A bright future for engineering piezoelectric 2D crystals

The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atom...

Full description

Saved in:
Bibliographic Details
Published inChemical Society reviews Vol. 51; no. 2; pp. 65 - 671
Main Authors Sherrell, Peter C, Fronzi, Marco, Shepelin, Nick A, Corletto, Alexander, Winkler, David A, Ford, Mike, Shapter, Joseph G, Ellis, Amanda V
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 24.01.2022
Subjects
Online AccessGet full text
ISSN0306-0012
1460-4744
1460-4744
DOI10.1039/d1cs00844g

Cover

Loading…
Abstract The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution ( i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided. We explore piezoelectricity in 2D crystals, envisioning assessment, prediction, and engineering 2D piezoelectricity via chemical, computational, and physical approaches.
AbstractList The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution (i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided.
The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution ( i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided. We explore piezoelectricity in 2D crystals, envisioning assessment, prediction, and engineering 2D piezoelectricity via chemical, computational, and physical approaches.
The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution ( Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided.
The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution ( i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided.
The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution (i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided.The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution (i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided.
Author Sherrell, Peter C
Shepelin, Nick A
Shapter, Joseph G
Ford, Mike
Ellis, Amanda V
Fronzi, Marco
Corletto, Alexander
Winkler, David A
AuthorAffiliation Department of Chemical Engineering, The University of Melbourne
School of Mathematical and Physical Science, University of Technology Sydney
School of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University
Monash Institute of Pharmaceutical Sciences, Monash University
Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut
Australian Institute for Bioengineering and Nanotechnology, The University of Queensland
School of Pharmacy, The University of Nottingham
Shibaura Institute of Technology, SIT Research Laboratories
AuthorAffiliation_xml – name: Shibaura Institute of Technology, SIT Research Laboratories
– name: School of Mathematical and Physical Science, University of Technology Sydney
– name: School of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University
– name: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland
– name: School of Pharmacy, The University of Nottingham
– name: Department of Chemical Engineering, The University of Melbourne
– name: Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut
– name: Monash Institute of Pharmaceutical Sciences, Monash University
Author_xml – sequence: 1
  givenname: Peter C
  surname: Sherrell
  fullname: Sherrell, Peter C
– sequence: 2
  givenname: Marco
  surname: Fronzi
  fullname: Fronzi, Marco
– sequence: 3
  givenname: Nick A
  surname: Shepelin
  fullname: Shepelin, Nick A
– sequence: 4
  givenname: Alexander
  surname: Corletto
  fullname: Corletto, Alexander
– sequence: 5
  givenname: David A
  surname: Winkler
  fullname: Winkler, David A
– sequence: 6
  givenname: Mike
  surname: Ford
  fullname: Ford, Mike
– sequence: 7
  givenname: Joseph G
  surname: Shapter
  fullname: Shapter, Joseph G
– sequence: 8
  givenname: Amanda V
  surname: Ellis
  fullname: Ellis, Amanda V
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34931635$$D View this record in MEDLINE/PubMed
BookMark eNqN0T1PwzAQBmALgWj5WNhBkVgQUuD8ESceUYGChMQAzFFyuRRXaVJsZ4BfT6BQJMTAdB6ee2X73WGbbdcSYwcczjhIc15x9ACZUrMNNuZKQ6xSpTbZGCToGICLEdvxfj6ceKrFNhtJZSTXMhkzcxGVzs6eQ1T3oXcU1Z2LqJ3ZlsjZdhYtLb111BAGZzESlxG6Vx-Kxu-xrXoYtP81d9nT9dXj5Ca-u5_eTi7uYlSgQ6yxgrJUSVkZKUxiUi2pSBUCghYojDEKjElrhZU2hkosIcFCa4moMhQkd9nJKnfpupeefMgX1iM1TdFS1_tcaJVlSWaU_gflQmYp19lAj3_Rede7dnjIoIQQw63kR-DRl-rLBVX50tlF4V7z7_8bwOkKoOu8d1SvCYf8o5z8kk8ePsuZDhh-YbShCLZrgyts8_fK4WrFeVxH__Qt3wHQoZfM
CitedBy_id crossref_primary_10_1021_acsomega_4c02874
crossref_primary_10_1016_j_optlastec_2023_109512
crossref_primary_10_1002_adma_202406192
crossref_primary_10_1016_j_jcis_2023_05_204
crossref_primary_10_1002_smll_202409004
crossref_primary_10_1002_adfm_202307348
crossref_primary_10_1002_advs_202410851
crossref_primary_10_1002_advs_202411422
crossref_primary_10_1002_adma_202313127
crossref_primary_10_1016_j_cossms_2023_101134
crossref_primary_10_1016_j_nanoen_2023_108993
crossref_primary_10_1002_anie_202210700
crossref_primary_10_1002_aelm_202300741
crossref_primary_10_1002_cphc_202400227
crossref_primary_10_1016_S1872_2067_23_64591_7
crossref_primary_10_3390_ma17040844
crossref_primary_10_1002_admi_202300323
crossref_primary_10_1002_advs_202406678
crossref_primary_10_1038_s41467_023_44298_5
crossref_primary_10_1021_acsnano_4c05351
crossref_primary_10_1016_j_jiec_2025_02_027
crossref_primary_10_1557_s43577_024_00838_y
crossref_primary_10_3390_coatings12081152
crossref_primary_10_1007_s12274_024_6959_9
crossref_primary_10_1021_acsanm_2c01871
crossref_primary_10_1039_D2NR01135B
crossref_primary_10_1103_PhysRevB_107_085402
crossref_primary_10_1002_smll_202408628
crossref_primary_10_1039_D4NR01377H
crossref_primary_10_1016_j_ceramint_2025_01_288
crossref_primary_10_1016_j_nanoen_2024_109678
crossref_primary_10_1002_smsc_202300125
crossref_primary_10_1021_acsnano_4c16455
crossref_primary_10_1002_adma_202203849
crossref_primary_10_1016_j_checat_2024_100901
crossref_primary_10_3390_molecules30010179
crossref_primary_10_1002_smll_202311570
crossref_primary_10_1016_j_pmatsci_2023_101161
crossref_primary_10_1039_D3NH00578J
crossref_primary_10_1016_j_apsusc_2022_154391
crossref_primary_10_1038_s41699_025_00537_5
crossref_primary_10_1002_bmm2_12006
crossref_primary_10_1016_j_mser_2025_100971
crossref_primary_10_1002_aelm_202400019
crossref_primary_10_1002_advs_202413105
crossref_primary_10_3390_ma15217788
crossref_primary_10_1039_D2NH00509C
crossref_primary_10_1039_D3MA00842H
crossref_primary_10_1002_lpor_202400341
crossref_primary_10_1016_j_matt_2023_12_031
crossref_primary_10_1021_acs_nanolett_3c04330
crossref_primary_10_1021_acsanm_4c02365
crossref_primary_10_1002_adma_202405053
crossref_primary_10_1002_smll_202200184
crossref_primary_10_1039_D3SC00487B
crossref_primary_10_1016_j_micrna_2022_207424
crossref_primary_10_1021_acs_chemrev_3c00851
crossref_primary_10_1016_j_cej_2024_155086
crossref_primary_10_1016_j_jallcom_2022_166291
