Effect of Cu segregation on the phase transformation and properties of AlCrFeNiTiCux high-entropy alloys
In this work, the effect of Cu on the phase transformation, microstructure, and properties of AlCrFeNiTiCux high-entropy alloys (HEAs) was investigated. Meanwhile, the formation mechanism of the FCC solid solution was discussed. The results showed that it was a beneficial effect on the formation of...
Saved in:
Published in | Intermetallics Vol. 140; p. 107397 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Barking
Elsevier Ltd
01.01.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, the effect of Cu on the phase transformation, microstructure, and properties of AlCrFeNiTiCux high-entropy alloys (HEAs) was investigated. Meanwhile, the formation mechanism of the FCC solid solution was discussed. The results showed that it was a beneficial effect on the formation of the FCC solid solution for the addition of Cu into HEAs from the perspective of valence electron concentration (VEC), enthalpy of mixing (ΔHmix) and difference in atom size (δ), which was confirmed by X-ray diffraction and Scanning Electron Microscope analysis. In addition, the increment of Cu content in the alloys promoting the segregation of Al, Ni and Ti in dendrite and Fe, Cr segregated into particles distributed in dendrite and inter-dendrite. The micro-hardness of the HEAs decreased with increasing Cu content and as the Cu content increased, oxidative wear intensified. However, the friction coefficient was significantly reduced, which was related to the lubricity of Cu itself. Besides, the segregation of Cu increased the corrosion current density of the passivation zone of the HEAs, thereby reducing the corrosion resistance of the HEAs in 0.5 mol/L H2SO4 solution.
•Added Cu promotes FCC phase forming.•Cu improves the wear resistance.•Cu element reduces the corrosion resistance. |
---|---|
AbstractList | In this work, the effect of Cu on the phase transformation, microstructure, and properties of AlCrFeNiTiCux high-entropy alloys (HEAs) was investigated. Meanwhile, the formation mechanism of the FCC solid solution was discussed. The results showed that it was a beneficial effect on the formation of the FCC solid solution for the addition of Cu into HEAs from the perspective of valence electron concentration (VEC), enthalpy of mixing (ΔHmix) and difference in atom size (δ), which was confirmed by X-ray diffraction and Scanning Electron Microscope analysis. In addition, the increment of Cu content in the alloys promoting the segregation of Al, Ni and Ti in dendrite and Fe, Cr segregated into particles distributed in dendrite and inter-dendrite. The micro-hardness of the HEAs decreased with increasing Cu content and as the Cu content increased, oxidative wear intensified. However, the friction coefficient was significantly reduced, which was related to the lubricity of Cu itself. Besides, the segregation of Cu increased the corrosion current density of the passivation zone of the HEAs, thereby reducing the corrosion resistance of the HEAs in 0.5 mol/L H2SO4 solution. In this work, the effect of Cu on the phase transformation, microstructure, and properties of AlCrFeNiTiCux high-entropy alloys (HEAs) was investigated. Meanwhile, the formation mechanism of the FCC solid solution was discussed. The results showed that it was a beneficial effect on the formation of the FCC solid solution for the addition of Cu into HEAs from the perspective of valence electron concentration (VEC), enthalpy of mixing (ΔHmix) and difference in atom size (δ), which was confirmed by X-ray diffraction and Scanning Electron Microscope analysis. In addition, the increment of Cu content in the alloys promoting the segregation of Al, Ni and Ti in dendrite and Fe, Cr segregated into particles distributed in dendrite and inter-dendrite. The micro-hardness of the HEAs decreased with increasing Cu content and as the Cu content increased, oxidative wear intensified. However, the friction coefficient was significantly reduced, which was related to the lubricity of Cu itself. Besides, the segregation of Cu increased the corrosion current density of the passivation zone of the HEAs, thereby reducing the corrosion resistance of the HEAs in 0.5 mol/L H2SO4 solution. •Added Cu promotes FCC phase forming.•Cu improves the wear resistance.•Cu element reduces the corrosion resistance. |
ArticleNumber | 107397 |
Author | Wang, Xuejie Huang, Baoxu Huang, Lei Chen, Hui Wang, Changzheng Zhao, Xingchuan |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0002-3269-7733 surname: Huang fullname: Huang, Lei email: chuxiahuang11@163.com organization: School of Materials Science and Engineering, Liaocheng University, Liaocheng City, 252000, Shandong Province, PR China – sequence: 2 givenname: Xuejie surname: Wang fullname: Wang, Xuejie email: wangxuejie010121@126.com organization: School of Materials Science and Engineering, Qingdao University, Qingdao City, 266071, Shandong Province, PR China – sequence: 3 givenname: Baoxu surname: Huang fullname: Huang, Baoxu email: huangbaoxu@lcu.edu.cn organization: School of Materials Science and Engineering, Liaocheng University, Liaocheng City, 252000, Shandong Province, PR China – sequence: 4 givenname: Xingchuan surname: Zhao fullname: Zhao, Xingchuan email: zhaoxingchuan@lcu.edu.cn organization: School of Materials Science and Engineering, Liaocheng University, Liaocheng City, 252000, Shandong Province, PR China – sequence: 5 givenname: Hui surname: Chen fullname: Chen, Hui email: chenhui@lcu.edu.cn organization: School of Materials Science and Engineering, Liaocheng University, Liaocheng City, 252000, Shandong Province, PR China – sequence: 6 givenname: Changzheng orcidid: 0000-0003-0254-9083 surname: Wang fullname: Wang, Changzheng email: wangchangzheng@lcu.edu.cn organization: School of Materials Science and Engineering, Liaocheng University, Liaocheng City, 252000, Shandong Province, PR China |
BookMark | eNqFkV1rIyEUhqW00DTtXyhCryf1IzoZ6MWWId0Wyu5Nei3GOWYME82qWTb_fk1n96Y3AUE4vs_R83iDLn3wgNA9JTNKqHzczpzPEHeQZ4wwWoo1b-oLNKGLuqlKRV6iCWmkrJq6EdfoJqUtIbQmXExQv7QWTMbB4vaAE2wibHR2weOycg943-sEOEftkw1xN55p3-F9DHuI2UE6wc9DG1_gh1u59vAH927TV-BziRyxHoZwTLfoyuohwd2_fYo-Xpar9rV6__n9rX1-r8ycyFxJvdZMN6LmCz3nRqyFWBNruGDEWlpbvaCU8rlcWCY4AUagFmAo7TpmO0YbPkUPY9_yvl8HSFltwyH6cqVikhHCix1ZUk9jysSQUgSrjMufs5VJ3aAoUSe3aqv-u1Unt2p0W3D5Bd9Ht9PxeB78NoJQFPx2EFUyDryBzsXyDaoL7lyLvwe4mvY |
CitedBy_id | crossref_primary_10_1016_j_jmrt_2024_12_219 crossref_primary_10_3390_ma16083179 crossref_primary_10_1007_s10853_025_10639_6 crossref_primary_10_1051_e3sconf_202454303009 crossref_primary_10_1063_5_0203280 crossref_primary_10_1002_adem_202300968 crossref_primary_10_1016_j_physb_2023_415413 crossref_primary_10_1016_j_intermet_2022_107778 crossref_primary_10_1051_e3sconf_202454303010 crossref_primary_10_1016_j_pmatsci_2023_101106 crossref_primary_10_1007_s43452_024_01102_5 crossref_primary_10_1016_j_msea_2024_147005 crossref_primary_10_3390_ma16031178 crossref_primary_10_1016_j_jallcom_2024_175401 crossref_primary_10_1016_j_scriptamat_2024_116260 crossref_primary_10_1016_j_intermet_2025_108641 crossref_primary_10_1016_j_corsci_2025_112737 crossref_primary_10_1016_j_diamond_2024_111861 crossref_primary_10_1016_j_triboint_2024_109401 crossref_primary_10_1080_00325899_2023_2239615 crossref_primary_10_1016_j_jallcom_2022_168511 crossref_primary_10_1016_j_jallcom_2023_168831 crossref_primary_10_1016_j_jallcom_2023_173408 crossref_primary_10_1016_j_jmrt_2024_10_164 crossref_primary_10_1007_s10853_023_08255_3 crossref_primary_10_1016_j_jallcom_2023_171411 crossref_primary_10_1016_j_jmrt_2024_02_169 |
Cites_doi | 10.1007/s12666-019-01850-6 10.1016/j.jallcom.2019.06.225 10.1016/j.jallcom.2014.04.127 10.1016/j.actamat.2019.09.030 10.1016/j.matlet.2019.126528 10.1016/j.mtla.2019.100459 10.1016/j.surfin.2017.06.012 10.1016/j.wear.2017.12.006 10.1016/j.jmst.2020.01.039 10.1016/j.mtla.2019.100282 10.1016/j.intermet.2013.05.002 10.1016/j.optlastec.2019.05.006 10.1016/j.geothermics.2019.04.006 10.2320/matertrans.46.2817 10.1016/j.wear.2019.03.002 10.1016/j.wear.2019.03.026 10.1016/j.matdes.2017.07.045 10.1016/j.jallcom.2018.10.081 10.1016/j.intermet.2020.106801 10.1002/adem.200300567 10.1016/j.intermet.2010.03.030 10.1016/j.intermet.2015.12.011 10.1016/j.intermet.2006.08.005 10.1016/j.intermet.2018.07.017 10.1007/s11661-019-05564-8 10.1016/j.jallcom.2012.09.091 10.1063/1.3587228 10.1016/j.matchemphys.2005.01.001 10.1016/j.matchemphys.2017.05.029 10.1016/j.scriptamat.2020.02.037 10.1016/j.actamat.2016.08.081 10.1016/j.matchemphys.2011.11.021 10.1016/j.jmst.2019.08.019 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jan 2022 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2022 |
DBID | AAYXX CITATION 8BQ 8FD JG9 |
DOI | 10.1016/j.intermet.2021.107397 |
DatabaseName | CrossRef METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-0216 |
ExternalDocumentID | 10_1016_j_intermet_2021_107397 S0966979521003137 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SSM SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 8BQ 8FD EFKBS JG9 |
ID | FETCH-LOGICAL-c406t-6aba2a95738a43c5b55b0fc3520ff17fa81113468f2530e20e75ec11dd2fd2193 |
IEDL.DBID | .~1 |
ISSN | 0966-9795 |
IngestDate | Sun Jul 13 05:08:16 EDT 2025 Tue Jul 01 02:43:28 EDT 2025 Thu Apr 24 22:57:12 EDT 2025 Fri Feb 23 02:45:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | B. corrosion D. segregation B. phase transformation G. wear-resistance A. high-entropy alloys |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-6aba2a95738a43c5b55b0fc3520ff17fa81113468f2530e20e75ec11dd2fd2193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3269-7733 0000-0003-0254-9083 |
PQID | 2620030736 |
PQPubID | 2045471 |
ParticipantIDs | proquest_journals_2620030736 crossref_citationtrail_10_1016_j_intermet_2021_107397 crossref_primary_10_1016_j_intermet_2021_107397 elsevier_sciencedirect_doi_10_1016_j_intermet_2021_107397 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | Barking |
PublicationPlace_xml | – name: Barking |
PublicationTitle | Intermetallics |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Zhou, Qiao, Yang, Xu, Lu, Wang, Wang (bib22) 2020; 46 (bib1) 1973; 2 Sun, Zhao, Wen, Qiao, Yang (bib31) 2014; 608 Ji, Ji, Cheng, Shan, Tian (bib33) 2018 Nong, Lei, Zhu (bib36) 2018; 101 Martin, Oliveira, Fink (bib12) 2020; 51 Rodriguez, Tylczak, Gao, Jablonski, Detrois, Ziomek-Moroz, Hawk (bib39) 2018 Toda-Caraballo, Rivera-Díaz-del-Castillo (bib6) 2016; 71 Liu, Liu, Chen, Yang (bib35) 2019; 118 Heng, Chen, Qin, Li, Su, Ding, Fu (bib9) 2020; 38 Wang, Yang, Yang, Zhang, Ma, Qiao (bib28) 2018; 210 Zhu, Li, Liu, Wang, Yao, Fa, Jian (bib20) 2020; 73 Verma, Tarate, Abhyankar, Mohape, Gowtam, Deshmukh, Shanmugasundaram (bib13) 2019; 161 Cai, Chen, Luo, Gao, Li (bib16) 2017; 133 Jodi, Park (bib11) 2019; 255 Yang, Zhang (bib4) 2012; 132 Lin, Tsai, Bor (bib26) 2010; 18 Shang, Axinte, Ge, Zhang, Wang (bib18) 2017; 9 Qiu, Zhang, He, Liu (bib23) 2013; 549 (bib25) 2006 Takeuchi, Inoue (bib27) 2005; 46 Guo, Hu, Ng, Liu (bib5) 2013; 41 Hsu, Chiang, Wu (bib19) 2005; 92 Yeh, Chen, Lin, Gan, Chin, Shun, Chang (bib2) 2004; 6 Aliyu, Srivastava (bib14) 2019; 8 Guo, Ng, Lu, Liu (bib17) 2011; 109 Sun, Nash-Liu, Li, Liu, He, Shi, Zhao (bib38) 2017; 9 Gwalani, Gorsse, Soni, Carl, Ley, Smith, Banerjee (bib10) 2019; 6 Wang, Zhang, Qiao, Chen (bib30) 2007; 15 Joseph, Haghdadi, Shamlaye, Hodgson, Barnett, Fabijanic (bib29) 2019; 428 Zhang, Guo, Zhang, Song, Li, Xing, Kong (bib21) 2019; 775 Nene, Frank, Liu, Sinha, Mishra, Mcwilliams, Cho (bib24) 2019; 166 Haghdadi, Guo, Ghaderi, Hodgson, Barnett, Fabijanic (bib32) 2019 Karlsdottir, Csaki, Antoniac, Manea, Stefanoiu, Magnus, Miculescu (bib37) 2019; 81 Macdonald, Fu, Wang, Li, Chen, Zhou, Lavernia (bib8) 2019; 181 Haudhary, Soni, Gwalani, Ramanujan, Banerjee (bib7) 2020; 182 Hao, Dong, Xia, Li (bib15) 2019; 803 Zhou, Sun, Liu, Li, Xin, Liaw, Shen (bib34) 2020; 122 Miracle, Senkov (bib3) 2017; 122 Lin (10.1016/j.intermet.2021.107397_bib26) 2010; 18 Heng (10.1016/j.intermet.2021.107397_bib9) 2020; 38 Jodi (10.1016/j.intermet.2021.107397_bib11) 2019; 255 Takeuchi (10.1016/j.intermet.2021.107397_bib27) 2005; 46 Cai (10.1016/j.intermet.2021.107397_bib16) 2017; 133 Nene (10.1016/j.intermet.2021.107397_bib24) 2019; 166 Aliyu (10.1016/j.intermet.2021.107397_bib14) 2019; 8 Qiu (10.1016/j.intermet.2021.107397_bib23) 2013; 549 Wang (10.1016/j.intermet.2021.107397_bib28) 2018; 210 Martin (10.1016/j.intermet.2021.107397_bib12) 2020; 51 Shang (10.1016/j.intermet.2021.107397_bib18) 2017; 9 Hsu (10.1016/j.intermet.2021.107397_bib19) 2005; 92 Liu (10.1016/j.intermet.2021.107397_bib35) 2019; 118 (10.1016/j.intermet.2021.107397_bib25) 2006 Zhou (10.1016/j.intermet.2021.107397_bib22) 2020; 46 Sun (10.1016/j.intermet.2021.107397_bib38) 2017; 9 Yang (10.1016/j.intermet.2021.107397_bib4) 2012; 132 Karlsdottir (10.1016/j.intermet.2021.107397_bib37) 2019; 81 Nong (10.1016/j.intermet.2021.107397_bib36) 2018; 101 Haghdadi (10.1016/j.intermet.2021.107397_bib32) 2019 Verma (10.1016/j.intermet.2021.107397_bib13) 2019; 161 Guo (10.1016/j.intermet.2021.107397_bib17) 2011; 109 Macdonald (10.1016/j.intermet.2021.107397_bib8) 2019; 181 Gwalani (10.1016/j.intermet.2021.107397_bib10) 2019; 6 Wang (10.1016/j.intermet.2021.107397_bib30) 2007; 15 Hao (10.1016/j.intermet.2021.107397_bib15) 2019; 803 (10.1016/j.intermet.2021.107397_bib1) 1973; 2 Zhang (10.1016/j.intermet.2021.107397_bib21) 2019; 775 Joseph (10.1016/j.intermet.2021.107397_bib29) 2019; 428 Haudhary (10.1016/j.intermet.2021.107397_bib7) 2020; 182 Guo (10.1016/j.intermet.2021.107397_bib5) 2013; 41 Rodriguez (10.1016/j.intermet.2021.107397_bib39) 2018 Miracle (10.1016/j.intermet.2021.107397_bib3) 2017; 122 Zhu (10.1016/j.intermet.2021.107397_bib20) 2020; 73 Toda-Caraballo (10.1016/j.intermet.2021.107397_bib6) 2016; 71 Sun (10.1016/j.intermet.2021.107397_bib31) 2014; 608 Ji (10.1016/j.intermet.2021.107397_bib33) 2018 Zhou (10.1016/j.intermet.2021.107397_bib34) 2020; 122 Yeh (10.1016/j.intermet.2021.107397_bib2) 2004; 6 |
References_xml | – volume: 6 start-page: 299 year: 2004 end-page: 303 ident: bib2 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. – volume: 428 start-page: 32 year: 2019 end-page: 44 ident: bib29 article-title: The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures publication-title: Wear – volume: 255 year: 2019 ident: bib11 article-title: Phase separation and its effect on atomic interactions in CoCrNiCux medium-entropy alloys publication-title: Mater. Lett. – volume: 8 year: 2019 ident: bib14 article-title: Microstructure and corrosion performance of AlFeCoNiCu high entropy alloy coatings by addition of graphene oxide publication-title: Materialia – volume: 166 start-page: 168 year: 2019 end-page: 172 ident: bib24 article-title: Corrosion-resistant high entropy alloy with high strength and ductility, SCRIPTA publication-title: MATER – volume: 73 start-page: 389 year: 2020 end-page: 397 ident: bib20 article-title: Microstructure, corrosion behaviour and microhardness of non-equiatomic Fe publication-title: T. INDIAN. I. METALS. – start-page: 178 year: 2018 end-page: 182 ident: bib33 article-title: Erosive wear resistance evaluation with the hardness after strain-hardening and its application for a high-entropy alloy publication-title: Wear – volume: 81 start-page: 32 year: 2019 end-page: 38 ident: bib37 article-title: Corrosion behavior of AlCrFeNiMn high entropy alloy in a geothermal environment publication-title: Geothermics – volume: 608 start-page: 49 year: 2014 end-page: 53 ident: bib31 article-title: Nanoindentation deformation of a bi-phase AlCrCuFeNi2 alloy publication-title: J. ALLOY. COMPD. – volume: 2 year: 1973 ident: bib1 publication-title: Metals Handbook – volume: 92 start-page: 112 year: 2005 end-page: 117 ident: bib19 article-title: Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution publication-title: Mater. Chem. Phys. – volume: 71 start-page: 76 year: 2016 end-page: 87 ident: bib6 article-title: A criterion for the formation of high entropy alloys based on lattice distortion publication-title: Intermetallics – volume: 803 start-page: 649 year: 2019 end-page: 657 ident: bib15 article-title: Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100-xCux high-entropy alloy interlayer publication-title: J. ALLOY. COMPD. – volume: 161 start-page: 28 year: 2019 end-page: 31 ident: bib13 article-title: High temperature wear in CoCrFeNi Cux high entropy alloys: the role of Cu, SCRIPTA publication-title: MATER – volume: 46 start-page: 201 year: 2020 end-page: 210 ident: bib22 article-title: A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms publication-title: J. Mater. Sci. Technol. – volume: 133 start-page: 91 year: 2017 end-page: 108 ident: bib16 article-title: Manufacturing of FeCoCrNiCux medium-entropy alloy coating using laser cladding technology publication-title: MATER. DESIGN. – volume: 9 start-page: 111 year: 2017 end-page: 118 ident: bib38 article-title: Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys publication-title: J. Mater. Sci. Technol. – volume: 210 start-page: 233 year: 2018 end-page: 239 ident: bib28 article-title: Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy publication-title: Mater. Chem. Phys. – volume: 51 start-page: 778 year: 2020 end-page: 787 ident: bib12 article-title: Elemental effects on weld cracking susceptibility in AlxCoCrCuyFeNi high-entropy alloy publication-title: Metall. Mater. Trans. – start-page: 278 year: 2006 ident: bib25 article-title: The Lattice Constant Determination of Metals–Method of X–Ray Diffractometer – volume: 549 start-page: 195 year: 2013 end-page: 199 ident: bib23 article-title: Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy publication-title: J. ALLOY. COMPD. – volume: 181 start-page: 25 year: 2019 end-page: 35 ident: bib8 article-title: Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy publication-title: Acta Mater. – volume: 182 start-page: 99 year: 2020 end-page: 103 ident: bib7 article-title: Influence of non-magnetic Cu on enhancing the low temperature magnetic properties and Curie temperature of FeCoNiCrCu(x) high entropy alloys publication-title: Scripta Mater. – volume: 122 start-page: 448 year: 2017 end-page: 511 ident: bib3 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. – volume: 18 start-page: 1244 year: 2010 end-page: 1250 ident: bib26 article-title: Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy publication-title: Intermetallics – volume: 46 start-page: 2817 year: 2005 end-page: 2829 ident: bib27 article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element publication-title: Mater. Trans. – volume: 122 year: 2020 ident: bib34 article-title: FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism publication-title: Intermetallics – volume: 41 start-page: 96 year: 2013 end-page: 103 ident: bib5 article-title: More than entropy in high-entropy alloys: forming solid solutions or amorphous phase publication-title: Intermetallics – volume: 38 start-page: 19 year: 2020 end-page: 27 ident: bib9 article-title: Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification publication-title: J. Mater. Sci. Technol. – start-page: 293 year: 2019 end-page: 301 ident: bib32 article-title: The scratch behaviour of AlxCoCrFeNi (x=0.3 and 1.0) high entropy alloys publication-title: Wear – volume: 6 year: 2019 ident: bib10 article-title: Role of copper on L12 precipitation strengthened fcc based high entropy alloy publication-title: Materialia – volume: 9 start-page: 36 year: 2017 end-page: 43 ident: bib18 article-title: High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering publication-title: Surfaces and Interfaces – volume: 15 start-page: 357 year: 2007 end-page: 362 ident: bib30 article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys publication-title: Intermetallics – start-page: 3 year: 2018 end-page: 20 ident: bib39 article-title: Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under sodium chloride aqueous conditions publication-title: Ann. Mater. Sci. Eng. – volume: 109 start-page: 309 year: 2011 end-page: 313 ident: bib17 article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys publication-title: J. Appl. Phys. – volume: 118 start-page: 140 year: 2019 end-page: 150 ident: bib35 article-title: Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding publication-title: Opt Laser. Technol. – volume: 101 start-page: 144 year: 2018 end-page: 151 ident: bib36 article-title: Wear and oxidation resistances of AlCrFeNiTi -based high entropy alloys publication-title: Intermetallics – volume: 775 start-page: 565 year: 2019 end-page: 570 ident: bib21 article-title: Influence of remelting and annealing treatment on corrosion resistance of AlFeNiCoCuCr high entropy alloy in 3.5% NaCl solution publication-title: J. ALLOY. COMPD. – volume: 132 start-page: 233 year: 2012 end-page: 238 ident: bib4 article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys publication-title: Mater. Chem. Phys. – volume: 73 start-page: 389 year: 2020 ident: 10.1016/j.intermet.2021.107397_bib20 article-title: Microstructure, corrosion behaviour and microhardness of non-equiatomic Fe1.5CoNi CrCux (0.5≤ x≤ 2.0) high-entropy alloys publication-title: T. INDIAN. I. METALS. doi: 10.1007/s12666-019-01850-6 – volume: 803 start-page: 649 year: 2019 ident: 10.1016/j.intermet.2021.107397_bib15 article-title: Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100-xCux high-entropy alloy interlayer publication-title: J. ALLOY. COMPD. doi: 10.1016/j.jallcom.2019.06.225 – volume: 608 start-page: 49 year: 2014 ident: 10.1016/j.intermet.2021.107397_bib31 article-title: Nanoindentation deformation of a bi-phase AlCrCuFeNi2 alloy publication-title: J. ALLOY. COMPD. doi: 10.1016/j.jallcom.2014.04.127 – volume: 181 start-page: 25 year: 2019 ident: 10.1016/j.intermet.2021.107397_bib8 article-title: Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.09.030 – volume: 255 year: 2019 ident: 10.1016/j.intermet.2021.107397_bib11 article-title: Phase separation and its effect on atomic interactions in CoCrNiCux medium-entropy alloys publication-title: Mater. Lett. doi: 10.1016/j.matlet.2019.126528 – volume: 8 year: 2019 ident: 10.1016/j.intermet.2021.107397_bib14 article-title: Microstructure and corrosion performance of AlFeCoNiCu high entropy alloy coatings by addition of graphene oxide publication-title: Materialia doi: 10.1016/j.mtla.2019.100459 – volume: 9 start-page: 36 year: 2017 ident: 10.1016/j.intermet.2021.107397_bib18 article-title: High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering publication-title: Surfaces and Interfaces doi: 10.1016/j.surfin.2017.06.012 – start-page: 178 year: 2018 ident: 10.1016/j.intermet.2021.107397_bib33 article-title: Erosive wear resistance evaluation with the hardness after strain-hardening and its application for a high-entropy alloy publication-title: Wear doi: 10.1016/j.wear.2017.12.006 – start-page: 278 year: 2006 ident: 10.1016/j.intermet.2021.107397_bib25 – volume: 46 start-page: 201 year: 2020 ident: 10.1016/j.intermet.2021.107397_bib22 article-title: A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.01.039 – volume: 6 year: 2019 ident: 10.1016/j.intermet.2021.107397_bib10 article-title: Role of copper on L12 precipitation strengthened fcc based high entropy alloy publication-title: Materialia doi: 10.1016/j.mtla.2019.100282 – volume: 41 start-page: 96 year: 2013 ident: 10.1016/j.intermet.2021.107397_bib5 article-title: More than entropy in high-entropy alloys: forming solid solutions or amorphous phase publication-title: Intermetallics doi: 10.1016/j.intermet.2013.05.002 – volume: 118 start-page: 140 year: 2019 ident: 10.1016/j.intermet.2021.107397_bib35 article-title: Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding publication-title: Opt Laser. Technol. doi: 10.1016/j.optlastec.2019.05.006 – volume: 81 start-page: 32 year: 2019 ident: 10.1016/j.intermet.2021.107397_bib37 article-title: Corrosion behavior of AlCrFeNiMn high entropy alloy in a geothermal environment publication-title: Geothermics doi: 10.1016/j.geothermics.2019.04.006 – volume: 46 start-page: 2817 year: 2005 ident: 10.1016/j.intermet.2021.107397_bib27 article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element publication-title: Mater. Trans. doi: 10.2320/matertrans.46.2817 – volume: 428 start-page: 32 year: 2019 ident: 10.1016/j.intermet.2021.107397_bib29 article-title: The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures publication-title: Wear doi: 10.1016/j.wear.2019.03.002 – start-page: 293 year: 2019 ident: 10.1016/j.intermet.2021.107397_bib32 article-title: The scratch behaviour of AlxCoCrFeNi (x=0.3 and 1.0) high entropy alloys publication-title: Wear doi: 10.1016/j.wear.2019.03.026 – volume: 133 start-page: 91 year: 2017 ident: 10.1016/j.intermet.2021.107397_bib16 article-title: Manufacturing of FeCoCrNiCux medium-entropy alloy coating using laser cladding technology publication-title: MATER. DESIGN. doi: 10.1016/j.matdes.2017.07.045 – volume: 775 start-page: 565 year: 2019 ident: 10.1016/j.intermet.2021.107397_bib21 article-title: Influence of remelting and annealing treatment on corrosion resistance of AlFeNiCoCuCr high entropy alloy in 3.5% NaCl solution publication-title: J. ALLOY. COMPD. doi: 10.1016/j.jallcom.2018.10.081 – volume: 122 year: 2020 ident: 10.1016/j.intermet.2021.107397_bib34 article-title: FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism publication-title: Intermetallics doi: 10.1016/j.intermet.2020.106801 – volume: 2 year: 1973 ident: 10.1016/j.intermet.2021.107397_bib1 – volume: 6 start-page: 299 year: 2004 ident: 10.1016/j.intermet.2021.107397_bib2 article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200300567 – start-page: 3 year: 2018 ident: 10.1016/j.intermet.2021.107397_bib39 article-title: Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under sodium chloride aqueous conditions publication-title: Ann. Mater. Sci. Eng. – volume: 18 start-page: 1244 year: 2010 ident: 10.1016/j.intermet.2021.107397_bib26 article-title: Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy publication-title: Intermetallics doi: 10.1016/j.intermet.2010.03.030 – volume: 161 start-page: 28 year: 2019 ident: 10.1016/j.intermet.2021.107397_bib13 article-title: High temperature wear in CoCrFeNi Cux high entropy alloys: the role of Cu, SCRIPTA publication-title: MATER – volume: 9 start-page: 111 year: 2017 ident: 10.1016/j.intermet.2021.107397_bib38 article-title: Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys publication-title: J. Mater. Sci. Technol. – volume: 71 start-page: 76 year: 2016 ident: 10.1016/j.intermet.2021.107397_bib6 article-title: A criterion for the formation of high entropy alloys based on lattice distortion publication-title: Intermetallics doi: 10.1016/j.intermet.2015.12.011 – volume: 15 start-page: 357 year: 2007 ident: 10.1016/j.intermet.2021.107397_bib30 article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2006.08.005 – volume: 101 start-page: 144 year: 2018 ident: 10.1016/j.intermet.2021.107397_bib36 article-title: Wear and oxidation resistances of AlCrFeNiTi -based high entropy alloys publication-title: Intermetallics doi: 10.1016/j.intermet.2018.07.017 – volume: 51 start-page: 778 year: 2020 ident: 10.1016/j.intermet.2021.107397_bib12 article-title: Elemental effects on weld cracking susceptibility in AlxCoCrCuyFeNi high-entropy alloy publication-title: Metall. Mater. Trans. doi: 10.1007/s11661-019-05564-8 – volume: 549 start-page: 195 year: 2013 ident: 10.1016/j.intermet.2021.107397_bib23 article-title: Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy publication-title: J. ALLOY. COMPD. doi: 10.1016/j.jallcom.2012.09.091 – volume: 109 start-page: 309 year: 2011 ident: 10.1016/j.intermet.2021.107397_bib17 article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys publication-title: J. Appl. Phys. doi: 10.1063/1.3587228 – volume: 92 start-page: 112 year: 2005 ident: 10.1016/j.intermet.2021.107397_bib19 article-title: Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2005.01.001 – volume: 210 start-page: 233 year: 2018 ident: 10.1016/j.intermet.2021.107397_bib28 article-title: Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.05.029 – volume: 182 start-page: 99 year: 2020 ident: 10.1016/j.intermet.2021.107397_bib7 article-title: Influence of non-magnetic Cu on enhancing the low temperature magnetic properties and Curie temperature of FeCoNiCrCu(x) high entropy alloys publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2020.02.037 – volume: 166 start-page: 168 year: 2019 ident: 10.1016/j.intermet.2021.107397_bib24 article-title: Corrosion-resistant high entropy alloy with high strength and ductility, SCRIPTA publication-title: MATER – volume: 122 start-page: 448 year: 2017 ident: 10.1016/j.intermet.2021.107397_bib3 article-title: A critical review of high entropy alloys and related concepts publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.08.081 – volume: 132 start-page: 233 year: 2012 ident: 10.1016/j.intermet.2021.107397_bib4 article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.11.021 – volume: 38 start-page: 19 year: 2020 ident: 10.1016/j.intermet.2021.107397_bib9 article-title: Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.08.019 |
SSID | ssj0017035 |
Score | 2.5092876 |
Snippet | In this work, the effect of Cu on the phase transformation, microstructure, and properties of AlCrFeNiTiCux high-entropy alloys (HEAs) was investigated.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107397 |
SubjectTerms | A. high-entropy alloys Aluminum B. corrosion B. phase transformation Coefficient of friction Copper Corrosion currents Corrosion resistance D. segregation Dendritic structure Enthalpy Friction reduction G. wear-resistance High entropy alloys Lubricity Microhardness Phase transitions Solid solutions Sulfuric acid Titanium |
Title | Effect of Cu segregation on the phase transformation and properties of AlCrFeNiTiCux high-entropy alloys |
URI | https://dx.doi.org/10.1016/j.intermet.2021.107397 https://www.proquest.com/docview/2620030736 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvOjB-Iwokj14XfrabcuRNBLUyEVIuG3a7lYgCA2URC7-dmf6IGhMOJj0tN1pmtnpzLfbmW8IefCx2QDs_5mKhM04AAoWKtNksNhx5PMENkBYKPw6cPsj_jwW4xoJqloYTKssfX_h03NvXY4YpTaNdDo13gB8ux2vA_EnJyDEinLOPbTy9tcuzcMCi87TGGEyw9l7VcKzNlIyrD405lTaFgx6DpI__R2gfrnqPP70zshpCRxpt3i3c1LTiwtyskcneEkmBRUxXSY02NC1hq30e654ChcAPZpOIGbRbA-rwo1woWiKR_Ir5FZF4e48WPX0YDqcBptPioTGDM-Al-mW4m_67fqKjHqPw6DPyk4KLIaAnTE3jEI77AjP8UPuxCISIjKTGMCXmSSWl4Q-dpznrp_YwjG1bWpP6NiylLITBT7NuSb1xXKhbwgFxMS5GYFakSvQVT63lIf9JXwBuxPFG0RU6pNxSTOO3S7mssonm8lK7RLVLgu1N4ixk0sLoo2DEp1qdeQPk5EQDQ7KNqvllOVHu5bIzZ_7PPf2H4--I8c2lkjkxzRNUs9WG30PwCWLWrlltshR9-mlP_gGdzjseQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbGdgAOiKd4DMiBa1gfSdsdp4ppsLELQ-IWtU0KQ7BVe0jw77H7mAZC4oDUU1pXlZPanxP7M8BVQM0GMP7nOpYOFwgoeKQti-NkJ3EgUgyAqFD4fuj1HsXdk3yqQVjVwlBaZWn7C5ueW-typFVqs5WNx60HBN9e22-j_8kJCP0NaBA7laxDo3Pb7w1Xhwm4qPNMRnyek8BaofDrNbEyzN4NpVU6Ng76LvE__e6jfljr3AV1d2GnxI6sU3zeHtTMZB-21xgFD-ClYCNm05SFSzY3GE0_57pneCHWY9kLui22WIOreCOaaJbRrvyM6FVJuPMWzrpmOB6Nw-UHI05jTtvA0-yT0Un95_wQHrs3o7DHy2YKPEGfveBeFEdO1Ja-G0TCTWQsZWylCeIvK01tP40CajovvCB1pGsZxzK-NIlta-2kGs2aewT1yXRijoEhaBLCilGtRBfo6UDY2qcWE4HEAEWLE5CV-lRSMo1Tw4s3VaWUvapK7YrUrgq1n0BrJZcVXBt_SrSr2VHfVo1Ch_CnbLOaTlX-t3NF9Py52fNO__HqS9jsje4HanA77J_BlkMVE_muTRPqi9nSnCOOWcQX5Tr9ApUR7yo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Cu+segregation+on+the+phase+transformation+and+properties+of+AlCrFeNiTiCux+high-entropy+alloys&rft.jtitle=Intermetallics&rft.au=Huang%2C+Lei&rft.au=Wang%2C+Xuejie&rft.au=Huang%2C+Baoxu&rft.au=Zhao%2C+Xingchuan&rft.date=2022-01-01&rft.issn=0966-9795&rft.volume=140&rft.spage=107397&rft_id=info:doi/10.1016%2Fj.intermet.2021.107397&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_intermet_2021_107397 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0966-9795&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0966-9795&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0966-9795&client=summon |