A bright future for engineering piezoelectric 2D crystals
The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atom...
Saved in:
Published in | Chemical Society reviews Vol. 51; no. 2; pp. 65 - 671 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
24.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0306-0012 1460-4744 1460-4744 |
DOI | 10.1039/d1cs00844g |
Cover
Loading…
Abstract | The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution (
i.e.
Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided.
We explore piezoelectricity in 2D crystals, envisioning assessment, prediction, and engineering 2D piezoelectricity
via
chemical, computational, and physical approaches. |
---|---|
AbstractList | The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution (i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided. The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution ( i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided. We explore piezoelectricity in 2D crystals, envisioning assessment, prediction, and engineering 2D piezoelectricity via chemical, computational, and physical approaches. The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution ( Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided. The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution ( i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided. The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution (i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided.The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive electronic devices. To fully exploit this property, miniaturization of piezoelectric materials is the subject of intense research. Indeed, select atomically thin 2D materials strongly exhibit the piezoelectric effect. The family of 2D crystals consists of over 7000 chemically distinct members that can be further manipulated in terms of strain, functionalization, elemental substitution (i.e. Janus 2D crystals), and defect engineering to induce a piezoelectric response. Additionally, most 2D crystals can stack with other similar or dissimilar 2D crystals to form a much greater number of complex 2D heterostructures whose properties are quite different to those of the individual constituents. The unprecedented flexibility in tailoring 2D crystal properties, coupled with their minimal thickness, make these emerging highly attractive for advanced piezoelectric applications that include pressure sensing, piezocatalysis, piezotronics, and energy harvesting. This review summarizes literature on piezoelectricity, particularly out-of-plane piezoelectricity, in the vast family of 2D materials as well as their heterostructures. It also describes methods to induce, enhance, and control the piezoelectric properties. The volume of data and role of machine learning in predicting piezoelectricity is discussed in detail, and a prospective outlook on the 2D piezoelectric field is provided. |
Author | Sherrell, Peter C Shepelin, Nick A Shapter, Joseph G Ford, Mike Ellis, Amanda V Fronzi, Marco Corletto, Alexander Winkler, David A |
AuthorAffiliation | Department of Chemical Engineering, The University of Melbourne School of Mathematical and Physical Science, University of Technology Sydney School of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Monash Institute of Pharmaceutical Sciences, Monash University Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut Australian Institute for Bioengineering and Nanotechnology, The University of Queensland School of Pharmacy, The University of Nottingham Shibaura Institute of Technology, SIT Research Laboratories |
AuthorAffiliation_xml | – name: Shibaura Institute of Technology, SIT Research Laboratories – name: School of Mathematical and Physical Science, University of Technology Sydney – name: School of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University – name: Australian Institute for Bioengineering and Nanotechnology, The University of Queensland – name: School of Pharmacy, The University of Nottingham – name: Department of Chemical Engineering, The University of Melbourne – name: Laboratory for Multiscale Materials Experiments, Paul Scherrer Institut – name: Monash Institute of Pharmaceutical Sciences, Monash University |
Author_xml | – sequence: 1 givenname: Peter C surname: Sherrell fullname: Sherrell, Peter C – sequence: 2 givenname: Marco surname: Fronzi fullname: Fronzi, Marco – sequence: 3 givenname: Nick A surname: Shepelin fullname: Shepelin, Nick A – sequence: 4 givenname: Alexander surname: Corletto fullname: Corletto, Alexander – sequence: 5 givenname: David A surname: Winkler fullname: Winkler, David A – sequence: 6 givenname: Mike surname: Ford fullname: Ford, Mike – sequence: 7 givenname: Joseph G surname: Shapter fullname: Shapter, Joseph G – sequence: 8 givenname: Amanda V surname: Ellis fullname: Ellis, Amanda V |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34931635$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0T1PwzAQBmALgWj5WNhBkVgQUuD8ESceUYGChMQAzFFyuRRXaVJsZ4BfT6BQJMTAdB6ee2X73WGbbdcSYwcczjhIc15x9ACZUrMNNuZKQ6xSpTbZGCToGICLEdvxfj6ceKrFNhtJZSTXMhkzcxGVzs6eQ1T3oXcU1Z2LqJ3ZlsjZdhYtLb111BAGZzESlxG6Vx-Kxu-xrXoYtP81d9nT9dXj5Ca-u5_eTi7uYlSgQ6yxgrJUSVkZKUxiUi2pSBUCghYojDEKjElrhZU2hkosIcFCa4moMhQkd9nJKnfpupeefMgX1iM1TdFS1_tcaJVlSWaU_gflQmYp19lAj3_Rede7dnjIoIQQw63kR-DRl-rLBVX50tlF4V7z7_8bwOkKoOu8d1SvCYf8o5z8kk8ePsuZDhh-YbShCLZrgyts8_fK4WrFeVxH__Qt3wHQoZfM |