crossref_primary_10_1002_adma_202303180
crossref_primary_10_3390_ma15134418
crossref_primary_10_1021_acsami_4c09423
crossref_primary_10_1002_admt_202200318
crossref_primary_10_1002_smll_202303586
crossref_primary_10_1016_S1872_2067_24_60101_4
crossref_primary_10_1002_ange_202210700
crossref_primary_10_1016_j_jmst_2023_07_063
Cites_doi 10.1063/1.4981877
10.1103/RevModPhys.71.1085
10.1039/c3ee41889h
10.1103/PhysRevB.91.085407
10.1063/1.5134960
10.1146/annurev.pc.45.100194.002255
10.1107/S0108768102003890
10.1021/jz200866s
10.1063/1.2185614
10.1063/1.4868977
10.1103/PhysRevB.92.214103
10.1021/acs.jpcc.5b06428
10.1088/2053-1583/aacfc1
10.1088/1361-6463/aaad98
10.1002/adfm.201808843
10.1116/1.5079583
10.1063/1.3506686
10.1021/acsami.0c16039
10.1038/natrevmats.2017.89
10.1021/acsnano.8b02152
10.1039/D0CS00143K
10.1103/PhysRevMaterials.2.083801
10.1016/0003-9861(78)90204-7
10.1039/C8SC01274A
10.1021/acs.jpcc.8b11837
10.1021/acsomega.8b00766
10.1038/natrevmats.2016.98
10.1088/0034-4885/60/12/001
10.1103/PhysRevApplied.13.054061
10.1016/j.nanoen.2019.104058
10.1021/acs.chemrev.6b00558
10.1038/nnano.2010.172
10.3390/s150922914
10.1021/acsami.6b16786
10.1146/annurev-matsci-071312-121634
10.1039/C9NR08063E
10.1021/acs.jcim.5b00261
10.1038/s41578-020-0185-1
10.1038/s41699-018-0063-5
10.1038/s41598-016-0028-x
10.1038/s41565-020-0682-9
10.1039/c3cp53971g
10.1002/aenm.201903870
10.1016/j.mattod.2020.11.023
10.1103/PhysRevB.99.054105
10.1126/science.1098252
10.1021/acscatal.7b01517
10.1021/acs.nanolett.6b01459
10.1021/acsaem.9b01008
10.1126/science.abd3230
10.1039/C8TA08781D
10.1016/j.jpcs.2017.09.017
10.1063/1.3676084
10.1039/D0CP02841J
10.1063/1.4812323
10.1038/s41467-020-17296-0
10.1038/s41586-020-2970-9
10.1021/nn204198g
10.1126/science.aag2421
10.1088/0034-4885/61/9/002
10.1107/S2053273318008628
10.1021/acsnano.0c08429
10.1002/inf2.12028
10.1103/PhysRev.140.A1133
10.1063/1.4922404
10.1063/1.4934750
10.1126/science.aac9439
10.1016/j.nanoen.2019.03.027
10.1021/cr200066h
10.1103/PhysRevB.78.205203
10.1038/nnano.2015.242
10.1039/D0NR07027K
10.1021/acs.jpcc.0c02199
10.7567/APEX.11.041201
10.1103/PhysRevB.98.085410
10.1021/acs.jpcc.5b01562
10.1063/1.5000496
10.1103/PhysRevLett.118.106101
10.1021/acssuschemeng.0c01827
10.1038/s41467-020-20667-2
10.1103/PhysRevB.95.155426
10.1038/s41524-020-0280-2
10.1021/acs.nanolett.0c04819
10.1063/1.4966192
10.1002/adma.201905504
10.1038/nmat4091
10.1016/j.apsusc.2012.04.005
10.1016/j.nanoen.2021.105899
10.1039/C8CP02793E
10.1021/acsnano.7b03186
10.1039/C8CP04669G
10.1021/acsami.1c00650
10.1039/D0NR07000A
10.1021/acsnano.8b02844
10.1038/s41565-017-0035-5
10.1038/am.2014.124
10.1007/s11837-016-1998-7
10.1039/C9NR07586K
10.1126/science.aao4249
10.1126/science.abe8177
10.1021/acs.chemrev.5b00691
10.1016/j.carbon.2020.02.070
10.1007/s12274-015-0878-8
10.1103/PhysRevB.77.033403
10.1002/aisy.202100080
10.1002/adma.202000006
10.1515/nanoph-2018-0106
10.1038/s41597-019-0097-3
10.1103/PhysRevB.62.15851
10.1021/acs.jpcc.0c05134
10.1007/s11837-016-2001-3
10.1002/adts.202000029
10.1021/acsnano.5b03394
10.1016/j.nanoen.2019.01.025
10.1103/PhysRevLett.83.1347
10.1038/s41467-018-05672-w
10.1088/0034-4885/75/3/036503
10.1080/00150198308009061
10.1038/s41467-021-23341-3
10.1021/nl901754t
10.1002/adma.202002979
10.1063/1.5091842
10.1002/pssb.201600387
10.1038/s41565-020-0708-3
10.1038/ncomms15679
10.1038/ncomms10808
10.1021/acsnano.7b03313
10.1038/s41467-020-15023-3
10.1209/0295-5075/102/57001
10.1103/PhysRevApplied.9.044032
10.1021/acs.nanolett.7b02198
10.1038/npjcompumats.2015.10
10.1002/adma.201803249
10.1002/adma.202105879
10.1006/spmi.1999.0797
10.1038/s41699-020-0137-z
10.1063/1.4890385
10.1063/1.5122755
10.1126/science.1102896
10.1002/adma.201905795
10.1115/1.4032378
10.1021/acsanm.0c02513
10.1039/D0TA06379G
10.1039/C6RA21781H
10.1063/1.1518559
10.1002/adma.201606667
10.1038/s41586-020-2208-x
10.1002/anie.199305031
10.1038/natrevmats.2016.61
10.1063/5.0039605
10.1098/rsta.2012.0200
10.1021/jz3012436
10.1039/C7CP05669A
10.1021/acs.jpcc.9b07348
10.1021/acs.chemmater.7b02031
10.1021/acsami.9b16866
10.1002/adts.201800128
10.1063/1.1623330
10.1039/C9CC03326B
10.1002/adma.201800342
10.1038/s41598-019-39238-7
10.1038/s41467-019-08594-3
10.1002/adma.202005098
10.1038/ncomms5284
10.1107/S0108768102006948
10.1103/PhysRev.136.B864
10.1038/nnano.2017.100
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/d1cs00844g
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Electronics & Communications Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database

MEDLINE
AGRICOLA
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Engineering
EISSN 1460-4744
EndPage 671
ExternalDocumentID 34931635
10_1039_D1CS00844G
d1cs00844g
Genre Journal Article
Review
GroupedDBID -
0-7
02
0R
29B
4.4
5GY
70
705
70J
7~J
85S
AAEMU
AAGNR
AAIWI
AANOJ
ABASK
ABDVN
ABFLS
ABGFH
ABPTK
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
ADSRN
AENEX
AFVBQ
AGKEF
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
COF
CS3
DU5
DZ
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ
H~N
IDZ
J3I
JG
M4U
N9A
O9-
OK1
P2P
R7B
R7D
RCNCU
RIG
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKH
SLH
TN5
TWZ
UPT
VH6
WH7
X
XOL
---
-DZ
-~X
0R~
2WC
53G
6J9
70~
AAHBH
AAJAE
AAMEH
AAWGC
AAXHV
AAXPP
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
ACGFO
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGRSR
AHGCF
AKMSF
ALUYA
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
R56
RAOCF
~02
-JG
CGR
CUY
CVF
ECM
EIF
NPM
YIN
Z5M
7SP
7SR
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c406t-6cd0bb45bd932959763ea74c0c062c299940997f4cd699ebcb05ca663cc48c2e3
ISSN 0306-0012
1460-4744
IngestDate Thu Jul 10 23:19:24 EDT 2025
Fri Jul 11 06:16:44 EDT 2025
Mon Jun 30 07:06:32 EDT 2025
Wed Feb 19 02:27:11 EST 2025
Tue Jul 01 04:18:47 EDT 2025
Thu Apr 24 22:58:05 EDT 2025
Tue Jan 25 04:31:01 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c406t-6cd0bb45bd932959763ea74c0c062c299940997f4cd699ebcb05ca663cc48c2e3
Notes Alexander Corletto is currently a research fellow in electronic nanomaterials in the Department of Chemical Engineering at the University of Melbourne. Alexander's research involves the synthesis, manipulation, and characterisation of novel nanomaterials and their heterostructures, aiming to discover optimised materials for energy applications including photocatalysis, photovoltaics, piezoelectricity, and others. He also has interest in the scalable manipulation and patterning of these nanomaterials for advanced device fabrication. He completed his PhD research at the Australian Institute for Bioengineering and Nanotechnology at the University of Queensland which involved investigating novel high-resolution patterning techniques for carbon nanotubes and nanomaterials.
