Statistical mechanics approach to the holographic renormalization group: Bethe lattice Ising model and p-adic AdS/CFT

The Bethe lattice Ising model—a classical model of statistical mechanics for the phase transition—provides a novel and intuitive understanding of the prototypical relationship between tensor networks and the anti-de Sitter (AdS)/conformal field theory (CFT) correspondence. After analytically formula...

Full description

Saved in:
Bibliographic Details
Published inProgress of theoretical and experimental physics Vol. 2024; no. 1
Main Authors Okunishi, Kouichi, Takayanagi, Tadashi
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.01.2024
Subjects
Online AccessGet full text
ISSN2050-3911
2050-3911
DOI10.1093/ptep/ptad156

Cover

Abstract The Bethe lattice Ising model—a classical model of statistical mechanics for the phase transition—provides a novel and intuitive understanding of the prototypical relationship between tensor networks and the anti-de Sitter (AdS)/conformal field theory (CFT) correspondence. After analytically formulating a holographic renormalization group for the Bethe lattice model, we demonstrate the underlying mechanism and the exact scaling dimensions for the power-law decay of boundary-spin correlations by introducing the relation between the lattice network and an effective Poincaré metric on a unit disk. We compare the Bethe lattice model in the high-temperature region with a scalar field in AdS2, and then discuss its more direct connection to the p-adic AdS/CFT. In addition, we find that the phase transition in the interior induces a crossover behavior of boundary-spin correlations, depending on the depth of the corresponding correlation path.
AbstractList The Bethe lattice Ising model—a classical model of statistical mechanics for the phase transition—provides a novel and intuitive understanding of the prototypical relationship between tensor networks and the anti-de Sitter (AdS)/conformal field theory (CFT) correspondence. After analytically formulating a holographic renormalization group for the Bethe lattice model, we demonstrate the underlying mechanism and the exact scaling dimensions for the power-law decay of boundary-spin correlations by introducing the relation between the lattice network and an effective Poincaré metric on a unit disk. We compare the Bethe lattice model in the high-temperature region with a scalar field in AdS2, and then discuss its more direct connection to the p-adic AdS/CFT. In addition, we find that the phase transition in the interior induces a crossover behavior of boundary-spin correlations, depending on the depth of the corresponding correlation path.
Author Takayanagi, Tadashi
Okunishi, Kouichi
Author_xml – sequence: 1
  givenname: Kouichi
  orcidid: 0000-0002-4620-1241
  surname: Okunishi
  fullname: Okunishi, Kouichi
  email: okunishi@phys.sc.niigata-u.ac.jp
– sequence: 2
  givenname: Tadashi