CitedBy_id | crossref_primary_10_1021_acsomega_4c02874 crossref_primary_10_1016_j_optlastec_2023_109512 crossref_primary_10_1002_adma_202406192 crossref_primary_10_1016_j_jcis_2023_05_204 crossref_primary_10_1002_smll_202409004 crossref_primary_10_1002_adfm_202307348 crossref_primary_10_1002_advs_202410851 crossref_primary_10_1002_advs_202411422 crossref_primary_10_1002_adma_202313127 crossref_primary_10_1016_j_cossms_2023_101134 crossref_primary_10_1016_j_nanoen_2023_108993 crossref_primary_10_1002_anie_202210700 crossref_primary_10_1002_aelm_202300741 crossref_primary_10_1002_cphc_202400227 crossref_primary_10_1016_S1872_2067_23_64591_7 crossref_primary_10_3390_ma17040844 crossref_primary_10_1002_admi_202300323 crossref_primary_10_1002_advs_202406678 crossref_primary_10_1038_s41467_023_44298_5 crossref_primary_10_1021_acsnano_4c05351 crossref_primary_10_1016_j_jiec_2025_02_027 crossref_primary_10_1557_s43577_024_00838_y crossref_primary_10_3390_coatings12081152 crossref_primary_10_1007_s12274_024_6959_9 crossref_primary_10_1021_acsanm_2c01871 crossref_primary_10_1039_D2NR01135B crossref_primary_10_1103_PhysRevB_107_085402 crossref_primary_10_1002_smll_202408628 crossref_primary_10_1039_D4NR01377H crossref_primary_10_1016_j_ceramint_2025_01_288 crossref_primary_10_1016_j_nanoen_2024_109678 crossref_primary_10_1002_smsc_202300125 crossref_primary_10_1021_acsnano_4c16455 crossref_primary_10_1002_adma_202203849 crossref_primary_10_1016_j_checat_2024_100901 crossref_primary_10_3390_molecules30010179 crossref_primary_10_1002_smll_202311570 crossref_primary_10_1016_j_pmatsci_2023_101161 crossref_primary_10_1039_D3NH00578J crossref_primary_10_1016_j_apsusc_2022_154391 crossref_primary_10_1038_s41699_025_00537_5 crossref_primary_10_1002_bmm2_12006 crossref_primary_10_1016_j_mser_2025_100971 crossref_primary_10_1002_aelm_202400019 crossref_primary_10_1002_advs_202413105 crossref_primary_10_3390_ma15217788 crossref_primary_10_1039_D2NH00509C crossref_primary_10_1039_D3MA00842H crossref_primary_10_1002_lpor_202400341 crossref_primary_10_1016_j_matt_2023_12_031 crossref_primary_10_1021_acs_nanolett_3c04330 crossref_primary_10_1021_acsanm_4c02365 crossref_primary_10_1002_adma_202405053 crossref_primary_10_1002_smll_202200184 crossref_primary_10_1039_D3SC00487B crossref_primary_10_1016_j_micrna_2022_207424 crossref_primary_10_1021_acs_chemrev_3c00851 crossref_primary_10_1016_j_cej_2024_155086 crossref_primary_10_1016_j_jallcom_2022_166291 crossref_primary_10_1002_adma_202303180 crossref_primary_10_3390_ma15134418 crossref_primary_10_1021_acsami_4c09423 crossref_primary_10_1002_admt_202200318 crossref_primary_10_1002_smll_202303586 crossref_primary_10_1016_S1872_2067_24_60101_4 crossref_primary_10_1002_ange_202210700 crossref_primary_10_1016_j_jmst_2023_07_063 |
Cites_doi | 10.1063/1.4981877 10.1103/RevModPhys.71.1085 10.1039/c3ee41889h 10.1103/PhysRevB.91.085407 10.1063/1.5134960 10.1146/annurev.pc.45.100194.002255 10.1107/S0108768102003890 10.1021/jz200866s 10.1063/1.2185614 10.1063/1.4868977 10.1103/PhysRevB.92.214103 10.1021/acs.jpcc.5b06428 10.1088/2053-1583/aacfc1 10.1088/1361-6463/aaad98 10.1002/adfm.201808843 10.1116/1.5079583 10.1063/1.3506686 10.1021/acsami.0c16039 10.1038/natrevmats.2017.89 10.1021/acsnano.8b02152 10.1039/D0CS00143K 10.1103/PhysRevMaterials.2.083801 10.1016/0003-9861(78)90204-7 10.1039/C8SC01274A 10.1021/acs.jpcc.8b11837 10.1021/acsomega.8b00766 10.1038/natrevmats.2016.98 10.1088/0034-4885/60/12/001 10.1103/PhysRevApplied.13.054061 10.1016/j.nanoen.2019.104058 10.1021/acs.chemrev.6b00558 10.1038/nnano.2010.172 10.3390/s150922914 10.1021/acsami.6b16786 10.1146/annurev-matsci-071312-121634 10.1039/C9NR08063E 10.1021/acs.jcim.5b00261 10.1038/s41578-020-0185-1 10.1038/s41699-018-0063-5 10.1038/s41598-016-0028-x 10.1038/s41565-020-0682-9 10.1039/c3cp53971g 10.1002/aenm.201903870 10.1016/j.mattod.2020.11.023 10.1103/PhysRevB.99.054105 10.1126/science.1098252 10.1021/acscatal.7b01517 10.1021/acs.nanolett.6b01459 10.1021/acsaem.9b01008 10.1126/science.abd3230 10.1039/C8TA08781D 10.1016/j.jpcs.2017.09.017 10.1063/1.3676084 10.1039/D0CP02841J 10.1063/1.4812323 10.1038/s41467-020-17296-0 10.1038/s41586-020-2970-9 10.1021/nn204198g 10.1126/science.aag2421 10.1088/0034-4885/61/9/002 10.1107/S2053273318008628 10.1021/acsnano.0c08429 10.1002/inf2.12028 10.1103/PhysRev.140.A1133 10.1063/1.4922404 10.1063/1.4934750 10.1126/science.aac9439 10.1016/j.nanoen.2019.03.027 10.1021/cr200066h 10.1103/PhysRevB.78.205203 10.1038/nnano.2015.242 10.1039/D0NR07027K 10.1021/acs.jpcc.0c02199 10.7567/APEX.11.041201 10.1103/PhysRevB.98.085410 10.1021/acs.jpcc.5b01562 10.1063/1.5000496 10.1103/PhysRevLett.118.106101 10.1021/acssuschemeng.0c01827 10.1038/s41467-020-20667-2 10.1103/PhysRevB.95.155426 10.1038/s41524-020-0280-2 10.1021/acs.nanolett.0c04819 10.1063/1.4966192 10.1002/adma.201905504 10.1038/nmat4091 10.1016/j.apsusc.2012.04.005 10.1016/j.nanoen.2021.105899 10.1039/C8CP02793E 10.1021/acsnano.7b03186 10.1039/C8CP04669G 10.1021/acsami.1c00650 10.1039/D0NR07000A 10.1021/acsnano.8b02844 10.1038/s41565-017-0035-5 10.1038/am.2014.124 10.1007/s11837-016-1998-7 10.1039/C9NR07586K 10.1126/science.aao4249 10.1126/science.abe8177 10.1021/acs.chemrev.5b00691 10.1016/j.carbon.2020.02.070 10.1007/s12274-015-0878-8 10.1103/PhysRevB.77.033403 10.1002/aisy.202100080 10.1002/adma.202000006 10.1515/nanoph-2018-0106 10.1038/s41597-019-0097-3 10.1103/PhysRevB.62.15851 10.1021/acs.jpcc.0c05134 10.1007/s11837-016-2001-3 10.1002/adts.202000029 10.1021/acsnano.5b03394 10.1016/j.nanoen.2019.01.025 10.1103/PhysRevLett.83.1347 10.1038/s41467-018-05672-w 10.1088/0034-4885/75/3/036503 10.1080/00150198308009061 10.1038/s41467-021-23341-3 10.1021/nl901754t 10.1002/adma.202002979 10.1063/1.5091842 10.1002/pssb.201600387 10.1038/s41565-020-0708-3 10.1038/ncomms15679 10.1038/ncomms10808 10.1021/acsnano.7b03313 10.1038/s41467-020-15023-3 10.1209/0295-5075/102/57001 10.1103/PhysRevApplied.9.044032 10.1021/acs.nanolett.7b02198 10.1038/npjcompumats.2015.10 10.1002/adma.201803249 10.1002/adma.202105879 10.1006/spmi.1999.0797 10.1038/s41699-020-0137-z 10.1063/1.4890385 10.1063/1.5122755 10.1126/science.1102896 10.1002/adma.201905795 10.1115/1.4032378 10.1021/acsanm.0c02513 10.1039/D0TA06379G 10.1039/C6RA21781H 10.1063/1.1518559 10.1002/adma.201606667 10.1038/s41586-020-2208-x 10.1002/anie.199305031 10.1038/natrevmats.2016.61 10.1063/5.0039605 10.1098/rsta.2012.0200 10.1021/jz3012436 10.1039/C7CP05669A 10.1021/acs.jpcc.9b07348 10.1021/acs.chemmater.7b02031 10.1021/acsami.9b16866 10.1002/adts.201800128 10.1063/1.1623330 10.1039/C9CC03326B 10.1002/adma.201800342 10.1038/s41598-019-39238-7 10.1038/s41467-019-08594-3 10.1002/adma.202005098 10.1038/ncomms5284 10.1107/S0108768102006948 10.1103/PhysRev.136.B864 10.1038/nnano.2017.100 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/d1cs00844g |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Electronics & Communications Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database MEDLINE AGRICOLA CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Engineering |
EISSN | 1460-4744 |
EndPage | 671 |
ExternalDocumentID | 34931635 10_1039_D1CS00844G d1cs00844g |
Genre | Journal Article Review |