Peter researches the synthesis, assembly, and characterisation of materials. He designs approaches to exploit structure-property relationships for mechanical-to-electrical energy conversion, electrochemical energy storage, catalysis, and biomaterial surfaces. Currently, he holds a prestigious Elizabeth & Vernon Puzey Research Fellowship at the University of Melbourne, and is an Honorary Fellow at the ARC Centre of Excellence for Electromaterials Science, Associate Investigator for the ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, and Visiting Fellow at RMIT. Previously, he held a Marie Sklodowska-Curie Individual Fellow at Imperial College London, and a Research Fellowship at Linköpings Universitet.
Dr Nick A. Shepelin obtained his Bachelor of Science degree from Flinders University (2017) and his PhD degree from the University of Melbourne (2020) which was awarded with the Chancellor's Prize for Excellence. He currently holds a position in the Laboratory for Multiscale Materials Experiments at Paul Scherrer Institut as a Postdoctoral Fellow. His research focuses on interface, strain, and domain engineering of non-linear dielectric materials, spanning from piezoelectricity for sustainable energy harvesting to antiferroelectricity for robust energy storage applications. His research exploits a variety of material compositions, such as bulk polymers, two-dimensional materials, inorganic oxides, and oxynitrides.
David Winkler is a Professor at La Trobe Institute for Molecular Science at La Trobe University, a visiting Professor at the University of Nottingham, and a Fellow at CSIRO Data61. His research on applying computational chemistry, AI, and machine learning methods to the design of drugs, agrochemicals, nanomaterials, and biomaterials, has led to over 200 journal articles and book chapters, and 25 patents. He has won prestigious awards including the CSIRO Medal for Business Excellence, RACI's Adrien Albeirt award, and the ACS Herman Skolnik award. He is ranked 227th of 81 000 medicinal chemists, and 999th of 520 000 chemists worldwide (Mendeley 2019).
Professor Amanda Ellis is the Head of Department of Chemical Engineering at the University of Melbourne, Australia. She graduated from the University of Technology, Sydney in 2003 and has undertaken postdoctoral appointments at Rensselaer Polytechnic Institute, New Mexico State University and Callaghan Innovations, NZ. She has been a Professor and Australian Research Future Fellow at Flinders University, South Australia. Amanda is an applied chemist/nanotechnologist her work focuses on the surface and interfacial chemistries for energy storage/harvesting and device applications.
Marco Fronzi is an Associate Professor at the Shibaura Institute of Technology. He received his Bachelor's/Master's Degree of Physics in 2003, and his PhD in Computational Material Science in 2009 at Tor Vergata University in Rome (Italy). In 2010, he was awarded the Japan Society for the Promotion of Science Fellowship to conduct research at the National Institute for Materials Science (Japan). He has held positions with prestigious institutes, including Osaka University, University of Technology Sydney, and Tyndall National Institute. His interests lie in theoretical/computational models for understanding/predicting properties of materials, and discovery of novel materials for energy conversion applications.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5446-9213
0000-0002-4000-2751
0000-0002-7301-6076
0000-0001-7855-9216
0000-0002-0053-5641
0000-0003-4644-6238
0000-0001-6021-923X
OpenAccessLink https://figshare.com/articles/journal_contribution/A_Bright_Future_for_Engineering_2D_Crystal_Piezoelectricity/17161424
PMID 34931635
PQID 2622294036
PQPubID 2047503
PageCount 22
ParticipantIDs proquest_journals_2622294036
rsc_primary_d1cs00844g
proquest_miscellaneous_2612387168
crossref_primary_10_1039_D1CS00844G
pubmed_primary_34931635
crossref_citationtrail_10_1039_D1CS00844G
proquest_miscellaneous_2648858946
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-24
PublicationDateYYYYMMDD 2022-01-24
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-24
  day: 24
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Chemical Society reviews
PublicationTitleAlternate Chem Soc Rev
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chandratre (D1CS00844G/cit2/1) 2012; 100
Damjanovic (D1CS00844G/cit9/1) 1998; 61
Tannarana (D1CS00844G/cit56/1) 2020; 8
Beige (D1CS00844G/cit172/1) 1983; 51
Li (D1CS00844G/cit31/1) 2018; 51
Briscoe (D1CS00844G/cit176/1) 2013; 6
Jin (D1CS00844G/cit65/1) 2016; 7
Gu (D1CS00844G/cit75/1) 2021; 15
Klimeck (D1CS00844G/cit143/1) 2000; 27
Guo (D1CS00844G/cit109/1) 2020; 127
Li (D1CS00844G/cit29/1) 2020; 13
Pesci (D1CS00844G/cit81/1) 2017; 7
Goedecker (D1CS00844G/cit141/1) 1999; 71
Nye (D1CS00844G/cit170/1) 1985
Zelisko (D1CS00844G/cit13/1) 2014; 5
Ghasemian (D1CS00844G/cit8/1) 2020; 12
Puchala (D1CS00844G/cit127/1) 2016; 68
Sokolikova (D1CS00844G/cit52/1) 2019; 10
Rawat (D1CS00844G/cit120/1) 2020; 124
Qiu (D1CS00844G/cit105/1) 2021; 129
Singh (D1CS00844G/cit156/1) 2016
Blaiszik (D1CS00844G/cit128/1) 2016; 68
Kang (D1CS00844G/cit97/1) 2019; 58
Drissi (D1CS00844G/cit22/1) 2018; 112
Li (D1CS00844G/cit23/1) 2015; 8
Yuan (D1CS00844G/cit86/1) 2020; 3
Zhang (D1CS00844G/cit88/1) 2016; 16
Gomes (D1CS00844G/cit50/1) 2015; 92
Kim (D1CS00844G/cit79/1) 2006; 88
Paul (D1CS00844G/cit161/1) 2017; 29
Tan (D1CS00844G/cit15/1) 2018; 3
Khan (D1CS00844G/cit49/1) 2020; 11
Kirklin (D1CS00844G/cit123/1) 2015; 1
Guo (D1CS00844G/cit28/1) 2017; 110
Cui (D1CS00844G/cit66/1) 2018; 2
Alyörük (D1CS00844G/cit51/1) 2015; 119
Li (D1CS00844G/cit95/1) 2021
Noor-A-Alam (D1CS00844G/cit3/1) 2014; 16
Zhai (D1CS00844G/cit7/1) 2020; 22
Qi (D1CS00844G/cit71/1) 2021; 33
Liu (D1CS00844G/cit78/1) 2016; 7
Cheng (D1CS00844G/cit101/1) 2013; 102
Ma (D1CS00844G/cit35/1) 2020; 32
Fronzi (D1CS00844G/cit136/1) 2021; 3
Yin (D1CS00844G/cit24/1) 2017; 19
Hachmann (D1CS00844G/cit125/1) 2011; 2
Weston (D1CS00844G/cit17/1) 2020; 15
Ong (D1CS00844G/cit20/1) 2012; 6
Novoselov (D1CS00844G/cit5/1) 2016; 353
Gruverman (D1CS00844G/cit64/1) 2009; 9
Shahzad (D1CS00844G/cit73/1) 2016; 353
Andreev (D1CS00844G/cit171/1) 2000; 62
Ziletti (D1CS00844G/cit32/1) 2015; 91
Ares (D1CS00844G/cit34/1) 2020; 32
