APHA/AWWA/WEF (10.1016/j.biombioe.2015.04.029_bib28) 2005 Gunaseelan (10.1016/j.biombioe.2015.04.029_bib14) 2004; 26 Lehtomäki (10.1016/j.biombioe.2015.04.029_bib13) 2008; 32 Nielsen (10.1016/j.biombioe.2015.04.029_bib17) 2012; 112 Molinuevo-Salces (10.1016/j.biombioe.2015.04.029_bib18) 2013; 59 Weil (10.1016/j.biombioe.2015.04.029_bib20) 2007; 87 Lawley (10.1016/j.biombioe.2015.04.029_bib24) 2012; 104 Hidalgo (10.1016/j.biombioe.2015.04.029_bib29) 2014; 142 Ragaglini (10.1016/j.biombioe.2015.04.029_bib11) 2014; 152 Allen (10.1016/j.biombioe.2015.04.029_bib31) 2014; 170 Chen (10.1016/j.biombioe.2015.04.029_bib22) 2010; 331 Ward (10.1016/j.biombioe.2015.04.029_bib4) 2008; 99 Persson (10.1016/j.biombioe.2015.04.029_bib32) 2006 Deublein (10.1016/j.biombioe.2015.04.029_bib33) 2011 Belle (10.1016/j.biombioe.2015.04.029_bib25) 2015; 178 Pages-Diaz (10.1016/j.biombioe.2015.04.029_bib5) 2014; 245 Klavon (10.1016/j.biombioe.2015.04.029_bib2) 2013; 54 Bruni (10.1016/j.biombioe.2015.04.029_bib12) 2010; 87 Carvalho (10.1016/j.biombioe.2015.04.029_bib16) 2011 Peu (10.1016/j.biombioe.2015.04.029_bib15) 2012; 121 Chen (10.1016/j.biombioe.2015.04.029_bib23) 2011; 117 Moody (10.1016/j.biombioe.2015.04.029_bib26) 2011; 27 Raposo (10.1016/j.biombioe.2015.04.029_bib27) 2006; 41 Zhang (10.1016/j.biombioe.2015.04.029_bib8) 2013; 129 |
References_xml | – volume: 99 start-page: 7928 year: 2008 end-page: 7940 ident: bib4 article-title: Optimisation of the anaerobic digestion of agricultural resources publication-title: Bioresour Technol – volume: 129 start-page: 170 year: 2013 end-page: 176 ident: bib8 article-title: The anaerobic co-digestion of food waste and cattle manure publication-title: Bioresour Technol – volume: 170 start-page: 436 year: 2014 end-page: 444 ident: bib31 article-title: Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel publication-title: Bioresour Technol – volume: 87 start-page: 551 year: 2007 end-page: 557 ident: bib20 article-title: Thinking across and beyond disciplines to make cover crops pay publication-title: J Sci Food Agric – volume: 101 start-page: 9536 year: 2010 end-page: 9541 ident: bib10 article-title: Methane yield from switchgrass harvested at different stages of development in Eastern Canada publication-title: Bioresour Technol – volume: 331 start-page: 31 year: 2010 end-page: 43 ident: bib22 article-title: Penetration of cover crop roots through compacted soils publication-title: Plant Soil – year: October 13 2006 ident: bib32 article-title: Biogas upgrading and utilization; IEA Bioenergy – volume: 164 start-page: 420 year: 2014 end-page: 423 ident: bib30 article-title: Anaerobic co-digestion of dairy cattle manure and pear waste publication-title: Bioresour Technol – volume: 104 start-page: 205 year: 2012 end-page: 214 ident: bib24 article-title: The mechanism for weed suppression by a forage radish cover crop publication-title: Agron J – volume: 59 start-page: 285 year: 2013 end-page: 292 ident: bib18 article-title: Biogas production from catch crops: evaluation of biomass yield and methane potential of catch crops in organic crop rotations publication-title: Biomass Bioenergy – volume: 54 start-page: 36 year: 2013 end-page: 45 ident: bib2 article-title: Economic analysis of small-scale agricultural digesters in the United States publication-title: Biomass Bioenergy – volume: 63 start-page: 2916 year: 2011 end-page: 2922 ident: bib9 article-title: Blending anaerobic co-digestates: synergism and economics publication-title: Water Sci Technol – volume: 112 start-page: 248 year: 2012 end-page: 251 ident: bib17 article-title: Anaerobic digestion of energy crops in batch publication-title: Biosyst Eng – year: 2011 ident: bib33 article-title: Biogas from waste and renewable resources – volume: 142 start-page: 17 year: 2014 end-page: 22 ident: bib29 article-title: Effects of inoculum source and co-digestion strategies on anaerobic digestion of residues generated in the treatment of waste vegetable oils publication-title: J Environ Manage – volume: 34 start-page: 1984 year: 2014 end-page: 1991 ident: bib7 article-title: Evaluation of batch anaerobic co-digestion of palm pressed fiber and cattle manure under mesophilic conditions publication-title: Waste Manag – volume: 245 start-page: 89 year: 2014 end-page: 98 ident: bib5 article-title: Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: synergistic and antagonistic interactions determined in batch digestion assays publication-title: Chem Eng – volume: 178 start-page: 230 year: 2015 end-page: 237 ident: bib25 article-title: Anaerobic co-digestion of forage radish and dairy manure in complete mix digesters publication-title: Bioresour Technol – volume: 121 start-page: 419 year: 2012 end-page: 424 ident: bib15 article-title: Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates publication-title: Bioresour Technol – volume: 117 start-page: 17 year: 2011 end-page: 27 ident: bib23 article-title: Root growth and yield of maize as affected by soil compaction and cover crops publication-title: Soil Tillage Res – volume: 152 start-page: 107 year: 2014 end-page: 115 ident: bib11 article-title: Suitability of giant reed ( publication-title: Bioresour Technol – volume: 41 start-page: 1444 year: 2006 end-page: 1450 ident: bib27 article-title: Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests publication-title: Process Biochem – year: 2009 ident: bib21 article-title: Forage radish: a new multi-purpose cover crop for the Mid-Atlantic – year: 2005 ident: bib28 publication-title: Standard methods for the examination of water and wastewater – volume: 94 start-page: 4937 year: 2011 end-page: 4949 ident: bib3 article-title: Economic feasibility of converting cow manure to electricity: a case study of the CVPS cow power program in Vermont publication-title: J Dairy Sci – year: 2008 ident: bib6 article-title: Biogas handbook – volume: 101 start-page: 4021 year: 2010 end-page: 4028 ident: bib1 article-title: Biogas production from co-digestion of dairy manure and food waste publication-title: Bioresour Technol – year: June 25–28, 2013 ident: bib19 article-title: Catch crops for agricultural biogas production, case study for Brassicaceae sp publication-title: Proceedings. 13th World Congress on Anaerobic Digestion, at Santiago de Compostela, Spain (IWA-11151) – year: October 3–7, 2011 ident: bib16 article-title: Biogas production from Mediterranean crop silages publication-title: Proceedings Sardinia 2011. Thirteenth international waste management and landill symposium. Cagliari, Italy – volume: 32 start-page: 541 year: 2008 end-page: 550 ident: bib13 article-title: Screening boreal energy crops and crop residues for methane biofuel production publication-title: Biomass Bioenergy – volume: 26 start-page: 389 year: 2004 end-page: 399 ident: bib14 article-title: Biochemical