GroupedDBID | - 0-7 02 0R 29B 4.4 5GY 70 705 70J 7~J 85S AAEMU AAGNR AAIWI AANOJ ABASK ABDVN ABFLS ABGFH ABPTK ABRYZ ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AENEX AFVBQ AGKEF AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX COF CS3 DU5 DZ EBS ECGLT EE0 EF- F5P GNO HZ H~N IDZ J3I JG M4U N9A O9- OK1 P2P R7B R7D RCNCU RIG RNS RPMJG RRA RRC RSCEA SKA SKH SLH TN5 TWZ UPT VH6 WH7 X XOL --- -DZ -~X 0R~ 2WC 53G 6J9 70~ AAHBH AAJAE AAMEH AAWGC AAXHV AAXPP AAYXX ABEMK ABJNI ABPDG ABXOH ACGFO AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AGEGJ AGRSR AHGCF AKMSF ALUYA ANUXI APEMP CITATION GGIMP H13 HZ~ R56 RAOCF ~02 -JG CGR CUY CVF ECM EIF NPM YIN Z5M 7SP 7SR 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c406t-6cd0bb45bd932959763ea74c0c062c299940997f4cd699ebcb05ca663cc48c2e3 |
ISSN | 0306-0012 1460-4744 |
IngestDate | Thu Jul 10 23:19:24 EDT 2025 Fri Jul 11 06:16:44 EDT 2025 Mon Jun 30 07:06:32 EDT 2025 Wed Feb 19 02:27:11 EST 2025 Tue Jul 01 04:18:47 EDT 2025 Thu Apr 24 22:58:05 EDT 2025 Tue Jan 25 04:31:01 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c406t-6cd0bb45bd932959763ea74c0c062c299940997f4cd699ebcb05ca663cc48c2e3 |
Notes | Alexander Corletto is currently a research fellow in electronic nanomaterials in the Department of Chemical Engineering at the University of Melbourne. Alexander's research involves the synthesis, manipulation, and characterisation of novel nanomaterials and their heterostructures, aiming to discover optimised materials for energy applications including photocatalysis, photovoltaics, piezoelectricity, and others. He also has interest in the scalable manipulation and patterning of these nanomaterials for advanced device fabrication. He completed his PhD research at the Australian Institute for Bioengineering and Nanotechnology at the University of Queensland which involved investigating novel high-resolution patterning techniques for carbon nanotubes and nanomaterials. Peter researches the synthesis, assembly, and characterisation of materials. He designs approaches to exploit structure-property relationships for mechanical-to-electrical energy conversion, electrochemical energy storage, catalysis, and biomaterial surfaces. Currently, he holds a prestigious Elizabeth & Vernon Puzey Research Fellowship at the University of Melbourne, and is an Honorary Fellow at the ARC Centre of Excellence for Electromaterials Science, Associate Investigator for the ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals, and Visiting Fellow at RMIT. Previously, he held a Marie Sklodowska-Curie Individual Fellow at Imperial College London, and a Research Fellowship at Linköpings Universitet. Dr Nick A. Shepelin obtained his Bachelor of Science degree from Flinders University (2017) and his PhD degree from the University of Melbourne (2020) which was awarded with the Chancellor's Prize for Excellence. He currently holds a position in the Laboratory for Multiscale Materials Experiments at Paul Scherrer Institut as a Postdoctoral Fellow. His research focuses on interface, strain, and domain engineering of non-linear dielectric materials, spanning from piezoelectricity for sustainable energy harvesting to antiferroelectricity for robust energy storage applications. His research exploits a variety of material compositions, such as bulk polymers, two-dimensional materials, inorganic oxides, and oxynitrides. David Winkler is a Professor at La Trobe Institute for Molecular Science at La Trobe University, a visiting Professor at the University of Nottingham, and a Fellow at CSIRO Data61. His research on applying computational chemistry, AI, and machine learning methods to the design of drugs, agrochemicals, nanomaterials, and biomaterials, has led to over 200 journal articles and book chapters, and 25 patents. He has won prestigious awards including the CSIRO Medal for Business Excellence, RACI's Adrien Albeirt award, and the ACS Herman Skolnik award. He is ranked 227th of 81 000 medicinal chemists, and 999th of 520 000 chemists worldwide (Mendeley 2019). Professor Amanda Ellis is the Head of Department of Chemical Engineering at the University of Melbourne, Australia. She graduated from the University of Technology, Sydney in 2003 and has undertaken postdoctoral appointments at Rensselaer Polytechnic Institute, New Mexico State University and Callaghan Innovations, NZ. She has been a Professor and Australian Research Future Fellow at Flinders University, South Australia. Amanda is an applied chemist/nanotechnologist her work focuses on the surface and interfacial chemistries for energy storage/harvesting and device applications. Marco Fronzi is an Associate Professor at the Shibaura Institute of Technology. He received his Bachelor's/Master's Degree of Physics in 2003, and his PhD in Computational Material Science in 2009 at Tor Vergata University in Rome (Italy). In 2010, he was awarded the Japan Society for the Promotion of Science Fellowship to conduct research at the National Institute for Materials Science (Japan). He has held positions with prestigious institutes, including Osaka University, University of Technology Sydney, and Tyndall National Institute. His interests lie in theoretical/computational models for understanding/predicting properties of materials, and discovery of novel materials for energy conversion applications. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5446-9213 0000-0002-4000-2751 0000-0002-7301-6076 0000-0001-7855-9216 0000-0002-0053-5641 0000-0003-4644-6238 0000-0001-6021-923X |
OpenAccessLink | https://figshare.com/articles/journal_contribution/A_Bright_Future_for_Engineering_2D_Crystal_Piezoelectricity/17161424 |
PMID | 34931635 |
PQID | 2622294036 |
PQPubID | 2047503 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2622294036 rsc_primary_d1cs00844g proquest_miscellaneous_2612387168 crossref_primary_10_1039_D1CS00844G pubmed_primary_34931635 crossref_citationtrail_10_1039_D1CS00844G proquest_miscellaneous_2648858946 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-24 |
PublicationDateYYYYMMDD | 2022-01-24 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Chemical Society reviews |