Krichen (D1CS00844G/cit96/1) 2016; 83
Carvalho (D1CS00844G/cit21/1) 2016; 1
Kripalani (D1CS00844G/cit37/1) 2018; 98
Momida (D1CS00844G/cit41/1) 2018; 11
Gasteiger (D1CS00844G/cit150/1) 1993; 32
Tan (D1CS00844G/cit166/1) 2017; 117
Duerloo (D1CS00844G/cit14/1) 2012; 3
Woods (D1CS00844G/cit91/1) 2021; 12
Belsky (D1CS00844G/cit122/1) 2002; 58
Behler (D1CS00844G/cit148/1) 2016; 145
Allen (D1CS00844G/cit124/1) 2002; 58
Song (D1CS00844G/cit18/1) 2017; 111
Hegde (D1CS00844G/cit144/1) 2014; 115
Monastyreckis (D1CS00844G/cit72/1) 2020; 162
Ceriotti (D1CS00844G/cit145/1) 2019; 150
Jurczak (D1CS00844G/cit168/1) 2018; 74
McGilly (D1CS00844G/cit94/1) 2020; 15
Shaltaf (D1CS00844G/cit12/1) 2008; 78
Jang (D1CS00844G/cit61/1) 2021; 84
Kalinin (D1CS00844G/cit117/1) 2008; 77
Zhou (D1CS00844G/cit76/1) 2017; 17
Anasori (D1CS00844G/cit59/1) 2017; 2
Apte (D1CS00844G/cit99/1) 2020; 32
Fong (D1CS00844G/cit62/1) 2004; 304
Zhang (D1CS00844G/cit103/1) 2017; 11
Sherrell (D1CS00844G/cit82/1) 2019; 2
Geisenhoff (D1CS00844G/cit55/1) 2019; 55
Mohanta (D1CS00844G/cit85/1) 2020; 12
Han (D1CS00844G/cit100/1) 2018; 30
Lin (D1CS00844G/cit6/1) 2020; 10
Chen (D1CS00844G/cit106/1) 2019; 21
Lu (D1CS00844G/cit39/1) 2016; 6
Vizner Stern (D1CS00844G/cit92/1) 2021; 372
Mitchell (D1CS00844G/cit146/1) 1997
Leng (D1CS00844G/cit67/1) 2020; 5
Mohanta (D1CS00844G/cit84/1) 2020; 12
Fronzi (D1CS00844G/cit130/1) 2020; 3
Isayev (D1CS00844G/cit135/1) 2017; 8
Ashton (D1CS00844G/cit155/1) 2017; 118
Guo (D1CS00844G/cit48/1) 2017; 9
Huang (D1CS00844G/cit87/1) 2015; 5
Zhou (D1CS00844G/cit152/1) 2019; 6
Wei (D1CS00844G/cit147/1) 2019; 1
Kumbhakar (D1CS00844G/cit45/1) 2021; 45
Iyikanat (D1CS00844G/cit114/1) 2015; 119
Dłużewski (D1CS00844G/cit169/1) 2000; 60
Sherrell (D1CS00844G/cit112/1) 2018; 3
Jenkins (D1CS00844G/cit36/1) 2015; 15
Bowler (D1CS00844G/cit139/1) 2012; 75
Ghasemian (D1CS00844G/cit46/1) 2020; 8
Jain (D1CS00844G/cit126/1) 2013; 1
Alyörük (D1CS00844G/cit43/1) 2016; 253
Bernstein (D1CS00844G/cit151/1) 1978; 185
Shepelin (D1CS00844G/cit10/1) 2021; 12
Ahammed (D1CS00844G/cit110/1) 2020; 124
Goringe (D1CS00844G/cit142/1) 1997; 60
Tran (D1CS00844G/cit40/1) 2016; 11
Falconi (D1CS00844G/cit177/1) 2019; 59
Haastrup (D1CS00844G/cit154/1) 2018; 5
Zhuang (D1CS00844G/cit1/1) 2019; 99
Momeni (D1CS00844G/cit158/1) 2020; 6
Kohn (D1CS00844G/cit138/1) 1965; 140
Zheng (D1CS00844G/cit93/1) 2020; 588
Eivari (D1CS00844G/cit163/1) 2017; 29
Li (D1CS00844G/cit89/1) 2019; 9
Ma (D1CS00844G/cit119/1) 2002; 81
Jurczak (D1CS00844G/cit175/1) 2012; 260
Sokolikova (D1CS00844G/cit58/1) 2020; 49
Jamdagni (D1CS00844G/cit38/1) 2019; 123
Hegde (D1CS00844G/cit140/1) 2017; 7
Zubko (D1CS00844G/cit116/1) 2013; 43
Gong (D1CS00844G/cit16/1) 2014; 13
Chen (D1CS00844G/cit54/1) 2019; 9
Lu (D1CS00844G/cit102/1) 2017; 12
Le (D1CS00844G/cit132/1) 2012; 112
Hohenberg (D1CS00844G/cit137/1) 1964; 136
Fonoberov (D1CS00844G/cit173/1) 2003; 94
Yin (D1CS00844G/cit80/1) 2018; 20
Cheema (D1CS00844G/cit69/1) 2020; 580
Blonsky (D1CS00844G/cit27/1) 2015; 9
Choudhary (D1CS00844G/cit160/1) 2018; 2
Lee (D1CS00844G/cit118/1) 2012; 370
Tawfik (D1CS00844G/cit129/1) 2019; 2
Krizhevsky (D1CS00844G/cit157/1) 2012
Li (D1CS00844G/cit115/1) 2020; 11
Dong (D1CS00844G/cit104/1) 2017; 11
Wang (D1CS00844G/cit57/1) 2020; 12
Choi (D1CS00844G/cit98/1) 2021; 13
Šutka (D1CS00844G/cit11/1) 2020; 32
Ugeda (D1CS00844G/cit53/1) 2018; 9
Yasuda (D1CS00844G/cit90/1) 2021; 372
You (D1CS00844G/cit131/1) 2019; 8
Tipton (D1CS00844G/cit164/1) 2013; 25
Sumpter (D1CS00844G/cit149/1) 1994; 45
Masubuchi (D1CS00844G/cit133/1) 2020; 4
Wang (D1CS00844G/cit19/1) 2015; 7
Tan (D1CS00844G/cit74/1) 2019; 65
Mohanta (D1CS00844G/cit83/1) 2019; 11
Burden (D1CS00844G/cit134/1) 2015; 55
Reimers (D1CS00844G/cit33/1) 2018; 9
Novoselov (D1CS00844G/cit121/1) 2004; 306
Lee (D1CS00844G/cit4/1) 2017; 29
Xue (D1CS00844G/cit77/1) 2018; 12
Nandi (D1CS00844G/cit107/1) 2021; 13
Dimitrakopulos (D1CS00844G/cit174/1) 2010; 108
Nordlander (D1CS00844G/cit70/1) 2021; 21
Kahraman (D1CS00844G/cit108/1) 2019; 123
Le (D1CS00844G/cit162/1) 2016; 116
Singh (D1CS00844G/cit165/1) 2017; 95
Wang (D1CS00844G/cit60/1) 2019; 29
Li (D1CS00844G/cit30/1) 2018; 9
Bellaiche (D1CS00844G/cit42/1) 1999; 83
Dean (D1CS00844G/cit167/1) 2010; 5
Dimple (D1CS00844G/cit111/1) 2018; 6
Zavabeti (D1CS00844G/cit44/1) 2017; 358
You (D1CS00844G/cit68/1) 2018; 30
Fong (D1CS00844G/cit63/1) 2004; 304
Noor-A-Alam (D1CS00844G/cit25/1) 2015; 117
Fei (D1CS00844G/cit47/1) 2015; 107
Patra (D1CS00844G/cit159/1) 2018; 12
Nam (D1CS00844G/cit113/1) 2019; 37
Mounet (D1CS00844G/cit153/1) 2018; 13
Chang (D1CS00844G/cit26/1) 2014; 105
References_xml – issn: 2016
  end-page: p 1310-1315
  publication-title: 3rd International Conference on Computing for Sustainable Global Development (INDIACom)
  doi: Singh Thakur Sharma
– issn: 1985
  publication-title: Physical properties of crystals: their representation by tensors and matrices
  doi: Nye
– issn: 2012
  end-page: p 1097-1105
  publication-title: Advances in neural information processing systems
  doi: Krizhevsky Sutskever Hinton
– issn: 1997
  publication-title: Machine learning
  doi: Mitchell
– volume: 110
  start-page: 163102
  year: 2017
  ident: D1CS00844G/cit28/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4981877
– volume: 71
  start-page: 1085
  year: 1999
  ident: D1CS00844G/cit141/1
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.71.1085
– volume: 6
  start-page: 3035
  year: 2013
  ident: D1CS00844G/cit176/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41889h
– volume: 91
  start-page: 085407
  year: 2015
  ident: D1CS00844G/cit32/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.91.085407
– volume: 127
  start-page: 064302
  year: 2020
  ident: D1CS00844G/cit109/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5134960
– volume: 45
  start-page: 439
  year: 1994
  ident: D1CS00844G/cit149/1
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.45.100194.002255
– volume: 58
  start-page: 380
  year: 2002
  ident: D1CS00844G/cit124/1
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S0108768102003890
– volume: 2
  start-page: 2241
  year: 2011
  ident: D1CS00844G/cit125/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz200866s
– volume: 88
  start-page: 142904
  year: 2006
  ident: D1CS00844G/cit79/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2185614