methane potential of fruits and vegetable solid waste feedstocks publication-title: Biomass Bioenergy – volume: 27 start-page: 433 year: 2011 end-page: 439 ident: bib26 article-title: Using biochemical methane potential assays to aid in co-substrate selection for co-digestion publication-title: Appl Eng Agric – volume: 87 start-page: 2212 year: 2010 end-page: 2217 ident: bib12 article-title: Anaerobic digestion of maize focusing on variety, harvest time and pretreatment publication-title: Appl Energy – volume: 164 start-page: 420 year: 2014 ident: 10.1016/j.biombioe.2015.04.029_bib30 article-title: Anaerobic co-digestion of dairy cattle manure and pear waste publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.04.110 – volume: 54 start-page: 36 year: 2013 ident: 10.1016/j.biombioe.2015.04.029_bib2 article-title: Economic analysis of small-scale agricultural digesters in the United States publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.03.009 – year: 2008 ident: 10.1016/j.biombioe.2015.04.029_bib6 – volume: 331 start-page: 31 issue: 1–2 year: 2010 ident: 10.1016/j.biombioe.2015.04.029_bib22 article-title: Penetration of cover crop roots through compacted soils publication-title: Plant Soil doi: 10.1007/s11104-009-0223-7 – volume: 59 start-page: 285 year: 2013 ident: 10.1016/j.biombioe.2015.04.029_bib18 article-title: Biogas production from catch crops: evaluation of biomass yield and methane potential of catch crops in organic crop rotations publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.10.008 – volume: 87 start-page: 551 issue: 4 year: 2007 ident: 10.1016/j.biombioe.2015.04.029_bib20 article-title: Thinking across and beyond disciplines to make cover crops pay publication-title: J Sci Food Agric doi: 10.1002/jsfa.2742 – volume: 99 start-page: 7928 issue: 17 year: 2008 ident: 10.1016/j.biombioe.2015.04.029_bib4 article-title: Optimisation of the anaerobic digestion of agricultural resources publication-title: Bioresour Technol doi: 10.1016/j.biortech.2008.02.044 – volume: 104 start-page: 205 year: 2012 ident: 10.1016/j.biombioe.2015.04.029_bib24 article-title: The mechanism for weed suppression by a forage radish cover crop publication-title: Agron J doi: 10.2134/agronj2011.0128 – volume: 34 start-page: 1984 issue: 11 year: 2014 ident: 10.1016/j.biombioe.2015.04.029_bib7 article-title: Evaluation of batch anaerobic co-digestion of palm pressed fiber and cattle manure under mesophilic conditions publication-title: Waste Manag doi: 10.1016/j.wasman.2014.07.015 – volume: 112 start-page: 248 year: 2012 ident: 10.1016/j.biombioe.2015.04.029_bib17 article-title: Anaerobic digestion of energy crops in batch publication-title: Biosyst Eng doi: 10.1016/j.biosystemseng.2012.03.008 – volume: 26 start-page: 389 year: 2004 ident: 10.1016/j.biombioe.2015.04.029_bib14 article-title: Biochemical methane potential of fruits and vegetable solid waste feedstocks publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2003.08.006 – volume: 178 start-page: 230 year: 2015 ident: 10.1016/j.biombioe.2015.04.029_bib25 article-title: Anaerobic co-digestion of forage radish and dairy manure in complete mix digesters publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.09.036 – volume: 117 start-page: 17 year: 2011 ident: 10.1016/j.biombioe.2015.04.029_bib23 article-title: Root growth and yield of maize as affected by soil compaction and cover crops publication-title: Soil Tillage Res doi: 10.1016/j.still.2011.08.001 – volume: 63 start-page: 2916 issue: 12 year: 2011 ident: 10.1016/j.biombioe.2015.04.029_bib9 article-title: Blending anaerobic co-digestates: synergism and economics publication-title: Water Sci Technol doi: 10.2166/wst.2011.557 – year: 2011 ident: 10.1016/j.biombioe.2015.04.029_bib16 article-title: Biogas production from Mediterranean crop silages – year: 2005 ident: 10.1016/j.biombioe.2015.04.029_bib28 – volume: 101 start-page: 9536 issue: 24 year: 2010 ident: 10.1016/j.biombioe.2015.04.029_bib10 article-title: Methane yield from switchgrass harvested at different stages of development in Eastern Canada publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.07.018 – volume: 87 start-page: 2212 issue: 7 year: 2010 ident: 10.1016/j.biombioe.2015.04.029_bib12 article-title: Anaerobic digestion of maize focusing on variety, harvest time and pretreatment publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.01.004 – volume: 27 start-page: 433 issue: 3 year: 2011 ident: 10.1016/j.biombioe.2015.04.029_bib26 article-title: Using biochemical methane potential assays to aid in co-substrate selection for co-digestion publication-title: Appl Eng Agric doi: 10.13031/2013.37068 – year: 2011 ident: 10.1016/j.biombioe.2015.04.029_bib33 – volume: 41 start-page: 1444 year: 2006 ident: 10.1016/j.biombioe.2015.04.029_bib27 article-title: Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests publication-title: Process Biochem doi: 10.1016/j.procbio.2006.01.012 – volume: 152 start-page: 107 year: 2014 ident: 10.1016/j.biombioe.2015.04.029_bib11 article-title: Suitability of giant reed (Arundo donax L.) for anaerobic digestion: effect of harvest time and frequency on the biomethane yield potential publication-title: Bioresour Technol doi: 10.1016/j.biortech.2013.11.004 – year: 2013 ident: 10.1016/j.biombioe.2015.04.029_bib19 article-title: Catch crops for agricultural biogas production, case study for Brassicaceae sp – volume: 142 start-page: 17 year: 2014 ident: 10.1016/j.biombioe.2015.04.029_bib29 article-title: Effects of inoculum source and co-digestion strategies on anaerobic digestion of residues generated in the treatment of waste vegetable oils publication-title: J Environ Manage doi: 10.1016/j.jenvman.2014.04.004 – year: 2009 ident: 10.1016/j.biombioe.2015.04.029_bib21 – volume: 129 start-page: 170 year: 2013 ident: 10.1016/j.biombioe.2015.04.029_bib8 article-title: The anaerobic co-digestion of food waste and cattle manure publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.10.138 – year: 2006 ident: 10.1016/j.biombioe.2015.04.029_bib32 – volume: 94 start-page: 4937 year: 2011 ident: 10.1016/j.biombioe.2015.04.029_bib3 article-title: Economic feasibility of converting cow manure to electricity: a case study of the CVPS cow power program in Vermont publication-title: J Dairy Sci doi: 10.3168/jds.2010-4124 – volume: 170 start-page: 436 year: 2014 ident: 10.1016/j.biombioe.2015.04.029_bib31 article-title: Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.08.005 – volume: 121 start-page: 419 year: 2012 ident: 10.1016/j.biombioe.2015.04.029_bib15 article-title: Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.06.112 – volume: 101 start-page: 4021 issue: 11 year: 2010 ident: 10.1016/j.biombioe.2015.04.029_bib1 article-title: Biogas production from co-digestion of dairy manure and food waste publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.01.027 – volume: 245 start-page: 89 year: 2014 ident: 10.1016/j.biombioe.2015.04.029_bib5 article-title: Anaerobic co-digestion of solid slaughterhouse wastes with agro-residues: synergistic and antagonistic interactions determined in batch digestion assays publication-title: Chem Eng doi: 10.1016/j.cej.2014.02.008 – volume: 32 start-page: 541 issue: 6 year: 2008 ident: 10.1016/j.biombioe.2015.04.029_bib13 article-title: Screening boreal energy crops and crop residues for methane biofuel production publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2007.11.013 |
SSID | ssj0014041 |
Score | 2.2339456 |
Snippet | Forage radish, a winter cover crop, was investigated as a co-substrate to increase biogas production from dairy manure-based anaerobic digestion. Batch... |
SourceID | proquest crossref fao elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 44 |
SubjectTerms | Anaerobic digestion autumn Biochemical methane potential (BMP) Biogas carbon nitrogen ratio Cover crop cover crops dairy manure farmers food availability forage harvest date hydrogen sulfide methane methane production radishes Raphanus sativus L solids synergism winter |
Title | Methane and hydrogen sulfide production during co-digestion of forage radish and dairy manure |
URI | https://dx.doi.org/10.1016/j.biombioe.2015.04.029 https://www.proquest.com/docview/1753422548 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RuNADorSIBYqMxDVsHraTHBECbVvBBVbiUll-QhBsVvs4cOG3M5MHULUShx5ySGInkT975nPs-QbgKLaIrMl45LnxES-ki0ycmciZ1GRGOxkCRSNfXMrRmP-8ETcrcNrHwtC2ys72tza9sdbdlWHXmsNpVQ2vKFlJKdAKC-ItggJ-Oc-plx8_v27zIPWYJmseFqalSv4uSvj-mELc8SC5zEQ0kqcN1fyng_oUdP2XwW680PkmbHT0kZ20X_gFVvxkCz6_ExXcgu2zt9g1LNoN3vlX-H3h6T-5Z3ri2N2Tm9XYedh8-RAq59m0lX5FmFgbushsHblm-Ymu1YEhvUXjw2baVfO75iFOV7Mn9qgp2PgbjM_Prk9HUZddIbLoxBeR9HnhcP5SpCH26OYz4wqavYUklcHaPCSOl9qaNM11jmgIK6STJekX2th4nW3D6qSe-B1ggts8TpyRJbIrYaQRGfLEgNSx8DaxZgCib1JlO-lxyoDxoPo9Zveqh0IRFCrmCqEYwPC13rQV3_iwRtkjpv7oRgo9xId1dxBipW_RuqrxFd0hBiSR4w7gsMdd4fCjNRWEq17OFQmdcrSJvNj9j1fvwTqdtXvX9mF1MVv670h2Fuag6c0HsHby49fo8gUmUP8e |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7Bcmh7qFpaxJY-XKnXdPOwneSIEGgp7F5gJS6V5WcJgs1qHwf-PTN5UKpW4tBDLo6dRP7smc8Zz2eAb7FFZE3GI8-Nj3ghXWTizETOpCYz2skQKBt5MpXjGf9xJa624KjPhaFtlZ3tb216Y627klHXm6NFVY0u6LCSUqAVFsRbRLENO6ROJQawc3h6Np4-BhN43BxgSfUpWsmfJArffKcsd7xIMTMRjeppwzb_6aO2g67_stmNIzp5A687BskO2498C1t-vguvnugK7sLe8e_0Nazazd_VO_g58fSr3DM9d-z63i1rHD9stbkNlfNs0aq_IlKszV5kto5cE4GisjowZLhof9hSu2p13TzE6Wp5z-405Ru_h9nJ8eXROOoOWIgs-vF1JH1eOFzCFGmIPXr6zLiCFnAhSWWwNg-J46W2Jk1znSMgwgrpZEkShjY2Xmd7MJjXc78PTHCbx4kzskSCJYw0IkOqGJA9Ft4m1gxB9F2qbKc-Todg3Kp-m9mN6qFQBIWKuUIohjB6bLdo9TeebVH2iKk_RpJCJ_Fs232EWOlfaGDV7ILuEAmSSHOH8LXHXeEMpLAKwlVvVoq0TjmaRV58-I9Xf4EX48vJuTo_nZ4dwEu6025l-wiD9XLjPyH3WZvP3dh-AOCFAd4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane+and+hydrogen+sulfide+production+during+co-digestion+of+forage+radish+and+dairy+manure&rft.jtitle=Biomass+%26+bioenergy&rft.au=Belle%2C+Ashley+J&rft.au=Lansing%2C+Stephanie&rft.au=Mulbry%2C+Walter&rft.au=Weil%2C+Ray+R&rft.date=2015-09-01&rft.issn=0961-9534&rft.volume=80+p.44-51&rft.spage=44&rft.epage=51&rft_id=info:doi/10.1016%2Fj.biombioe.2015.04.029&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-9534&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-9534&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-9534&client=summon |