PublicationTitleAlternate | Chem Soc Rev |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Chandratre (D1CS00844G/cit2/1) 2012; 100 Damjanovic (D1CS00844G/cit9/1) 1998; 61 Tannarana (D1CS00844G/cit56/1) 2020; 8 Beige (D1CS00844G/cit172/1) 1983; 51 Li (D1CS00844G/cit31/1) 2018; 51 Briscoe (D1CS00844G/cit176/1) 2013; 6 Jin (D1CS00844G/cit65/1) 2016; 7 Gu (D1CS00844G/cit75/1) 2021; 15 Klimeck (D1CS00844G/cit143/1) 2000; 27 Guo (D1CS00844G/cit109/1) 2020; 127 Li (D1CS00844G/cit29/1) 2020; 13 Pesci (D1CS00844G/cit81/1) 2017; 7 Goedecker (D1CS00844G/cit141/1) 1999; 71 Nye (D1CS00844G/cit170/1) 1985 Zelisko (D1CS00844G/cit13/1) 2014; 5 Ghasemian (D1CS00844G/cit8/1) 2020; 12 Puchala (D1CS00844G/cit127/1) 2016; 68 Sokolikova (D1CS00844G/cit52/1) 2019; 10 Rawat (D1CS00844G/cit120/1) 2020; 124 Qiu (D1CS00844G/cit105/1) 2021; 129 Singh (D1CS00844G/cit156/1) 2016 Blaiszik (D1CS00844G/cit128/1) 2016; 68 Kang (D1CS00844G/cit97/1) 2019; 58 Drissi (D1CS00844G/cit22/1) 2018; 112 Li (D1CS00844G/cit23/1) 2015; 8 Yuan (D1CS00844G/cit86/1) 2020; 3 Zhang (D1CS00844G/cit88/1) 2016; 16 Gomes (D1CS00844G/cit50/1) 2015; 92 Kim (D1CS00844G/cit79/1) 2006; 88 Paul (D1CS00844G/cit161/1) 2017; 29 Tan (D1CS00844G/cit15/1) 2018; 3 Khan (D1CS00844G/cit49/1) 2020; 11 Kirklin (D1CS00844G/cit123/1) 2015; 1 Guo (D1CS00844G/cit28/1) 2017; 110 Cui (D1CS00844G/cit66/1) 2018; 2 Alyörük (D1CS00844G/cit51/1) 2015; 119 Li (D1CS00844G/cit95/1) 2021 Noor-A-Alam (D1CS00844G/cit3/1) 2014; 16 Zhai (D1CS00844G/cit7/1) 2020; 22 Qi (D1CS00844G/cit71/1) 2021; 33 Liu (D1CS00844G/cit78/1) 2016; 7 Cheng (D1CS00844G/cit101/1) 2013; 102 Ma (D1CS00844G/cit35/1) 2020; 32 Fronzi (D1CS00844G/cit136/1) 2021; 3 Yin (D1CS00844G/cit24/1) 2017; 19 Hachmann (D1CS00844G/cit125/1) 2011; 2 Weston (D1CS00844G/cit17/1) 2020; 15 Ong (D1CS00844G/cit20/1) 2012; 6 Novoselov (D1CS00844G/cit5/1) 2016; 353 Gruverman (D1CS00844G/cit64/1) 2009; 9 Shahzad (D1CS00844G/cit73/1) 2016; 353 Andreev (D1CS00844G/cit171/1) 2000; 62 Ziletti (D1CS00844G/cit32/1) 2015; 91 Ares (D1CS00844G/cit34/1) 2020; 32 Krichen (D1CS00844G/cit96/1) 2016; 83 Carvalho (D1CS00844G/cit21/1) 2016; 1 Kripalani (D1CS00844G/cit37/1) 2018; 98 Momida (D1CS00844G/cit41/1) 2018; 11 Gasteiger (D1CS00844G/cit150/1) 1993; 32 Tan (D1CS00844G/cit166/1) 2017; 117 Duerloo (D1CS00844G/cit14/1) 2012; 3 Woods (D1CS00844G/cit91/1) 2021; 12 Belsky (D1CS00844G/cit122/1) 2002; 58 Behler (D1CS00844G/cit148/1) 2016; 145 Allen (D1CS00844G/cit124/1) 2002; 58 Song (D1CS00844G/cit18/1) 2017; 111 Hegde (D1CS00844G/cit144/1) 2014; 115 Monastyreckis (D1CS00844G/cit72/1) 2020; 162 Ceriotti (D1CS00844G/cit145/1) 2019; 150 Jurczak (D1CS00844G/cit168/1) 2018; 74 McGilly (D1CS00844G/cit94/1) 2020; 15 Shaltaf (D1CS00844G/cit12/1) 2008; 78 Jang (D1CS00844G/cit61/1) 2021; 84 Kalinin (D1CS00844G/cit117/1) 2008; 77 Zhou (D1CS00844G/cit76/1) 2017; 17 Anasori (D1CS00844G/cit59/1) 2017; 2 Apte (D1CS00844G/cit99/1) 2020; 32 Fong (D1CS00844G/cit62/1) 2004; 304 Zhang (D1CS00844G/cit103/1) 2017; 11 Sherrell (D1CS00844G/cit82/1) 2019; 2 Geisenhoff (D1CS00844G/cit55/1) 2019; 55 Mohanta (D1CS00844G/cit85/1) 2020; 12 Han (D1CS00844G/cit100/1) 2018; 30 Lin (D1CS00844G/cit6/1) 2020; 10 Chen (D1CS00844G/cit106/1) 2019; 21 Lu (D1CS00844G/cit39/1) 2016; 6 Vizner Stern (D1CS00844G/cit92/1) 2021; 372 Mitchell (D1CS00844G/cit146/1) 1997 Leng (D1CS00844G/cit67/1) 2020; 5 Mohanta (D1CS00844G/cit84/1) 2020; 12 Fronzi (D1CS00844G/cit130/1) 2020; 3 Isayev (D1CS00844G/cit135/1) 2017; 8 Ashton (D1CS00844G/cit155/1) 2017; 118 Guo (D1CS00844G/cit48/1) 2017; 9 Huang (D1CS00844G/cit87/1) 2015; 5 Zhou (D1CS00844G/cit152/1) 2019; 6 Wei (D1CS00844G/cit147/1) 2019; 1 Kumbhakar (D1CS00844G/cit45/1) 2021; 45 Iyikanat (D1CS00844G/cit114/1) 2015; 119 Dłużewski (D1CS00844G/cit169/1) 2000; 60 Sherrell (D1CS00844G/cit112/1) 2018; 3 Jenkins (D1CS00844G/cit36/1) 2015; 15 Bowler (D1CS00844G/cit139/1) 2012; 75 Ghasemian (D1CS00844G/cit46/1) 2020; 8 Jain (D1CS00844G/cit126/1) 2013; 1 Alyörük (D1CS00844G/cit43/1) 2016; 253 Bernstein (D1CS00844G/cit151/1) 1978; 185 Shepelin (D1CS00844G/cit10/1) 2021; 12 Ahammed (D1CS00844G/cit110/1) 2020; 124 Goringe (D1CS00844G/cit142/1) 1997; 60 Tran (D1CS00844G/cit40/1) 2016; 11 Falconi (D1CS00844G/cit177/1) 2019; 59 Haastrup (D1CS00844G/cit154/1) 2018; 5 Zhuang (D1CS00844G/cit1/1) 2019; 99 Momeni (D1CS00844G/cit158/1) 2020; 6 Kohn (D1CS00844G/cit138/1) 1965; 140 Zheng (D1CS00844G/cit93/1) 2020; 588 Eivari (D1CS00844G/cit163/1) 2017; 29 Li (D1CS00844G/cit89/1) 2019; 9 Ma (D1CS00844G/cit119/1) 2002; 81 Jurczak (D1CS00844G/cit175/1) 2012; 260 Sokolikova (D1CS00844G/cit58/1) 2020; 49 Jamdagni (D1CS00844G/cit38/1) 2019; 123 Hegde (D1CS00844G/cit140/1) 2017; 7 Zubko (D1CS00844G/cit116/1) 2013; 43 Gong (D1CS00844G/cit16/1) 2014; 13 Chen (D1CS00844G/cit54/1) 2019; 9 Lu (D1CS00844G/cit102/1) 2017; 12 Le (D1CS00844G/cit132/1) 2012; 112 Hohenberg (D1CS00844G/cit137/1) 1964; 136 Fonoberov (D1CS00844G/cit173/1) 2003; 94 Yin (D1CS00844G/cit80/1) 2018; 20 Cheema (D1CS00844G/cit69/1) 2020; 580 Blonsky (D1CS00844G/cit27/1) 2015; 9 Choudhary (D1CS00844G/cit160/1) 2018; 2 Lee (D1CS00844G/cit118/1) 2012; 370 Tawfik (D1CS00844G/cit129/1) 2019; 2 Krizhevsky (D1CS00844G/cit157/1) 2012 Li (D1CS00844G/cit115/1) 2020; 11 Dong (D1CS00844G/cit104/1) 2017; 11 Wang (D1CS00844G/cit57/1) 2020; 12 Choi (D1CS00844G/cit98/1) 2021; 13 Šutka (D1CS00844G/cit11/1) 2020; 32 Ugeda (D1CS00844G/cit53/1) 2018; 9 Yasuda (D1CS00844G/cit90/1) 2021; 372 You (D1CS00844G/cit131/1) 2019; 8 Tipton (D1CS00844G/cit164/1) 2013; 25 Sumpter (D1CS00844G/cit149/1) 1994; 45 Masubuchi (D1CS00844G/cit133/1) 2020; 4 Wang (D1CS00844G/cit19/1) 2015; 7 Tan (D1CS00844G/cit74/1) 2019; 65 Mohanta (D1CS00844G/cit83/1) 2019; 11 Burden (D1CS00844G/cit134/1) 2015; 55 Reimers (D1CS00844G/cit33/1) 2018; 9 Novoselov (D1CS00844G/cit121/1) 2004; 306 Lee (D1CS00844G/cit4/1) 2017; 29 Xue (D1CS00844G/cit77/1) 2018; 12 Nandi (D1CS00844G/cit107/1) 2021; 13 Dimitrakopulos (D1CS00844G/cit174/1) 2010; 108 Nordlander (D1CS00844G/cit70/1) 2021; 21 Kahraman (D1CS00844G/cit108/1) 2019; 123 Le (D1CS00844G/cit162/1) 2016; 116 Singh (D1CS00844G/cit165/1) 2017; 95 Wang (D1CS00844G/cit60/1) 2019; 29 Li (D1CS00844G/cit30/1) 2018; 9 Bellaiche (D1CS00844G/cit42/1) 1999; 83 Dean (D1CS00844G/cit167/1) 2010; 5 Dimple (D1CS00844G/cit111/1) 2018; 6 Zavabeti (D1CS00844G/cit44/1) 2017; 358 You (D1CS00844G/cit68/1) 2018; 30 Fong (D1CS00844G/cit63/1) 2004; 304 Noor-A-Alam (D1CS00844G/cit25/1) 2015; 117 Fei (D1CS00844G/cit47/1) 2015; 107 Patra (D1CS00844G/cit159/1) 2018; 12 Nam (D1CS00844G/cit113/1) 2019; 37 Mounet (D1CS00844G/cit153/1) 2018; 13 Chang (D1CS00844G/cit26/1) 2014; 105 |
References_xml | – issn: 2016 end-page: p 1310-1315 publication-title: 3rd International Conference on Computing for Sustainable Global Development (INDIACom) doi: Singh Thakur Sharma – issn: 1985 publication-title: Physical properties of crystals: their representation by tensors and matrices doi: Nye – issn: 2012 end-page: p 1097-1105 publication-title: Advances in neural information processing systems doi: Krizhevsky Sutskever Hinton – issn: 1997 publication-title: Machine learning doi: Mitchell – volume: 110 start-page: 163102 year: 2017 ident: D1CS00844G/cit28/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4981877 – volume: 71 start-page: 1085 year: 1999 ident: D1CS00844G/cit141/1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.71.1085 – volume: 6 start-page: 3035 year: 2013 ident: D1CS00844G/cit176/1 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41889h – volume: 91 start-page: 085407 year: 2015 ident: D1CS00844G/cit32/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.91.085407 – volume: 127 start-page: 064302 year: 2020 ident: D1CS00844G/cit109/1 publication-title: J. Appl. Phys. doi: 10.1063/1.5134960 – volume: 45 start-page: 439 year: 1994 ident: D1CS00844G/cit149/1 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev.pc.45.100194.002255 – volume: 58 start-page: 380 year: 2002 ident: D1CS00844G/cit124/1 publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S0108768102003890 – volume: 2 start-page: 2241 year: 2011 ident: D1CS00844G/cit125/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz200866s – volume: 88 start-page: 142904 year: 2006 ident: D1CS00844G/cit79/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2185614 – volume: 115 start-page: 123703 year: 2014 ident: D1CS00844G/cit144/1 publication-title: J. Appl. Phys. doi: 10.1063/1.4868977 – volume: 92 start-page: 214103 year: 2015 ident: D1CS00844G/cit50/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.92.214103 – volume: 119 start-page: 23231 year: 2015 ident: D1CS00844G/cit51/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b06428 – volume: 5 start-page: 042002 year: 2018 ident: D1CS00844G/cit154/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/aacfc1 – volume: 51 start-page: 12LT01 year: 2018 ident: D1CS00844G/cit31/1 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aaad98 – volume: 29 start-page: 1808843 year: 2019 ident: D1CS00844G/cit60/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808843 – volume: 37 start-page: 020916 year: 2019 ident: D1CS00844G/cit113/1 publication-title: J. Vac. Sci. Technol., A doi: 10.1116/1.5079583 – volume: 108 start-page: 104304 year: 2010 ident: D1CS00844G/cit174/1 publication-title: J. Appl. Phys. doi: 10.1063/1.3506686 – volume: 12 start-page: 51662 year: 2020 ident: D1CS00844G/cit57/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c16039 – volume: 3 start-page: 17089 year: 2018 ident: D1CS00844G/cit15/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.89 – volume: 12 start-page: 4976 year: 2018 ident: D1CS00844G/cit77/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b02152 – volume: 49 start-page: 3952 year: 2020 ident: D1CS00844G/cit58/1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00143K – volume: 2 start-page: 083801 year: 2018 ident: D1CS00844G/cit160/1 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.2.083801 – volume: 185 start-page: 584 year: 1978 ident: D1CS00844G/cit151/1 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(78)90204-7 – volume: 29 start-page: 473001 year: 2017 ident: D1CS00844G/cit161/1 publication-title: J. Phys.: Condens. Matter – volume: 9 start-page: 7620 year: 2018 ident: D1CS00844G/cit33/1 publication-title: Chem. Sci. doi: 10.1039/C8SC01274A – volume: 123 start-page: 4549 year: 2019 ident: D1CS00844G/cit108/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b11837 – volume: 3 start-page: 8655 year: 2018 ident: D1CS00844G/cit112/1 publication-title: ACS Omega doi: 10.1021/acsomega.8b00766 – volume: 2 start-page: 16098 year: 2017 ident: D1CS00844G/cit59/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – volume: 60 start-page: 1447 year: 1997 ident: D1CS00844G/cit142/1 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/60/12/001 – start-page: 1310 volume-title: 3rd International Conference on Computing for Sustainable Global Development (INDIACom) year: 2016 ident: D1CS00844G/cit156/1 – volume: 13 start-page: 054061 year: 2020 ident: D1CS00844G/cit29/1 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.054061 – volume: 65 start-page: 104058 year: 2019 ident: D1CS00844G/cit74/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104058 – volume: 117 start-page: 6225 year: 2017 ident: D1CS00844G/cit166/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00558 – volume: 5 start-page: 722 year: 2010 ident: D1CS00844G/cit167/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.172 – volume: 15 start-page: 22914 year: 2015 ident: D1CS00844G/cit36/1 publication-title: Sensors doi: 10.3390/s150922914 – volume: 9 start-page: 12013 year: 2017 ident: D1CS00844G/cit48/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16786 – volume: 43 start-page: 387 year: 2013 ident: D1CS00844G/cit116/1 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-071312-121634 – volume: 12 start-page: 2875 year: 2020 ident: D1CS00844G/cit8/1 publication-title: Nanoscale doi: 10.1039/C9NR08063E – volume: 55 start-page: 1529 year: 2015 ident: D1CS00844G/cit134/1 publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.5b00261 – volume: 5 start-page: 482 year: 2020 ident: D1CS00844G/cit67/1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0185-1 – volume: 2 start-page: 18 year: 2018 ident: D1CS00844G/cit66/1 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-018-0063-5 – volume: 7 start-page: 1 year: 2017 ident: D1CS00844G/cit140/1 publication-title: Sci. Rep. doi: 10.1038/s41598-016-0028-x – volume: 15 start-page: 592 year: 2020 ident: D1CS00844G/cit17/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0682-9 – volume: 16 start-page: 6575 year: 2014 ident: D1CS00844G/cit3/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53971g – volume: 10 start-page: 1903870 year: 2020 ident: D1CS00844G/cit6/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903870 – volume: 45 start-page: 142 year: 2021 ident: D1CS00844G/cit45/1 publication-title: Mater. Today doi: 10.1016/j.mattod.2020.11.023 – volume: 99 start-page: 054105 year: 2019 ident: D1CS00844G/cit1/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.054105 – volume: 304 start-page: 1650 year: 2004 ident: D1CS00844G/cit62/1 publication-title: Science doi: 10.1126/science.1098252 – volume: 7 start-page: 4990 year: 2017 ident: D1CS00844G/cit81/1 publication-title: ACS Catal. doi: 10.1021/acscatal.7b01517 – volume: 16 start-page: 4903 year: 2016 ident: D1CS00844G/cit88/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01459 – volume: 2 start-page: 5877 year: 2019 ident: D1CS00844G/cit82/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01008 – volume: 372 start-page: 1458 year: 2021 ident: D1CS00844G/cit90/1 publication-title: Science doi: 10.1126/science.abd3230 – volume: 6 start-page: 24885 year: 2018 ident: D1CS00844G/cit111/1 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08781D – volume: 112 start-page: 137 year: 2018 ident: D1CS00844G/cit22/1 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2017.09.017 – volume: 100 start-page: 023114 year: 2012 ident: D1CS00844G/cit2/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3676084 – volume: 22 start-page: 22140 year: 2020 ident: D1CS00844G/cit7/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP02841J – volume: 1 start-page: 011002 year: 2013 ident: D1CS00844G/cit126/1 publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 11 start-page: 3449 year: 2020 ident: D1CS00844G/cit49/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17296-0 – start-page: 1097 volume-title: Advances in neural information processing systems year: 2012 ident: D1CS00844G/cit157/1 – volume: 588 start-page: 71 year: 2020 ident: D1CS00844G/cit93/1 publication-title: Nature doi: 10.1038/s41586-020-2970-9 – volume: 6 start-page: 1387 year: 2012 ident: D1CS00844G/cit20/1 publication-title: ACS Nano doi: 10.1021/nn204198g – volume: 353 start-page: 1137 year: 2016 ident: D1CS00844G/cit73/1 publication-title: Science doi: 10.1126/science.aag2421 – volume: 61 start-page: 1267 year: 1998 ident: D1CS00844G/cit9/1 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/61/9/002 – volume: 74 start-page: 518 year: 2018 ident: D1CS00844G/cit168/1 publication-title: Acta Crystallogr., Sect. A: Found. Adv. doi: 10.1107/S2053273318008628 – volume: 15 start-page: 6233 year: 2021 ident: D1CS00844G/cit75/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c08429 – volume: 1 start-page: 338 year: 2019 ident: D1CS00844G/cit147/1 publication-title: InfoMat doi: 10.1002/inf2.12028 – volume: 140 start-page: A1133 year: 1965 ident: D1CS00844G/cit138/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 117 start-page: 224304 year: 2015 ident: D1CS00844G/cit25/1 publication-title: J. Appl. Phys. doi: 10.1063/1.4922404 – volume: 107 start-page: 173104 year: 2015 ident: D1CS00844G/cit47/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4934750 – volume: 304 start-page: 1650 year: 2004 ident: D1CS00844G/cit63/1 publication-title: Science doi: 10.1126/science.1098252 – volume: 353 start-page: aac9439 year: 2016 ident: D1CS00844G/cit5/1 publication-title: Science doi: 10.1126/science.aac9439 – volume: 59 start-page: 730 year: 2019 ident: D1CS00844G/cit177/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.03.027 – volume: 112 start-page: 2889 year: 2012 ident: D1CS00844G/cit132/1 publication-title: Chem. Rev. doi: 10.1021/cr200066h – volume: 78 start-page: 205203 year: 2008 ident: D1CS00844G/cit12/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.78.205203 – volume: 11 start-page: 37 year: 2016 ident: D1CS00844G/cit40/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.242 – volume: 13 start-page: 5460 year: 2021 ident: D1CS00844G/cit107/1 publication-title: Nanoscale doi: 10.1039/D0NR07027K – volume: 124 start-page: 10385 year: 2020 ident: D1CS00844G/cit120/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c02199 – volume: 11 start-page: 041201 year: 2018 ident: D1CS00844G/cit41/1 publication-title: Appl. Phys. Express doi: 10.7567/APEX.11.041201 – volume: 98 start-page: 085410 year: 2018 ident: D1CS00844G/cit37/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.085410 – volume: 119 start-page: 10709 year: 2015 ident: D1CS00844G/cit114/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b01562 – volume: 111 start-page: 083107 year: 2017 ident: D1CS00844G/cit18/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5000496 – volume: 118 start-page: 106101 year: 2017 ident: D1CS00844G/cit155/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.106101 – volume: 8 start-page: 7741 year: 2020 ident: D1CS00844G/cit56/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c01827 – volume: 12 start-page: 347 year: 2021 ident: D1CS00844G/cit91/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20667-2 – volume-title: Physical properties of crystals: their representation by tensors and matrices year: 1985 ident: D1CS00844G/cit170/1 – volume: 95 start-page: 155426 year: 2017 ident: D1CS00844G/cit165/1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.155426 – volume: 6 start-page: 1 year: 2020 ident: D1CS00844G/cit158/1 publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-0280-2 – volume: 21 start-page: 2780 year: 2021 ident: D1CS00844G/cit70/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04819 – volume: 145 start-page: 170901 year: 2016 ident: D1CS00844G/cit148/1 publication-title: J. Chem. Phys. doi: 10.1063/1.4966192 – volume: 32 start-page: 1905504 year: 2020 ident: D1CS00844G/cit34/1 publication-title: Adv. Mater. doi: 10.1002/adma.201905504 – volume: 13 start-page: 1135 year: 2014 ident: D1CS00844G/cit16/1 publication-title: Nat. Mater. doi: 10.1038/nmat4091 – volume: 260 start-page: 59 year: 2012 ident: D1CS00844G/cit175/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.04.005 – volume: 84 start-page: 105899 year: 2021 ident: D1CS00844G/cit61/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105899 – volume: 20 start-page: 19177 year: 2018 ident: D1CS00844G/cit80/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP02793E – volume: 11 start-page: 8192 year: 2017 ident: D1CS00844G/cit103/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b03186 – volume: 21 start-page: 1207 year: 2019 ident: D1CS00844G/cit106/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP04669G – volume: 13 start-page: 13596 year: 2021 ident: D1CS00844G/cit98/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c00650 – volume: 12 start-page: 22645 year: 2020 ident: D1CS00844G/cit84/1 publication-title: Nanoscale doi: 10.1039/D0NR07000A – volume: 12 start-page: 8006 year: 2018 ident: D1CS00844G/cit159/1 publication-title: ACS Nano doi: 10.1021/acsnano.8b02844 – volume: 13 start-page: 246 year: 2018 ident: D1CS00844G/cit153/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0035-5 – volume: 7 start-page: e154 year: 2015 ident: D1CS00844G/cit19/1 publication-title: NPG Asia Mater. doi: 10.1038/am.2014.124 – volume: 68 start-page: 2035 year: 2016 ident: D1CS00844G/cit127/1 publication-title: JOM doi: 10.1007/s11837-016-1998-7 – volume: 11 start-page: 21880 year: 2019 ident: D1CS00844G/cit83/1 publication-title: Nanoscale doi: 10.1039/C9NR07586K – volume: 358 start-page: 332 year: 2017 ident: D1CS00844G/cit44/1 publication-title: Science doi: 10.1126/science.aao4249 – volume: 372 start-page: 1462 year: 2021 ident: D1CS00844G/cit92/1 publication-title: Science doi: 10.1126/science.abe8177 – volume: 116 start-page: 6107 year: 2016 ident: D1CS00844G/cit162/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00691 – volume: 162 start-page: 402 year: 2020 ident: D1CS00844G/cit72/1 publication-title: Carbon doi: 10.1016/j.carbon.2020.02.070 – volume: 5 start-page: 1 year: 2015 ident: D1CS00844G/cit87/1 publication-title: Sci. Rep. – volume: 8 start-page: 3796 year: 2015 ident: D1CS00844G/cit23/1 publication-title: Nano Res. doi: 10.1007/s12274-015-0878-8 – volume: 77 start-page: 033403 year: 2008 ident: D1CS00844G/cit117/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.77.033403 – volume: 3 start-page: 2100080 year: 2021 ident: D1CS00844G/cit136/1 publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202100080 – volume: 25 start-page: 495401 year: 2013 ident: D1CS00844G/cit164/1 publication-title: J. Phys.: Condens. Matter – volume: 32 start-page: 2000006 year: 2020 ident: D1CS00844G/cit99/1 publication-title: Adv. Mater. doi: 10.1002/adma.202000006 – volume: 8 start-page: 63 year: 2019 ident: D1CS00844G/cit131/1 publication-title: Nanophotonics doi: 10.1515/nanoph-2018-0106 – volume: 6 start-page: 86 year: 2019 ident: D1CS00844G/cit152/1 publication-title: Sci. Data doi: 10.1038/s41597-019-0097-3 – volume: 62 start-page: 15851 year: 2000 ident: D1CS00844G/cit171/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.62.15851 – volume: 124 start-page: 21250 year: 2020 ident: D1CS00844G/cit110/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c05134 – volume: 68 start-page: 2045 year: 2016 ident: D1CS00844G/cit128/1 publication-title: JOM doi: 10.1007/s11837-016-2001-3 – volume: 3 start-page: 2000029 year: 2020 ident: D1CS00844G/cit130/1 publication-title: Adv. Theory Simul. doi: 10.1002/adts.202000029 – volume: 9 start-page: 9885 year: 2015 ident: D1CS00844G/cit27/1 publication-title: ACS Nano doi: 10.1021/acsnano.5b03394 – volume: 58 start-page: 57 year: 2019 ident: D1CS00844G/cit97/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.025 – volume: 83 start-page: 1347 year: 1999 ident: D1CS00844G/cit42/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.1347 – volume: 9 start-page: 3401 year: 2018 ident: D1CS00844G/cit53/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05672-w – volume: 75 start-page: 036503 year: 2012 ident: D1CS00844G/cit139/1 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/75/3/036503 – volume: 51 start-page: 113 year: 1983 ident: D1CS00844G/cit172/1 publication-title: Ferroelectrics doi: 10.1080/00150198308009061 – volume: 12 start-page: 3171 year: 2021 ident: D1CS00844G/cit10/1 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23341-3 – volume: 9 start-page: 3539 year: 2009 ident: D1CS00844G/cit64/1 publication-title: Nano Lett. doi: 10.1021/nl901754t – volume-title: Machine learning year: 1997 ident: D1CS00844G/cit146/1 – volume: 32 start-page: 2002979 year: 2020 ident: D1CS00844G/cit11/1 publication-title: Adv. Mater. doi: 10.1002/adma.202002979 – volume: 150 start-page: 150901 year: 2019 ident: D1CS00844G/cit145/1 publication-title: J. Chem. Phys. doi: 10.1063/1.5091842 – volume: 253 start-page: 2534 year: 2016 ident: D1CS00844G/cit43/1 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201600387 – volume: 15 start-page: 580 year: 2020 ident: D1CS00844G/cit94/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0708-3 – volume: 8 start-page: 1 year: 2017 ident: D1CS00844G/cit135/1 publication-title: Nat. Commun. doi: 10.1038/ncomms15679 – volume: 7 start-page: 10808 year: 2016 ident: D1CS00844G/cit65/1 publication-title: Nat. Commun. doi: 10.1038/ncomms10808 – volume: 11 start-page: 8242 year: 2017 ident: D1CS00844G/cit104/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b03313 – volume: 11 start-page: 1151 year: 2020 ident: D1CS00844G/cit115/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15023-3 – volume: 102 start-page: 57001 year: 2013 ident: D1CS00844G/cit101/1 publication-title: EPL doi: 10.1209/0295-5075/102/57001 – volume: 9 start-page: 044032 year: 2018 ident: D1CS00844G/cit30/1 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.9.044032 – volume: 17 start-page: 5508 year: 2017 ident: D1CS00844G/cit76/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02198 – volume: 1 start-page: 1 year: 2015 ident: D1CS00844G/cit123/1 publication-title: npj Comput. Mater. doi: 10.1038/npjcompumats.2015.10 – volume: 30 start-page: 1803249 year: 2018 ident: D1CS00844G/cit68/1 publication-title: Adv. Mater. doi: 10.1002/adma.201803249 – start-page: 2105879 year: 2021 ident: D1CS00844G/cit95/1 publication-title: Adv. Mater. doi: 10.1002/adma.202105879 – volume: 27 start-page: 77 year: 2000 ident: D1CS00844G/cit143/1 publication-title: Superlattices Microstruct. doi: 10.1006/spmi.1999.0797 – volume: 4 start-page: 1 year: 2020 ident: D1CS00844G/cit133/1 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-020-0137-z – volume: 105 start-page: 023103 year: 2014 ident: D1CS00844G/cit26/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4890385 – volume: 9 start-page: 115302 year: 2019 ident: D1CS00844G/cit89/1 publication-title: AIP Adv. doi: 10.1063/1.5122755 – volume: 306 start-page: 666 year: 2004 ident: D1CS00844G/cit121/1 publication-title: Science doi: 10.1126/science.1102896 – volume: 32 start-page: 1905795 year: 2020 ident: D1CS00844G/cit35/1 publication-title: Adv. Mater. doi: 10.1002/adma.201905795 – volume: 83 start-page: 030801 year: 2016 ident: D1CS00844G/cit96/1 publication-title: J. Appl. Mech. doi: 10.1115/1.4032378 – volume: 3 start-page: 11979 year: 2020 ident: D1CS00844G/cit86/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c02513 – volume: 8 start-page: 19434 year: 2020 ident: D1CS00844G/cit46/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06379G – volume: 7 start-page: 1 year: 2016 ident: D1CS00844G/cit78/1 publication-title: Nat. Commun. – volume: 6 start-page: 102724 year: 2016 ident: D1CS00844G/cit39/1 publication-title: RSC Adv. doi: 10.1039/C6RA21781H – volume: 81 start-page: 3440 year: 2002 ident: D1CS00844G/cit119/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1518559 – volume: 29 start-page: 1606667 year: 2017 ident: D1CS00844G/cit4/1 publication-title: Adv. Mater. doi: 10.1002/adma.201606667 – volume: 580 start-page: 478 year: 2020 ident: D1CS00844G/cit69/1 publication-title: Nature doi: 10.1038/s41586-020-2208-x – volume: 32 start-page: 503 year: 1993 ident: D1CS00844G/cit150/1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.199305031 – volume: 1 start-page: 16061 year: 2016 ident: D1CS00844G/cit21/1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.61 – volume: 129 start-page: 125109 year: 2021 ident: D1CS00844G/cit105/1 publication-title: J. Appl. Phys. doi: 10.1063/5.0039605 – volume: 370 start-page: 4944 year: 2012 ident: D1CS00844G/cit118/1 publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2012.0200 – volume: 3 start-page: 2871 year: 2012 ident: D1CS00844G/cit14/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3012436 – volume: 19 start-page: 27508 year: 2017 ident: D1CS00844G/cit24/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP05669A – volume: 123 start-page: 27214 year: 2019 ident: D1CS00844G/cit38/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b07348 – volume: 29 start-page: 8594 year: 2017 ident: D1CS00844G/cit163/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02031 – volume: 60 start-page: 119 year: 2000 ident: D1CS00844G/cit169/1 publication-title: J. Elasticity Phys. Sci. Solids – volume: 12 start-page: 3114 year: 2020 ident: D1CS00844G/cit85/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16866 – volume: 2 start-page: 1800128 year: 2019 ident: D1CS00844G/cit129/1 publication-title: Adv. Theory Simul. doi: 10.1002/adts.201800128 – volume: 94 start-page: 7178 year: 2003 ident: D1CS00844G/cit173/1 publication-title: J. Appl. Phys. doi: 10.1063/1.1623330 – volume: 55 start-page: 8856 year: 2019 ident: D1CS00844G/cit55/1 publication-title: Chem. Commun. doi: 10.1039/C9CC03326B – volume: 30 start-page: 1800342 year: 2018 ident: D1CS00844G/cit100/1 publication-title: Adv. Mater. doi: 10.1002/adma.201800342 – volume: 9 start-page: 2685 year: 2019 ident: D1CS00844G/cit54/1 publication-title: Sci. Rep. doi: 10.1038/s41598-019-39238-7 – volume: 10 start-page: 712 year: 2019 ident: D1CS00844G/cit52/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08594-3 – volume: 33 start-page: 2005098 year: 2021 ident: D1CS00844G/cit71/1 publication-title: Adv. Mater. doi: 10.1002/adma.202005098 – volume: 5 start-page: 4284 year: 2014 ident: D1CS00844G/cit13/1 publication-title: Nat. Commun. doi: 10.1038/ncomms5284 – volume: 58 start-page: 364 year: 2002 ident: D1CS00844G/cit122/1 publication-title: Acta Crystallogr., Sect. B: Struct. Sci. doi: 10.1107/S0108768102006948 – volume: 136 start-page: B864 year: 1964 ident: D1CS00844G/cit137/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 12 start-page: 744 year: 2017 ident: D1CS00844G/cit102/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.100 |
SSID | ssj0011762 |
Score | 2.6097517 |
SecondaryResourceType | review_article |
Snippet | The piezoelectric effect, mechanical-to-electrical and electrical-to-mechanical energy conversion, is highly beneficial for functional and responsive... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 65 |
SubjectTerms | artificial intelligence Crystal defects Crystals Electricity Electronic devices electronic equipment Electronics energy conservation Energy conversion Energy harvesting engineering engineers exhibitions fields Heterostructures Literature reviews Machine learning Materials selection Miniaturization Piezoelectricity prediction Prospective Studies strains Two dimensional materials |
Title | A bright future for engineering piezoelectric 2D crystals |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34931635 https://www.proquest.com/docview/2622294036 https://www.proquest.com/docview/2612387168 https://www.proquest.com/docview/2648858946 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgO8AF8TUoGygILijKSG3HjY9VOhgIOHXSblH84qKKqana7ED_-j3XH0nphAaXqHLtyPF7tn_Pz-_3CHmvMjXjo6pOgPIs4ZXKE8U4T4SQDGbDtILMRCN__yHOL_jXy-yy8-huo0tadQqbW-NK_keqWIZyNVGy_yDZ8FIswN8oX3yihPF5JxmPY7U1rmPLDGLpuzuCwXg515vGJrqZQ0wnMax-Ixq8WvchaaAM8Bc4HUFpOHsx5I0-1bG5PBMXp0Hqq2axmbuYH2h6TZbaZYJHVfsVj0OLolmhprS7wTX9owdq7nAkNuLZh1yZ44jU3YPWdgXlIk34yJI6-iXWccrOe5auXS-FZZ11W6-w2Vj2VvWUGVLUybAwcd2cf-72Lu-v_2NLCxcNty52Jsuu7X1ySNGiwDX8cHw2_fItuJyGI-FcTvabPJctkx-71rvoZc8kQYCy8oljtgBl-pg8cpZFNLZq8oTc04un5EHhE_o9I3IcWXWJrLpEqC5RT12iHXWJ6CTy6vKcXHw6mxbnicuckQACtDYRUKdK8UzVCM8l2oyC6WrEIYVUUEAEIrmJmJ5xqIWUWoFKM6gQfALwHKhmR-Rg0Sz0SxIJrgVjucZZCxyr5Yqm9YzWUlciR9t9QD74ESnB0cqb7CZX5f7YD8i7UHdpyVRurXXiB7Z0k21dUmESz3PEWwPyNvyNA2j8W9VCN9emDsIwcwCQ_60O7lhZLjm-54UVWugK45KheZINyBFKMRTXQ1hve_bz1Z36f0wedpPlhBy0q2v9GpFrq944nbsBeY2VXA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bright+future+for+engineering+piezoelectric+2D+crystals&rft.jtitle=Chemical+Society+reviews&rft.au=Sherrell%2C+Peter+C.&rft.au=Fronzi%2C+Marco&rft.au=Shepelin%2C+Nick+A.&rft.au=Corletto%2C+Alexander&rft.date=2022-01-24&rft.issn=0306-0012&rft.eissn=1460-4744&rft.volume=51&rft.issue=2&rft.spage=650&rft.epage=671&rft_id=info:doi/10.1039%2FD1CS00844G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1CS00844G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-0012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-0012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-0012&client=summon |