– volume: 115
  start-page: 123703
  year: 2014
  ident: D1CS00844G/cit144/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4868977
– volume: 92
  start-page: 214103
  year: 2015
  ident: D1CS00844G/cit50/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.92.214103
– volume: 119
  start-page: 23231
  year: 2015
  ident: D1CS00844G/cit51/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b06428
– volume: 5
  start-page: 042002
  year: 2018
  ident: D1CS00844G/cit154/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aacfc1
– volume: 51
  start-page: 12LT01
  year: 2018
  ident: D1CS00844G/cit31/1
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aaad98
– volume: 29
  start-page: 1808843
  year: 2019
  ident: D1CS00844G/cit60/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808843
– volume: 37
  start-page: 020916
  year: 2019
  ident: D1CS00844G/cit113/1
  publication-title: J. Vac. Sci. Technol., A
  doi: 10.1116/1.5079583
– volume: 108
  start-page: 104304
  year: 2010
  ident: D1CS00844G/cit174/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3506686
– volume: 12
  start-page: 51662
  year: 2020
  ident: D1CS00844G/cit57/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c16039
– volume: 3
  start-page: 17089
  year: 2018
  ident: D1CS00844G/cit15/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.89
– volume: 12
  start-page: 4976
  year: 2018
  ident: D1CS00844G/cit77/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02152
– volume: 49
  start-page: 3952
  year: 2020
  ident: D1CS00844G/cit58/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00143K
– volume: 2
  start-page: 083801
  year: 2018
  ident: D1CS00844G/cit160/1
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.2.083801
– volume: 185
  start-page: 584
  year: 1978
  ident: D1CS00844G/cit151/1
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(78)90204-7
– volume: 29
  start-page: 473001
  year: 2017
  ident: D1CS00844G/cit161/1
  publication-title: J. Phys.: Condens. Matter
– volume: 9
  start-page: 7620
  year: 2018
  ident: D1CS00844G/cit33/1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC01274A
– volume: 123
  start-page: 4549
  year: 2019
  ident: D1CS00844G/cit108/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b11837
– volume: 3
  start-page: 8655
  year: 2018
  ident: D1CS00844G/cit112/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b00766
– volume: 2
  start-page: 16098
  year: 2017
  ident: D1CS00844G/cit59/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– volume: 60
  start-page: 1447
  year: 1997
  ident: D1CS00844G/cit142/1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/60/12/001
– start-page: 1310
  volume-title: 3rd International Conference on Computing for Sustainable Global Development (INDIACom)
  year: 2016
  ident: D1CS00844G/cit156/1
– volume: 13
  start-page: 054061
  year: 2020
  ident: D1CS00844G/cit29/1
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.054061
– volume: 65
  start-page: 104058
  year: 2019
  ident: D1CS00844G/cit74/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104058
– volume: 117
  start-page: 6225
  year: 2017
  ident: D1CS00844G/cit166/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00558
– volume: 5
  start-page: 722
  year: 2010
  ident: D1CS00844G/cit167/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.172
– volume: 15
  start-page: 22914
  year: 2015
  ident: D1CS00844G/cit36/1
  publication-title: Sensors
  doi: 10.3390/s150922914
– volume: 9
  start-page: 12013
  year: 2017
  ident: D1CS00844G/cit48/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16786
– volume: 43
  start-page: 387
  year: 2013
  ident: D1CS00844G/cit116/1
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-071312-121634
– volume: 12
  start-page: 2875
  year: 2020
  ident: D1CS00844G/cit8/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR08063E
– volume: 55
  start-page: 1529
  year: 2015
  ident: D1CS00844G/cit134/1
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.5b00261
– volume: 5
  start-page: 482
  year: 2020
  ident: D1CS00844G/cit67/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0185-1
– volume: 2
  start-page: 18
  year: 2018
  ident: D1CS00844G/cit66/1
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-018-0063-5
– volume: 7
  start-page: 1
  year: 2017
  ident: D1CS00844G/cit140/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0028-x
– volume: 15
  start-page: 592
  year: 2020
  ident: D1CS00844G/cit17/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0682-9
– volume: 16
  start-page: 6575
  year: 2014
  ident: D1CS00844G/cit3/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp53971g
– volume: 10
  start-page: 1903870
  year: 2020
  ident: D1CS00844G/cit6/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903870
– volume: 45
  start-page: 142
  year: 2021
  ident: D1CS00844G/cit45/1
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.11.023
– volume: 99
  start-page: 054105
  year: 2019
  ident: D1CS00844G/cit1/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.054105
– volume: 304
  start-page: 1650
  year: 2004
  ident: D1CS00844G/cit62/1
  publication-title: Science
  doi: 10.1126/science.1098252
– volume: 7
  start-page: 4990
  year: 2017
  ident: D1CS00844G/cit81/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01517
– volume: 16
  start-page: 4903
  year: 2016
  ident: D1CS00844G/cit88/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01459
– volume: 2
  start-page: 5877
  year: 2019
  ident: D1CS00844G/cit82/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01008
– volume: 372
  start-page: 1458
  year: 2021
  ident: D1CS00844G/cit90/1
  publication-title: Science
  doi: 10.1126/science.abd3230
– volume: 6
  start-page: 24885
  year: 2018
  ident: D1CS00844G/cit111/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08781D
– volume: 112
  start-page: 137
  year: 2018
  ident: D1CS00844G/cit22/1
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2017.09.017
– volume: 100
  start-page: 023114
  year: 2012
  ident: D1CS00844G/cit2/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3676084
– volume: 22
  start-page: 22140
  year: 2020
  ident: D1CS00844G/cit7/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP02841J
– volume: 1
  start-page: 011002
  year: 2013
