A review of metaheuristic scheduling techniques in cloud computing
Cloud computing has become a buzzword in the area of high performance distributed computing as it provides on-demand access to shared pool of resources over Internet in a self-service, dynamically scalable and metered manner. Cloud computing is still in its infancy, so to reap its full benefits, muc...
Saved in:
Published in | Egyptian informatics journal Vol. 16; no. 3; pp. 275 - 295 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2015
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1110-8665 2090-4754 |
DOI | 10.1016/j.eij.2015.07.001 |
Cover
Loading…
Abstract | Cloud computing has become a buzzword in the area of high performance distributed computing as it provides on-demand access to shared pool of resources over Internet in a self-service, dynamically scalable and metered manner. Cloud computing is still in its infancy, so to reap its full benefits, much research is required across a broad array of topics. One of the important research issues which need to be focused for its efficient performance is scheduling. The goal of scheduling is to map tasks to appropriate resources that optimize one or more objectives. Scheduling in cloud computing belongs to a category of problems known as NP-hard problem due to large solution space and thus it takes a long time to find an optimal solution. There are no algorithms which may produce optimal solution within polynomial time to solve these problems. In cloud environment, it is preferable to find suboptimal solution, but in short period of time. Metaheuristic based techniques have been proved to achieve near optimal solutions within reasonable time for such problems. In this paper, we provide an extensive survey and comparative analysis of various scheduling algorithms for cloud and grid environments based on three popular metaheuristic techniques: Ant Colony Optimization (ACO), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), and two novel techniques: League Championship Algorithm (LCA) and BAT algorithm. |
---|---|
AbstractList | Cloud computing has become a buzzword in the area of high performance distributed computing as it provides on-demand access to shared pool of resources over Internet in a self-service, dynamically scalable and metered manner. Cloud computing is still in its infancy, so to reap its full benefits, much research is required across a broad array of topics. One of the important research issues which need to be focused for its efficient performance is scheduling. The goal of scheduling is to map tasks to appropriate resources that optimize one or more objectives. Scheduling in cloud computing belongs to a category of problems known as NP-hard problem due to large solution space and thus it takes a long time to find an optimal solution. There are no algorithms which may produce optimal solution within polynomial time to solve these problems. In cloud environment, it is preferable to find suboptimal solution, but in short period of time. Metaheuristic based techniques have been proved to achieve near optimal solutions within reasonable time for such problems. In this paper, we provide an extensive survey and comparative analysis of various scheduling algorithms for cloud and grid environments based on three popular metaheuristic techniques: Ant Colony Optimization (ACO), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), and two novel techniques: League Championship Algorithm (LCA) and BAT algorithm. |
Author | Kalra, Mala Singh, Sarbjeet |
Author_xml | – sequence: 1 givenname: Mala surname: Kalra fullname: Kalra, Mala email: malakalra2004@yahoo.co.in organization: Computer Science and Engineering Department, NITTTR, Sector-26, Chandigarh, India – sequence: 2 givenname: Sarbjeet surname: Singh fullname: Singh, Sarbjeet email: sarbjeet@pu.ac.in organization: Computer Science and Engineering Department, UIET, Panjab University, Chandigarh, India |
BookMark | eNp9kMtqGzEUhkVJIG7iB8huXmCmR_cZunJMmgYM3bRrIetiaxiPHEnTkrevUpcuusjZHDiH7-fn-4iu5jg7hO4xdBiw-DR2LowdAcw7kB0A_oBWBAZomeTsCq0wxtD2QvAbtM55hDoCE8bFCj1smuR-Bverib45uaKPbkkhl2CabI7OLlOYD01x5jiHl8XlJsyNmeJiGxNP56XU7x269nrKbv1336IfXx6_b7-2u29Pz9vNrjUMRGnFsOdcE2aF7inYHrxnmmBviRGDEJRK4D0MmjJiqTeDlcR6aqFnYIlmnN6i50uujXpU5xROOr2qqIP6c4jpoHSqxSen6N4A8VpQT3omhdE902wAieXeczsMNQtfskyKOSfn_-VhUG9O1aiqU_XmVIFU1Wll5H-MCUWXEOeSdJjeJT9fSFf1VNlJZRPcbJwNyZlS-4d36N8GOZIF |
CitedBy_id | crossref_primary_10_1109_TSC_2022_3174112 crossref_primary_10_1007_s11227_021_03814_4 crossref_primary_10_1002_cpe_7228 crossref_primary_10_1007_s10586_024_04689_9 crossref_primary_10_1109_TCC_2020_3002205 crossref_primary_10_1088_1742_6596_1969_1_012047 crossref_primary_10_1109_ACCESS_2019_2924958 crossref_primary_10_1109_ACCESS_2018_2805849 crossref_primary_10_1108_IJICC_07_2021_0134 crossref_primary_10_1186_s13677_021_00264_4 crossref_primary_10_3389_fcomp_2024_1288552 crossref_primary_10_1007_s11042_023_17216_6 crossref_primary_10_1016_j_suscom_2020_100431 crossref_primary_10_1007_s11227_024_06324_1 crossref_primary_10_1109_TSC_2024_3384094 crossref_primary_10_1155_2021_7216795 crossref_primary_10_4018_IJDST_291080 crossref_primary_10_1002_dac_4370 crossref_primary_10_1007_s10723_022_09627_w crossref_primary_10_1007_s11277_020_07651_1 crossref_primary_10_1145_3494520 crossref_primary_10_1002_cpe_6368 crossref_primary_10_32604_csse_2022_021729 crossref_primary_10_1080_00207543_2020_1718794 crossref_primary_10_1007_s11227_020_03364_1 crossref_primary_10_1109_ACCESS_2018_2872674 crossref_primary_10_1186_s40537_020_00321_w crossref_primary_10_3390_sym12040551 crossref_primary_10_3390_electronics11233932 crossref_primary_10_1007_s11277_022_09621_1 crossref_primary_10_1016_j_jnca_2016_06_003 crossref_primary_10_1145_3513002 crossref_primary_10_2139_ssrn_4055019 crossref_primary_10_4018_IJCAC_2020040101 crossref_primary_10_1007_s41870_018_0242_9 crossref_primary_10_1016_j_jnca_2018_11_007 crossref_primary_10_1007_s11277_019_06817_w crossref_primary_10_3233_JIFS_219200 crossref_primary_10_1088_1757_899X_677_4_042098 crossref_primary_10_1007_s10586_023_04018_6 crossref_primary_10_1155_2022_6125246 crossref_primary_10_1016_j_jksuci_2016_05_003 crossref_primary_10_37394_23206_2023_22_23 crossref_primary_10_1016_j_knosys_2019_01_023 crossref_primary_10_32604_cmc_2023_031614 crossref_primary_10_1007_s11227_021_03695_7 crossref_primary_10_1007_s11518_024_5606_z crossref_primary_10_1007_s11042_023_14448_4 crossref_primary_10_1016_j_procs_2019_09_275 crossref_primary_10_4018_IJITWE_295964 crossref_primary_10_1142_S0218126620501005 crossref_primary_10_1155_2022_8147581 crossref_primary_10_3233_JIFS_219290 crossref_primary_10_1007_s11227_023_05489_5 crossref_primary_10_3233_JIFS_219295 crossref_primary_10_1515_comp_2020_0215 crossref_primary_10_1007_s11235_019_00549_9 crossref_primary_10_1108_IJPCC_04_2021_0089 crossref_primary_10_1016_j_ipm_2020_102393 crossref_primary_10_1002_cpe_7112 crossref_primary_10_1016_j_jpdc_2016_11_003 crossref_primary_10_1002_cpe_4368 crossref_primary_10_1007_s10586_020_03168_1 crossref_primary_10_1145_3281010 crossref_primary_10_4018_IJEHMC_2019040106 crossref_primary_10_1007_s11277_018_6089_3 crossref_primary_10_1109_ACCESS_2022_3185987 crossref_primary_10_1016_j_jocs_2022_101873 crossref_primary_10_1016_j_matpr_2022_03_440 crossref_primary_10_1016_j_cor_2024_106805 crossref_primary_10_1016_j_jnca_2020_102944 crossref_primary_10_1016_j_suscom_2022_100766 crossref_primary_10_1007_s11227_023_05753_8 crossref_primary_10_1007_s11277_024_11465_w crossref_primary_10_1016_j_simpat_2021_102353 crossref_primary_10_7769_gesec_v14i3_1809 crossref_primary_10_1007_s11277_023_10454_9 crossref_primary_10_1016_j_engappai_2017_02_013 crossref_primary_10_1016_j_jnca_2019_06_006 crossref_primary_10_7769_gesec_v14i4_1978 crossref_primary_10_1016_j_iswa_2023_200219 crossref_primary_10_1515_jisys_2019_0084 crossref_primary_10_1016_j_jestch_2019_03_009 crossref_primary_10_1007_s41870_020_00544_3 crossref_primary_10_1016_j_eswa_2018_01_005 crossref_primary_10_1016_j_micpro_2020_103298 crossref_primary_10_1007_s11227_018_2291_z crossref_primary_10_1049_tje2_12420 crossref_primary_10_1109_ACCESS_2024_3397696 crossref_primary_10_1016_j_procs_2020_03_083 crossref_primary_10_1016_j_jnca_2019_102464 crossref_primary_10_1007_s11227_019_02764_2 crossref_primary_10_1109_ACCESS_2022_3149955 crossref_primary_10_1007_s10586_018_2867_7 crossref_primary_10_32604_iasc_2024_050681 crossref_primary_10_1186_s13677_022_00281_x crossref_primary_10_1142_S2196888820500104 crossref_primary_10_1007_s11277_019_06348_4 crossref_primary_10_1002_ett_3609 crossref_primary_10_1109_ACCESS_2022_3211512 crossref_primary_10_4018_IJSSOE_297135 crossref_primary_10_2139_ssrn_4902501 crossref_primary_10_47164_ijngc_v13i5_930 crossref_primary_10_2174_2213275912666190124101714 crossref_primary_10_32628_CSEIT2425171 crossref_primary_10_1007_s13198_023_02217_3 crossref_primary_10_1016_j_asoc_2024_111967 crossref_primary_10_1109_JSAC_2020_2986614 crossref_primary_10_1016_j_simpat_2024_103014 crossref_primary_10_1002_itl2_233 crossref_primary_10_1016_j_jksuci_2020_12_001 crossref_primary_10_1016_j_eij_2023_05_008 crossref_primary_10_1016_j_jnca_2019_02_005 crossref_primary_10_1080_1206212X_2023_2301266 crossref_primary_10_7769_gesec_v14i12_3246 crossref_primary_10_1007_s10586_018_2811_x crossref_primary_10_1080_0305215X_2021_1969560 crossref_primary_10_1007_s11227_021_03741_4 crossref_primary_10_1088_1742_6596_2083_4_042085 crossref_primary_10_1109_TNSM_2024_3443285 crossref_primary_10_1007_s11227_021_03760_1 crossref_primary_10_1016_j_heliyon_2022_e09399 crossref_primary_10_3390_electronics10212718 crossref_primary_10_1002_cpe_4949 crossref_primary_10_1049_iet_com_2016_0417 crossref_primary_10_1016_j_asoc_2022_108791 crossref_primary_10_1007_s00500_017_2897_8 crossref_primary_10_1016_j_jnca_2016_04_016 crossref_primary_10_7717_peerj_cs_1346 crossref_primary_10_1007_s11227_022_04729_4 crossref_primary_10_1590_1806_9649_2022v29e099 crossref_primary_10_1007_s12145_019_00401_3 crossref_primary_10_1002_eng2_12212 crossref_primary_10_1007_s10586_018_1823_x crossref_primary_10_3390_app9224893 crossref_primary_10_1007_s11227_020_03317_8 crossref_primary_10_1002_cpe_5913 crossref_primary_10_1007_s42979_023_02449_x crossref_primary_10_1016_j_asoc_2020_106876 crossref_primary_10_1002_cpe_6513 crossref_primary_10_1088_1757_899X_1022_1_012050 crossref_primary_10_1155_2016_7040276 crossref_primary_10_2174_2213275911666181018124742 crossref_primary_10_3390_electronics12194123 crossref_primary_10_1093_comjnl_bxab028 crossref_primary_10_1007_s12652_020_02480_3 crossref_primary_10_1155_2020_4653204 crossref_primary_10_1016_j_swevo_2021_100841 crossref_primary_10_1007_s12652_020_02730_4 crossref_primary_10_1080_00207543_2018_1449978 crossref_primary_10_1007_s11277_022_09882_w crossref_primary_10_1088_1742_6596_2363_1_012026 crossref_primary_10_1007_s10115_017_1044_2 crossref_primary_10_36548_jei_2021_3_006 crossref_primary_10_1016_j_suscom_2020_100373 crossref_primary_10_1016_j_rcim_2019_101836 crossref_primary_10_1007_s00500_019_04131_y crossref_primary_10_1109_ACCESS_2021_3077901 crossref_primary_10_1109_ACCESS_2022_3176729 crossref_primary_10_1007_s00521_021_06544_z crossref_primary_10_1007_s00521_021_06002_w crossref_primary_10_1007_s41870_022_01148_9 crossref_primary_10_1016_j_jmsy_2022_05_015 crossref_primary_10_1007_s11227_021_03977_0 crossref_primary_10_1016_j_future_2023_12_022 crossref_primary_10_1186_s13677_020_00219_1 crossref_primary_10_1109_ACCESS_2022_3170103 crossref_primary_10_3390_a13020044 crossref_primary_10_3390_jsan8030044 crossref_primary_10_1142_S1793962317500647 crossref_primary_10_4018_IJAMC_2022010105 crossref_primary_10_1007_s10586_018_2856_x crossref_primary_10_1007_s10586_021_03512_z crossref_primary_10_1186_s13677_019_0146_7 crossref_primary_10_1016_j_procs_2017_12_093 crossref_primary_10_1109_ACCESS_2025_3547057 crossref_primary_10_1016_j_future_2020_01_038 crossref_primary_10_1016_j_engappai_2019_02_013 crossref_primary_10_1016_j_eswa_2022_118714 crossref_primary_10_38124_ijisrt_IJISRT24MAY2340 crossref_primary_10_2174_2666255816666220819124133 crossref_primary_10_1080_00051144_2023_2288484 crossref_primary_10_1371_journal_pone_0158229 crossref_primary_10_32604_csse_2023_031321 crossref_primary_10_1109_ACCESS_2023_3241279 crossref_primary_10_1007_s11277_024_11311_z crossref_primary_10_1007_s11277_020_08001_x crossref_primary_10_1016_j_cor_2019_05_022 crossref_primary_10_26102_2310_6018_2020_31_4_023 |
Cites_doi | 10.1007/s11227-014-1373-9 10.1109/ICMECG.2008.50 10.1016/j.protcy.2013.12.369 10.1109/ICCES.2013.6707172 10.4304/jcp.7.1.42-52 10.1016/j.future.2009.05.022 10.1109/ICMLC.2004.1380766 10.1016/j.comnet.2009.04.014 10.1109/WISM.2010.87 10.1109/TSMCC.2008.2001722 10.1109/CCIS.2011.6045078 10.1109/ICPADS.2013.26 10.1145/2576768.2598265 10.1007/s10766-013-0275-4 10.1109/ICISS.2010.5655013 10.1007/978-0-387-78446-5_16 10.1109/SIS.2013.6615176 10.1109/ICCP.2009.5284747 10.1109/EDCAV.2015.7060555 10.1109/NOMSW.2010.5486597 10.1109/CLOUD.2010.65 10.1016/j.advengsoft.2015.01.005 10.12720/ijeee.1.4.262-268 10.14569/IJACSA.2015.060223 10.1109/APSCC.2011.66 10.1109/ICMLC.2003.1259786 10.1109/AINA.2010.31 10.1016/j.future.2011.04.017 10.1016/j.asoc.2014.01.036 10.4304/jnw.7.3.547-553 10.1016/j.procs.2015.02.090 10.1007/s10586-013-0275-6 10.1109/CloudNet.2014.6968969 10.1109/ChinaGrid.2011.17 10.1006/jpdc.2000.1714 10.21917/ijsc.2013.0093 10.1016/j.protcy.2012.05.128 10.17485/ijst/2015/v8iS3/60476 10.1109/DASC.2014.35 10.1109/3PGCIC.2011.13 10.1049/ip-cdt:20050196 10.1109/UKSim.2012.11 10.1109/IAdCC.2013.6514356 10.1109/DCABES.2012.63 10.5019/j.ijcir.2008.123 10.1109/CEC.2013.6557869 10.1115/IPACK2003-35059 10.1145/1327452.1327492 10.1109/CSICC.2009.5349368 10.1109/TCC.2014.2314655 10.1109/WICOM.2009.5301850 10.1007/978-3-319-07350-7_45 10.1016/j.future.2009.11.005 10.1109/Grid.2011.13 10.1109/ICDIM.2011.6093361 10.4156/jcit.vol7.issue1.8 10.1155/2013/350934 |
ContentType | Journal Article |
Copyright | 2015 |
Copyright_xml | – notice: 2015 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.eij.2015.07.001 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2090-4754 |
EndPage | 295 |
ExternalDocumentID | oai_doaj_org_article_3bc02fa63f28476ca84a490717bf5d99 10_1016_j_eij_2015_07_001 S1110866515000353 |
GroupedDBID | --K 0R~ 0SF 1B1 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV E3Z EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 RIG ROL SES SSZ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c406t-69b55a24d6a830d80ff4a21fd2c696633705809a342d3fc9d72df3d0840d2a453 |
IEDL.DBID | DOA |
ISSN | 1110-8665 |
IngestDate | Wed Aug 27 01:31:47 EDT 2025 Thu Apr 24 23:05:00 EDT 2025 Thu Jul 03 08:38:21 EDT 2025 Thu Jul 20 20:06:12 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | League Championship Algorithm (LCA) and BAT algorithm Ant colony optimization Cloud task scheduling Genetic algorithm and particle swarm optimization Metaheuristic techniques |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-69b55a24d6a830d80ff4a21fd2c696633705809a342d3fc9d72df3d0840d2a453 |
OpenAccessLink | https://doaj.org/article/3bc02fa63f28476ca84a490717bf5d99 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3bc02fa63f28476ca84a490717bf5d99 crossref_primary_10_1016_j_eij_2015_07_001 crossref_citationtrail_10_1016_j_eij_2015_07_001 elsevier_sciencedirect_doi_10_1016_j_eij_2015_07_001 |
PublicationCentury | 2000 |
PublicationDate | November 2015 2015-11-00 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: November 2015 |
PublicationDecade | 2010 |
PublicationTitle | Egyptian informatics journal |
PublicationYear | 2015 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Mishra, Sahoo (b0175) 2011 Chen, Zhang, Yu (b0080) 2007 Joseph, Chandrasekaran, Cyriac (b0280) 2015; 46 Sellami, Ahmed-Nacer, Tiako, Chelouah (b0270) 2013; 24 Wieczorek, Hoheisel, Prodan (b0030) 2008 Zarei B, Ghanbarzadeh R, Khodabande P, Toofani H. MHPSO: a new method to enhance the particle swarm optimizer. In: Sixth IEEE int conf digit inf manage; 2011. p. 305–9. Sun JSJ, Xiong S-WXS-W, Guo F-MGF-M. A new pheromone updating strategy in ant colony optimization. Proc Int Conf Mach Learn Cybern (IEEE Cat. No. 04EX826), vol. 1, IEEE; 2004, p. 620–5. Pop F, Dobre C, Cristea V. Genetic algorithm for DAG scheduling in grid environments. In: 5th IEEE int conf intell comput commun process; 2009. p. 299–305. Ferdaus, Murshed, Calheiros, Buyya (b0170) 2014 Beegom, Rajasree (b0380) 2014 Kennedy, Eberhart (b0320) 1995; vol. 4 Rodriguez Sossa, Buyya (b0345) 2014; 2 Wang, Shuang, Long Yang (b0435) 2012; 7 Xiong, Xu (b0420) 2014 Yu, Buyya, Ramamohanarao (b0010) 2008 Pu X, Liu L, Mei Y/O workload in virtualized cloud environments. In: 3rd int conf cloud comput, vol. 51–8; 2010. p. 51–8. Abdulhamid, Latiff, Madni, Oluwafemi (b0445) 2015; 8 Guo-ning G, Ting-lei H, Shuai G. Genetic simulated annealing algorithm for task scheduling based on cloud computing environment. In: Int conf intell comput integr syst; 2010. p. 60–3. Jang, Kim, Kim, Lee (b0265) 2012; 5 Yang (b0460) 2010; 284 Chiang, Lee, Lee, Chou (b0070) 2006; 153 Shojafar, Javanmardi, Abolfazli, Cordeschi (b0285) 2015 . Carretero, Xhafa, Abraham (b0255) 2007; 3 Nishant K, Sharma P, Krishna V, Gupta C, Singh KP, Nitin, et al. Load balancing of nodes in cloud using ant colony optimization. In: UKSim 14th int conf comput model simul; 2012. p. 3–8. Lu X, Gu Z. A load-adapative cloud resource scheduling model based on ant colony algorithm. In: IEEE int conf cloud comput intell syst; 2011. p. 296–300. Dasgupta, Mandal, Dutta, Mandal, Dam (b0140) 2013; 10 Ghorbannia Delavar, Aryan (b0215) 2014; 17 Kashan (b0440) 2009 Sidhu MS, Thulasiraman P, Thulasiram RK. A load-rebalance PSO heuristic for task matching in heterogeneous computing systems. In: Proc IEEE symp swarm intell SIS 2013, IEEE symp ser comput intell SSCI 2013; 2013. p. 180–7. Kessaci Y, Melab N, Talbi EG. A pareto-based genetic algorithm for optimized assignment of VM requests on a cloud brokering environment. IEEE congr evol comput; 2013. p. 2496–503. Abdi, Motamedi, Sharifian (b0370) 2014 Lenin, Reddy, Kalavathi (b0510) 2013; 1 Tawfeek MA, El-Sisi A, Keshk AE, Torkey FA. Cloud task scheduling based on ant colony optimization. In: 8th int conf comput eng syst; 2013. p. 64–9. Wood, Shenoy, Venkataramani, Yousif (b0180) 2009; 53 Jacob (b0465) 2014; 2 Xhafa, Abraham (b0025) 2010; 26 Khan, Sharma (b0125) 2014; 4 Wang, Wang, Zhu (b0295) 2012 Chen, Zhang (b0075) 2009; 39 Zhao C, Zhang S, Liu Q, Xie J, Hu J. Independent tasks scheduling based on genetic algorithm in cloud computing. In: 5th int conf wirel commun netw mob comput; 2009. p. 1–4. Setzer T, Stage A. Decision support for virtual machine reassignments in enterprise data centers. In: Netw oper manag symp work. IEEE/IFIP; 2010. p. 88–94. Yassa, Chelouah, Kadima, Granado (b0415) 2013 George S. Hybrid PSO-MOBA for profit maximization in cloud computing 2015;6:159–63. Mathiyalagan, Suriya, Sivanandam (b0055) 2010; 02 Dean, Ghemawat (b0300) 2008 Ramezani, Lu, Hussain (b0410) 2014; 42 Feller E, Rilling L, Morin C. Energy-aware ant colony based workload placement in clouds. In: Proc 12th IEEE/ACM int conf grid comput; 2011. p. 26–33. Shen, Zhang (b0305) 2011; vol. 6728 Moraga, DePuy, Whitehouse (b0190) 2006 Kousalya (b0040) 2009; 7 Khajemohammadi, Fanian, Gulliver (b0260) 2013 Patel CD, Bash CE, Beitelmal AH. Smart cooling of data centers. Appl No 09/970,707; 2003. Zhang, Chen, Sun (b0330) 2008; 4 Aron, Chana, Abraham (b0390) 2015 Pacini, Mateos, Garino (b0395) 2014; 14 Dam, Mandal, Dasgupta, Dutta (b0135) 2014; 2 Zheng, Wang, Zhong, Zhang (b0210) 2011 Talbi (b0015) 2009 Kaur K, Chhabra A, Singh G. Heuristics based genetic algorithm for scheduling static tasks in homogeneous parallel system. Int J Comput Sci Secur n.d.;4:183–98. Beloglazov, Abawajy, Buyya (b0430) 2012; 28 Wu, Maolin, Tian, Li (b0290) 2012 Suresh Kumar, Aramudhan (b0470) 2014; 69 Pandey S, Wu L, Guru SMSMSM, Buyya R. A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. In: 24th ieee int conf adv inf netw appl; 2010. p. 400–7. Abdulhamid, Latiff, Idris (b0450) 2014; 9 Bagherzadeh J, MadadyarAdeh M. An improved ant algorithm for grid scheduling problem using biased initial ants. In: 3rd int conf comput res dev; 2011. p. 373–8. Gomathi, Krishnasamy (b0360) 2013; 55 Ajiro Y, Tanaka A. Improving packing algorithms for server consolidation. In: Int C conf; 2007. Yu, Buyya, Tham (b0085) 2005 Kaur, Verma (b0235) 2012; 4 Ge Y, Wei G. GA-based task scheduler for the cloud computing systems. In: Proc int conf web inf syst min, vol. 2; 2010. p. 181–6. Tao, Feng, Zhang, Liao (b0315) 2014; 19 Zhu K, Song H, Liu L, Gao J, Cheng G. Hybrid genetic algorithm for cloud computing applications. In: IEEE Asia-Pacific serv comput conf; 2011. p. 182–7. Wen X, Huang M, Shi J. Study on resources scheduling based on ACO algorithm and PSO algorithm in cloud computing. In: Proc – 11th int symp distrib comput appl to business eng sci; 2012. p. 219–22. Liu ALA, Wang ZWZ. Grid task scheduling based on adaptive ant colony algorithm. In: Int conf manag e-commerce e-government. IEEE; 2008. p. 415–8. Wu, Ni, Gu, Liu (b0340) 2010 Yu, Buyya (b0240) 2006; 14 Guo, Zhao, Shen, Jiang (b0325) 2012; 7 Liu, Wang (b0400) 2012; 7331 LNCS Karger, Stein, Wein (b0005) 2010 Wang S, Liu Z, Zheng Z, Sun Q, Yang F. Particle swarm optimization for energy-aware virtual machine placement optimization in virtualized data centers. Proc int conf parallel distrib syst – ICPADS; 2013. p. 102–9. Chen, Shi, Zhang (b0090) 2009 Dorigo, Stützle (b0035) 2004 Portaluri G, Giordano S. A power efficient genetic algorithm for resource allocation in cloud computing data centers. In: 3rd int conf cloud netw. IEEE; 2014. p. 58–63. Izakian, Ladani, Zamanifar, Abraham (b0365) 2009; vol. 31 Pacini, Mateos, García (b0105) 2015; 84 Raju R, Babukarthik RG, Chandramohan D, Dhavachelvan P, Vengattaraman T. Minimizing the makespan using Hybrid algorithm for cloud computing. In: Proc 3rd IEEE int adv comput conf; 2013. p. 957–62. Gu, Hu, Zhao, Sun (b0245) 2012; 7 Pooranian, Shojafar, Abawajy, Abraham (b0355) 2013 Mondal, Dasgupta, Dutta (b0145) 2012; 4 Wang T, Liu Z, Chen Y, Xu Y, Dai X. Load balancing task scheduling based on genetic algorithm in cloud computing. In: IEEE 12th int conf dependable auton secur comput; 2014. p. 146–52. Zhong Y-WZY-W, Yang J-GYJ-G. A genetic algorithm for tasks scheduling in parallel multiprocessor systems. In: Proc 2nd int conf mach learn cybern, vol. 3; 2003. p. 1785–90. Xue, Wu (b0350) 2012; 10 Chimakurthi L, Madhu Kumar S. Power efficient resource allocation for clouds using ant colony framework; 2011. Available from Sun, Wang, Li, Wu, Huang, Wang (b0455) 2013; 8299 Hu, Xing, Zhang, Xiao, Tang (b0095) 2010 Li, Xu, Zhao, Dong, Wang (b0110) 2011; 2011 Sawant S. A genetic algorithm scheduling approach for virtual machine resources in a cloud computing environment; Master's Projects, San Jose State University, Master's Theses and Graduates Research, Paper 198, 2011. Liu, Abraham, Hassanien (b0375) 2010; 26 Braun, Siegel, Beck, Bölöni, Maheswaran, Reuther (b0020) 2001; 61 Kołodziej J, Khan SU, Xhafa F. Genetic algorithms for energy-aware scheduling in computational grids. In: Proc – int conf P2P, parallel, grid, cloud internet comput; 2011. p. 17–24. Raghavan S, Marimuthu, C, Sarwesh, P, & Chandrasekaran K. Bat algorithm for scheduling workflow applications in cloud. Int Conf Electron Des Comput Networks Autom Verif (EDCAV). IEEE; 2015. p. 139–44. Zhang, Zhang (b0115) 2010; 2 Liu X, Zhan Z, Du K, Chen W. Energy aware virtual machine placement scheduling in cloud computing based on ant colony optimization. In: Proc conf genet evol comput. ACM; 2014. p. 41–7. Mathiyalagan, Sivanandam, Saranya (b0495) 2013; 4 Talbi (10.1016/j.eij.2015.07.001_b0015) 2009 Lenin (10.1016/j.eij.2015.07.001_b0510) 2013; 1 10.1016/j.eij.2015.07.001_b0520 10.1016/j.eij.2015.07.001_b0120 10.1016/j.eij.2015.07.001_b0485 Wieczorek (10.1016/j.eij.2015.07.001_b0030) 2008 Li (10.1016/j.eij.2015.07.001_b0110) 2011; 2011 10.1016/j.eij.2015.07.001_b0405 Ferdaus (10.1016/j.eij.2015.07.001_b0170) 2014 Wu (10.1016/j.eij.2015.07.001_b0340) 2010 Mondal (10.1016/j.eij.2015.07.001_b0145) 2012; 4 Wang (10.1016/j.eij.2015.07.001_b0435) 2012; 7 10.1016/j.eij.2015.07.001_b0480 Dam (10.1016/j.eij.2015.07.001_b0135) 2014; 2 Izakian (10.1016/j.eij.2015.07.001_b0365) 2009; vol. 31 Pacini (10.1016/j.eij.2015.07.001_b0395) 2014; 14 Zhang (10.1016/j.eij.2015.07.001_b0115) 2010; 2 Aron (10.1016/j.eij.2015.07.001_b0390) 2015 Ramezani (10.1016/j.eij.2015.07.001_b0410) 2014; 42 10.1016/j.eij.2015.07.001_b0230 10.1016/j.eij.2015.07.001_b0475 Shen (10.1016/j.eij.2015.07.001_b0305) 2011; vol. 6728 Wood (10.1016/j.eij.2015.07.001_b0180) 2009; 53 Shojafar (10.1016/j.eij.2015.07.001_b0285) 2015 10.1016/j.eij.2015.07.001_b0515 10.1016/j.eij.2015.07.001_b0195 Liu (10.1016/j.eij.2015.07.001_b0400) 2012; 7331 LNCS Jacob (10.1016/j.eij.2015.07.001_b0465) 2014; 2 Xiong (10.1016/j.eij.2015.07.001_b0420) 2014 Pacini (10.1016/j.eij.2015.07.001_b0105) 2015; 84 10.1016/j.eij.2015.07.001_b0225 10.1016/j.eij.2015.07.001_b0500 10.1016/j.eij.2015.07.001_b0220 10.1016/j.eij.2015.07.001_b0065 10.1016/j.eij.2015.07.001_b0100 Carretero (10.1016/j.eij.2015.07.001_b0255) 2007; 3 10.1016/j.eij.2015.07.001_b0505 Ghorbannia Delavar (10.1016/j.eij.2015.07.001_b0215) 2014; 17 Khan (10.1016/j.eij.2015.07.001_b0125) 2014; 4 Tao (10.1016/j.eij.2015.07.001_b0315) 2014; 19 Yu (10.1016/j.eij.2015.07.001_b0240) 2006; 14 10.1016/j.eij.2015.07.001_b0185 Pooranian (10.1016/j.eij.2015.07.001_b0355) 2013 10.1016/j.eij.2015.07.001_b0060 10.1016/j.eij.2015.07.001_b0335 Braun (10.1016/j.eij.2015.07.001_b0020) 2001; 61 Zheng (10.1016/j.eij.2015.07.001_b0210) 2011 Kaur (10.1016/j.eij.2015.07.001_b0235) 2012; 4 Yang (10.1016/j.eij.2015.07.001_b0460) 2010; 284 Abdi (10.1016/j.eij.2015.07.001_b0370) 2014 Xhafa (10.1016/j.eij.2015.07.001_b0025) 2010; 26 Xue (10.1016/j.eij.2015.07.001_b0350) 2012; 10 Beloglazov (10.1016/j.eij.2015.07.001_b0430) 2012; 28 Gomathi (10.1016/j.eij.2015.07.001_b0360) 2013; 55 10.1016/j.eij.2015.07.001_b0050 Wang (10.1016/j.eij.2015.07.001_b0295) 2012 Sellami (10.1016/j.eij.2015.07.001_b0270) 2013; 24 Beegom (10.1016/j.eij.2015.07.001_b0380) 2014 Kashan (10.1016/j.eij.2015.07.001_b0440) 2009 10.1016/j.eij.2015.07.001_b0165 10.1016/j.eij.2015.07.001_b0200 10.1016/j.eij.2015.07.001_b0045 Zhang (10.1016/j.eij.2015.07.001_b0330) 2008; 4 10.1016/j.eij.2015.07.001_b0205 Kennedy (10.1016/j.eij.2015.07.001_b0320) 1995; vol. 4 Guo (10.1016/j.eij.2015.07.001_b0325) 2012; 7 Rodriguez Sossa (10.1016/j.eij.2015.07.001_b0345) 2014; 2 10.1016/j.eij.2015.07.001_b0160 Karger (10.1016/j.eij.2015.07.001_b0005) 2010 Chen (10.1016/j.eij.2015.07.001_b0075) 2009; 39 Chen (10.1016/j.eij.2015.07.001_b0090) 2009 10.1016/j.eij.2015.07.001_b0275 10.1016/j.eij.2015.07.001_b0310 10.1016/j.eij.2015.07.001_b0155 Gu (10.1016/j.eij.2015.07.001_b0245) 2012; 7 Yu (10.1016/j.eij.2015.07.001_b0010) 2008 Mishra (10.1016/j.eij.2015.07.001_b0175) 2011 10.1016/j.eij.2015.07.001_b0150 Chiang (10.1016/j.eij.2015.07.001_b0070) 2006; 153 Dean (10.1016/j.eij.2015.07.001_b0300) 2008 Jang (10.1016/j.eij.2015.07.001_b0265) 2012; 5 Yassa (10.1016/j.eij.2015.07.001_b0415) 2013 Mathiyalagan (10.1016/j.eij.2015.07.001_b0055) 2010; 02 10.1016/j.eij.2015.07.001_b0385 Yu (10.1016/j.eij.2015.07.001_b0085) 2005 Dasgupta (10.1016/j.eij.2015.07.001_b0140) 2013; 10 10.1016/j.eij.2015.07.001_b0425 Abdulhamid (10.1016/j.eij.2015.07.001_b0450) 2014; 9 Mathiyalagan (10.1016/j.eij.2015.07.001_b0495) 2013; 4 Wu (10.1016/j.eij.2015.07.001_b0290) 2012 Joseph (10.1016/j.eij.2015.07.001_b0280) 2015; 46 Dorigo (10.1016/j.eij.2015.07.001_b0035) 2004 Sun (10.1016/j.eij.2015.07.001_b0455) 2013; 8299 Moraga (10.1016/j.eij.2015.07.001_b0190) 2006 Abdulhamid (10.1016/j.eij.2015.07.001_b0445) 2015; 8 Suresh Kumar (10.1016/j.eij.2015.07.001_b0470) 2014; 69 Hu (10.1016/j.eij.2015.07.001_b0095) 2010 Kousalya (10.1016/j.eij.2015.07.001_b0040) 2009; 7 10.1016/j.eij.2015.07.001_b0490 10.1016/j.eij.2015.07.001_b0130 10.1016/j.eij.2015.07.001_b0250 Khajemohammadi (10.1016/j.eij.2015.07.001_b0260) 2013 Chen (10.1016/j.eij.2015.07.001_b0080) 2007 Liu (10.1016/j.eij.2015.07.001_b0375) 2010; 26 |
References_xml | – volume: vol. 31 start-page: 100 year: 2009 end-page: 109 ident: b0365 article-title: A novel particle swarm optimization approach for grid job scheduling publication-title: Inf syst technol manage – volume: 10 start-page: 340 year: 2013 end-page: 347 ident: b0140 article-title: A Genetic Algorithm (GA) based load balancing strategy for cloud computing publication-title: Proc Technol – volume: 69 start-page: 434 year: 2014 end-page: 442 ident: b0470 article-title: Hybrid optimized list scheduling and trust based resource selection in cloud computing publication-title: J Theor Appl Inf Technol – reference: Wen X, Huang M, Shi J. Study on resources scheduling based on ACO algorithm and PSO algorithm in cloud computing. In: Proc – 11th int symp distrib comput appl to business eng sci; 2012. p. 219–22. – volume: 2 start-page: 53 year: 2014 end-page: 57 ident: b0465 article-title: Bat algorithm for resource scheduling in cloud computing publication-title: Int J Res Appl Sci Eng Technol – year: 2009 ident: b0015 article-title: Metaheuristics: from Design to Implementation – volume: 2011 start-page: 3 year: 2011 end-page: 9 ident: b0110 article-title: Cloud task scheduling based on load balancing ant colony optimization publication-title: Sixth Annu Chinagrid Conf – volume: 42 start-page: 739 year: 2014 end-page: 754 ident: b0410 article-title: Task-based system load balancing in cloud computing using particle swarm optimization publication-title: Int J Parallel Program – reference: Pu X, Liu L, Mei Y/O workload in virtualized cloud environments. In: 3rd int conf cloud comput, vol. 51–8; 2010. p. 51–8. – reference: Kołodziej J, Khan SU, Xhafa F. Genetic algorithms for energy-aware scheduling in computational grids. In: Proc – int conf P2P, parallel, grid, cloud internet comput; 2011. p. 17–24. – start-page: 237 year: 2008 end-page: 264 ident: b0030 article-title: Taxonomies of the multi-criteria grid workflow scheduling problem publication-title: Grid Middlew Serv – start-page: 37 year: 2014 end-page: 41 ident: b0370 article-title: Task scheduling using modified PSO algorithm in cloud computing environment publication-title: Int Conf Mach Learn Electr Mech Eng – year: 2006 ident: b0190 article-title: Metaheuristics: a solution methodology for optimization problems publication-title: Handb Ind Optim Probl Handb Ind Syst Eng AB Badiru – reference: Nishant K, Sharma P, Krishna V, Gupta C, Singh KP, Nitin, et al. Load balancing of nodes in cloud using ant colony optimization. In: UKSim 14th int conf comput model simul; 2012. p. 3–8. – start-page: 1 year: 2015 end-page: 16 ident: b0285 article-title: FUGE: A joint meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory and a genetic method publication-title: Cluster Comput – reference: Pandey S, Wu L, Guru SMSMSM, Buyya R. A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. In: 24th ieee int conf adv inf netw appl; 2010. p. 400–7. – volume: 9 start-page: 2528 year: 2014 end-page: 2533 ident: b0450 article-title: Tasks scheduling technique using League Championship Algorithm for makespan minimization in IaaS cloud publication-title: ARPN J Eng Appl Sci – reference: Bagherzadeh J, MadadyarAdeh M. An improved ant algorithm for grid scheduling problem using biased initial ants. In: 3rd int conf comput res dev; 2011. p. 373–8. – reference: Raghavan S, Marimuthu, C, Sarwesh, P, & Chandrasekaran K. Bat algorithm for scheduling workflow applications in cloud. Int Conf Electron Des Comput Networks Autom Verif (EDCAV). IEEE; 2015. p. 139–44. – reference: Zhong Y-WZY-W, Yang J-GYJ-G. A genetic algorithm for tasks scheduling in parallel multiprocessor systems. In: Proc 2nd int conf mach learn cybern, vol. 3; 2003. p. 1785–90. – reference: Portaluri G, Giordano S. A power efficient genetic algorithm for resource allocation in cloud computing data centers. In: 3rd int conf cloud netw. IEEE; 2014. p. 58–63. – reference: Sawant S. A genetic algorithm scheduling approach for virtual machine resources in a cloud computing environment; Master's Projects, San Jose State University, Master's Theses and Graduates Research, Paper 198, 2011. – volume: 14 start-page: 217 year: 2006 end-page: 230 ident: b0240 article-title: Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms publication-title: Sci Program – reference: Lu X, Gu Z. A load-adapative cloud resource scheduling model based on ant colony algorithm. In: IEEE int conf cloud comput intell syst; 2011. p. 296–300. – reference: Kaur K, Chhabra A, Singh G. Heuristics based genetic algorithm for scheduling static tasks in homogeneous parallel system. Int J Comput Sci Secur n.d.;4:183–98. – volume: 61 start-page: 810 year: 2001 end-page: 837 ident: b0020 article-title: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems publication-title: J Parallel Distrib Comput – reference: Wang T, Liu Z, Chen Y, Xu Y, Dai X. Load balancing task scheduling based on genetic algorithm in cloud computing. In: IEEE 12th int conf dependable auton secur comput; 2014. p. 146–52. – volume: 02 start-page: 132 year: 2010 end-page: 139 ident: b0055 article-title: Modified ant colony algorithm for grid scheduling publication-title: Int J Comput Sci Eng – reference: Feller E, Rilling L, Morin C. Energy-aware ant colony based workload placement in clouds. In: Proc 12th IEEE/ACM int conf grid comput; 2011. p. 26–33. – start-page: 79 year: 2014 end-page: 86 ident: b0380 article-title: A particle swarm optimization based pareto optimal task scheduling in cloud computing publication-title: Adv swarm intell notes comput sci – volume: 14 start-page: 1 year: 2014 end-page: 12 ident: b0395 article-title: Dynamic scheduling based on particle swarm optimization for cloud-based scientific experiments publication-title: CLEI Electron J – volume: 153 start-page: 373 year: 2006 end-page: 380 ident: b0070 article-title: Ant colony optimisation for task matching and scheduling publication-title: IEE Proc Comput Digit Tech – reference: Ge Y, Wei G. GA-based task scheduler for the cloud computing systems. In: Proc int conf web inf syst min, vol. 2; 2010. p. 181–6. – start-page: 96 year: 2013 end-page: 101 ident: b0260 article-title: Fast workflow scheduling for grid computing based on a multi-objective genetic algorithm publication-title: IEEE Pacific Rim Conf Commun Comput Signal Process – start-page: 184 year: 2010 end-page: 188 ident: b0340 article-title: A revised discrete particle swarm optimization for cloud workflow scheduling publication-title: Proc – 2010 int conf comput intell secur cis – year: 2008 ident: b0010 article-title: Workflow Scheduling Algorithms for Grid Computing. Metaheuristics for Scheduling in Distributed Computing Environments – volume: 1 start-page: 262 year: 2013 end-page: 268 ident: b0510 article-title: Hybrid genetic algorithm and particle swarm optimization (HGAPSO) algorithm for solving optimal reactive power dispatch problem publication-title: Int J Electron Electr Eng – start-page: 140 year: 2005 end-page: 147 ident: b0085 article-title: Cost-based scheduling of scientific workflow applications on utility grids publication-title: Proc First Int Conf E-Science Grid Comput E-Sci – volume: 84 start-page: 31 year: 2015 end-page: 47 ident: b0105 article-title: Balancing throughput and response time in online scientific clouds via ant colony optimization publication-title: Adv Eng Software – reference: Pop F, Dobre C, Cristea V. Genetic algorithm for DAG scheduling in grid environments. In: 5th IEEE int conf intell comput commun process; 2009. p. 299–305. – volume: 4 start-page: 783 year: 2012 end-page: 789 ident: b0145 article-title: Load balancing in cloud computing using stochastic hill climbing – a soft computing approach publication-title: Proc Technol – volume: 55 start-page: 33 year: 2013 end-page: 38 ident: b0360 article-title: Task scheduling algorithm based on hybrid particle swarm optimization in cloud computing environment publication-title: J Theor Appl Inf Technol – reference: Kessaci Y, Melab N, Talbi EG. A pareto-based genetic algorithm for optimized assignment of VM requests on a cloud brokering environment. IEEE congr evol comput; 2013. p. 2496–503. – start-page: 241 year: 2010 end-page: 248 ident: b0095 article-title: A knowledge-based ant colony optimization for a grid workflow scheduling problem publication-title: Adv Swarm Intell Notes Comput Sci – reference: Liu X, Zhan Z, Du K, Chen W. Energy aware virtual machine placement scheduling in cloud computing based on ant colony optimization. In: Proc conf genet evol comput. ACM; 2014. p. 41–7. – year: 2004 ident: b0035 article-title: Ant colony optimization – start-page: 43 year: 2009 end-page: 48 ident: b0440 article-title: League Championship Algorithm: a new algorithm for numerical function optimization publication-title: Int Conf Soft Comput Pattern Recognit – volume: 26 start-page: 1336 year: 2010 end-page: 1343 ident: b0375 article-title: Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm publication-title: Futur Gener Comput Syst – start-page: 107 year: 2008 end-page: 113 ident: b0300 article-title: MapReduce. Simplified data processing on large clusters publication-title: Commun ACM – year: 2013 ident: b0415 article-title: Multi-objective approach for energy-aware workflow scheduling in cloud computing environments publication-title: Sci World J – volume: 284 start-page: 65 year: 2010 end-page: 74 ident: b0460 article-title: A new metaheuristic bat-inspired algorithm publication-title: Nat Inspired Coop Strateg Optim Comput Intell – volume: vol. 4 start-page: 1942 year: 1995 end-page: 1948 ident: b0320 article-title: Particle swarm optimization publication-title: Proc int conf neural networks – reference: Sun JSJ, Xiong S-WXS-W, Guo F-MGF-M. A new pheromone updating strategy in ant colony optimization. Proc Int Conf Mach Learn Cybern (IEEE Cat. No. 04EX826), vol. 1, IEEE; 2004, p. 620–5. – volume: 7 start-page: 47 year: 2009 end-page: 57 ident: b0040 article-title: To improve ant algorithm’ s grid scheduling using local search publication-title: Int J Comput Cogn – volume: 2 start-page: 403 year: 2014 end-page: 413 ident: b0135 article-title: An ant colony based load balancing strategy in cloud computing publication-title: Adv Comput Netw Informatics – reference: Raju R, Babukarthik RG, Chandramohan D, Dhavachelvan P, Vengattaraman T. Minimizing the makespan using Hybrid algorithm for cloud computing. In: Proc 3rd IEEE int adv comput conf; 2013. p. 957–62. – volume: 28 start-page: 755 year: 2012 end-page: 768 ident: b0430 article-title: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing publication-title: Futur Gener Comput Syst – reference: George S. Hybrid PSO-MOBA for profit maximization in cloud computing 2015;6:159–63. – volume: 7 start-page: 42 year: 2012 end-page: 52 ident: b0245 article-title: A new resource scheduling strategy based on genetic algorithm in cloud computing environment publication-title: J Comput – reference: Liu ALA, Wang ZWZ. Grid task scheduling based on adaptive ant colony algorithm. In: Int conf manag e-commerce e-government. IEEE; 2008. p. 415–8. – volume: 7 start-page: 62 year: 2012 end-page: 70 ident: b0435 article-title: Energy-aware and revenue-enhancing combinatorial scheduling in virtualized of cloud datacenter publication-title: J Converg Inf Technol – volume: 4 start-page: 651 year: 2013 end-page: 655 ident: b0495 article-title: Hybridization of modified ant colony optimization and intelligent water drops algorithm for job scheduling in computational grid publication-title: ICTACT J SOFT Comput – volume: 53 start-page: 2923 year: 2009 end-page: 2938 ident: b0180 article-title: Sandpiper: black-box and gray-box resource management for virtual machines publication-title: Comput Networks – reference: Zhu K, Song H, Liu L, Gao J, Cheng G. Hybrid genetic algorithm for cloud computing applications. In: IEEE Asia-Pacific serv comput conf; 2011. p. 182–7. – reference: Zarei B, Ghanbarzadeh R, Khodabande P, Toofani H. MHPSO: a new method to enhance the particle swarm optimizer. In: Sixth IEEE int conf digit inf manage; 2011. p. 305–9. – volume: 2 start-page: 240 year: 2010 end-page: 243 ident: b0115 article-title: A load balancing mechanism based on ant colony and complex network theory in open cloud computing federation publication-title: Int Conf Ind Mechatronics Autom – volume: 7331 LNCS start-page: 142 year: 2012 end-page: 147 ident: b0400 article-title: A PSO-based algorithm for load balancing in virtual machines of cloud computing environment publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) – volume: 3 start-page: 1 year: 2007 end-page: 19 ident: b0255 article-title: Genetic algorithm based schedulers for grid computing systems publication-title: Int J Innov Comput Inf Control – start-page: 875 year: 2009 end-page: 880 ident: b0090 article-title: An ant colony optimization algorithm for the time-varying workflow scheduling problem in grids publication-title: IEEE Congr Evol Comput – volume: vol. 6728 start-page: 522 year: 2011 end-page: 529 ident: b0305 article-title: A shadow price guided genetic algorithm for energy aware task scheduling on cloud computers publication-title: Adv Swarm Intell Notes Comput Sci – reference: Setzer T, Stage A. Decision support for virtual machine reassignments in enterprise data centers. In: Netw oper manag symp work. IEEE/IFIP; 2010. p. 88–94. – start-page: 306 year: 2014 end-page: 317 ident: b0170 article-title: Virtual machine consolidation in cloud data centers using ACO metaheuristic publication-title: Euro-Par 2014 parallel process – volume: 4 start-page: 74 year: 2012 end-page: 79 ident: b0235 article-title: An efficient approach to genetic algorithm for task scheduling in cloud computing environment publication-title: Int J Inf Technol Comput Sci – start-page: 3308 year: 2007 end-page: 3315 ident: b0080 article-title: Workflow scheduling in grids: an ant colony optimization approach publication-title: IEEE Congr Evol Comput – volume: 39 start-page: 29 year: 2009 end-page: 43 ident: b0075 article-title: An ant colony optimization approach to a grid workflow scheduling problem with various QoS requirements publication-title: IEEE Trans Syst Man Cybern Part C (Appl Rev – start-page: 444 year: 2011 end-page: 447 ident: b0210 article-title: An approach for cloud resource scheduling based on parallel genetic algorithm publication-title: 3rd IEEE int conf comput res dev – reference: Patel CD, Bash CE, Beitelmal AH. Smart cooling of data centers. Appl No 09/970,707; 2003. – start-page: 275 year: 2011 end-page: 282 ident: b0175 article-title: On theory of vm placement: anomalies in existing methodologies and their mitigation using a novel vector based approach publication-title: 4th int conf cloud comput – volume: 7 start-page: 547 year: 2012 end-page: 553 ident: b0325 article-title: Task scheduling optimization in cloud computing based on heuristic Algorithm publication-title: J Networks – reference: Zhao C, Zhang S, Liu Q, Xie J, Hu J. Independent tasks scheduling based on genetic algorithm in cloud computing. In: 5th int conf wirel commun netw mob comput; 2009. p. 1–4. – volume: 4 start-page: 37 year: 2008 end-page: 43 ident: b0330 article-title: A task scheduling algorithm based on PSO for grid computing publication-title: Int J Comput Intell Res – start-page: 2014 year: 2014 ident: b0420 article-title: Energy efficient multiresource allocation of virtual machine based on PSO in cloud data center publication-title: Math Probl Eng – start-page: 315 year: 2012 end-page: 323 ident: b0290 article-title: Energy-efficient virtual machine placement in data centers by genetic algorithm publication-title: Neural inf process – volume: 8299 start-page: 334 year: 2013 end-page: 346 ident: b0455 article-title: An auction and League Championship Algorithm based resource allocation mechanism for distributed cloud publication-title: Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) – volume: 10 start-page: 1560 year: 2012 end-page: 1566 ident: b0350 article-title: Scheduling workflow in cloud computing based on hybrid particle swarm algorithm publication-title: TELKOMNIKA Indones J Electr Eng – reference: Wang S, Liu Z, Zheng Z, Sun Q, Yang F. Particle swarm optimization for energy-aware virtual machine placement optimization in virtualized data centers. Proc int conf parallel distrib syst – ICPADS; 2013. p. 102–9. – volume: 8 start-page: 101 year: 2015 end-page: 110 ident: b0445 article-title: A survey of League Championship Algorithm: prospects and challenges publication-title: Indian J Sci Technol – start-page: 1427 year: 2015 end-page: 1450 ident: b0390 article-title: A hyper-heuristic approach for resource provisioning-based scheduling in grid environment publication-title: J Supercomput – volume: 19 start-page: 264 year: 2014 end-page: 279 ident: b0315 article-title: CLPS-GA: a case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling publication-title: Appl Soft Comput J – volume: 5 start-page: 157 year: 2012 end-page: 162 ident: b0265 article-title: The study of genetic algorithm-based task scheduling for cloud computing publication-title: Int J Control Autom – reference: Guo-ning G, Ting-lei H, Shuai G. Genetic simulated annealing algorithm for task scheduling based on cloud computing environment. In: Int conf intell comput integr syst; 2010. p. 60–3. – reference: Ajiro Y, Tanaka A. Improving packing algorithms for server consolidation. In: Int C conf; 2007. – year: 2010 ident: b0005 article-title: Scheduling Algorithms. Algorithms and Theory of Computation Handbook: special topics and techniques – reference: Tawfeek MA, El-Sisi A, Keshk AE, Torkey FA. Cloud task scheduling based on ant colony optimization. In: 8th int conf comput eng syst; 2013. p. 64–9. – volume: 24 start-page: 68 year: 2013 end-page: 82 ident: b0270 article-title: Immune genetic algorithm for scheduling service workflows with Qos constraints in cloud computing publication-title: South African J Ind Eng – start-page: 1 year: 2013 end-page: 22 ident: b0355 article-title: An efficient meta-heuristic algorithm for grid computing publication-title: J Comb Optim – reference: . – reference: Sidhu MS, Thulasiraman P, Thulasiram RK. A load-rebalance PSO heuristic for task matching in heterogeneous computing systems. In: Proc IEEE symp swarm intell SIS 2013, IEEE symp ser comput intell SSCI 2013; 2013. p. 180–7. – volume: 2 start-page: 222 year: 2014 end-page: 235 ident: b0345 article-title: Deadline based resource provisioning and scheduling algorithm for scientific workflows on clouds publication-title: IEEE Trans Cloud Comput – volume: 26 start-page: 608 year: 2010 end-page: 621 ident: b0025 article-title: Computational models and heuristic methods for Grid scheduling problems publication-title: Futur Gener Comput Syst – volume: 46 start-page: 558 year: 2015 end-page: 565 ident: b0280 article-title: A novel family genetic approach for virtual machine allocation publication-title: Proc Comput Sci – start-page: 2012 year: 2012 ident: b0295 article-title: Energy-efficient multi-job scheduling model for cloud computing and its genetic algorithm publication-title: Math Probl Eng – volume: 4 start-page: 966 year: 2014 end-page: 973 ident: b0125 article-title: Effective scheduling algorithm for load balancing (SALB) using ant colony optimization in cloud computing publication-title: Int J Adv Res Comput Sci Softw Eng – reference: Chimakurthi L, Madhu Kumar S. Power efficient resource allocation for clouds using ant colony framework; 2011. Available from – volume: 17 start-page: 129 year: 2014 end-page: 137 ident: b0215 article-title: HSGA: a hybrid heuristic algorithm for workflow scheduling in cloud systems publication-title: Cluster Comput – start-page: 1427 year: 2015 ident: 10.1016/j.eij.2015.07.001_b0390 article-title: A hyper-heuristic approach for resource provisioning-based scheduling in grid environment publication-title: J Supercomput doi: 10.1007/s11227-014-1373-9 – year: 2009 ident: 10.1016/j.eij.2015.07.001_b0015 – ident: 10.1016/j.eij.2015.07.001_b0060 doi: 10.1109/ICMECG.2008.50 – start-page: 241 year: 2010 ident: 10.1016/j.eij.2015.07.001_b0095 article-title: A knowledge-based ant colony optimization for a grid workflow scheduling problem – volume: 10 start-page: 340 year: 2013 ident: 10.1016/j.eij.2015.07.001_b0140 article-title: A Genetic Algorithm (GA) based load balancing strategy for cloud computing publication-title: Proc Technol doi: 10.1016/j.protcy.2013.12.369 – ident: 10.1016/j.eij.2015.07.001_b0045 doi: 10.1109/ICCES.2013.6707172 – volume: 7 start-page: 42 year: 2012 ident: 10.1016/j.eij.2015.07.001_b0245 article-title: A new resource scheduling strategy based on genetic algorithm in cloud computing environment publication-title: J Comput doi: 10.4304/jcp.7.1.42-52 – volume: 26 start-page: 1336 year: 2010 ident: 10.1016/j.eij.2015.07.001_b0375 article-title: Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2009.05.022 – volume: 5 start-page: 157 year: 2012 ident: 10.1016/j.eij.2015.07.001_b0265 article-title: The study of genetic algorithm-based task scheduling for cloud computing publication-title: Int J Control Autom – ident: 10.1016/j.eij.2015.07.001_b0050 doi: 10.1109/ICMLC.2004.1380766 – volume: 53 start-page: 2923 year: 2009 ident: 10.1016/j.eij.2015.07.001_b0180 article-title: Sandpiper: black-box and gray-box resource management for virtual machines publication-title: Comput Networks doi: 10.1016/j.comnet.2009.04.014 – ident: 10.1016/j.eij.2015.07.001_b0200 doi: 10.1109/WISM.2010.87 – ident: 10.1016/j.eij.2015.07.001_b0250 – volume: 4 start-page: 74 year: 2012 ident: 10.1016/j.eij.2015.07.001_b0235 article-title: An efficient approach to genetic algorithm for task scheduling in cloud computing environment publication-title: Int J Inf Technol Comput Sci – volume: 39 start-page: 29 year: 2009 ident: 10.1016/j.eij.2015.07.001_b0075 article-title: An ant colony optimization approach to a grid workflow scheduling problem with various QoS requirements publication-title: IEEE Trans Syst Man Cybern Part C (Appl Rev doi: 10.1109/TSMCC.2008.2001722 – volume: 284 start-page: 65 year: 2010 ident: 10.1016/j.eij.2015.07.001_b0460 article-title: A new metaheuristic bat-inspired algorithm publication-title: Nat Inspired Coop Strateg Optim Comput Intell – start-page: 1 year: 2013 ident: 10.1016/j.eij.2015.07.001_b0355 article-title: An efficient meta-heuristic algorithm for grid computing publication-title: J Comb Optim – start-page: 79 year: 2014 ident: 10.1016/j.eij.2015.07.001_b0380 article-title: A particle swarm optimization based pareto optimal task scheduling in cloud computing – year: 2004 ident: 10.1016/j.eij.2015.07.001_b0035 – ident: 10.1016/j.eij.2015.07.001_b0130 doi: 10.1109/CCIS.2011.6045078 – volume: vol. 4 start-page: 1942 year: 1995 ident: 10.1016/j.eij.2015.07.001_b0320 article-title: Particle swarm optimization – ident: 10.1016/j.eij.2015.07.001_b0425 doi: 10.1109/ICPADS.2013.26 – volume: 14 start-page: 1 year: 2014 ident: 10.1016/j.eij.2015.07.001_b0395 article-title: Dynamic scheduling based on particle swarm optimization for cloud-based scientific experiments publication-title: CLEI Electron J – year: 2010 ident: 10.1016/j.eij.2015.07.001_b0005 – ident: 10.1016/j.eij.2015.07.001_b0160 doi: 10.1145/2576768.2598265 – year: 2008 ident: 10.1016/j.eij.2015.07.001_b0010 – volume: 42 start-page: 739 year: 2014 ident: 10.1016/j.eij.2015.07.001_b0410 article-title: Task-based system load balancing in cloud computing using particle swarm optimization publication-title: Int J Parallel Program doi: 10.1007/s10766-013-0275-4 – start-page: 2014 year: 2014 ident: 10.1016/j.eij.2015.07.001_b0420 article-title: Energy efficient multiresource allocation of virtual machine based on PSO in cloud data center publication-title: Math Probl Eng – start-page: 43 year: 2009 ident: 10.1016/j.eij.2015.07.001_b0440 article-title: League Championship Algorithm: a new algorithm for numerical function optimization publication-title: Int Conf Soft Comput Pattern Recognit – volume: vol. 31 start-page: 100 year: 2009 ident: 10.1016/j.eij.2015.07.001_b0365 article-title: A novel particle swarm optimization approach for grid job scheduling – volume: 02 start-page: 132 year: 2010 ident: 10.1016/j.eij.2015.07.001_b0055 article-title: Modified ant colony algorithm for grid scheduling publication-title: Int J Comput Sci Eng – start-page: 444 year: 2011 ident: 10.1016/j.eij.2015.07.001_b0210 article-title: An approach for cloud resource scheduling based on parallel genetic algorithm – year: 2006 ident: 10.1016/j.eij.2015.07.001_b0190 article-title: Metaheuristics: a solution methodology for optimization problems publication-title: Handb Ind Optim Probl Handb Ind Syst Eng AB Badiru – ident: 10.1016/j.eij.2015.07.001_b0505 doi: 10.1109/ICISS.2010.5655013 – volume: 55 start-page: 33 year: 2013 ident: 10.1016/j.eij.2015.07.001_b0360 article-title: Task scheduling algorithm based on hybrid particle swarm optimization in cloud computing environment publication-title: J Theor Appl Inf Technol – start-page: 140 year: 2005 ident: 10.1016/j.eij.2015.07.001_b0085 article-title: Cost-based scheduling of scientific workflow applications on utility grids publication-title: Proc First Int Conf E-Science Grid Comput E-Sci – start-page: 237 year: 2008 ident: 10.1016/j.eij.2015.07.001_b0030 article-title: Taxonomies of the multi-criteria grid workflow scheduling problem publication-title: Grid Middlew Serv doi: 10.1007/978-0-387-78446-5_16 – ident: 10.1016/j.eij.2015.07.001_b0405 doi: 10.1109/SIS.2013.6615176 – start-page: 275 year: 2011 ident: 10.1016/j.eij.2015.07.001_b0175 article-title: On theory of vm placement: anomalies in existing methodologies and their mitigation using a novel vector based approach – ident: 10.1016/j.eij.2015.07.001_b0195 doi: 10.1109/ICCP.2009.5284747 – ident: 10.1016/j.eij.2015.07.001_b0475 doi: 10.1109/EDCAV.2015.7060555 – ident: 10.1016/j.eij.2015.07.001_b0155 doi: 10.1109/NOMSW.2010.5486597 – ident: 10.1016/j.eij.2015.07.001_b0515 doi: 10.1109/CLOUD.2010.65 – volume: 8299 start-page: 334 year: 2013 ident: 10.1016/j.eij.2015.07.001_b0455 article-title: An auction and League Championship Algorithm based resource allocation mechanism for distributed cloud publication-title: Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) – volume: 84 start-page: 31 year: 2015 ident: 10.1016/j.eij.2015.07.001_b0105 article-title: Balancing throughput and response time in online scientific clouds via ant colony optimization publication-title: Adv Eng Software doi: 10.1016/j.advengsoft.2015.01.005 – volume: 1 start-page: 262 year: 2013 ident: 10.1016/j.eij.2015.07.001_b0510 article-title: Hybrid genetic algorithm and particle swarm optimization (HGAPSO) algorithm for solving optimal reactive power dispatch problem publication-title: Int J Electron Electr Eng doi: 10.12720/ijeee.1.4.262-268 – ident: 10.1016/j.eij.2015.07.001_b0480 doi: 10.14569/IJACSA.2015.060223 – ident: 10.1016/j.eij.2015.07.001_b0275 doi: 10.1109/APSCC.2011.66 – start-page: 37 year: 2014 ident: 10.1016/j.eij.2015.07.001_b0370 article-title: Task scheduling using modified PSO algorithm in cloud computing environment publication-title: Int Conf Mach Learn Electr Mech Eng – ident: 10.1016/j.eij.2015.07.001_b0165 – volume: 10 start-page: 1560 year: 2012 ident: 10.1016/j.eij.2015.07.001_b0350 article-title: Scheduling workflow in cloud computing based on hybrid particle swarm algorithm publication-title: TELKOMNIKA Indones J Electr Eng – ident: 10.1016/j.eij.2015.07.001_b0230 doi: 10.1109/ICMLC.2003.1259786 – start-page: 315 year: 2012 ident: 10.1016/j.eij.2015.07.001_b0290 article-title: Energy-efficient virtual machine placement in data centers by genetic algorithm – ident: 10.1016/j.eij.2015.07.001_b0335 doi: 10.1109/AINA.2010.31 – volume: 28 start-page: 755 year: 2012 ident: 10.1016/j.eij.2015.07.001_b0430 article-title: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2011.04.017 – volume: 69 start-page: 434 year: 2014 ident: 10.1016/j.eij.2015.07.001_b0470 article-title: Hybrid optimized list scheduling and trust based resource selection in cloud computing publication-title: J Theor Appl Inf Technol – volume: 19 start-page: 264 year: 2014 ident: 10.1016/j.eij.2015.07.001_b0315 article-title: CLPS-GA: a case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling publication-title: Appl Soft Comput J doi: 10.1016/j.asoc.2014.01.036 – volume: 7 start-page: 547 year: 2012 ident: 10.1016/j.eij.2015.07.001_b0325 article-title: Task scheduling optimization in cloud computing based on heuristic Algorithm publication-title: J Networks doi: 10.4304/jnw.7.3.547-553 – volume: 46 start-page: 558 year: 2015 ident: 10.1016/j.eij.2015.07.001_b0280 article-title: A novel family genetic approach for virtual machine allocation publication-title: Proc Comput Sci doi: 10.1016/j.procs.2015.02.090 – volume: 17 start-page: 129 year: 2014 ident: 10.1016/j.eij.2015.07.001_b0215 article-title: HSGA: a hybrid heuristic algorithm for workflow scheduling in cloud systems publication-title: Cluster Comput doi: 10.1007/s10586-013-0275-6 – volume: 7 start-page: 47 year: 2009 ident: 10.1016/j.eij.2015.07.001_b0040 article-title: To improve ant algorithm’ s grid scheduling using local search publication-title: Int J Comput Cogn – ident: 10.1016/j.eij.2015.07.001_b0490 doi: 10.1109/CloudNet.2014.6968969 – volume: 2011 start-page: 3 year: 2011 ident: 10.1016/j.eij.2015.07.001_b0110 article-title: Cloud task scheduling based on load balancing ant colony optimization publication-title: Sixth Annu Chinagrid Conf doi: 10.1109/ChinaGrid.2011.17 – volume: 24 start-page: 68 year: 2013 ident: 10.1016/j.eij.2015.07.001_b0270 article-title: Immune genetic algorithm for scheduling service workflows with Qos constraints in cloud computing publication-title: South African J Ind Eng – ident: 10.1016/j.eij.2015.07.001_b0185 – volume: 61 start-page: 810 year: 2001 ident: 10.1016/j.eij.2015.07.001_b0020 article-title: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems publication-title: J Parallel Distrib Comput doi: 10.1006/jpdc.2000.1714 – start-page: 96 year: 2013 ident: 10.1016/j.eij.2015.07.001_b0260 article-title: Fast workflow scheduling for grid computing based on a multi-objective genetic algorithm publication-title: IEEE Pacific Rim Conf Commun Comput Signal Process – start-page: 3308 year: 2007 ident: 10.1016/j.eij.2015.07.001_b0080 article-title: Workflow scheduling in grids: an ant colony optimization approach publication-title: IEEE Congr Evol Comput – ident: 10.1016/j.eij.2015.07.001_b0225 – volume: 4 start-page: 651 year: 2013 ident: 10.1016/j.eij.2015.07.001_b0495 article-title: Hybridization of modified ant colony optimization and intelligent water drops algorithm for job scheduling in computational grid publication-title: ICTACT J SOFT Comput doi: 10.21917/ijsc.2013.0093 – volume: 4 start-page: 783 year: 2012 ident: 10.1016/j.eij.2015.07.001_b0145 article-title: Load balancing in cloud computing using stochastic hill climbing – a soft computing approach publication-title: Proc Technol doi: 10.1016/j.protcy.2012.05.128 – volume: 8 start-page: 101 year: 2015 ident: 10.1016/j.eij.2015.07.001_b0445 article-title: A survey of League Championship Algorithm: prospects and challenges publication-title: Indian J Sci Technol doi: 10.17485/ijst/2015/v8iS3/60476 – ident: 10.1016/j.eij.2015.07.001_b0220 doi: 10.1109/DASC.2014.35 – ident: 10.1016/j.eij.2015.07.001_b0310 doi: 10.1109/3PGCIC.2011.13 – volume: 153 start-page: 373 year: 2006 ident: 10.1016/j.eij.2015.07.001_b0070 article-title: Ant colony optimisation for task matching and scheduling publication-title: IEE Proc Comput Digit Tech doi: 10.1049/ip-cdt:20050196 – ident: 10.1016/j.eij.2015.07.001_b0120 doi: 10.1109/UKSim.2012.11 – volume: 7331 LNCS start-page: 142 year: 2012 ident: 10.1016/j.eij.2015.07.001_b0400 article-title: A PSO-based algorithm for load balancing in virtual machines of cloud computing environment publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) – ident: 10.1016/j.eij.2015.07.001_b0500 doi: 10.1109/IAdCC.2013.6514356 – ident: 10.1016/j.eij.2015.07.001_b0100 doi: 10.1109/DCABES.2012.63 – volume: 4 start-page: 966 year: 2014 ident: 10.1016/j.eij.2015.07.001_b0125 article-title: Effective scheduling algorithm for load balancing (SALB) using ant colony optimization in cloud computing publication-title: Int J Adv Res Comput Sci Softw Eng – volume: 9 start-page: 2528 year: 2014 ident: 10.1016/j.eij.2015.07.001_b0450 article-title: Tasks scheduling technique using League Championship Algorithm for makespan minimization in IaaS cloud publication-title: ARPN J Eng Appl Sci – volume: 4 start-page: 37 year: 2008 ident: 10.1016/j.eij.2015.07.001_b0330 article-title: A task scheduling algorithm based on PSO for grid computing publication-title: Int J Comput Intell Res doi: 10.5019/j.ijcir.2008.123 – ident: 10.1016/j.eij.2015.07.001_b0485 doi: 10.1109/CEC.2013.6557869 – ident: 10.1016/j.eij.2015.07.001_b0520 doi: 10.1115/IPACK2003-35059 – start-page: 107 year: 2008 ident: 10.1016/j.eij.2015.07.001_b0300 article-title: MapReduce. Simplified data processing on large clusters publication-title: Commun ACM doi: 10.1145/1327452.1327492 – ident: 10.1016/j.eij.2015.07.001_b0065 doi: 10.1109/CSICC.2009.5349368 – start-page: 306 year: 2014 ident: 10.1016/j.eij.2015.07.001_b0170 article-title: Virtual machine consolidation in cloud data centers using ACO metaheuristic – volume: 2 start-page: 222 year: 2014 ident: 10.1016/j.eij.2015.07.001_b0345 article-title: Deadline based resource provisioning and scheduling algorithm for scientific workflows on clouds publication-title: IEEE Trans Cloud Comput doi: 10.1109/TCC.2014.2314655 – volume: 14 start-page: 217 year: 2006 ident: 10.1016/j.eij.2015.07.001_b0240 article-title: Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms publication-title: Sci Program – start-page: 2012 year: 2012 ident: 10.1016/j.eij.2015.07.001_b0295 article-title: Energy-efficient multi-job scheduling model for cloud computing and its genetic algorithm publication-title: Math Probl Eng – ident: 10.1016/j.eij.2015.07.001_b0205 doi: 10.1109/WICOM.2009.5301850 – start-page: 184 year: 2010 ident: 10.1016/j.eij.2015.07.001_b0340 article-title: A revised discrete particle swarm optimization for cloud workflow scheduling – volume: 2 start-page: 403 year: 2014 ident: 10.1016/j.eij.2015.07.001_b0135 article-title: An ant colony based load balancing strategy in cloud computing publication-title: Adv Comput Netw Informatics doi: 10.1007/978-3-319-07350-7_45 – volume: 3 start-page: 1 year: 2007 ident: 10.1016/j.eij.2015.07.001_b0255 article-title: Genetic algorithm based schedulers for grid computing systems publication-title: Int J Innov Comput Inf Control – volume: 26 start-page: 608 year: 2010 ident: 10.1016/j.eij.2015.07.001_b0025 article-title: Computational models and heuristic methods for Grid scheduling problems publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2009.11.005 – ident: 10.1016/j.eij.2015.07.001_b0150 doi: 10.1109/Grid.2011.13 – volume: vol. 6728 start-page: 522 year: 2011 ident: 10.1016/j.eij.2015.07.001_b0305 article-title: A shadow price guided genetic algorithm for energy aware task scheduling on cloud computers – volume: 2 start-page: 53 year: 2014 ident: 10.1016/j.eij.2015.07.001_b0465 article-title: Bat algorithm for resource scheduling in cloud computing publication-title: Int J Res Appl Sci Eng Technol – ident: 10.1016/j.eij.2015.07.001_b0385 doi: 10.1109/ICDIM.2011.6093361 – start-page: 1 year: 2015 ident: 10.1016/j.eij.2015.07.001_b0285 article-title: FUGE: A joint meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory and a genetic method publication-title: Cluster Comput – volume: 7 start-page: 62 year: 2012 ident: 10.1016/j.eij.2015.07.001_b0435 article-title: Energy-aware and revenue-enhancing combinatorial scheduling in virtualized of cloud datacenter publication-title: J Converg Inf Technol doi: 10.4156/jcit.vol7.issue1.8 – year: 2013 ident: 10.1016/j.eij.2015.07.001_b0415 article-title: Multi-objective approach for energy-aware workflow scheduling in cloud computing environments publication-title: Sci World J doi: 10.1155/2013/350934 – volume: 2 start-page: 240 year: 2010 ident: 10.1016/j.eij.2015.07.001_b0115 article-title: A load balancing mechanism based on ant colony and complex network theory in open cloud computing federation publication-title: Int Conf Ind Mechatronics Autom – start-page: 875 year: 2009 ident: 10.1016/j.eij.2015.07.001_b0090 article-title: An ant colony optimization algorithm for the time-varying workflow scheduling problem in grids publication-title: IEEE Congr Evol Comput |
SSID | ssj0000612456 |
Score | 2.4939554 |
SecondaryResourceType | review_article |
Snippet | Cloud computing has become a buzzword in the area of high performance distributed computing as it provides on-demand access to shared pool of resources over... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 275 |
SubjectTerms | Ant colony optimization Cloud task scheduling Genetic algorithm and particle swarm optimization League Championship Algorithm (LCA) and BAT algorithm Metaheuristic techniques |
SummonAdditionalLinks | – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLaqTjAgTlEueWBCiurYzuGxrUAVEkxU6hY5PiBVSaqS_n_8nENlgIExjp1Ez44_P_u970PonluRCgOpWzwRzkFxDqtURARSU24Ml4IYSE5-eY3nC_68jJYDNOtyYSCssp37mzndz9Ztybi15nhTFGP3H4JKEEh5-_MwYPxkPPVJfMtpv88CEM69iCvUD6BBd7jpw7xMsYIAr8hTeLbSMB08eRb_PZTaQ56nY3TULhnxpPmqEzQw5Sk63CMSPEPTCW5yUHBl8aep5YfZNRTM2HmvDk0g6Rz3fK1fuCixWlc7jZVXdXB3z9Hi6fFtNg9adYRAORCug1jkUSQp17FMGdEpsZZLGlpNVex8GMYSEqVESMapZlYJnVBtmSbOo9NU8ohdoGFZleYSYWmSJAnzXEgT88ia1NBQcUaU8yeEidUIkc4omWqpw0HBYp11MWKrzNkxAztmBA60wxF66JtsGt6MvypPwdJ9RaC89gXV9j1r-zxjuSLUyphZQNRYyZRLLsAdzW2khRgh3vVT9mMEuUcVv7_76n_NrtEBXDVZiTdoWG935tYtT-r8zo-_b3hd4CY priority: 102 providerName: Elsevier |
Title | A review of metaheuristic scheduling techniques in cloud computing |
URI | https://dx.doi.org/10.1016/j.eij.2015.07.001 https://doaj.org/article/3bc02fa63f28476ca84a490717bf5d99 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCEFOH4kcRji6gKCCQkKnWzHD9Eq9IiSP8_5zipsgALi4fEsa27yHef7u47hK64l4V0oXSL5xIACgBWbYhMtKXcOa4lcaE4-ek5G0_4w1RMO62-Qk5YpAeOgrthpSHU64z5cJFmRhdccxlQSOmFlXXpHti8DpiKd3AaInp1ZxW4aAKpWxvSrJO73Gwe0rpETdzZNIRpjVLN3d-xTR17M9pDu42jiAfxgPtoyy0P0E6HPvAQDQc4Vp7glcfvrtJvbh2JlzFgVrAhodQcb1hav_Bsic1itbbY1L0c4O0RmozuXm_HSdMTITFgeqskk6UQmnKb6YIRWxDvuaapt9RkgFwYy4koiNSMU8u8kTan1jNLAMdZqrlgx6i3XC3dCcLa5XmelqXULuPCu8LR1HBGDKAI6TLTR6QVijINYXjoW7FQbWbYXIEcVZCjIiGMnfbR9eaTj8iW8dvkYZD0ZmIguq4fgPpVo371l_r7iLd6Uo3PEH0BWGr2896n_7H3GdoOS8bKxHPUqz7X7gJclKq8rP9GGO-nQxgfX4pvzAziBw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIADYhVl9YETUlTXdhYfKQKV9QRSb5bjBYKgRdD-Px4nqcoBDlztTBKNHT9PPPMewKnwspAOS7dELkOAEgJWbahMtGXCOaEldVicfP-QDZ7EzTAdLsBFWwuDaZXN2l-v6XG1blq6jTe7H1XVDd8hqgShlHc8D-OLsBx2AznqN1wP-7MfLYjhIqq4okGCFu3pZszzctUrZnilkcOz0YZp8SnS-M_B1Bz0XG3AerNnJOf1a23Cghttwdock-A29M9JXYRCxp68u4l-cdOag5mE8DXACVadkxlh6xepRsS8jaeWmCjrEHp34Onq8vFikDTyCIkJKDxJMlmmqWbCZrrg1BbUe6FZz1tmshDEcJ7TtKBSc8Es90banFnPLQ0hnWVapHwXlkbjkdsDol2e572ylNplIvWucKxnBKcmBBTSZaYDtHWKMg13OEpYvKk2SexVBT8q9KOieKLd68DZzOSjJs746-I-enp2IXJex4bx57NqBl3x0lDmdcY9QmpmdCG0kBiPlj61UnZAtOOkfkyhcKvq92fv_8_sBFYGj_d36u764fYAVrGnLlE8hKXJ59Qdhb3KpDyOc_Ebx8njRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+metaheuristic+scheduling+techniques+in+cloud+computing&rft.jtitle=Egyptian+informatics+journal&rft.au=Kalra%2C+Mala&rft.au=Singh%2C+Sarbjeet&rft.date=2015-11-01&rft.issn=1110-8665&rft.volume=16&rft.issue=3&rft.spage=275&rft.epage=295&rft_id=info:doi/10.1016%2Fj.eij.2015.07.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eij_2015_07_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-8665&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-8665&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-8665&client=summon |