An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping

Generating crop type maps using satellite remote sensing requires robust data acquisition at both high spatial and temporal resolutions to resolve rapid phenological transition at the field scale. The increasing availability of freely-available, moderate-resolution satellite data such as the Landsat...

Full description

Saved in:
Bibliographic Details
Published inScience of Remote Sensing Vol. 3; p. 100018
Main Authors Song, Xiao-Peng, Huang, Wenli, Hansen, Matthew C., Potapov, Peter
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Generating crop type maps using satellite remote sensing requires robust data acquisition at both high spatial and temporal resolutions to resolve rapid phenological transition at the field scale. The increasing availability of freely-available, moderate-resolution satellite data such as the Landsat and Sentinel series of satellites offers an unprecedent opportunity for large-area crop type mapping. In this study, we evaluated the utility of Landsat (7&8), Sentinel-2 (A&B), Sentinel-1 (A&B) and the Moderate Resolution Imaging Spectroradiometer (MODIS) for mapping corn and soybean in the United States. We designed a series of classification experiments using these satellite data over a nationally distributed sample as input and the United States Department of Agriculture (USDA) Cropland Data Layer (CDL) as reference for training and accuracy assessment. A set of tests were performed with data from each satellite senor as input to derive the potential accuracy achievable by the satellite/sensor. In comparison, another set of tests were conducted with all data from all sensors as input to derive the combined accuracy as well as to evaluate the utility of each sensor, spectral band and acquisition date. Results showed that data from one satellite/sensor, either Landsat, Sentinel-2 or Sentinel-1, could achieve 94.8–96.8% accuracy, whereas the coarse-resolution MODIS produced about 92% accuracy, for both corn and soybean. Combing data from all sensors marginally improved the accuracy to 97.0% for both crops. Based on the criterion of deviation reduction in decision tree models, Landsat was identified as the most useful satellite/sensor for soybean classification, especially the two short-wave infrared bands, whereas Sentinel-2 was recognized as the most valuable satellite/sensor for corn classification, especially the red edge, near infrared and short-wave infrared bands. Optical data were always chosen over Synthetic Aperture Radar (SAR) data by the pixel-based supervised classification algorithm except in some persistently cloudy regions, although using SAR data alone can also achieve very high accuracy. The virtual constellation of Landsat and Sentinel-2 increased data revisit frequency to 4–7 days in the U.S. during June to September 2017. However, cloud and shadow reduced clear-view observations by half. Satellite data acquisitions in July were most critical for mapping corn whereas data in July and August were most important for mapping soybean. Our analysis suggested that, without the practical limitation of training data, current freely-available, moderate-resolution satellite data including Landsat, Sentinel-2, Sentinel-1 and MODIS, can achieve a potential accuracy of over 95% for national-scale crop type mapping over large industrial agricultural regions such as the United States. Expanding the spatial coverage and maintaining consistent acquisitions of Sentinel-1 data is a high priority to enable operational crop mapping and monitoring over large areas. •Over 95% accuracy can be achieved with one sensor and representative training.•Shortwave infrared bands are most useful for mapping soybean and corn.•S2 red-edge bands provide valuable information.•Harmonize SWIR and red-edge bands for Landsat and S2 can improve crop mapping.•Improve S1 data acquisition is a priority for operational crop monitoring.
AbstractList Generating crop type maps using satellite remote sensing requires robust data acquisition at both high spatial and temporal resolutions to resolve rapid phenological transition at the field scale. The increasing availability of freely-available, moderate-resolution satellite data such as the Landsat and Sentinel series of satellites offers an unprecedent opportunity for large-area crop type mapping. In this study, we evaluated the utility of Landsat (7&8), Sentinel-2 (A&B), Sentinel-1 (A&B) and the Moderate Resolution Imaging Spectroradiometer (MODIS) for mapping corn and soybean in the United States. We designed a series of classification experiments using these satellite data over a nationally distributed sample as input and the United States Department of Agriculture (USDA) Cropland Data Layer (CDL) as reference for training and accuracy assessment. A set of tests were performed with data from each satellite senor as input to derive the potential accuracy achievable by the satellite/sensor. In comparison, another set of tests were conducted with all data from all sensors as input to derive the combined accuracy as well as to evaluate the utility of each sensor, spectral band and acquisition date. Results showed that data from one satellite/sensor, either Landsat, Sentinel-2 or Sentinel-1, could achieve 94.8–96.8% accuracy, whereas the coarse-resolution MODIS produced about 92% accuracy, for both corn and soybean. Combing data from all sensors marginally improved the accuracy to 97.0% for both crops. Based on the criterion of deviation reduction in decision tree models, Landsat was identified as the most useful satellite/sensor for soybean classification, especially the two short-wave infrared bands, whereas Sentinel-2 was recognized as the most valuable satellite/sensor for corn classification, especially the red edge, near infrared and short-wave infrared bands. Optical data were always chosen over Synthetic Aperture Radar (SAR) data by the pixel-based supervised classification algorithm except in some persistently cloudy regions, although using SAR data alone can also achieve very high accuracy. The virtual constellation of Landsat and Sentinel-2 increased data revisit frequency to 4–7 days in the U.S. during June to September 2017. However, cloud and shadow reduced clear-view observations by half. Satellite data acquisitions in July were most critical for mapping corn whereas data in July and August were most important for mapping soybean. Our analysis suggested that, without the practical limitation of training data, current freely-available, moderate-resolution satellite data including Landsat, Sentinel-2, Sentinel-1 and MODIS, can achieve a potential accuracy of over 95% for national-scale crop type mapping over large industrial agricultural regions such as the United States. Expanding the spatial coverage and maintaining consistent acquisitions of Sentinel-1 data is a high priority to enable operational crop mapping and monitoring over large areas. •Over 95% accuracy can be achieved with one sensor and representative training.•Shortwave infrared bands are most useful for mapping soybean and corn.•S2 red-edge bands provide valuable information.•Harmonize SWIR and red-edge bands for Landsat and S2 can improve crop mapping.•Improve S1 data acquisition is a priority for operational crop monitoring.
Generating crop type maps using satellite remote sensing requires robust data acquisition at both high spatial and temporal resolutions to resolve rapid phenological transition at the field scale. The increasing availability of freely-available, moderate-resolution satellite data such as the Landsat and Sentinel series of satellites offers an unprecedent opportunity for large-area crop type mapping. In this study, we evaluated the utility of Landsat (7&8), Sentinel-2 (A&B), Sentinel-1 (A&B) and the Moderate Resolution Imaging Spectroradiometer (MODIS) for mapping corn and soybean in the United States. We designed a series of classification experiments using these satellite data over a nationally distributed sample as input and the United States Department of Agriculture (USDA) Cropland Data Layer (CDL) as reference for training and accuracy assessment. A set of tests were performed with data from each satellite senor as input to derive the potential accuracy achievable by the satellite/sensor. In comparison, another set of tests were conducted with all data from all sensors as input to derive the combined accuracy as well as to evaluate the utility of each sensor, spectral band and acquisition date. Results showed that data from one satellite/sensor, either Landsat, Sentinel-2 or Sentinel-1, could achieve 94.8–96.8% accuracy, whereas the coarse-resolution MODIS produced about 92% accuracy, for both corn and soybean. Combing data from all sensors marginally improved the accuracy to 97.0% for both crops. Based on the criterion of deviation reduction in decision tree models, Landsat was identified as the most useful satellite/sensor for soybean classification, especially the two short-wave infrared bands, whereas Sentinel-2 was recognized as the most valuable satellite/sensor for corn classification, especially the red edge, near infrared and short-wave infrared bands. Optical data were always chosen over Synthetic Aperture Radar (SAR) data by the pixel-based supervised classification algorithm except in some persistently cloudy regions, although using SAR data alone can also achieve very high accuracy. The virtual constellation of Landsat and Sentinel-2 increased data revisit frequency to 4–7 days in the U.S. during June to September 2017. However, cloud and shadow reduced clear-view observations by half. Satellite data acquisitions in July were most critical for mapping corn whereas data in July and August were most important for mapping soybean. Our analysis suggested that, without the practical limitation of training data, current freely-available, moderate-resolution satellite data including Landsat, Sentinel-2, Sentinel-1 and MODIS, can achieve a potential accuracy of over 95% for national-scale crop type mapping over large industrial agricultural regions such as the United States. Expanding the spatial coverage and maintaining consistent acquisitions of Sentinel-1 data is a high priority to enable operational crop mapping and monitoring over large areas.
ArticleNumber 100018
Author Song, Xiao-Peng
Huang, Wenli
Hansen, Matthew C.
Potapov, Peter
Author_xml – sequence: 1
  givenname: Xiao-Peng
  orcidid: 0000-0002-5514-0321
  surname: Song
  fullname: Song, Xiao-Peng
  email: xiaopeng.song@ttu.edu
  organization: Department of Geosciences, Texas Tech University, Lubbock, TX, USA
– sequence: 2
  givenname: Wenli
  orcidid: 0000-0001-9608-1690
  surname: Huang
  fullname: Huang, Wenli
  email: wenli.huang@whu.edu.cn
  organization: Department of Geographical Sciences, University of Maryland, College Park, MD, USA
– sequence: 3
  givenname: Matthew C.
  surname: Hansen
  fullname: Hansen, Matthew C.
  organization: Department of Geographical Sciences, University of Maryland, College Park, MD, USA
– sequence: 4
  givenname: Peter
  orcidid: 0000-0003-3977-0021
  surname: Potapov
  fullname: Potapov, Peter
  organization: Department of Geographical Sciences, University of Maryland, College Park, MD, USA
BookMark eNp9UMtKBDEQDKLg8wO85QOcNZ2ZyUzwJD4XVjysnkObdCTLmhmSUfDvzboinuxLP6voqkO2G4dIjJ2CmIEAdb6a5ZRnUkgovRDQ77ADqZSqBHRy90-9z05yXpUT2YPoazhgz5eR0weu33EKQ-SD5wuMLuN0xpcUpxBpXck_NfCy5g-P1_Mldzgh90PiNg0jnz5H4m84jiG-HrM9j-tMJz_5iD3f3jxd3VeLx7v51eWiso1QU6WcFggaUcpOKi9RNV50JRRqX_e-cVq3NahG1y-t7qyugRy5FjUQQEf1EZtved2AKzOm8Ibp0wwYzPdgSK8G0xTsmkz3YhV5q5u6bRpJQqNSXqiO2l66RkLhgi1XUZNzIv_LB8JsbDYrU2w2G5vN1uaCudhiqIj8CJRMtoGiJRcS2al8Ef5BfwHcOoO7
CitedBy_id crossref_primary_10_1038_s41597_023_02334_5
crossref_primary_10_1109_JSTARS_2024_3361556
crossref_primary_10_3390_rs15174123
crossref_primary_10_3390_rs13224668
crossref_primary_10_34133_remotesensing_0086
crossref_primary_10_1007_s11676_023_01620_7
crossref_primary_10_3390_agronomy13092348
crossref_primary_10_3390_challe14010012
crossref_primary_10_3390_rs14215605
crossref_primary_10_3390_rs15030799
crossref_primary_10_1016_j_wasec_2023_100161
crossref_primary_10_1080_10106049_2022_2095446
crossref_primary_10_1007_s12145_023_01083_8
crossref_primary_10_3390_rs13224582
crossref_primary_10_1080_01431161_2022_2142077
crossref_primary_10_3390_rs14225870
crossref_primary_10_3390_su14159733
crossref_primary_10_3390_rs16020235
crossref_primary_10_5194_gmd_17_997_2024
crossref_primary_10_1080_17538947_2023_2224586
crossref_primary_10_1109_JSTARS_2024_3382580
crossref_primary_10_1080_15481603_2022_2116102
crossref_primary_10_3390_rs14112715
crossref_primary_10_1038_s41598_022_17454_y
crossref_primary_10_1080_10106049_2023_2195824
crossref_primary_10_3390_f14081615
crossref_primary_10_1007_s11356_023_26467_7
crossref_primary_10_3390_rs13132517
crossref_primary_10_1080_15481603_2024_2357878
crossref_primary_10_3390_rs16050866
crossref_primary_10_3390_s22155683
crossref_primary_10_1109_JSTARS_2022_3186298
crossref_primary_10_1016_j_compag_2022_107083
crossref_primary_10_1017_S002185962300014X
crossref_primary_10_3389_fpls_2023_1016890
crossref_primary_10_3390_rs14194896
crossref_primary_10_1007_s10661_023_11877_4
crossref_primary_10_3390_rs13173523
crossref_primary_10_3390_rs15245783
crossref_primary_10_3390_agronomy14010075
crossref_primary_10_3390_rs13040775
crossref_primary_10_3390_s23187902
crossref_primary_10_5564_mjgg_v60i44_2935
crossref_primary_10_3390_rs14143249
crossref_primary_10_1080_15481603_2023_2281142
Cites_doi 10.1016/j.rse.2011.08.027
10.1016/j.rse.2014.02.001
10.1016/j.rse.2011.08.026
10.1016/j.rse.2017.06.022
10.1016/j.rse.2020.111752
10.1016/j.rse.2012.01.010
10.1016/j.rse.2017.07.015
10.1016/S0034-4257(97)00049-7
10.3934/geosci.2017.2.163
10.3390/rs9090902
10.1111/gcb.12838
10.1080/01431169608949069
10.1016/j.rse.2015.10.034
10.1016/j.isprsjprs.2020.01.012
10.1016/j.rse.2011.11.026
10.1016/j.rse.2018.10.031
10.1080/10106049.2011.562309
10.1126/science.208.4445.670
10.1016/j.rse.2018.09.002
10.1016/j.rse.2018.02.045
10.1016/j.rse.2018.11.007
10.3390/rs8121014
10.1016/S0034-4257(00)00169-3
10.3390/rs8050362
10.1016/j.rse.2017.03.047
10.1016/j.rse.2011.09.026
10.3390/rs10091340
10.1016/j.rse.2005.03.010
10.1109/TGRS.2008.2002881
10.1038/ng.3819
10.1016/j.rse.2018.04.021
10.1016/j.rse.2014.10.009
10.1016/j.rse.2018.04.031
10.1016/j.rse.2017.07.031
10.3390/rs10071058
10.1016/j.rse.2017.02.014
10.3390/rs9101065
10.1016/j.rse.2017.01.008
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.srs.2021.100018
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2666-0172
ExternalDocumentID oai_doaj_org_article_7bc6efc9435442e09a66f067e582d421
10_1016_j_srs_2021_100018
S2666017221000055
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
ACHIH
ACLIJ
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
0R~
0SF
AALRI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c406t-6d90a19aa22726f2a64f077776a9f38f4d995316493b597c931eded5a91e117e3
IEDL.DBID DOA
ISSN 2666-0172
IngestDate Tue Oct 22 15:05:58 EDT 2024
Thu Sep 26 18:50:23 EDT 2024
Tue Jul 25 20:59:20 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Crop classification
Corn
Soybean
Optical data
Synthetic aperture radar
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-6d90a19aa22726f2a64f077776a9f38f4d995316493b597c931eded5a91e117e3
ORCID 0000-0003-3977-0021
0000-0002-5514-0321
0000-0001-9608-1690
OpenAccessLink https://doaj.org/article/7bc6efc9435442e09a66f067e582d421
ParticipantIDs doaj_primary_oai_doaj_org_article_7bc6efc9435442e09a66f067e582d421
crossref_primary_10_1016_j_srs_2021_100018
elsevier_sciencedirect_doi_10_1016_j_srs_2021_100018
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle Science of Remote Sensing
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bargiel (bib1) 2017; 198
Helder, Markham, Morfitt, Storey, Barsi, Gascon, Clerc, LaFrance, Masek, Roy, Lewis, Pahlevan (bib16) 2018; 10
Friedl, Brodley (bib11) 1997; 61
Macdonald, Hall (bib24) 1980; 208
Veloso, Mermoz, Bouvet, Le Toan, Planells, Dejoux, Ceschia (bib34) 2017; 199
Xiong, Thenkabail, Tilton, Gumma, Teluguntla, Oliphant, Congalton, Yadav, Gorelick (bib37) 2017; 9
Gao, Anderson, Daughtry, Karnieli, Hively, Kustas (bib13) 2020; 242
USDA National Agricultural Statistics Service Cropland Data Layer (bib33) 2018
Breiman, Friedman, Olshen, Stone (bib4) 1984
Lu, Zhao, Hu, Liu, Nan, Li, Fang, Cao, Shi, Kong, Su, Zhang, Li, Wang, Yuan, Cober, Weller, Liu, Hou, Tian, Kong (bib23) 2017; 49
Yan, Roy (bib38) 2016; 172
Fritz, See, McCallum, You, Bun, Moltchanova, Duerauer, Albrecht, Schill, Perger, Havlik, Mosnier, Thornton, Wood-Sichra, Herrero, Becker-Reshef, Justice, Hansen, Gong, Abdel Aziz, Cipriani, Cumani, Cecchi, Conchedda, Ferreira, Gomez, Haffani, Kayitakire, Malanding, Mueller, Newby, Nonguierma, Olusegun, Ortner, Rajak, Rocha, Schepaschenko, Schepaschenko, Terekhov, Tiangwa, Vancutsem, Vintrou, Wenbin, van der Velde, Dunwoody, Kraxner, Obersteiner (bib12) 2015; 21
Potapov, Turubanova, Hansen, Adusei, Broich, Altstatt, Mane, Justice (bib27) 2012; 122
Lee, Wen, Ainsworth, Chen, Chen (bib21) 2009; 47
Zhang, Wang, Henebry, Gao (bib41) 2020; 161
Skakun, Vermote, Roger, Franch (bib29) 2017; 3
Irons, Dwyer, Barsi (bib19) 2012; 122
Li, Roy (bib22) 2017; 9
Blaes, Vanhalle, Defourny (bib2) 2005; 96
Zhang, Roy, Yan, Li, Huang, Vermote, Skakun, Roger (bib40) 2018; 215
Huang, Wang, Shang, Liao, Liu (bib17) 2017; 193
Boryan, Yang, Mueller, Craig (bib3) 2011; 26
Yan, Roy, Li, Zhang, Huang (bib39) 2018; 215
Canisius, Shang, Liu, Huang, Ma, Jiao, Geng, Kovacs, Walters (bib6) 2018; 210
Hansen, Dubayah, Defries (bib15) 1996; 17
Song, Woodcock, Seto, Lenney, Macomber (bib31) 2001; 75
Claverie, Ju, Masek, Dungan, Vermote, Roger, Skakun, Justice (bib7) 2018; 219
Mandanici, Bitelli (bib26) 2016; 8
Fisette, Rollin, Aly, Campbell, Daneshfar, Filyer, Smith, Davidson, Shang, Jarvis (bib10) 2013
Malenovský, Rott, Cihlar, Schaepman, García-Santos, Fernandes, Berger (bib25) 2012; 120
Whitcraft, Vermote, Becker-Reshef, Justice (bib35) 2015; 156
Drusch, Del Bello, Carlier, Colin, Fernandez, Gascon, Hoersch, Isola, Laberinti, Martimort, Meygret, Spoto, Sy, Marchese, Bargellini (bib9) 2012; 120
Defourny, Bontemps, Bellemans, Cara, Dedieu, Guzzonato, Hagolle, Inglada, Nicola, Rabaute, Savinaud, Udroiu, Valero, Bégué, Dejoux, El Harti, Ezzahar, Kussul, Labbassi, Lebourgeois, Miao, Newby, Nyamugama, Salh, Shelestov, Simonneaux, Traore, Traore, Koetz (bib8) 2019; 221
Song, Potapov, Krylov, King, Di Bella, Hudson, Khan, Adusei, Stehman, Hansen (bib30) 2017; 190
Cai, Guan, Peng, Wang, Seifert, Wardlow, Li (bib5) 2018; 210
Wulder, Masek, Cohen, Loveland, Woodcock (bib36) 2012; 122
King, Adusei, Stehman, Potapov, Song, Krylov, Bella, Loveland, Johnson, Hansen (bib20) 2017; 195
Griffiths, Nendel, Hostert (bib14) 2019; 220
Torbick, Huang, Ziniti, Johnson, Masek, Reba (bib32) 2018; 10
Roy, Wulder, Loveland, W, Allen, Anderson, Helder, Irons, Johnson, Kennedy, Scambos, Schaaf, Schott, Sheng, Vermote, Belward, Bindschadler, Cohen, Gao, Hipple, Hostert, Huntington, Justice, Kilic, Kovalskyy, Lee, Lymburner, Masek, McCorkel, Shuai, Trezza, Vogelmann, Wynne, Zhu (bib28) 2014; 145
Inglada, Vincent, Arias, Marais-Sicre (bib18) 2016; 8
Hansen (10.1016/j.srs.2021.100018_bib15) 1996; 17
Fisette (10.1016/j.srs.2021.100018_bib10) 2013
Lee (10.1016/j.srs.2021.100018_bib21) 2009; 47
Potapov (10.1016/j.srs.2021.100018_bib27) 2012; 122
Drusch (10.1016/j.srs.2021.100018_bib9) 2012; 120
Lu (10.1016/j.srs.2021.100018_bib23) 2017; 49
Malenovský (10.1016/j.srs.2021.100018_bib25) 2012; 120
Roy (10.1016/j.srs.2021.100018_bib28) 2014; 145
Helder (10.1016/j.srs.2021.100018_bib16) 2018; 10
Mandanici (10.1016/j.srs.2021.100018_bib26) 2016; 8
Bargiel (10.1016/j.srs.2021.100018_bib1) 2017; 198
Song (10.1016/j.srs.2021.100018_bib31) 2001; 75
Veloso (10.1016/j.srs.2021.100018_bib34) 2017; 199
Wulder (10.1016/j.srs.2021.100018_bib36) 2012; 122
Breiman (10.1016/j.srs.2021.100018_bib4) 1984
Defourny (10.1016/j.srs.2021.100018_bib8) 2019; 221
Torbick (10.1016/j.srs.2021.100018_bib32) 2018; 10
Yan (10.1016/j.srs.2021.100018_bib38) 2016; 172
Inglada (10.1016/j.srs.2021.100018_bib18) 2016; 8
Xiong (10.1016/j.srs.2021.100018_bib37) 2017; 9
USDA National Agricultural Statistics Service Cropland Data Layer (10.1016/j.srs.2021.100018_bib33) 2018
Whitcraft (10.1016/j.srs.2021.100018_bib35) 2015; 156
Zhang (10.1016/j.srs.2021.100018_bib40) 2018; 215
Claverie (10.1016/j.srs.2021.100018_bib7) 2018; 219
Gao (10.1016/j.srs.2021.100018_bib13) 2020; 242
Irons (10.1016/j.srs.2021.100018_bib19) 2012; 122
King (10.1016/j.srs.2021.100018_bib20) 2017; 195
Song (10.1016/j.srs.2021.100018_bib30) 2017; 190
Yan (10.1016/j.srs.2021.100018_bib39) 2018; 215
Skakun (10.1016/j.srs.2021.100018_bib29) 2017; 3
Canisius (10.1016/j.srs.2021.100018_bib6) 2018; 210
Fritz (10.1016/j.srs.2021.100018_bib12) 2015; 21
Li (10.1016/j.srs.2021.100018_bib22) 2017; 9
Huang (10.1016/j.srs.2021.100018_bib17) 2017; 193
Boryan (10.1016/j.srs.2021.100018_bib3) 2011; 26
Cai (10.1016/j.srs.2021.100018_bib5) 2018; 210
Blaes (10.1016/j.srs.2021.100018_bib2) 2005; 96
Friedl (10.1016/j.srs.2021.100018_bib11) 1997; 61
Macdonald (10.1016/j.srs.2021.100018_bib24) 1980; 208
Zhang (10.1016/j.srs.2021.100018_bib41) 2020; 161
Griffiths (10.1016/j.srs.2021.100018_bib14) 2019; 220
References_xml – volume: 3
  start-page: 163
  year: 2017
  end-page: 186
  ident: bib29
  article-title: Combined use of Landsat-8 and Sentinel-2A images for winter crop mapping and winter wheat yield assessment at regional scale
  publication-title: AIMS Geosci.
  contributor:
    fullname: Franch
– volume: 96
  start-page: 352
  year: 2005
  end-page: 365
  ident: bib2
  article-title: Efficiency of crop identification based on optical and SAR image time series
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Defourny
– volume: 145
  start-page: 154
  year: 2014
  end-page: 172
  ident: bib28
  article-title: Landsat-8: science and product vision for terrestrial global change research
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Zhu
– volume: 220
  start-page: 135
  year: 2019
  end-page: 151
  ident: bib14
  article-title: Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Hostert
– volume: 122
  start-page: 2
  year: 2012
  end-page: 10
  ident: bib36
  article-title: Opening the archive: how free data has enabled the science and monitoring promise of Landsat
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Woodcock
– volume: 9
  start-page: 902
  year: 2017
  ident: bib22
  article-title: A global analysis of sentinel-2A, sentinel-2B and landsat-8 data revisit intervals and implications for terrestrial monitoring
  publication-title: Rem. Sens.
  contributor:
    fullname: Roy
– volume: 210
  start-page: 508
  year: 2018
  end-page: 518
  ident: bib6
  article-title: Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Walters
– volume: 61
  start-page: 399
  year: 1997
  end-page: 409
  ident: bib11
  article-title: Decision tree classification of land cover from remotely sensed data
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Brodley
– volume: 49
  start-page: 773
  year: 2017
  end-page: 779
  ident: bib23
  article-title: Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield
  publication-title: Nat. Genet.
  contributor:
    fullname: Kong
– volume: 199
  start-page: 415
  year: 2017
  end-page: 426
  ident: bib34
  article-title: Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Ceschia
– volume: 8
  start-page: 362
  year: 2016
  ident: bib18
  article-title: Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series
  publication-title: Rem. Sens.
  contributor:
    fullname: Marais-Sicre
– volume: 10
  start-page: 1058
  year: 2018
  ident: bib32
  article-title: Fusion of moderate resolution earth observations for operational crop type mapping
  publication-title: Rem. Sens.
  contributor:
    fullname: Reba
– volume: 221
  start-page: 551
  year: 2019
  end-page: 568
  ident: bib8
  article-title: Near real-time agriculture monitoring at national scale at parcel resolution: performance assessment of the Sen2-Agri automated system in various cropping systems around the world
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Koetz
– volume: 120
  start-page: 91
  year: 2012
  end-page: 101
  ident: bib25
  article-title: Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Berger
– volume: 215
  start-page: 482
  year: 2018
  end-page: 494
  ident: bib40
  article-title: Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Roger
– volume: 242
  start-page: 111752
  year: 2020
  ident: bib13
  article-title: A within-season approach for detecting early growth stages in corn and soybean using high temporal and spatial resolution imagery
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Kustas
– volume: 198
  start-page: 369
  year: 2017
  end-page: 383
  ident: bib1
  article-title: A new method for crop classification combining time series of radar images and crop phenology information
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Bargiel
– start-page: 270
  year: 2013
  end-page: 274
  ident: bib10
  article-title: AAFC annual crop inventory
  publication-title: 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics)
  contributor:
    fullname: Jarvis
– volume: 17
  start-page: 1075
  year: 1996
  end-page: 1081
  ident: bib15
  article-title: Classification trees: an alternative to traditional land cover classifiers
  publication-title: Remote Sens. Lett.
  contributor:
    fullname: Defries
– volume: 195
  start-page: 13
  year: 2017
  end-page: 29
  ident: bib20
  article-title: A multi-resolution approach to national-scale cultivated area estimation of soybean
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Hansen
– volume: 9
  start-page: 1065
  year: 2017
  ident: bib37
  article-title: Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using sentinel-2 and landsat-8 data on Google earth engine
  publication-title: Rem. Sens.
  contributor:
    fullname: Gorelick
– year: 1984
  ident: bib4
  article-title: Classification and Regression Trees
  contributor:
    fullname: Stone
– volume: 193
  start-page: 11
  year: 2017
  end-page: 28
  ident: bib17
  article-title: Application of polarization signature to land cover scattering mechanism analysis and classification using multi-temporal C-band polarimetric RADARSAT-2 imagery
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Liu
– volume: 120
  start-page: 25
  year: 2012
  end-page: 36
  ident: bib9
  article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Bargellini
– volume: 161
  start-page: 37
  year: 2020
  end-page: 51
  ident: bib41
  article-title: Development and evaluation of a new algorithm for detecting 30 m land surface phenology from VIIRS and HLS time series
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  contributor:
    fullname: Gao
– volume: 208
  start-page: 670
  year: 1980
  end-page: 679
  ident: bib24
  article-title: Global crop forecasting
  publication-title: Science
  contributor:
    fullname: Hall
– volume: 219
  start-page: 145
  year: 2018
  end-page: 161
  ident: bib7
  article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Justice
– volume: 21
  start-page: 1980
  year: 2015
  end-page: 1992
  ident: bib12
  article-title: Mapping global cropland and field size
  publication-title: Global Change Biol.
  contributor:
    fullname: Obersteiner
– volume: 122
  start-page: 106
  year: 2012
  end-page: 116
  ident: bib27
  article-title: Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ data
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Justice
– volume: 47
  start-page: 202
  year: 2009
  end-page: 213
  ident: bib21
  article-title: Improved Sigma filter for speckle filtering of SAR imagery
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  contributor:
    fullname: Chen
– volume: 8
  start-page: 1014
  year: 2016
  ident: bib26
  article-title: Preliminary comparison of sentinel-2 and Landsat 8 imagery for a combined use
  publication-title: Rem. Sens.
  contributor:
    fullname: Bitelli
– volume: 215
  start-page: 495
  year: 2018
  end-page: 506
  ident: bib39
  article-title: Sentinel-2A multi-temporal misregistration characterization and an orbit-based sub-pixel registration methodology
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Huang
– volume: 156
  start-page: 438
  year: 2015
  end-page: 447
  ident: bib35
  article-title: Cloud cover throughout the agricultural growing season: impacts on passive optical earth observations
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Justice
– volume: 172
  start-page: 67
  year: 2016
  end-page: 86
  ident: bib38
  article-title: Conterminous United States crop field size quantification from multi-temporal Landsat data
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Roy
– volume: 210
  start-page: 35
  year: 2018
  end-page: 47
  ident: bib5
  article-title: A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Li
– volume: 26
  start-page: 341
  year: 2011
  end-page: 358
  ident: bib3
  article-title: Monitoring US agriculture: the US department of agriculture, national agricultural statistics Service, cropland data layer Program
  publication-title: Geocarto Int.
  contributor:
    fullname: Craig
– volume: 75
  start-page: 230
  year: 2001
  end-page: 244
  ident: bib31
  article-title: Classification and change detection using Landsat TM data: when and how to correct atmospheric effects?
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Macomber
– year: 2018
  ident: bib33
  article-title: Published Crop-specific Data Layer
  contributor:
    fullname: USDA National Agricultural Statistics Service Cropland Data Layer
– volume: 190
  start-page: 383
  year: 2017
  end-page: 395
  ident: bib30
  article-title: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Hansen
– volume: 10
  start-page: 1340
  year: 2018
  ident: bib16
  article-title: Observations and recommendations for the calibration of Landsat 8 OLI and Sentinel 2 MSI for improved data interoperability
  publication-title: Rem. Sens.
  contributor:
    fullname: Pahlevan
– volume: 122
  start-page: 11
  year: 2012
  end-page: 21
  ident: bib19
  article-title: The next Landsat satellite: the Landsat data continuity mission
  publication-title: Remote Sens. Environ.
  contributor:
    fullname: Barsi
– year: 2018
  ident: 10.1016/j.srs.2021.100018_bib33
  contributor:
    fullname: USDA National Agricultural Statistics Service Cropland Data Layer
– year: 1984
  ident: 10.1016/j.srs.2021.100018_bib4
  contributor:
    fullname: Breiman
– volume: 122
  start-page: 106
  year: 2012
  ident: 10.1016/j.srs.2021.100018_bib27
  article-title: Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.027
  contributor:
    fullname: Potapov
– volume: 145
  start-page: 154
  year: 2014
  ident: 10.1016/j.srs.2021.100018_bib28
  article-title: Landsat-8: science and product vision for terrestrial global change research
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.001
  contributor:
    fullname: Roy
– volume: 122
  start-page: 11
  year: 2012
  ident: 10.1016/j.srs.2021.100018_bib19
  article-title: The next Landsat satellite: the Landsat data continuity mission
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.026
  contributor:
    fullname: Irons
– volume: 198
  start-page: 369
  year: 2017
  ident: 10.1016/j.srs.2021.100018_bib1
  article-title: A new method for crop classification combining time series of radar images and crop phenology information
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.022
  contributor:
    fullname: Bargiel
– volume: 242
  start-page: 111752
  year: 2020
  ident: 10.1016/j.srs.2021.100018_bib13
  article-title: A within-season approach for detecting early growth stages in corn and soybean using high temporal and spatial resolution imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111752
  contributor:
    fullname: Gao
– volume: 122
  start-page: 2
  year: 2012
  ident: 10.1016/j.srs.2021.100018_bib36
  article-title: Opening the archive: how free data has enabled the science and monitoring promise of Landsat
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.01.010
  contributor:
    fullname: Wulder
– volume: 199
  start-page: 415
  year: 2017
  ident: 10.1016/j.srs.2021.100018_bib34
  article-title: Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.015
  contributor:
    fullname: Veloso
– volume: 61
  start-page: 399
  year: 1997
  ident: 10.1016/j.srs.2021.100018_bib11
  article-title: Decision tree classification of land cover from remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00049-7
  contributor:
    fullname: Friedl
– volume: 3
  start-page: 163
  year: 2017
  ident: 10.1016/j.srs.2021.100018_bib29
  article-title: Combined use of Landsat-8 and Sentinel-2A images for winter crop mapping and winter wheat yield assessment at regional scale
  publication-title: AIMS Geosci.
  doi: 10.3934/geosci.2017.2.163
  contributor:
    fullname: Skakun
– volume: 9
  start-page: 902
  year: 2017
  ident: 10.1016/j.srs.2021.100018_bib22
  article-title: A global analysis of sentinel-2A, sentinel-2B and landsat-8 data revisit intervals and implications for terrestrial monitoring
  publication-title: Rem. Sens.
  doi: 10.3390/rs9090902
  contributor:
    fullname: Li
– volume: 21
  start-page: 1980
  year: 2015
  ident: 10.1016/j.srs.2021.100018_bib12
  article-title: Mapping global cropland and field size
  publication-title: Global Change Biol.
  doi: 10.1111/gcb.12838
  contributor:
    fullname: Fritz
– volume: 17
  start-page: 1075
  year: 1996
  ident: 10.1016/j.srs.2021.100018_bib15
  article-title: Classification trees: an alternative to traditional land cover classifiers
  publication-title: Remote Sens. Lett.
  doi: 10.1080/01431169608949069
  contributor:
    fullname: Hansen
– volume: 172
  start-page: 67
  year: 2016
  ident: 10.1016/j.srs.2021.100018_bib38
  article-title: Conterminous United States crop field size quantification from multi-temporal Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.10.034
  contributor:
    fullname: Yan
– volume: 161
  start-page: 37
  year: 2020
  ident: 10.1016/j.srs.2021.100018_bib41
  article-title: Development and evaluation of a new algorithm for detecting 30 m land surface phenology from VIIRS and HLS time series
  publication-title: ISPRS J. Photogrammetry Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.012
  contributor:
    fullname: Zhang
– volume: 120
  start-page: 25
  year: 2012
  ident: 10.1016/j.srs.2021.100018_bib9
  article-title: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.11.026
  contributor:
    fullname: Drusch
– volume: 220
  start-page: 135
  year: 2019
  ident: 10.1016/j.srs.2021.100018_bib14
  article-title: Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.10.031
  contributor:
    fullname: Griffiths
– volume: 26
  start-page: 341
  year: 2011
  ident: 10.1016/j.srs.2021.100018_bib3
  article-title: Monitoring US agriculture: the US department of agriculture, national agricultural statistics Service, cropland data layer Program
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2011.562309
  contributor:
    fullname: Boryan
– start-page: 270
  year: 2013
  ident: 10.1016/j.srs.2021.100018_bib10
  article-title: AAFC annual crop inventory
  contributor:
    fullname: Fisette
– volume: 208
  start-page: 670
  year: 1980
  ident: 10.1016/j.srs.2021.100018_bib24
  article-title: Global crop forecasting
  publication-title: Science
  doi: 10.1126/science.208.4445.670
  contributor:
    fullname: Macdonald
– volume: 219
  start-page: 145
  year: 2018
  ident: 10.1016/j.srs.2021.100018_bib7
  article-title: The Harmonized Landsat and Sentinel-2 surface reflectance data set
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.002
  contributor:
    fullname: Claverie
– volume: 210
  start-page: 35
  year: 2018
  ident: 10.1016/j.srs.2021.100018_bib5
  article-title: A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.02.045
  contributor:
    fullname: Cai
– volume: 221
  start-page: 551
  year: 2019
  ident: 10.1016/j.srs.2021.100018_bib8
  article-title: Near real-time agriculture monitoring at national scale at parcel resolution: performance assessment of the Sen2-Agri automated system in various cropping systems around the world
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.007
  contributor:
    fullname: Defourny
– volume: 8
  start-page: 1014
  year: 2016
  ident: 10.1016/j.srs.2021.100018_bib26
  article-title: Preliminary comparison of sentinel-2 and Landsat 8 imagery for a combined use
  publication-title: Rem. Sens.
  doi: 10.3390/rs8121014
  contributor:
    fullname: Mandanici
– volume: 75
  start-page: 230
  year: 2001
  ident: 10.1016/j.srs.2021.100018_bib31
  article-title: Classification and change detection using Landsat TM data: when and how to correct atmospheric effects?
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00169-3
  contributor:
    fullname: Song
– volume: 8
  start-page: 362
  year: 2016
  ident: 10.1016/j.srs.2021.100018_bib18
  article-title: Improved early crop type identification by joint use of high temporal resolution SAR and optical image time series
  publication-title: Rem. Sens.
  doi: 10.3390/rs8050362
  contributor:
    fullname: Inglada
– volume: 195
  start-page: 13
  year: 2017
  ident: 10.1016/j.srs.2021.100018_bib20
  article-title: A multi-resolution approach to national-scale cultivated area estimation of soybean
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.047
  contributor:
    fullname: King
– volume: 120
  start-page: 91
  year: 2012
  ident: 10.1016/j.srs.2021.100018_bib25
  article-title: Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.09.026
  contributor:
    fullname: Malenovský
– volume: 10
  start-page: 1340
  year: 2018
  ident: 10.1016/j.srs.2021.100018_bib16
  article-title: Observations and recommendations for the calibration of Landsat 8 OLI and Sentinel 2 MSI for improved data interoperability
  publication-title: Rem. Sens.
  doi: 10.3390/rs10091340
  contributor:
    fullname: Helder
– volume: 96
  start-page: 352
  year: 2005
  ident: 10.1016/j.srs.2021.100018_bib2
  article-title: Efficiency of crop identification based on optical and SAR image time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.03.010
  contributor:
    fullname: Blaes
– volume: 47
  start-page: 202
  year: 2009
  ident: 10.1016/j.srs.2021.100018_bib21
  article-title: Improved Sigma filter for speckle filtering of SAR imagery
  publication-title: IEEE Trans. Geosci. Rem. Sens.
  doi: 10.1109/TGRS.2008.2002881
  contributor:
    fullname: Lee
– volume: 49
  start-page: 773
  year: 2017
  ident: 10.1016/j.srs.2021.100018_bib23
  article-title: Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3819
  contributor:
    fullname: Lu
– volume: 215
  start-page: 495
  year: 2018
  ident: 10.1016/j.srs.2021.100018_bib39
  article-title: Sentinel-2A multi-temporal misregistration characterization and an orbit-based sub-pixel registration methodology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.021
  contributor:
    fullname: Yan
– volume: 156
  start-page: 438
  year: 2015
  ident: 10.1016/j.srs.2021.100018_bib35
  article-title: Cloud cover throughout the agricultural growing season: impacts on passive optical earth observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.10.009
  contributor:
    fullname: Whitcraft
– volume: 215
  start-page: 482
  year: 2018
  ident: 10.1016/j.srs.2021.100018_bib40
  article-title: Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.031
  contributor:
    fullname: Zhang
– volume: 210
  start-page: 508
  year: 2018
  ident: 10.1016/j.srs.2021.100018_bib6
  article-title: Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.07.031
  contributor:
    fullname: Canisius
– volume: 10
  start-page: 1058
  year: 2018
  ident: 10.1016/j.srs.2021.100018_bib32
  article-title: Fusion of moderate resolution earth observations for operational crop type mapping
  publication-title: Rem. Sens.
  doi: 10.3390/rs10071058
  contributor:
    fullname: Torbick
– volume: 193
  start-page: 11
  year: 2017
  ident: 10.1016/j.srs.2021.100018_bib17
  article-title: Application of polarization signature to land cover scattering mechanism analysis and classification using multi-temporal C-band polarimetric RADARSAT-2 imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.02.014
  contributor:
    fullname: Huang
– volume: 9
  start-page: 1065
  year: 2017
  ident: 10.1016/j.srs.2021.100018_bib37
  article-title: Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using sentinel-2 and landsat-8 data on Google earth engine
  publication-title: Rem. Sens.
  doi: 10.3390/rs9101065
  contributor:
    fullname: Xiong
– volume: 190
  start-page: 383
  year: 2017
  ident: 10.1016/j.srs.2021.100018_bib30
  article-title: National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.01.008
  contributor:
    fullname: Song
SSID ssj0002810831
Score 2.4812088
Snippet Generating crop type maps using satellite remote sensing requires robust data acquisition at both high spatial and temporal resolutions to resolve rapid...
SourceID doaj
crossref
elsevier
SourceType Open Website
Aggregation Database
Publisher
StartPage 100018
SubjectTerms Corn
Crop classification
Optical data
Soybean
Synthetic aperture radar
Title An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping
URI https://dx.doi.org/10.1016/j.srs.2021.100018
https://doaj.org/article/7bc6efc9435442e09a66f067e582d421
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQF1gQn6J8yQMTwiJ2HCceC7QCRGEolbpFduwAFaSohIGF385dkkIWxEKGKEoiO7pLcu_s83uEHFnpszCLEiZD55iUVjAbBTmzgXOhU4GzAhcnD2_V5VheT6JJS-oLa8JqeuDacKexzZTPMw1hXUrhA22UyuEX66NEOCnqxIdHrWRqWg0ZcZTQQmU5wOcME53FlGZV3PU2R6puwbFIIEDBj1ZQqrj7W7GpFW8Ga2S1AYq0Vz_gOlnyxQZZbjTLHz82ybhX0B-ubjrL6Q0u2zXlCR1hCVDhn5loHXMKl-nw7uJqRLEulAJcpSjgRXEYlr4YZGp42CLjQf_-_JI1Igksg1hcMuV0YLg2RohYqFwYJfMghk0ZnYdJLp3W8J0pqUMLyUOmQ-6dd5HR3HMe-3CbdIpZ4XcIdUlgnEgyHsWZtAagi9eAJj0gRIEs711yvLBS-lpzYaSLIrFpCiZN0aRpbdIuOUM7ft-INNbVCXBu2jg3_cu5XSIXXkgbRFBHemjq6fe-d_-j7z2ygk3WZWH7pFPO3_0BAJDSHlbvGuyHn_0vn6_Tng
link.rule.ids 315,786,790,870,2115,27955,27956
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evaluation+of+Landsat%2C+Sentinel-2%2C+Sentinel-1+and+MODIS+data+for+crop+type+mapping&rft.jtitle=Science+of+Remote+Sensing&rft.au=Song%2C+Xiao-Peng&rft.au=Huang%2C+Wenli&rft.au=Hansen%2C+Matthew+C.&rft.au=Potapov%2C+Peter&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=2666-0172&rft.eissn=2666-0172&rft.volume=3&rft_id=info:doi/10.1016%2Fj.srs.2021.100018&rft.externalDocID=S2666017221000055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-0172&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-0172&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-0172&client=summon