  orcidid: 0000-0001-7187-3130
  surname: Takayanagi
  fullname: Takayanagi, Tadashi
BookMark eNp9kE1PAjEURRuDiYjs_AFNXLhxpF_z5Q6JKAmJC3A9KW2HKZmZ1rYs9NdbhIUx0U1fF-fel3cuwaA3vQLgGqN7jEo6sUHZ-HCJ0-wMDAlKUUJLjAc__hdg7P0OIYRRniOGh2C_CjxoH7TgLeyUaHivhYfcWme4aGAwMDQKNqY1W8dtowV0qjeu463-jEnTw60ze_sAH9UBbHmIXQouvO63sDNStZD3EtqEy5idytVkNl9fgfOat16NT3ME3uZP69lLsnx9Xsymy0QwlIUkkxss8rrIM8WxLCjdFLiuCc4ywmkpmExzViqRF4wRQlJRko0iLKdS1KLOaE1H4ObYG6953ysfqp3Zuz6urCjOMSszlpaRujtSwhnvnaor63TH3UeFUXVwWx3cVie3ESe_cKHDt4rguG7_Ct0eQ9HV__VfKF-QJg
CitedBy_id crossref_primary_10_1093_ptep_ptae137
crossref_primary_10_1103_PhysRevE_111_024105
crossref_primary_10_1007_JHEP03_2025_097
crossref_primary_10_7566_JPSJ_93_094001
Cites_doi 10.1103/PhysRevResearch.5.013031
10.1007/JHEP06(2015)149
10.1103/PhysRevD.106.054506
10.1143/PTP.54.982
10.1051/jphyslet:01982004308024900
10.1103/PhysRevE.58.1644
10.1080/00018736000101189
10.1126/sciadv.aaw0092
10.1145/3458817.3487399
10.1103/PhysRevLett.69.2863
10.1007/978-3-642-35106-8_4
10.1093/ptep/ptad018
10.1103/PhysRevLett.96.181602
10.1143/JPSJ.76.084004
10.1088/1126-6708/2006/08/045
10.1143/PTP.56.1454
10.1103/PhysRevB.9.2989
10.1103/PhysRevA.74.022320
10.1088/1751-8113/49/14/145003
10.1063/1.531249
10.1103/PhysRevLett.119.071602
10.1143/JPSJ.65.891
10.1103/RevModPhys.55.583
10.4310/ATMP.1998.v2.n2.a1
10.1016/S0370-2693(98)00377-3
10.1103/RevModPhys.74.825
10.1007/s00220-016-2813-6
10.1103/PhysRevLett.99.220405
10.1016/S0370-1573(99)00083-6
10.1103/PhysRevLett.33.893
10.1103/RevModPhys.86.647
10.1103/RevModPhys.77.259
10.1007/JHEP01(2018)139
10.7566/JPSJ.91.062001
10.1103/PhysRevLett.123.130601
10.1103/PhysRevE.86.021105
10.1103/PhysRevLett.115.180405
10.1007/JHEP08(2016)086
10.1090/S0002-9939-1959-0108732-6
10.4310/ATMP.1998.v2.n2.a2
10.1103/PhysRevLett.110.100402
10.4310/ATMP.2018.v22.n1.a4
10.1038/s42254-019-0086-7
10.1038/s41586-019-1348-3
10.21468/SciPostPhys.13.5.103
10.1088/0305-4470/39/18/010
10.1103/PhysRevD.96.066024
10.1103/PhysRevD.102.034511
10.1103/RevModPhys.82.277
10.1103/PhysRevD.86.065007
10.1103/PhysRevLett.115.200401
10.1088/1751-8113/41/12/125001
10.1007/JHEP10(2012)193
10.1007/JHEP04(2019)170
10.1143/JPSJ.79.104001
10.1103/PhysRevE.93.042123
10.1007/JHEP11(2016)009
10.1103/PhysRevB.53.14004
10.1103/PhysRevE.94.022133
10.1016/0370-1573(93)90043-D
10.1063/1.1664623
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023
The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. 2023
– notice: The Author(s) 2023. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1093/ptep/ptad156
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 2050-3911
ExternalDocumentID 10_1093_ptep_ptad156
10.1093/ptep/ptad156
GroupedDBID .I3
0R~
4.4
5VS
AAFWJ
AAMVS
AAPPN
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABXVV
ACGFS
ADHZD
AENEX
AENZO
AFPKN
AFULF
AIBLX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
BAYMD
BTTYL
CIDKT
D~K
EBS
EJD
ER.
GROUPED_DOAJ
H13
IAO
ISR
ITC
KQ8
KSI
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
RHF
ROL
ROX
RXO
TOX
~D7
88I
AAYXX
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-6db1c7f876ea1d833b81ff21662a39c4d5749ec78442225c92be2473dcfcf63f3
IEDL.DBID BENPR
ISSN 2050-3911
IngestDate Mon Jun 30 12:25:23 EDT 2025
Tue Jul 01 02:09:16 EDT 2025
Thu Apr 24 22:59:07 EDT 2025
Fri Jan 31 08:06:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-6db1c7f876ea1d833b81ff21662a39c4d5749ec78442225c92be2473dcfcf63f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4620-1241
0000-0001-7187-3130
OpenAccessLink https://www.proquest.com/docview/3171496459?pq-origsite=%requestingapplication%
PQID 3171496459
PQPubID 7121340
ParticipantIDs proquest_journals_3171496459
crossref_primary_10_1093_ptep_ptad156
crossref_citationtrail_10_1093_ptep_ptad156
oup_primary_10_1093_ptep_ptad156
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress of theoretical and experimental physics
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Asaduzzaman (2024012514115670400_bib38) 2022; 106
Shi (2024012514115670400_bib56) 2006; 74
Ryu (2024012514115670400_bib8) 2006; 96
Serina (2024012514115670400_bib61) 2016; 93
Bethe (2024012514115670400_bib41) 1935; 150
Asaduzzaman (2024012514115670400_bib37) 2020; 102
Brekke (2024012514115670400_bib59) 1993; 233
Wilson (2024012514115670400_bib24) 1983; 55
Caputa (2024012514115670400_bib15) 2017; 119
Morita (2024012514115670400_bib54) 1975; 54
Gubser (2024012514115670400_bib2) 1998; 428
Domb (2024012514115670400_bib42) 1960; 9
Hung (2024012514115670400_bib51) 2019; 1904
Eisert (2024012514115670400_bib10) 2010; 82
Kollár (2024012514115670400_bib67) 2019; 571
Krcmar (2024012514115670400_bib35) 2008; 41
Lee (2024012514115670400_bib36) 2016; 94
Trotter (2024012514115670400_bib27) 1959; 10
Nozaki (2024012514115670400_bib14) 2012; 2012
Bousso (2024012514115670400_bib7) 2002; 74
Efrati (2024012514115670400_bib25) 2014; 86
Okunishi (2024012514115670400_bib58) 2023; 2023
Otsuka (2024012514115670400_bib65) 1996; 53
Jahn (2024012514115670400_bib20) 2019; 5
Maldacena (2024012514115670400_bib1) 1998; 2
Heydeman (2024012514115670400_bib47) 2018; 22
Daniška (2024012514115670400_bib45) 2016; 49
Evenbly (2024012514115670400_bib60) 2013
Evenbly (2024012514115670400_bib32) 2015; 115
Swingle (2024012514115670400_bib12) 2012; 86
Müller-Hartmann (2024012514115670400_bib53) 1974; 33
Hu (2024012514115670400_bib55) 1998; 58
Hikihara (2024012514115670400_bib57) 2023; 5
Zhou (2024012514115670400_bib21) 2020; 10
Baxter (2024012514115670400_bib30) 1968; 9
Bhattacharyya (2024012514115670400_bib48) 2016; 1608
Vidal (2024012514115670400_bib11) 2007; 99
Witten (2024012514115670400_bib3) 1998; 2
Baxter (2024012514115670400_bib43) 1982
Mosseri (2024012514115670400_bib44) 1982; 43
t Hooft (2024012514115670400_bib5) 1993; 930308
Aharony (2024012514115670400_bib4) 2000; 323
Pastawski (2024012514115670400_bib18) 2015; 1506
Liu (2024012514115670400_bib22) 2021
Ryu (2024012514115670400_bib9) 2006; 2006
Basteiro (2024012514115670400_bib62) 2022; 13
Susskind (2024012514115670400_bib6) 1995; 36
Iharagi (2024012514115670400_bib39) 2010; 79
Orús (2024012514115670400_bib17) 2019; 1
Gubser (2024012514115670400_bib50) 2017; 96
Eggarter (2024012514115670400_bib52) 1974; 9
Okunishi (2024012514115670400_bib16) 2022; 91
de Boer (2024012514115670400_bib23) 2000; 0008
Shima (2024012514115670400_bib33) 2006; 39
White (2024012514115670400_bib28) 1992; 69
Evenbly (2024012514115670400_bib31) 2015; 115
Gubser (2024012514115670400_bib46) 2017; 352
Hayden (2024012514115670400_bib19) 2016; 1611
Gendiar (2024012514115670400_bib40) 2012; 86
Bentsen (2024012514115670400_bib66) 2019; 123
Haegeman (2024012514115670400_bib13) 2013; 110
Bhattacharyya (2024012514115670400_bib49) 2018; 1801
Suzuki (2024012514115670400_bib26) 1976; 56
Ueda (2024012514115670400_bib34) 2007; 76
Schollwöck (2024012514115670400_bib29) 2005; 77
Nishino (2024012514115670400_bib63) 1996; 65
References_xml – volume: 5
  start-page: 013031
  year: 2023
  ident: 2024012514115670400_bib57
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.5.013031
– volume: 1506
  start-page: 149
  year: 2015
  ident: 2024012514115670400_bib18
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP06(2015)149
– volume: 106
  start-page: 054506
  year: 2022
  ident: 2024012514115670400_bib38
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.054506
– volume: 54
  start-page: 982
  year: 1975
  ident: 2024012514115670400_bib54
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.54.982
– volume: 43
  start-page: 249
  year: 1982
  ident: 2024012514115670400_bib44
  publication-title: J. Physique Lett.
  doi: 10.1051/jphyslet:01982004308024900
– volume: 58
  start-page: 1644
  year: 1998
  ident: 2024012514115670400_bib55
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.58.1644
– volume: 9
  start-page: 149
  year: 1960
  ident: 2024012514115670400_bib42
  publication-title: Adv. Phys.
  doi: 10.1080/00018736000101189
– volume: 930308
  start-page: 284
  year: 1993
  ident: 2024012514115670400_bib5
  publication-title: Conf. Proc. C
– volume: 5
  start-page: eaaw0092
  year: 2019
  ident: 2024012514115670400_bib20
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw0092
– volume-title: Proceedings of SC ’21: The International Conference for High Performance Computing, Networking, Storage and Analysis
  year: 2021
  ident: 2024012514115670400_bib22
  article-title: Closing the “quantum supremacy” gap: Achieving real-time simulation of a random quantum circuit using a new sunway supercomputer
  doi: 10.1145/3458817.3487399
– volume: 69
  start-page: 2863
  year: 1992
  ident: 2024012514115670400_bib28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.2863
– start-page: 99
  year: 2013
  ident: 2024012514115670400_bib60
  article-title: Quantum criticality with the multi-scale entanglement renormalization ansatz
  publication-title: Strongly Correlated Systems: Numerical Methods
  doi: 10.1007/978-3-642-35106-8_4
– volume: 2023
  start-page: 023A02
  year: 2023
  ident: 2024012514115670400_bib58
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptad018
– volume: 96
  start-page: 181602
  year: 2006
  ident: 2024012514115670400_bib8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.181602
– volume: 10
  start-page: 041038
  year: 2020
  ident: 2024012514115670400_bib21
  publication-title: Phys. Rev. X
– volume: 76
  start-page: 084004
  year: 2007
  ident: 2024012514115670400_bib34
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.76.084004
– volume: 2006
  start-page: 045
  year: 2006
  ident: 2024012514115670400_bib9
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2006/08/045
– volume: 56
  start-page: 1454
  year: 1976
  ident: 2024012514115670400_bib26
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.56.1454
– volume: 9
  start-page: 2989
  year: 1974
  ident: 2024012514115670400_bib52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.9.2989
– volume: 74
  start-page: 022320
  year: 2006
  ident: 2024012514115670400_bib56
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.022320
– volume: 49
  start-page: 145003
  year: 2016
  ident: 2024012514115670400_bib45
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/49/14/145003
– volume: 36
  start-page: 6377
  year: 1995
  ident: 2024012514115670400_bib6
  publication-title: J. Math. Phys.
  doi: 10.1063/1.531249
– volume: 119
  start-page: 071602
  year: 2017
  ident: 2024012514115670400_bib15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.071602
– volume: 65
  start-page: 891
  year: 1996
  ident: 2024012514115670400_bib63
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.65.891
– volume: 55
  start-page: 583
  year: 1983
  ident: 2024012514115670400_bib24
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.55.583
– volume: 2
  start-page: 231
  year: 1998
  ident: 2024012514115670400_bib1
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a1
– volume: 428
  start-page: 105
  year: 1998
  ident: 2024012514115670400_bib2
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)00377-3
– volume: 74
  start-page: 825
  year: 2002
  ident: 2024012514115670400_bib7
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.74.825
– volume: 352
  start-page: 1019
  year: 2017
  ident: 2024012514115670400_bib46
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-016-2813-6
– volume: 99
  start-page: 220405
  year: 2007
  ident: 2024012514115670400_bib11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.220405
– volume: 323
  start-page: 183
  year: 2000
  ident: 2024012514115670400_bib4
  publication-title: Phys. Rept.
  doi: 10.1016/S0370-1573(99)00083-6
– volume: 33
  start-page: 893
  year: 1974
  ident: 2024012514115670400_bib53
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.33.893
– volume: 86
  start-page: 647
  year: 2014
  ident: 2024012514115670400_bib25
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.647
– volume: 77
  start-page: 259
  year: 2005
  ident: 2024012514115670400_bib29
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.259
– volume: 1801
  start-page: 139
  year: 2018
  ident: 2024012514115670400_bib49
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP01(2018)139
– volume: 91
  start-page: 062001
  year: 2022
  ident: 2024012514115670400_bib16
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.91.062001
– volume: 150
  start-page: 552
  year: 1935
  ident: 2024012514115670400_bib41
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
– volume: 0008
  start-page: 003
  year: 2000
  ident: 2024012514115670400_bib23
  publication-title: J. High Energy Phys.
– volume: 123
  start-page: 130601
  year: 2019
  ident: 2024012514115670400_bib66
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.130601
– volume: 86
  start-page: 021105
  year: 2012
  ident: 2024012514115670400_bib40
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.021105
– volume: 115
  start-page: 180405
  year: 2015
  ident: 2024012514115670400_bib31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.180405
– volume: 1608
  start-page: 086
  year: 2016
  ident: 2024012514115670400_bib48
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP08(2016)086
– volume: 10
  start-page: 545
  year: 1959
  ident: 2024012514115670400_bib27
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1959-0108732-6
– volume: 2
  start-page: 253
  year: 1998
  ident: 2024012514115670400_bib3
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a2
– volume: 110
  start-page: 100402
  year: 2013
  ident: 2024012514115670400_bib13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.100402
– volume: 22
  start-page: 93
  year: 2018
  ident: 2024012514115670400_bib47
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2018.v22.n1.a4
– volume: 1
  start-page: 538
  year: 2019
  ident: 2024012514115670400_bib17
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0086-7
– volume: 571
  start-page: 45
  year: 2019
  ident: 2024012514115670400_bib67
  publication-title: Nature
  doi: 10.1038/s41586-019-1348-3
– volume: 13
  start-page: 103
  year: 2022
  ident: 2024012514115670400_bib62
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.13.5.103
– volume-title: Exactly Solved Models in Statistical Mechanics
  year: 1982
  ident: 2024012514115670400_bib43
– volume: 39
  start-page: 4921
  year: 2006
  ident: 2024012514115670400_bib33
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/39/18/010
– volume: 96
  start-page: 066024
  year: 2017
  ident: 2024012514115670400_bib50
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.066024
– volume: 102
  start-page: 034511
  year: 2020
  ident: 2024012514115670400_bib37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.034511
– volume: 82
  start-page: 277
  year: 2010
  ident: 2024012514115670400_bib10
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.277
– volume: 86
  start-page: 065007
  year: 2012
  ident: 2024012514115670400_bib12
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.065007
– volume: 115
  start-page: 200401
  year: 2015
  ident: 2024012514115670400_bib32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.200401
– volume: 41
  start-page: 125001
  year: 2008
  ident: 2024012514115670400_bib35
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/41/12/125001
– volume: 2012
  start-page: 193
  year: 2012
  ident: 2024012514115670400_bib14
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP10(2012)193
– volume: 1904
  start-page: 170
  year: 2019
  ident: 2024012514115670400_bib51
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP04(2019)170
– volume: 79
  start-page: 104001
  year: 2010
  ident: 2024012514115670400_bib39
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.79.104001
– volume: 93
  start-page: 042123
  year: 2016
  ident: 2024012514115670400_bib61
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.042123
– volume: 1611
  start-page: 009
  year: 2016
  ident: 2024012514115670400_bib19
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP11(2016)009
– volume: 53
  start-page: 14004
  year: 1996
  ident: 2024012514115670400_bib65
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.53.14004
– volume: 94
  start-page: 022133
  year: 2016
  ident: 2024012514115670400_bib36
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.022133
– volume: 233
  start-page: 1
  year: 1993
  ident: 2024012514115670400_bib59
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(93)90043-D
– volume: 9
  start-page: 650
  year: 1968
  ident: 2024012514115670400_bib30
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1664623
SSID ssj0001077041
Score 2.3148844
Snippet The Bethe lattice Ising model—a classical model of statistical mechanics for the phase transition—provides a novel and intuitive understanding of the...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Condensed matter physics
Critical phenomena
Phase transitions
Physics
Spacetime
Statistical mechanics
Theoretical physics
Title Statistical mechanics approach to the holographic renormalization group: Bethe lattice Ising model and p-adic AdS/CFT
URI https://www.proquest.com/docview/3171496459
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELagCImFRwFRXvIAE4raxE6csCBAIECiIGilbpHjh0AqaWjS_89d6vAYgMWDH4vPd_58vruPkCMreWiUTrxQ9DQW1VaejEEfAYyKMNAwYtEPed-Pbob8bhSOnMOtdGGVjU2sDbWeKPSRdxkydSdY-uSsePeQNQp_Vx2FxiJZAhMcwzlfurjqPz59eVl6QvS47yLe4fXeLSpTQCO1j5zV3-6iH_ltjUGub5nrdbLq4CE9n8tzgyyYvE3WHFSkThHLNlmuIzdVuUlmCBfrasuw7s1gIi_006ZWOK0mFDAefWmKU78qOjU5ItWxS8GkdWbHKb3A3F86lhXGw9FbdCLQmiiHylzTwpMa1p7rZ1CUwRYZXl8NLm88x6XgKbiyKy_Sma-EBdtnpK9jxrLYtzbwoyiQLFFch4InRomYo08oVEmQmYALppVVNmKWbZNWPsnNDqEcIII12sISwxWTsZAxi43NEqaM1UGHnDS7mipXaBz5Lsbp_MObpSiD1MmgQ44_ZxfzAhu_zKOwF_9M2W-klzpNLNOvc7P79_AeWQkAsMzdK_ukVU1n5gAAR5UdulN1WD_YoR08jD4AtbHc8Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9VAEJ7gI0QvoqgRRd0DnEzD6-6225oYAgp5T-DF6CPhVrb7I5o8-yqvxPBP8Tc6025FD8iJSw_d3R52Zna-zs43A7DptUycsXmUqKGlotom0hnaI4JRlXCLI57ikMeTdHQiP50mp0tw1XNhKK2yPxPbg9rODcXItwV16s6p9MlO_TOirlF0u9q30OjU4tBd_sJftsX78UeU7xbnB_vTD6ModBWIDDqvJkptGRvl8RRwOraZEGUWe8_jNOVa5EbaRMncGZVJio4kJuel41IJa7zxqfACv3sPliUxWgewvLc_-fzlOqozVGoo45BhP8zFdt24Gh_axtQj-y_f9w-frncArVc7eAQPAxxlu53-PIYlV63BaoCmLBj-Yg1W2kxRs3gCFwRP2-rOuO6HI-Iwvmd9bXLWzBliSvatL4b93bBzVxEyngXKJ2uZJO_YHnGN2Uw3lH_HxhS0YG1jHqYry-pIW1y7a7-iYU6fwsmd7PIzGFTzyj0HJhGSeGc9LnHSCJ0pnYnM-TIXxnnL1-Ftv6uFCYXNqb_GrOgu2EVBMiiCDNZh68_suivoccM8hntxy5SNXnpFsPxFca2nL_4__Abuj6bHR8XReHL4Eh5wBEtdaGcDBs35hXuFYKcpXwcNY3B210r9GzaYF8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+mechanics+approach+to+the+holographic+renormalization+group%3A+Bethe+lattice+Ising+model+and+p-adic+AdS%2FCFT&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Okunishi%2C+Kouichi&rft.au=Takayanagi%2C+Tadashi&rft.date=2024-01-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1093%2Fptep%2Fptad156&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptad156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon