Effect of Cu segregation on the phase transformation and properties of AlCrFeNiTiCux high-entropy alloys

In this work, the effect of Cu on the phase transformation, microstructure, and properties of AlCrFeNiTiCux high-entropy alloys (HEAs) was investigated. Meanwhile, the formation mechanism of the FCC solid solution was discussed. The results showed that it was a beneficial effect on the formation of...

Full description

Saved in:
Bibliographic Details
Published inIntermetallics Vol. 140; p. 107397
Main Authors Huang, Lei, Wang, Xuejie, Huang, Baoxu, Zhao, Xingchuan, Chen, Hui, Wang, Changzheng
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.01.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, the effect of Cu on the phase transformation, microstructure, and properties of AlCrFeNiTiCux high-entropy alloys (HEAs) was investigated. Meanwhile, the formation mechanism of the FCC solid solution was discussed. The results showed that it was a beneficial effect on the formation of the FCC solid solution for the addition of Cu into HEAs from the perspective of valence electron concentration (VEC), enthalpy of mixing (ΔHmix) and difference in atom size (δ), which was confirmed by X-ray diffraction and Scanning Electron Microscope analysis. In addition, the increment of Cu content in the alloys promoting the segregation of Al, Ni and Ti in dendrite and Fe, Cr segregated into particles distributed in dendrite and inter-dendrite. The micro-hardness of the HEAs decreased with increasing Cu content and as the Cu content increased, oxidative wear intensified. However, the friction coefficient was significantly reduced, which was related to the lubricity of Cu itself. Besides, the segregation of Cu increased the corrosion current density of the passivation zone of the HEAs, thereby reducing the corrosion resistance of the HEAs in 0.5 mol/L H2SO4 solution. •Added Cu promotes FCC phase forming.•Cu improves the wear resistance.•Cu element reduces the corrosion resistance.
AbstractList In this work, the effect of Cu on the phase transformation, microstructure, and properties of AlCrFeNiTiCux high-entropy alloys (HEAs) was investigated. Meanwhile, the formation mechanism of the FCC solid solution was discussed. The results showed that it was a beneficial effect on the formation of the FCC solid solution for the addition of Cu into HEAs from the perspective of valence electron concentration (VEC), enthalpy of mixing (ΔHmix) and difference in atom size (δ), which was confirmed by X-ray diffraction and Scanning Electron Microscope analysis. In addition, the increment of Cu content in the alloys promoting the segregation of Al, Ni and Ti in dendrite and Fe, Cr segregated into particles distributed in dendrite and inter-dendrite. The micro-hardness of the HEAs decreased with increasing Cu content and as the Cu content increased, oxidative wear intensified. However, the friction coefficient was significantly reduced, which was related to the lubricity of Cu itself. Besides, the segregation of Cu increased the corrosion current density of the passivation zone of the HEAs, thereby reducing the corrosion resistance of the HEAs in 0.5 mol/L H2SO4 solution.
In this work, the effect of Cu on the phase transformation, microstructure, and properties of AlCrFeNiTiCux high-entropy alloys (HEAs) was investigated. Meanwhile, the formation mechanism of the FCC solid solution was discussed. The results showed that it was a beneficial effect on the formation of the FCC solid solution for the addition of Cu into HEAs from the perspective of valence electron concentration (VEC), enthalpy of mixing (ΔHmix) and difference in atom size (δ), which was confirmed by X-ray diffraction and Scanning Electron Microscope analysis. In addition, the increment of Cu content in the alloys promoting the segregation of Al, Ni and Ti in dendrite and Fe, Cr segregated into particles distributed in dendrite and inter-dendrite. The micro-hardness of the HEAs decreased with increasing Cu content and as the Cu content increased, oxidative wear intensified. However, the friction coefficient was significantly reduced, which was related to the lubricity of Cu itself. Besides, the segregation of Cu increased the corrosion current density of the passivation zone of the HEAs, thereby reducing the corrosion resistance of the HEAs in 0.5 mol/L H2SO4 solution. •Added Cu promotes FCC phase forming.•Cu improves the wear resistance.•Cu element reduces the corrosion resistance.
ArticleNumber 107397
Author Wang, Xuejie
Huang, Baoxu
Huang, Lei
Chen, Hui
Wang, Changzheng
Zhao, Xingchuan
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0002-3269-7733
  surname: Huang
  fullname: Huang, Lei
  email: chuxiahuang11@163.com
  organization: School of Materials Science and Engineering, Liaocheng University, Liaocheng City, 252000, Shandong Province, PR China
– sequence: 2
  givenname: Xuejie
  surname: Wang
  fullname: Wang, Xuejie
  email: wangxuejie010121@126.com
  organization: School of Materials Science and Engineering, Qingdao University, Qingdao City, 266071, Shandong Province, PR China
– sequence: 3
  givenname: Baoxu
  surname: Huang
  fullname: Huang, Baoxu
  email: huangbaoxu@lcu.edu.cn
  organization: School of Materials Science and Engineering, Liaocheng University, Liaocheng City, 252000, Shandong Province, PR China
– sequence: 4
  givenname: Xingchuan
  surname: Zhao
  fullname: Zhao, Xingchuan
  email: zhaoxingchuan@lcu.edu.cn
  organization: School of Materials Science and Engineering, Liaocheng University, Liaocheng City, 252000, Shandong Province, PR China
– sequence: 5
  givenname: Hui
  surname: Chen
  fullname: Chen, Hui
  email: chenhui@lcu.edu.cn
  organization: School of Materials Science and Engineering, Liaocheng University, Liaocheng City, 252000, Shandong Province, PR China
– sequence: 6
  givenname: Changzheng
  orcidid: 0000-0003-0254-9083
  surname: Wang
  fullname: Wang, Changzheng
  email: wangchangzheng@lcu.edu.cn
  organization: School of Materials Science and Engineering, Liaocheng University, Liaocheng City, 252000, Shandong Province, PR China
BookMark eNqFkV1rIyEUhqW00DTtXyhCryf1IzoZ6MWWId0Wyu5Nei3GOWYME82qWTb_fk1n96Y3AUE4vs_R83iDLn3wgNA9JTNKqHzczpzPEHeQZ4wwWoo1b-oLNKGLuqlKRV6iCWmkrJq6EdfoJqUtIbQmXExQv7QWTMbB4vaAE2wibHR2weOycg943-sEOEftkw1xN55p3-F9DHuI2UE6wc9DG1_gh1u59vAH927TV-BziRyxHoZwTLfoyuohwd2_fYo-Xpar9rV6__n9rX1-r8ycyFxJvdZMN6LmCz3nRqyFWBNruGDEWlpbvaCU8rlcWCY4AUagFmAo7TpmO0YbPkUPY9_yvl8HSFltwyH6cqVikhHCix1ZUk9jysSQUgSrjMufs5VJ3aAoUSe3aqv-u1Unt2p0W3D5Bd9Ht9PxeB78NoJQFPx2EFUyDryBzsXyDaoL7lyLvwe4mvY
CitedBy_id crossref_primary_10_1016_j_jmrt_2024_12_219
crossref_primary_10_3390_ma16083179
crossref_primary_10_1007_s10853_025_10639_6
crossref_primary_10_1051_e3sconf_202454303009
crossref_primary_10_1063_5_0203280
crossref_primary_10_1002_adem_202300968
crossref_primary_10_1016_j_physb_2023_415413
crossref_primary_10_1016_j_intermet_2022_107778
crossref_primary_10_1051_e3sconf_202454303010
crossref_primary_10_1016_j_pmatsci_2023_101106
crossref_primary_10_1007_s43452_024_01102_5
crossref_primary_10_1016_j_msea_2024_147005
crossref_primary_10_3390_ma16031178
crossref_primary_10_1016_j_jallcom_2024_175401
crossref_primary_10_1016_j_scriptamat_2024_116260
crossref_primary_10_1016_j_intermet_2025_108641
crossref_primary_10_1016_j_corsci_2025_112737
crossref_primary_10_1016_j_diamond_2024_111861
crossref_primary_10_1016_j_triboint_2024_109401
crossref_primary_10_1080_00325899_2023_2239615
crossref_primary_10_1016_j_jallcom_2022_168511
crossref_primary_10_1016_j_jallcom_2023_168831
crossref_primary_10_1016_j_jallcom_2023_173408
crossref_primary_10_1016_j_jmrt_2024_10_164
crossref_primary_10_1007_s10853_023_08255_3
crossref_primary_10_1016_j_jallcom_2023_171411
crossref_primary_10_1016_j_jmrt_2024_02_169
Cites_doi 10.1007/s12666-019-01850-6
10.1016/j.jallcom.2019.06.225
10.1016/j.jallcom.2014.04.127
10.1016/j.actamat.2019.09.030
10.1016/j.matlet.2019.126528
10.1016/j.mtla.2019.100459
10.1016/j.surfin.2017.06.012
10.1016/j.wear.2017.12.006
10.1016/j.jmst.2020.01.039
10.1016/j.mtla.2019.100282
10.1016/j.intermet.2013.05.002
10.1016/j.optlastec.2019.05.006
10.1016/j.geothermics.2019.04.006
10.2320/matertrans.46.2817
10.1016/j.wear.2019.03.002
10.1016/j.wear.2019.03.026
10.1016/j.matdes.2017.07.045
10.1016/j.jallcom.2018.10.081
10.1016/j.intermet.2020.106801
10.1002/adem.200300567
10.1016/j.intermet.2010.03.030
10.1016/j.intermet.2015.12.011
10.1016/j.intermet.2006.08.005
10.1016/j.intermet.2018.07.017
10.1007/s11661-019-05564-8
10.1016/j.jallcom.2012.09.091
10.1063/1.3587228
10.1016/j.matchemphys.2005.01.001
10.1016/j.matchemphys.2017.05.029
10.1016/j.scriptamat.2020.02.037
10.1016/j.actamat.2016.08.081
10.1016/j.matchemphys.2011.11.021
10.1016/j.jmst.2019.08.019
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jan 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2022
DBID AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/j.intermet.2021.107397
DatabaseName CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0216
ExternalDocumentID 10_1016_j_intermet_2021_107397
S0966979521003137
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSM
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
8BQ
8FD
EFKBS
JG9
ID FETCH-LOGICAL-c406t-6aba2a95738a43c5b55b0fc3520ff17fa81113468f2530e20e75ec11dd2fd2193
IEDL.DBID .~1
ISSN 0966-9795
IngestDate Sun Jul 13 05:08:16 EDT 2025
Tue Jul 01 02:43:28 EDT 2025
Thu Apr 24 22:57:12 EDT 2025
Fri Feb 23 02:45:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords B. corrosion
D. segregation
B. phase transformation
G. wear-resistance
A. high-entropy alloys
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-6aba2a95738a43c5b55b0fc3520ff17fa81113468f2530e20e75ec11dd2fd2193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3269-7733
0000-0003-0254-9083
PQID 2620030736
PQPubID 2045471
ParticipantIDs proquest_journals_2620030736
crossref_citationtrail_10_1016_j_intermet_2021_107397
crossref_primary_10_1016_j_intermet_2021_107397
elsevier_sciencedirect_doi_10_1016_j_intermet_2021_107397
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Intermetallics
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Zhou, Qiao, Yang, Xu, Lu, Wang, Wang (bib22) 2020; 46
(bib1) 1973; 2
Sun, Zhao, Wen, Qiao, Yang (bib31) 2014; 608
Ji, Ji, Cheng, Shan, Tian (bib33) 2018
Nong, Lei, Zhu (bib36) 2018; 101
Martin, Oliveira, Fink (bib12) 2020; 51
Rodriguez, Tylczak, Gao, Jablonski, Detrois, Ziomek-Moroz, Hawk (bib39) 2018
Toda-Caraballo, Rivera-Díaz-del-Castillo (bib6) 2016; 71
Liu, Liu, Chen, Yang (bib35) 2019; 118
Heng, Chen, Qin, Li, Su, Ding, Fu (bib9) 2020; 38
Wang, Yang, Yang, Zhang, Ma, Qiao (bib28) 2018; 210
Zhu, Li, Liu, Wang, Yao, Fa, Jian (bib20) 2020; 73
Verma, Tarate, Abhyankar, Mohape, Gowtam, Deshmukh, Shanmugasundaram (bib13) 2019; 161
Cai, Chen, Luo, Gao, Li (bib16) 2017; 133
Jodi, Park (bib11) 2019; 255
Yang, Zhang (bib4) 2012; 132
Lin, Tsai, Bor (bib26) 2010; 18
Shang, Axinte, Ge, Zhang, Wang (bib18) 2017; 9
Qiu, Zhang, He, Liu (bib23) 2013; 549
(bib25) 2006
Takeuchi, Inoue (bib27) 2005; 46
Guo, Hu, Ng, Liu (bib5) 2013; 41
Hsu, Chiang, Wu (bib19) 2005; 92
Yeh, Chen, Lin, Gan, Chin, Shun, Chang (bib2) 2004; 6
Aliyu, Srivastava (bib14) 2019; 8
Guo, Ng, Lu, Liu (bib17) 2011; 109
Sun, Nash-Liu, Li, Liu, He, Shi, Zhao (bib38) 2017; 9
Gwalani, Gorsse, Soni, Carl, Ley, Smith, Banerjee (bib10) 2019; 6
Wang, Zhang, Qiao, Chen (bib30) 2007; 15
Joseph, Haghdadi, Shamlaye, Hodgson, Barnett, Fabijanic (bib29) 2019; 428
Zhang, Guo, Zhang, Song, Li, Xing, Kong (bib21) 2019; 775
Nene, Frank, Liu, Sinha, Mishra, Mcwilliams, Cho (bib24) 2019; 166
Haghdadi, Guo, Ghaderi, Hodgson, Barnett, Fabijanic (bib32) 2019
Karlsdottir, Csaki, Antoniac, Manea, Stefanoiu, Magnus, Miculescu (bib37) 2019; 81
Macdonald, Fu, Wang, Li, Chen, Zhou, Lavernia (bib8) 2019; 181
Haudhary, Soni, Gwalani, Ramanujan, Banerjee (bib7) 2020; 182
Hao, Dong, Xia, Li (bib15) 2019; 803
Zhou, Sun, Liu, Li, Xin, Liaw, Shen (bib34) 2020; 122
Miracle, Senkov (bib3) 2017; 122
Lin (10.1016/j.intermet.2021.107397_bib26) 2010; 18
Heng (10.1016/j.intermet.2021.107397_bib9) 2020; 38
Jodi (10.1016/j.intermet.2021.107397_bib11) 2019; 255
Takeuchi (10.1016/j.intermet.2021.107397_bib27) 2005; 46
Cai (10.1016/j.intermet.2021.107397_bib16) 2017; 133
Nene (10.1016/j.intermet.2021.107397_bib24) 2019; 166
Aliyu (10.1016/j.intermet.2021.107397_bib14) 2019; 8
Qiu (10.1016/j.intermet.2021.107397_bib23) 2013; 549
Wang (10.1016/j.intermet.2021.107397_bib28) 2018; 210
Martin (10.1016/j.intermet.2021.107397_bib12) 2020; 51
Shang (10.1016/j.intermet.2021.107397_bib18) 2017; 9
Hsu (10.1016/j.intermet.2021.107397_bib19) 2005; 92
Liu (10.1016/j.intermet.2021.107397_bib35) 2019; 118
(10.1016/j.intermet.2021.107397_bib25) 2006
Zhou (10.1016/j.intermet.2021.107397_bib22) 2020; 46
Sun (10.1016/j.intermet.2021.107397_bib38) 2017; 9
Yang (10.1016/j.intermet.2021.107397_bib4) 2012; 132
Karlsdottir (10.1016/j.intermet.2021.107397_bib37) 2019; 81
Nong (10.1016/j.intermet.2021.107397_bib36) 2018; 101
Haghdadi (10.1016/j.intermet.2021.107397_bib32) 2019
Verma (10.1016/j.intermet.2021.107397_bib13) 2019; 161
Guo (10.1016/j.intermet.2021.107397_bib17) 2011; 109
Macdonald (10.1016/j.intermet.2021.107397_bib8) 2019; 181
Gwalani (10.1016/j.intermet.2021.107397_bib10) 2019; 6
Wang (10.1016/j.intermet.2021.107397_bib30) 2007; 15
Hao (10.1016/j.intermet.2021.107397_bib15) 2019; 803
(10.1016/j.intermet.2021.107397_bib1) 1973; 2
Zhang (10.1016/j.intermet.2021.107397_bib21) 2019; 775
Joseph (10.1016/j.intermet.2021.107397_bib29) 2019; 428
Haudhary (10.1016/j.intermet.2021.107397_bib7) 2020; 182
Guo (10.1016/j.intermet.2021.107397_bib5) 2013; 41
Rodriguez (10.1016/j.intermet.2021.107397_bib39) 2018
Miracle (10.1016/j.intermet.2021.107397_bib3) 2017; 122
Zhu (10.1016/j.intermet.2021.107397_bib20) 2020; 73
Toda-Caraballo (10.1016/j.intermet.2021.107397_bib6) 2016; 71
Sun (10.1016/j.intermet.2021.107397_bib31) 2014; 608
Ji (10.1016/j.intermet.2021.107397_bib33) 2018
Zhou (10.1016/j.intermet.2021.107397_bib34) 2020; 122
Yeh (10.1016/j.intermet.2021.107397_bib2) 2004; 6
References_xml – volume: 6
  start-page: 299
  year: 2004
  end-page: 303
  ident: bib2
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
– volume: 428
  start-page: 32
  year: 2019
  end-page: 44
  ident: bib29
  article-title: The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures
  publication-title: Wear
– volume: 255
  year: 2019
  ident: bib11
  article-title: Phase separation and its effect on atomic interactions in CoCrNiCux medium-entropy alloys
  publication-title: Mater. Lett.
– volume: 8
  year: 2019
  ident: bib14
  article-title: Microstructure and corrosion performance of AlFeCoNiCu high entropy alloy coatings by addition of graphene oxide
  publication-title: Materialia
– volume: 166
  start-page: 168
  year: 2019
  end-page: 172
  ident: bib24
  article-title: Corrosion-resistant high entropy alloy with high strength and ductility, SCRIPTA
  publication-title: MATER
– volume: 73
  start-page: 389
  year: 2020
  end-page: 397
  ident: bib20
  article-title: Microstructure, corrosion behaviour and microhardness of non-equiatomic Fe
  publication-title: T. INDIAN. I. METALS.
– start-page: 178
  year: 2018
  end-page: 182
  ident: bib33
  article-title: Erosive wear resistance evaluation with the hardness after strain-hardening and its application for a high-entropy alloy
  publication-title: Wear
– volume: 81
  start-page: 32
  year: 2019
  end-page: 38
  ident: bib37
  article-title: Corrosion behavior of AlCrFeNiMn high entropy alloy in a geothermal environment
  publication-title: Geothermics
– volume: 608
  start-page: 49
  year: 2014
  end-page: 53
  ident: bib31
  article-title: Nanoindentation deformation of a bi-phase AlCrCuFeNi2 alloy
  publication-title: J. ALLOY. COMPD.
– volume: 2
  year: 1973
  ident: bib1
  publication-title: Metals Handbook
– volume: 92
  start-page: 112
  year: 2005
  end-page: 117
  ident: bib19
  article-title: Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution
  publication-title: Mater. Chem. Phys.
– volume: 71
  start-page: 76
  year: 2016
  end-page: 87
  ident: bib6
  article-title: A criterion for the formation of high entropy alloys based on lattice distortion
  publication-title: Intermetallics
– volume: 803
  start-page: 649
  year: 2019
  end-page: 657
  ident: bib15
  article-title: Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100-xCux high-entropy alloy interlayer
  publication-title: J. ALLOY. COMPD.
– volume: 161
  start-page: 28
  year: 2019
  end-page: 31
  ident: bib13
  article-title: High temperature wear in CoCrFeNi Cux high entropy alloys: the role of Cu, SCRIPTA
  publication-title: MATER
– volume: 46
  start-page: 201
  year: 2020
  end-page: 210
  ident: bib22
  article-title: A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms
  publication-title: J. Mater. Sci. Technol.
– volume: 133
  start-page: 91
  year: 2017
  end-page: 108
  ident: bib16
  article-title: Manufacturing of FeCoCrNiCux medium-entropy alloy coating using laser cladding technology
  publication-title: MATER. DESIGN.
– volume: 9
  start-page: 111
  year: 2017
  end-page: 118
  ident: bib38
  article-title: Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys
  publication-title: J. Mater. Sci. Technol.
– volume: 210
  start-page: 233
  year: 2018
  end-page: 239
  ident: bib28
  article-title: Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy
  publication-title: Mater. Chem. Phys.
– volume: 51
  start-page: 778
  year: 2020
  end-page: 787
  ident: bib12
  article-title: Elemental effects on weld cracking susceptibility in AlxCoCrCuyFeNi high-entropy alloy
  publication-title: Metall. Mater. Trans.
– start-page: 278
  year: 2006
  ident: bib25
  article-title: The Lattice Constant Determination of Metals–Method of X–Ray Diffractometer
– volume: 549
  start-page: 195
  year: 2013
  end-page: 199
  ident: bib23
  article-title: Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy
  publication-title: J. ALLOY. COMPD.
– volume: 181
  start-page: 25
  year: 2019
  end-page: 35
  ident: bib8
  article-title: Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy
  publication-title: Acta Mater.
– volume: 182
  start-page: 99
  year: 2020
  end-page: 103
  ident: bib7
  article-title: Influence of non-magnetic Cu on enhancing the low temperature magnetic properties and Curie temperature of FeCoNiCrCu(x) high entropy alloys
  publication-title: Scripta Mater.
– volume: 122
  start-page: 448
  year: 2017
  end-page: 511
  ident: bib3
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
– volume: 18
  start-page: 1244
  year: 2010
  end-page: 1250
  ident: bib26
  article-title: Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy
  publication-title: Intermetallics
– volume: 46
  start-page: 2817
  year: 2005
  end-page: 2829
  ident: bib27
  article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element
  publication-title: Mater. Trans.
– volume: 122
  year: 2020
  ident: bib34
  article-title: FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism
  publication-title: Intermetallics
– volume: 41
  start-page: 96
  year: 2013
  end-page: 103
  ident: bib5
  article-title: More than entropy in high-entropy alloys: forming solid solutions or amorphous phase
  publication-title: Intermetallics
– volume: 38
  start-page: 19
  year: 2020
  end-page: 27
  ident: bib9
  article-title: Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification
  publication-title: J. Mater. Sci. Technol.
– start-page: 293
  year: 2019
  end-page: 301
  ident: bib32
  article-title: The scratch behaviour of AlxCoCrFeNi (x=0.3 and 1.0) high entropy alloys
  publication-title: Wear
– volume: 6
  year: 2019
  ident: bib10
  article-title: Role of copper on L12 precipitation strengthened fcc based high entropy alloy
  publication-title: Materialia
– volume: 9
  start-page: 36
  year: 2017
  end-page: 43
  ident: bib18
  article-title: High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering
  publication-title: Surfaces and Interfaces
– volume: 15
  start-page: 357
  year: 2007
  end-page: 362
  ident: bib30
  article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys
  publication-title: Intermetallics
– start-page: 3
  year: 2018
  end-page: 20
  ident: bib39
  article-title: Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under sodium chloride aqueous conditions
  publication-title: Ann. Mater. Sci. Eng.
– volume: 109
  start-page: 309
  year: 2011
  end-page: 313
  ident: bib17
  article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys
  publication-title: J. Appl. Phys.
– volume: 118
  start-page: 140
  year: 2019
  end-page: 150
  ident: bib35
  article-title: Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding
  publication-title: Opt Laser. Technol.
– volume: 101
  start-page: 144
  year: 2018
  end-page: 151
  ident: bib36
  article-title: Wear and oxidation resistances of AlCrFeNiTi -based high entropy alloys
  publication-title: Intermetallics
– volume: 775
  start-page: 565
  year: 2019
  end-page: 570
  ident: bib21
  article-title: Influence of remelting and annealing treatment on corrosion resistance of AlFeNiCoCuCr high entropy alloy in 3.5% NaCl solution
  publication-title: J. ALLOY. COMPD.
– volume: 132
  start-page: 233
  year: 2012
  end-page: 238
  ident: bib4
  article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys
  publication-title: Mater. Chem. Phys.
– volume: 73
  start-page: 389
  year: 2020
  ident: 10.1016/j.intermet.2021.107397_bib20
  article-title: Microstructure, corrosion behaviour and microhardness of non-equiatomic Fe1.5CoNi CrCux (0.5≤ x≤ 2.0) high-entropy alloys
  publication-title: T. INDIAN. I. METALS.
  doi: 10.1007/s12666-019-01850-6
– volume: 803
  start-page: 649
  year: 2019
  ident: 10.1016/j.intermet.2021.107397_bib15
  article-title: Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100-xCux high-entropy alloy interlayer
  publication-title: J. ALLOY. COMPD.
  doi: 10.1016/j.jallcom.2019.06.225
– volume: 608
  start-page: 49
  year: 2014
  ident: 10.1016/j.intermet.2021.107397_bib31
  article-title: Nanoindentation deformation of a bi-phase AlCrCuFeNi2 alloy
  publication-title: J. ALLOY. COMPD.
  doi: 10.1016/j.jallcom.2014.04.127
– volume: 181
  start-page: 25
  year: 2019
  ident: 10.1016/j.intermet.2021.107397_bib8
  article-title: Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.09.030
– volume: 255
  year: 2019
  ident: 10.1016/j.intermet.2021.107397_bib11
  article-title: Phase separation and its effect on atomic interactions in CoCrNiCux medium-entropy alloys
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2019.126528
– volume: 8
  year: 2019
  ident: 10.1016/j.intermet.2021.107397_bib14
  article-title: Microstructure and corrosion performance of AlFeCoNiCu high entropy alloy coatings by addition of graphene oxide
  publication-title: Materialia
  doi: 10.1016/j.mtla.2019.100459
– volume: 9
  start-page: 36
  year: 2017
  ident: 10.1016/j.intermet.2021.107397_bib18
  article-title: High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering
  publication-title: Surfaces and Interfaces
  doi: 10.1016/j.surfin.2017.06.012
– start-page: 178
  year: 2018
  ident: 10.1016/j.intermet.2021.107397_bib33
  article-title: Erosive wear resistance evaluation with the hardness after strain-hardening and its application for a high-entropy alloy
  publication-title: Wear
  doi: 10.1016/j.wear.2017.12.006
– start-page: 278
  year: 2006
  ident: 10.1016/j.intermet.2021.107397_bib25
– volume: 46
  start-page: 201
  year: 2020
  ident: 10.1016/j.intermet.2021.107397_bib22
  article-title: A novel Cu-bearing high-entropy alloy with significant antibacterial behavior against corrosive marine biofilms
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.01.039
– volume: 6
  year: 2019
  ident: 10.1016/j.intermet.2021.107397_bib10
  article-title: Role of copper on L12 precipitation strengthened fcc based high entropy alloy
  publication-title: Materialia
  doi: 10.1016/j.mtla.2019.100282
– volume: 41
  start-page: 96
  year: 2013
  ident: 10.1016/j.intermet.2021.107397_bib5
  article-title: More than entropy in high-entropy alloys: forming solid solutions or amorphous phase
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2013.05.002
– volume: 118
  start-page: 140
  year: 2019
  ident: 10.1016/j.intermet.2021.107397_bib35
  article-title: Microstructure and high temperature wear behaviour of in-situ TiC reinforced AlCoCrFeNi-based high-entropy alloy composite coatings fabricated by laser cladding
  publication-title: Opt Laser. Technol.
  doi: 10.1016/j.optlastec.2019.05.006
– volume: 81
  start-page: 32
  year: 2019
  ident: 10.1016/j.intermet.2021.107397_bib37
  article-title: Corrosion behavior of AlCrFeNiMn high entropy alloy in a geothermal environment
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2019.04.006
– volume: 46
  start-page: 2817
  year: 2005
  ident: 10.1016/j.intermet.2021.107397_bib27
  article-title: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.46.2817
– volume: 428
  start-page: 32
  year: 2019
  ident: 10.1016/j.intermet.2021.107397_bib29
  article-title: The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures
  publication-title: Wear
  doi: 10.1016/j.wear.2019.03.002
– start-page: 293
  year: 2019
  ident: 10.1016/j.intermet.2021.107397_bib32
  article-title: The scratch behaviour of AlxCoCrFeNi (x=0.3 and 1.0) high entropy alloys
  publication-title: Wear
  doi: 10.1016/j.wear.2019.03.026
– volume: 133
  start-page: 91
  year: 2017
  ident: 10.1016/j.intermet.2021.107397_bib16
  article-title: Manufacturing of FeCoCrNiCux medium-entropy alloy coating using laser cladding technology
  publication-title: MATER. DESIGN.
  doi: 10.1016/j.matdes.2017.07.045
– volume: 775
  start-page: 565
  year: 2019
  ident: 10.1016/j.intermet.2021.107397_bib21
  article-title: Influence of remelting and annealing treatment on corrosion resistance of AlFeNiCoCuCr high entropy alloy in 3.5% NaCl solution
  publication-title: J. ALLOY. COMPD.
  doi: 10.1016/j.jallcom.2018.10.081
– volume: 122
  year: 2020
  ident: 10.1016/j.intermet.2021.107397_bib34
  article-title: FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2020.106801
– volume: 2
  year: 1973
  ident: 10.1016/j.intermet.2021.107397_bib1
– volume: 6
  start-page: 299
  year: 2004
  ident: 10.1016/j.intermet.2021.107397_bib2
  article-title: Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200300567
– start-page: 3
  year: 2018
  ident: 10.1016/j.intermet.2021.107397_bib39
  article-title: Effect of molybdenum on the corrosion behavior of high-entropy alloys CoCrFeNi2 and CoCrFeNi2Mo0.25 under sodium chloride aqueous conditions
  publication-title: Ann. Mater. Sci. Eng.
– volume: 18
  start-page: 1244
  year: 2010
  ident: 10.1016/j.intermet.2021.107397_bib26
  article-title: Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2010.03.030
– volume: 161
  start-page: 28
  year: 2019
  ident: 10.1016/j.intermet.2021.107397_bib13
  article-title: High temperature wear in CoCrFeNi Cux high entropy alloys: the role of Cu, SCRIPTA
  publication-title: MATER
– volume: 9
  start-page: 111
  year: 2017
  ident: 10.1016/j.intermet.2021.107397_bib38
  article-title: Effect of Sc and Zr additions on microstructures and corrosion behavior of Al-Cu-Mg-Sc-Zr alloys
  publication-title: J. Mater. Sci. Technol.
– volume: 71
  start-page: 76
  year: 2016
  ident: 10.1016/j.intermet.2021.107397_bib6
  article-title: A criterion for the formation of high entropy alloys based on lattice distortion
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2015.12.011
– volume: 15
  start-page: 357
  year: 2007
  ident: 10.1016/j.intermet.2021.107397_bib30
  article-title: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2006.08.005
– volume: 101
  start-page: 144
  year: 2018
  ident: 10.1016/j.intermet.2021.107397_bib36
  article-title: Wear and oxidation resistances of AlCrFeNiTi -based high entropy alloys
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2018.07.017
– volume: 51
  start-page: 778
  year: 2020
  ident: 10.1016/j.intermet.2021.107397_bib12
  article-title: Elemental effects on weld cracking susceptibility in AlxCoCrCuyFeNi high-entropy alloy
  publication-title: Metall. Mater. Trans.
  doi: 10.1007/s11661-019-05564-8
– volume: 549
  start-page: 195
  year: 2013
  ident: 10.1016/j.intermet.2021.107397_bib23
  article-title: Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy
  publication-title: J. ALLOY. COMPD.
  doi: 10.1016/j.jallcom.2012.09.091
– volume: 109
  start-page: 309
  year: 2011
  ident: 10.1016/j.intermet.2021.107397_bib17
  article-title: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3587228
– volume: 92
  start-page: 112
  year: 2005
  ident: 10.1016/j.intermet.2021.107397_bib19
  article-title: Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2005.01.001
– volume: 210
  start-page: 233
  year: 2018
  ident: 10.1016/j.intermet.2021.107397_bib28
  article-title: Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.05.029
– volume: 182
  start-page: 99
  year: 2020
  ident: 10.1016/j.intermet.2021.107397_bib7
  article-title: Influence of non-magnetic Cu on enhancing the low temperature magnetic properties and Curie temperature of FeCoNiCrCu(x) high entropy alloys
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2020.02.037
– volume: 166
  start-page: 168
  year: 2019
  ident: 10.1016/j.intermet.2021.107397_bib24
  article-title: Corrosion-resistant high entropy alloy with high strength and ductility, SCRIPTA
  publication-title: MATER
– volume: 122
  start-page: 448
  year: 2017
  ident: 10.1016/j.intermet.2021.107397_bib3
  article-title: A critical review of high entropy alloys and related concepts
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.08.081
– volume: 132
  start-page: 233
  year: 2012
  ident: 10.1016/j.intermet.2021.107397_bib4
  article-title: Prediction of high-entropy stabilized solid-solution in multi-component alloys
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.11.021
– volume: 38
  start-page: 19
  year: 2020
  ident: 10.1016/j.intermet.2021.107397_bib9
  article-title: Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.08.019
SSID ssj0017035
Score 2.5092876
Snippet In this work, the effect of Cu on the phase transformation, microstructure, and properties of AlCrFeNiTiCux high-entropy alloys (HEAs) was investigated....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107397
SubjectTerms A. high-entropy alloys
Aluminum
B. corrosion
B. phase transformation
Coefficient of friction
Copper
Corrosion currents
Corrosion resistance
D. segregation
Dendritic structure
Enthalpy
Friction reduction
G. wear-resistance
High entropy alloys
Lubricity
Microhardness
Phase transitions
Solid solutions
Sulfuric acid
Titanium
Title Effect of Cu segregation on the phase transformation and properties of AlCrFeNiTiCux high-entropy alloys
URI https://dx.doi.org/10.1016/j.intermet.2021.107397
https://www.proquest.com/docview/2620030736
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QvOjB-Iwokj14XfrabcuRNBLUyEVIuG3a7lYgCA2URC7-dmf6IGhMOJj0tN1pmtnpzLfbmW8IefCx2QDs_5mKhM04AAoWKtNksNhx5PMENkBYKPw6cPsj_jwW4xoJqloYTKssfX_h03NvXY4YpTaNdDo13gB8ux2vA_EnJyDEinLOPbTy9tcuzcMCi87TGGEyw9l7VcKzNlIyrD405lTaFgx6DpI__R2gfrnqPP70zshpCRxpt3i3c1LTiwtyskcneEkmBRUxXSY02NC1hq30e654ChcAPZpOIGbRbA-rwo1woWiKR_Ir5FZF4e48WPX0YDqcBptPioTGDM-Al-mW4m_67fqKjHqPw6DPyk4KLIaAnTE3jEI77AjP8UPuxCISIjKTGMCXmSSWl4Q-dpznrp_YwjG1bWpP6NiylLITBT7NuSb1xXKhbwgFxMS5GYFakSvQVT63lIf9JXwBuxPFG0RU6pNxSTOO3S7mssonm8lK7RLVLgu1N4ixk0sLoo2DEp1qdeQPk5EQDQ7KNqvllOVHu5bIzZ_7PPf2H4--I8c2lkjkxzRNUs9WG30PwCWLWrlltshR9-mlP_gGdzjseQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbGdgAOiKd4DMiBa1gfSdsdp4ppsLELQ-IWtU0KQ7BVe0jw77H7mAZC4oDUU1pXlZPanxP7M8BVQM0GMP7nOpYOFwgoeKQti-NkJ3EgUgyAqFD4fuj1HsXdk3yqQVjVwlBaZWn7C5ueW-typFVqs5WNx60HBN9e22-j_8kJCP0NaBA7laxDo3Pb7w1Xhwm4qPNMRnyek8BaofDrNbEyzN4NpVU6Ng76LvE__e6jfljr3AV1d2GnxI6sU3zeHtTMZB-21xgFD-ClYCNm05SFSzY3GE0_57pneCHWY9kLui22WIOreCOaaJbRrvyM6FVJuPMWzrpmOB6Nw-UHI05jTtvA0-yT0Un95_wQHrs3o7DHy2YKPEGfveBeFEdO1Ja-G0TCTWQsZWylCeIvK01tP40CajovvCB1pGsZxzK-NIlta-2kGs2aewT1yXRijoEhaBLCilGtRBfo6UDY2qcWE4HEAEWLE5CV-lRSMo1Tw4s3VaWUvapK7YrUrgq1n0BrJZcVXBt_SrSr2VHfVo1Ch_CnbLOaTlX-t3NF9Py52fNO__HqS9jsje4HanA77J_BlkMVE_muTRPqi9nSnCOOWcQX5Tr9ApUR7yo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Cu+segregation+on+the+phase+transformation+and+properties+of+AlCrFeNiTiCux+high-entropy+alloys&rft.jtitle=Intermetallics&rft.au=Huang%2C+Lei&rft.au=Wang%2C+Xuejie&rft.au=Huang%2C+Baoxu&rft.au=Zhao%2C+Xingchuan&rft.date=2022-01-01&rft.issn=0966-9795&rft.volume=140&rft.spage=107397&rft_id=info:doi/10.1016%2Fj.intermet.2021.107397&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_intermet_2021_107397
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0966-9795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0966-9795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0966-9795&client=summon