  ident: D1CS00844G/cit126/1
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– volume: 11
  start-page: 3449
  year: 2020
  ident: D1CS00844G/cit49/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17296-0
– start-page: 1097
  volume-title: Advances in neural information processing systems
  year: 2012
  ident: D1CS00844G/cit157/1
– volume: 588
  start-page: 71
  year: 2020
  ident: D1CS00844G/cit93/1
  publication-title: Nature
  doi: 10.1038/s41586-020-2970-9
– volume: 6
  start-page: 1387
  year: 2012
  ident: D1CS00844G/cit20/1
  publication-title: ACS Nano
  doi: 10.1021/nn204198g
– volume: 353
  start-page: 1137
  year: 2016
  ident: D1CS00844G/cit73/1
  publication-title: Science
  doi: 10.1126/science.aag2421
– volume: 61
  start-page: 1267
  year: 1998
  ident: D1CS00844G/cit9/1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/61/9/002
– volume: 74
  start-page: 518
  year: 2018
  ident: D1CS00844G/cit168/1
  publication-title: Acta Crystallogr., Sect. A: Found. Adv.
  doi: 10.1107/S2053273318008628
– volume: 15
  start-page: 6233
  year: 2021
  ident: D1CS00844G/cit75/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c08429
– volume: 1
  start-page: 338
  year: 2019
  ident: D1CS00844G/cit147/1
  publication-title: InfoMat
  doi: 10.1002/inf2.12028
– volume: 140
  start-page: A1133
  year: 1965
  ident: D1CS00844G/cit138/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 117
  start-page: 224304
  year: 2015
  ident: D1CS00844G/cit25/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4922404
– volume: 107
  start-page: 173104
  year: 2015
  ident: D1CS00844G/cit47/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4934750
– volume: 304
  start-page: 1650
  year: 2004
  ident: D1CS00844G/cit63/1
  publication-title: Science
  doi: 10.1126/science.1098252
– volume: 353
  start-page: aac9439
  year: 2016
  ident: D1CS00844G/cit5/1
  publication-title: Science
  doi: 10.1126/science.aac9439
– volume: 59
  start-page: 730
  year: 2019
  ident: D1CS00844G/cit177/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.03.027
– volume: 112
  start-page: 2889
  year: 2012
  ident: D1CS00844G/cit132/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr200066h
– volume: 78
  start-page: 205203
  year: 2008
  ident: D1CS00844G/cit12/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.78.205203
– volume: 11
  start-page: 37
  year: 2016
  ident: D1CS00844G/cit40/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.242
– volume: 13
  start-page: 5460
  year: 2021
  ident: D1CS00844G/cit107/1
  publication-title: Nanoscale
  doi: 10.1039/D0NR07027K
– volume: 124
  start-page: 10385
  year: 2020
  ident: D1CS00844G/cit120/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c02199
– volume: 11
  start-page: 041201
  year: 2018
  ident: D1CS00844G/cit41/1
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.11.041201
– volume: 98
  start-page: 085410
  year: 2018
  ident: D1CS00844G/cit37/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.085410
– volume: 119
  start-page: 10709
  year: 2015
  ident: D1CS00844G/cit114/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b01562
– volume: 111
  start-page: 083107
  year: 2017
  ident: D1CS00844G/cit18/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5000496
– volume: 118
  start-page: 106101
  year: 2017
  ident: D1CS00844G/cit155/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.106101
– volume: 8
  start-page: 7741
  year: 2020
  ident: D1CS00844G/cit56/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c01827
– volume: 12
  start-page: 347
  year: 2021
  ident: D1CS00844G/cit91/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20667-2
– volume-title: Physical properties of crystals: their representation by tensors and matrices
  year: 1985
  ident: D1CS00844G/cit170/1
– volume: 95
  start-page: 155426
  year: 2017
  ident: D1CS00844G/cit165/1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.155426
– volume: 6
  start-page: 1
  year: 2020
  ident: D1CS00844G/cit158/1
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-0280-2
– volume: 21
  start-page: 2780
  year: 2021
  ident: D1CS00844G/cit70/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c04819
– volume: 145
  start-page: 170901
  year: 2016
  ident: D1CS00844G/cit148/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4966192
– volume: 32
  start-page: 1905504
  year: 2020
  ident: D1CS00844G/cit34/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905504
– volume: 13
  start-page: 1135
  year: 2014
  ident: D1CS00844G/cit16/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4091
– volume: 260
  start-page: 59
  year: 2012
  ident: D1CS00844G/cit175/1
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.04.005
– volume: 84
  start-page: 105899
  year: 2021
  ident: D1CS00844G/cit61/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105899
– volume: 20
  start-page: 19177
  year: 2018
  ident: D1CS00844G/cit80/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP02793E
– volume: 11
  start-page: 8192
  year: 2017
  ident: D1CS00844G/cit103/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03186
– volume: 21
  start-page: 1207
  year: 2019
  ident: D1CS00844G/cit106/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C8CP04669G
– volume: 13
  start-page: 13596
  year: 2021
  ident: D1CS00844G/cit98/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c00650
– volume: 12
  start-page: 22645
  year: 2020
  ident: D1CS00844G/cit84/1
  publication-title: Nanoscale
  doi: 10.1039/D0NR07000A
– volume: 12
  start-page: 8006
  year: 2018
  ident: D1CS00844G/cit159/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02844
– volume: 13
  start-page: 246
  year: 2018
  ident: D1CS00844G/cit153/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-017-0035-5
– volume: 7
  start-page: e154
  year: 2015
  ident: D1CS00844G/cit19/1
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2014.124
– volume: 68
  start-page: 2035
  year: 2016
  ident: D1CS00844G/cit127/1
  publication-title: JOM
  doi: 10.1007/s11837-016-1998-7
– volume: 11
  start-page: 21880
  year: 2019
  ident: D1CS00844G/cit83/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR07586K
– volume: 358
  start-page: 332
  year: 2017
  ident: D1CS00844G/cit44/1
  publication-title: Science
  doi: 10.1126/science.aao4249
– volume: 372
  start-page: 1462
  year: 2021
  ident: D1CS00844G/cit92/1
  publication-title: Science
  doi: 10.1126/science.abe8177
– volume: 116
  start-page: 6107
  year: 2016
  ident: D1CS00844G/cit162/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00691
– volume: 162
  start-page: 402
  year: 2020
  ident: D1CS00844G/cit72/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.02.070
– volume: 5
  start-page: 1
  year: 2015
  ident: D1CS00844G/cit87/1
  publication-title: Sci. Rep.
– volume: 8
  start-page: 3796
  year: 2015
  ident: D1CS00844G/cit23/1
  publication-title: Nano Res.
  doi: 10.1007/s12274-015-0878-8
– volume: 77
  start-page: 033403
  year: 2008
  ident: D1CS00844G/cit117/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.77.033403
– volume: 3
  start-page: 2100080
  year: 2021
  ident: D1CS00844G/cit136/1
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202100080
– volume: 25
  start-page: 495401
  year: 2013
  ident: D1CS00844G/cit164/1
  publication-title: J. Phys.: Condens. Matter
– volume: 32
  start-page: 2000006
  year: 2020
  ident: D1CS00844G/cit99/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000006
– volume: 8
  start-page: 63
  year: 2019
  ident: D1CS00844G/cit131/1
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2018-0106
– volume: 6
  start-page: 86
  year: 2019
  ident: D1CS00844G/cit152/1
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0097-3
– volume: 62
  start-page: 15851
  year: 2000
  ident: D1CS00844G/cit171/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.62.15851
– volume: 124
  start-page: 21250
  year: 2020
  ident: D1CS00844G/cit110/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c05134
– volume: 68
  start-page: 2045
  year: 2016
  ident: D1CS00844G/cit128/1
  publication-title: JOM
  doi: 10.1007/s11837-016-2001-3
– volume: 3
  start-page: 2000029
  year: 2020
  ident: D1CS00844G/cit130/1
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.202000029
– volume: 9
  start-page: 9885
  year: 2015
  ident: D1CS00844G/cit27/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03394
– volume: 58
  start-page: 57
  year: 2019
  ident: D1CS00844G/cit97/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.025
– volume: 83
  start-page: 1347
  year: 1999
  ident: D1CS00844G/cit42/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.1347
– volume: 9
  start-page: 3401
  year: 2018
  ident: D1CS00844G/cit53/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05672-w
– volume: 75
  start-page: 036503
  year: 2012
  ident: D1CS00844G/cit139/1
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/75/3/036503
– volume: 51
  start-page: 113
  year: 1983
  ident: D1CS00844G/cit172/1
  publication-title: Ferroelectrics
  doi: 10.1080/00150198308009061
– volume: 12
  start-page: 3171
  year: 2021
  ident: D1CS00844G/cit10/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23341-3
– volume: 9
  start-page: 3539
  year: 2009
  ident: D1CS00844G/cit64/1
  publication-title: Nano Lett.
  doi: 10.1021/nl901754t
– volume-title: Machine learning
  year: 1997
  ident: D1CS00844G/cit146/1
– volume: 32
  start-page: 2002979
  year: 2020
  ident: D1CS00844G/cit11/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002979
– volume: 150
  start-page: 150901
  year: 2019
  ident: D1CS00844G/cit145/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5091842
– volume: 253
  start-page: 2534
  year: 2016
  ident: D1CS00844G/cit43/1
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201600387
– volume: 15
  start-page: 580
  year: 2020
  ident: D1CS00844G/cit94/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0708-3
– volume: 8
  start-page: 1
  year: 2017
  ident: D1CS00844G/cit135/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15679
– volume: 7
  start-page: 10808
  year: 2016
  ident: D1CS00844G/cit65/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10808
– volume: 11
  start-page: 8242
  year: 2017
  ident: D1CS00844G/cit104/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03313
– volume: 11
  start-page: 1151
  year: 2020
  ident: D1CS00844G/cit115/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15023-3
– volume: 102
  start-page: 57001
  year: 2013
  ident: D1CS00844G/cit101/1
  publication-title: EPL
  doi: 10.1209/0295-5075/102/57001
– volume: 9
  start-page: 044032
  year: 2018
  ident: D1CS00844G/cit30/1
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.9.044032
– volume: 17
  start-page: 5508
  year: 2017
  ident: D1CS00844G/cit76/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02198
– volume: 1
  start-page: 1
  year: 2015
  ident: D1CS00844G/cit123/1
  publication-title: npj Comput. Mater.
  doi: 10.1038/npjcompumats.2015.10
– volume: 30
  start-page: 1803249
  year: 2018
  ident: D1CS00844G/cit68/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803249
– start-page: 2105879
  year: 2021
  ident: D1CS00844G/cit95/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202105879
– volume: 27
  start-page: 77
  year: 2000
  ident: D1CS00844G/cit143/1
  publication-title: Superlattices Microstruct.
  doi: 10.1006/spmi.1999.0797
– volume: 4
  start-page: 1
  year: 2020
  ident: D1CS00844G/cit133/1
  publication-title: npj 2D Mater. Appl.
  doi: 10.1038/s41699-020-0137-z
– volume: 105
  start-page: 023103
  year: 2014
  ident: D1CS00844G/cit26/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4890385
– volume: 9
  start-page: 115302
  year: 2019
  ident: D1CS00844G/cit89/1
  publication-title: AIP Adv.
  doi: 10.1063/1.5122755
– volume: 306
  start-page: 666
  year: 2004
  ident: D1CS00844G/cit121/1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 32
  start-page: 1905795
  year: 2020
  ident: D1CS00844G/cit35/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905795
– volume: 83
  start-page: 030801
  year: 2016
  ident: D1CS00844G/cit96/1
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4032378
– volume: 3
  start-page: 11979
  year: 2020
  ident: D1CS00844G/cit86/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c02513
– volume: 8
  start-page: 19434
  year: 2020
  ident: D1CS00844G/cit46/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06379G
– volume: 7
  start-page: 1
  year: 2016
  ident: D1CS00844G/cit78/1
  publication-title: Nat. Commun.
– volume: 6
  start-page: 102724
  year: 2016
  ident: D1CS00844G/cit39/1
  publication-title: RSC Adv.
  doi: 10.1039/C6RA21781H
– volume: 81
  start-page: 3440
  year: 2002
  ident: D1CS00844G/cit119/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1518559
– volume: 29
  start-page: 1606667
  year: 2017
  ident: D1CS00844G/cit4/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606667
– volume: 580
  start-page: 478
  year: 2020
  ident: D1CS00844G/cit69/1
  publication-title: Nature
  doi: 10.1038/s41586-020-2208-x
– volume: 32
  start-page: 503
  year: 1993
  ident: D1CS00844G/cit150/1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.199305031
– volume: 1
  start-page: 16061
  year: 2016
  ident: D1CS00844G/cit21/1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.61
– volume: 129
  start-page: 125109
  year: 2021
  ident: D1CS00844G/cit105/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0039605
– volume: 370
  start-page: 4944
  year: 2012
  ident: D1CS00844G/cit118/1
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2012.0200
– volume: 3
  start-page: 2871
  year: 2012
  ident: D1CS00844G/cit14/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3012436
– volume: 19
  start-page: 27508
  year: 2017
  ident: D1CS00844G/cit24/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP05669A
– volume: 123
  start-page: 27214
  year: 2019
  ident: D1CS00844G/cit38/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b07348
– volume: 29
  start-page: 8594
  year: 2017
  ident: D1CS00844G/cit163/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02031
– volume: 60
  start-page: 119
  year: 2000
  ident: D1CS00844G/cit169/1
  publication-title: J. Elasticity Phys. Sci. Solids
– volume: 12
  start-page: 3114
  year: 2020
  ident: D1CS00844G/cit85/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16866
– volume: 2
  start-page: 1800128
  year: 2019
  ident: D1CS00844G/cit129/1
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.201800128
– volume: 94
  start-page: 7178
  year: 2003
  ident: D1CS00844G/cit173/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1623330
– volume: 55
  start-page: 8856
  year: 2019
  ident: D1CS00844G/cit55/1
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC03326B
– volume: 30
  start-page: 1800342
  year: 2018
  ident: D1CS00844G/cit100/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800342
– volume: 9
  start-page: 2685
  year: 2019
  ident: D1CS00844G/cit54/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39238-7
– volume: 10
  start-page: 712
  year: 2019
  ident: D1CS00844G/cit52/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08594-3
– volume: 33
  start-page: 2005098
  year: 2021
  ident: D1CS00844G/cit71/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005098
– volume: 5
  start-page: 4284
  year: 2014
  ident: D1CS00844G/cit13/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5284
– volume: 58
  start-page: 364
  year: 2002
  ident: D1CS00844G/cit122/1
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
  doi: 10.1107/S0108768102006948
– volume: 136
  start-page: B864
  year: 1964
  ident: D1CS00844G/cit137/1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 12
  start-page: 744
  year: 2017
  ident: D1CS00844G/cit102/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.100
SSID ssj0011762
Score 2.6097517
SecondaryResourceType review_article
Snippet The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65
SubjectTerms artificial intelligence
Crystal defects
Crystals
Electricity
Electronic devices
electronic equipment
Electronics
energy conservation
Energy conversion
Energy harvesting
engineering
engineers
exhibitions
fields
Heterostructures
Literature reviews
Machine learning
Materials selection
Miniaturization
Piezoelectricity
prediction
Prospective Studies
strains
Two dimensional materials
Title A bright future for engineering piezoelectric 2D crystals
URI https://www.ncbi.nlm.nih.gov/pubmed/34931635
https://www.proquest.com/docview/2622294036
https://www.proquest.com/docview/2612387168
https://www.proquest.com/docview/2648858946
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgO8AF8TUoGygILijKSG3HjY9VOhgIOHXSblH84qKKqana7ED_-j3XH0nphAaXqHLtyPF7tn_Pz-_3CHmvMjXjo6pOgPIs4ZXKE8U4T4SQDGbDtILMRCN__yHOL_jXy-yy8-huo0tadQqbW-NK_keqWIZyNVGy_yDZ8FIswN8oX3yihPF5JxmPY7U1rmPLDGLpuzuCwXg515vGJrqZQ0wnMax-Ixq8WvchaaAM8Bc4HUFpOHsx5I0-1bG5PBMXp0Hqq2axmbuYH2h6TZbaZYJHVfsVj0OLolmhprS7wTX9owdq7nAkNuLZh1yZ44jU3YPWdgXlIk34yJI6-iXWccrOe5auXS-FZZ11W6-w2Vj2VvWUGVLUybAwcd2cf-72Lu-v_2NLCxcNty52Jsuu7X1ySNGiwDX8cHw2_fItuJyGI-FcTvabPJctkx-71rvoZc8kQYCy8oljtgBl-pg8cpZFNLZq8oTc04un5EHhE_o9I3IcWXWJrLpEqC5RT12iHXWJ6CTy6vKcXHw6mxbnicuckQACtDYRUKdK8UzVCM8l2oyC6WrEIYVUUEAEIrmJmJ5xqIWUWoFKM6gQfALwHKhmR-Rg0Sz0SxIJrgVjucZZCxyr5Yqm9YzWUlciR9t9QD74ESnB0cqb7CZX5f7YD8i7UHdpyVRurXXiB7Z0k21dUmESz3PEWwPyNvyNA2j8W9VCN9emDsIwcwCQ_60O7lhZLjm-54UVWugK45KheZINyBFKMRTXQ1hve_bz1Z36f0wedpPlhBy0q2v9GpFrq944nbsBeY2VXA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bright+future+for+engineering+piezoelectric+2D+crystals&rft.jtitle=Chemical+Society+reviews&rft.au=Sherrell%2C+Peter+C.&rft.au=Fronzi%2C+Marco&rft.au=Shepelin%2C+Nick+A.&rft.au=Corletto%2C+Alexander&rft.date=2022-01-24&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=51&rft.issue=2&rft.spage=650&rft.epage=671&rft_id=info:doi/10.1039%2FD1CS00844G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1CS00844G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon