A review of metaheuristic scheduling techniques in cloud computing

Cloud computing has become a buzzword in the area of high performance distributed computing as it provides on-demand access to shared pool of resources over Internet in a self-service, dynamically scalable and metered manner. Cloud computing is still in its infancy, so to reap its full benefits, muc...

Full description

Saved in:
Bibliographic Details
Published inEgyptian informatics journal Vol. 16; no. 3; pp. 275 - 295
Main Authors Kalra, Mala, Singh, Sarbjeet
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2015
Elsevier
Subjects
Online AccessGet full text
ISSN1110-8665
2090-4754
DOI10.1016/j.eij.2015.07.001

Cover

Loading…
Abstract Cloud computing has become a buzzword in the area of high performance distributed computing as it provides on-demand access to shared pool of resources over Internet in a self-service, dynamically scalable and metered manner. Cloud computing is still in its infancy, so to reap its full benefits, much research is required across a broad array of topics. One of the important research issues which need to be focused for its efficient performance is scheduling. The goal of scheduling is to map tasks to appropriate resources that optimize one or more objectives. Scheduling in cloud computing belongs to a category of problems known as NP-hard problem due to large solution space and thus it takes a long time to find an optimal solution. There are no algorithms which may produce optimal solution within polynomial time to solve these problems. In cloud environment, it is preferable to find suboptimal solution, but in short period of time. Metaheuristic based techniques have been proved to achieve near optimal solutions within reasonable time for such problems. In this paper, we provide an extensive survey and comparative analysis of various scheduling algorithms for cloud and grid environments based on three popular metaheuristic techniques: Ant Colony Optimization (ACO), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), and two novel techniques: League Championship Algorithm (LCA) and BAT algorithm.
AbstractList Cloud computing has become a buzzword in the area of high performance distributed computing as it provides on-demand access to shared pool of resources over Internet in a self-service, dynamically scalable and metered manner. Cloud computing is still in its infancy, so to reap its full benefits, much research is required across a broad array of topics. One of the important research issues which need to be focused for its efficient performance is scheduling. The goal of scheduling is to map tasks to appropriate resources that optimize one or more objectives. Scheduling in cloud computing belongs to a category of problems known as NP-hard problem due to large solution space and thus it takes a long time to find an optimal solution. There are no algorithms which may produce optimal solution within polynomial time to solve these problems. In cloud environment, it is preferable to find suboptimal solution, but in short period of time. Metaheuristic based techniques have been proved to achieve near optimal solutions within reasonable time for such problems. In this paper, we provide an extensive survey and comparative analysis of various scheduling algorithms for cloud and grid environments based on three popular metaheuristic techniques: Ant Colony Optimization (ACO), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), and two novel techniques: League Championship Algorithm (LCA) and BAT algorithm.
Author Kalra, Mala
Singh, Sarbjeet
Author_xml – sequence: 1
  givenname: Mala
  surname: Kalra
  fullname: Kalra, Mala
  email: malakalra2004@yahoo.co.in
  organization: Computer Science and Engineering Department, NITTTR, Sector-26, Chandigarh, India
– sequence: 2
  givenname: Sarbjeet
  surname: Singh
  fullname: Singh, Sarbjeet
  email: sarbjeet@pu.ac.in
  organization: Computer Science and Engineering Department, UIET, Panjab University, Chandigarh, India
BookMark eNp9kMtqGzEUhkVJIG7iB8huXmCmR_cZunJMmgYM3bRrIetiaxiPHEnTkrevUpcuusjZHDiH7-fn-4iu5jg7hO4xdBiw-DR2LowdAcw7kB0A_oBWBAZomeTsCq0wxtD2QvAbtM55hDoCE8bFCj1smuR-Bverib45uaKPbkkhl2CabI7OLlOYD01x5jiHl8XlJsyNmeJiGxNP56XU7x269nrKbv1336IfXx6_b7-2u29Pz9vNrjUMRGnFsOdcE2aF7inYHrxnmmBviRGDEJRK4D0MmjJiqTeDlcR6aqFnYIlmnN6i50uujXpU5xROOr2qqIP6c4jpoHSqxSen6N4A8VpQT3omhdE902wAieXeczsMNQtfskyKOSfn_-VhUG9O1aiqU_XmVIFU1Wll5H-MCUWXEOeSdJjeJT9fSFf1VNlJZRPcbJwNyZlS-4d36N8GOZIF
CitedBy_id crossref_primary_10_1109_TSC_2022_3174112
crossref_primary_10_1007_s11227_021_03814_4
crossref_primary_10_1002_cpe_7228
crossref_primary_10_1007_s10586_024_04689_9
crossref_primary_10_1109_TCC_2020_3002205
crossref_primary_10_1088_1742_6596_1969_1_012047
crossref_primary_10_1109_ACCESS_2019_2924958
crossref_primary_10_1109_ACCESS_2018_2805849
crossref_primary_10_1108_IJICC_07_2021_0134
crossref_primary_10_1186_s13677_021_00264_4
crossref_primary_10_3389_fcomp_2024_1288552
crossref_primary_10_1007_s11042_023_17216_6
crossref_primary_10_1016_j_suscom_2020_100431
crossref_primary_10_1007_s11227_024_06324_1
crossref_primary_10_1109_TSC_2024_3384094
crossref_primary_10_1155_2021_7216795
crossref_primary_10_4018_IJDST_291080
crossref_primary_10_1002_dac_4370
crossref_primary_10_1007_s10723_022_09627_w
crossref_primary_10_1007_s11277_020_07651_1
crossref_primary_10_1145_3494520
crossref_primary_10_1002_cpe_6368
crossref_primary_10_32604_csse_2022_021729
crossref_primary_10_1080_00207543_2020_1718794
crossref_primary_10_1007_s11227_020_03364_1
crossref_primary_10_1109_ACCESS_2018_2872674
crossref_primary_10_1186_s40537_020_00321_w
crossref_primary_10_3390_sym12040551
crossref_primary_10_3390_electronics11233932
crossref_primary_10_1007_s11277_022_09621_1
crossref_primary_10_1016_j_jnca_2016_06_003
crossref_primary_10_1145_3513002
crossref_primary_10_2139_ssrn_4055019
crossref_primary_10_4018_IJCAC_2020040101
crossref_primary_10_1007_s41870_018_0242_9
crossref_primary_10_1016_j_jnca_2018_11_007
crossref_primary_10_1007_s11277_019_06817_w
crossref_primary_10_3233_JIFS_219200
crossref_primary_10_1088_1757_899X_677_4_042098
crossref_primary_10_1007_s10586_023_04018_6
crossref_primary_10_1155_2022_6125246
crossref_primary_10_1016_j_jksuci_2016_05_003
crossref_primary_10_37394_23206_2023_22_23
crossref_primary_10_1016_j_knosys_2019_01_023
crossref_primary_10_32604_cmc_2023_031614
crossref_primary_10_1007_s11227_021_03695_7
crossref_primary_10_1007_s11518_024_5606_z
crossref_primary_10_1007_s11042_023_14448_4
crossref_primary_10_1016_j_procs_2019_09_275
crossref_primary_10_4018_IJITWE_295964
crossref_primary_10_1142_S0218126620501005
crossref_primary_10_1155_2022_8147581
crossref_primary_10_3233_JIFS_219290
crossref_primary_10_1007_s11227_023_05489_5
crossref_primary_10_3233_JIFS_219295
crossref_primary_10_1515_comp_2020_0215
crossref_primary_10_1007_s11235_019_00549_9
crossref_primary_10_1108_IJPCC_04_2021_0089
crossref_primary_10_1016_j_ipm_2020_102393
crossref_primary_10_1002_cpe_7112
crossref_primary_10_1016_j_jpdc_2016_11_003
crossref_primary_10_1002_cpe_4368
crossref_primary_10_1007_s10586_020_03168_1
crossref_primary_10_1145_3281010
crossref_primary_10_4018_IJEHMC_2019040106
crossref_primary_10_1007_s11277_018_6089_3
crossref_primary_10_1109_ACCESS_2022_3185987
crossref_primary_10_1016_j_jocs_2022_101873
crossref_primary_10_1016_j_matpr_2022_03_440
crossref_primary_10_1016_j_cor_2024_106805
crossref_primary_10_1016_j_jnca_2020_102944
crossref_primary_10_1016_j_suscom_2022_100766
crossref_primary_10_1007_s11227_023_05753_8
crossref_primary_10_1007_s11277_024_11465_w
crossref_primary_10_1016_j_simpat_2021_102353
crossref_primary_10_7769_gesec_v14i3_1809
crossref_primary_10_1007_s11277_023_10454_9
crossref_primary_10_1016_j_engappai_2017_02_013
crossref_primary_10_1016_j_jnca_2019_06_006
crossref_primary_10_7769_gesec_v14i4_1978
crossref_primary_10_1016_j_iswa_2023_200219
crossref_primary_10_1515_jisys_2019_0084
crossref_primary_10_1016_j_jestch_2019_03_009
crossref_primary_10_1007_s41870_020_00544_3
crossref_primary_10_1016_j_eswa_2018_01_005
crossref_primary_10_1016_j_micpro_2020_103298
crossref_primary_10_1007_s11227_018_2291_z
crossref_primary_10_1049_tje2_12420
crossref_primary_10_1109_ACCESS_2024_3397696
crossref_primary_10_1016_j_procs_2020_03_083
crossref_primary_10_1016_j_jnca_2019_102464
crossref_primary_10_1007_s11227_019_02764_2
crossref_primary_10_1109_ACCESS_2022_3149955
crossref_primary_10_1007_s10586_018_2867_7
crossref_primary_10_32604_iasc_2024_050681
crossref_primary_10_1186_s13677_022_00281_x
crossref_primary_10_1142_S2196888820500104
crossref_primary_10_1007_s11277_019_06348_4
crossref_primary_10_1002_ett_3609
crossref_primary_10_1109_ACCESS_2022_3211512
crossref_primary_10_4018_IJSSOE_297135
crossref_primary_10_2139_ssrn_4902501
crossref_primary_10_47164_ijngc_v13i5_930
crossref_primary_10_2174_2213275912666190124101714
crossref_primary_10_32628_CSEIT2425171
crossref_primary_10_1007_s13198_023_02217_3
crossref_primary_10_1016_j_asoc_2024_111967
crossref_primary_10_1109_JSAC_2020_2986614
crossref_primary_10_1016_j_simpat_2024_103014
crossref_primary_10_1002_itl2_233
crossref_primary_10_1016_j_jksuci_2020_12_001
crossref_primary_10_1016_j_eij_2023_05_008
crossref_primary_10_1016_j_jnca_2019_02_005
crossref_primary_10_1080_1206212X_2023_2301266
crossref_primary_10_7769_gesec_v14i12_3246
crossref_primary_10_1007_s10586_018_2811_x
crossref_primary_10_1080_0305215X_2021_1969560
crossref_primary_10_1007_s11227_021_03741_4
crossref_primary_10_1088_1742_6596_2083_4_042085
crossref_primary_10_1109_TNSM_2024_3443285
crossref_primary_10_1007_s11227_021_03760_1
crossref_primary_10_1016_j_heliyon_2022_e09399
crossref_primary_10_3390_electronics10212718
crossref_primary_10_1002_cpe_4949
crossref_primary_10_1049_iet_com_2016_0417
crossref_primary_10_1016_j_asoc_2022_108791
crossref_primary_10_1007_s00500_017_2897_8
crossref_primary_10_1016_j_jnca_2016_04_016
crossref_primary_10_7717_peerj_cs_1346
crossref_primary_10_1007_s11227_022_04729_4
crossref_primary_10_1590_1806_9649_2022v29e099
crossref_primary_10_1007_s12145_019_00401_3
crossref_primary_10_1002_eng2_12212
crossref_primary_10_1007_s10586_018_1823_x
crossref_primary_10_3390_app9224893
crossref_primary_10_1007_s11227_020_03317_8
crossref_primary_10_1002_cpe_5913
crossref_primary_10_1007_s42979_023_02449_x
crossref_primary_10_1016_j_asoc_2020_106876
crossref_primary_10_1002_cpe_6513
crossref_primary_10_1088_1757_899X_1022_1_012050
crossref_primary_10_1155_2016_7040276
crossref_primary_10_2174_2213275911666181018124742
crossref_primary_10_3390_electronics12194123
crossref_primary_10_1093_comjnl_bxab028
crossref_primary_10_1007_s12652_020_02480_3
crossref_primary_10_1155_2020_4653204
crossref_primary_10_1016_j_swevo_2021_100841
crossref_primary_10_1007_s12652_020_02730_4
crossref_primary_10_1080_00207543_2018_1449978
crossref_primary_10_1007_s11277_022_09882_w
crossref_primary_10_1088_1742_6596_2363_1_012026
crossref_primary_10_1007_s10115_017_1044_2
crossref_primary_10_36548_jei_2021_3_006
crossref_primary_10_1016_j_suscom_2020_100373
crossref_primary_10_1016_j_rcim_2019_101836
crossref_primary_10_1007_s00500_019_04131_y
crossref_primary_10_1109_ACCESS_2021_3077901
crossref_primary_10_1109_ACCESS_2022_3176729
crossref_primary_10_1007_s00521_021_06544_z
crossref_primary_10_1007_s00521_021_06002_w
crossref_primary_10_1007_s41870_022_01148_9
crossref_primary_10_1016_j_jmsy_2022_05_015
crossref_primary_10_1007_s11227_021_03977_0
crossref_primary_10_1016_j_future_2023_12_022
crossref_primary_10_1186_s13677_020_00219_1
crossref_primary_10_1109_ACCESS_2022_3170103
crossref_primary_10_3390_a13020044
crossref_primary_10_3390_jsan8030044
crossref_primary_10_1142_S1793962317500647
crossref_primary_10_4018_IJAMC_2022010105
crossref_primary_10_1007_s10586_018_2856_x
crossref_primary_10_1007_s10586_021_03512_z
crossref_primary_10_1186_s13677_019_0146_7
crossref_primary_10_1016_j_procs_2017_12_093
crossref_primary_10_1109_ACCESS_2025_3547057
crossref_primary_10_1016_j_future_2020_01_038
crossref_primary_10_1016_j_engappai_2019_02_013
crossref_primary_10_1016_j_eswa_2022_118714
crossref_primary_10_38124_ijisrt_IJISRT24MAY2340
crossref_primary_10_2174_2666255816666220819124133
crossref_primary_10_1080_00051144_2023_2288484
crossref_primary_10_1371_journal_pone_0158229
crossref_primary_10_32604_csse_2023_031321
crossref_primary_10_1109_ACCESS_2023_3241279
crossref_primary_10_1007_s11277_024_11311_z
crossref_primary_10_1007_s11277_020_08001_x
crossref_primary_10_1016_j_cor_2019_05_022
crossref_primary_10_26102_2310_6018_2020_31_4_023
Cites_doi 10.1007/s11227-014-1373-9
10.1109/ICMECG.2008.50
10.1016/j.protcy.2013.12.369
10.1109/ICCES.2013.6707172
10.4304/jcp.7.1.42-52
10.1016/j.future.2009.05.022
10.1109/ICMLC.2004.1380766
10.1016/j.comnet.2009.04.014
10.1109/WISM.2010.87
10.1109/TSMCC.2008.2001722
10.1109/CCIS.2011.6045078
10.1109/ICPADS.2013.26
10.1145/2576768.2598265
10.1007/s10766-013-0275-4
10.1109/ICISS.2010.5655013
10.1007/978-0-387-78446-5_16
10.1109/SIS.2013.6615176
10.1109/ICCP.2009.5284747
10.1109/EDCAV.2015.7060555
10.1109/NOMSW.2010.5486597
10.1109/CLOUD.2010.65
10.1016/j.advengsoft.2015.01.005
10.12720/ijeee.1.4.262-268
10.14569/IJACSA.2015.060223
10.1109/APSCC.2011.66
10.1109/ICMLC.2003.1259786
10.1109/AINA.2010.31
10.1016/j.future.2011.04.017
10.1016/j.asoc.2014.01.036
10.4304/jnw.7.3.547-553
10.1016/j.procs.2015.02.090
10.1007/s10586-013-0275-6
10.1109/CloudNet.2014.6968969
10.1109/ChinaGrid.2011.17
10.1006/jpdc.2000.1714
10.21917/ijsc.2013.0093
10.1016/j.protcy.2012.05.128
10.17485/ijst/2015/v8iS3/60476
10.1109/DASC.2014.35
10.1109/3PGCIC.2011.13
10.1049/ip-cdt:20050196
10.1109/UKSim.2012.11
10.1109/IAdCC.2013.6514356
10.1109/DCABES.2012.63
10.5019/j.ijcir.2008.123
10.1109/CEC.2013.6557869
10.1115/IPACK2003-35059
10.1145/1327452.1327492
10.1109/CSICC.2009.5349368
10.1109/TCC.2014.2314655
10.1109/WICOM.2009.5301850
10.1007/978-3-319-07350-7_45
10.1016/j.future.2009.11.005
10.1109/Grid.2011.13
10.1109/ICDIM.2011.6093361
10.4156/jcit.vol7.issue1.8
10.1155/2013/350934
ContentType Journal Article
Copyright 2015
Copyright_xml – notice: 2015
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.eij.2015.07.001
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2090-4754
EndPage 295
ExternalDocumentID oai_doaj_org_article_3bc02fa63f28476ca84a490717bf5d99
10_1016_j_eij_2015_07_001
S1110866515000353
GroupedDBID --K
0R~
0SF
1B1
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
E3Z
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c406t-69b55a24d6a830d80ff4a21fd2c696633705809a342d3fc9d72df3d0840d2a453
IEDL.DBID DOA
ISSN 1110-8665
IngestDate Wed Aug 27 01:31:47 EDT 2025
Thu Apr 24 23:05:00 EDT 2025
Thu Jul 03 08:38:21 EDT 2025
Thu Jul 20 20:06:12 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords League Championship Algorithm (LCA) and BAT algorithm
Ant colony optimization
Cloud task scheduling
Genetic algorithm and particle swarm optimization
Metaheuristic techniques
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-69b55a24d6a830d80ff4a21fd2c696633705809a342d3fc9d72df3d0840d2a453
OpenAccessLink https://doaj.org/article/3bc02fa63f28476ca84a490717bf5d99
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_3bc02fa63f28476ca84a490717bf5d99
crossref_primary_10_1016_j_eij_2015_07_001
crossref_citationtrail_10_1016_j_eij_2015_07_001
elsevier_sciencedirect_doi_10_1016_j_eij_2015_07_001
PublicationCentury 2000
PublicationDate November 2015
2015-11-00
2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationTitle Egyptian informatics journal
PublicationYear 2015
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Mishra, Sahoo (b0175) 2011
Chen, Zhang, Yu (b0080) 2007
Joseph, Chandrasekaran, Cyriac (b0280) 2015; 46
Sellami, Ahmed-Nacer, Tiako, Chelouah (b0270) 2013; 24
Wieczorek, Hoheisel, Prodan (b0030) 2008
Zarei B, Ghanbarzadeh R, Khodabande P, Toofani H. MHPSO: a new method to enhance the particle swarm optimizer. In: Sixth IEEE int conf digit inf manage; 2011. p. 305–9.
Sun JSJ, Xiong S-WXS-W, Guo F-MGF-M. A new pheromone updating strategy in ant colony optimization. Proc Int Conf Mach Learn Cybern (IEEE Cat. No. 04EX826), vol. 1, IEEE; 2004, p. 620–5.
Pop F, Dobre C, Cristea V. Genetic algorithm for DAG scheduling in grid environments. In: 5th IEEE int conf intell comput commun process; 2009. p. 299–305.
Ferdaus, Murshed, Calheiros, Buyya (b0170) 2014
Beegom, Rajasree (b0380) 2014
Kennedy, Eberhart (b0320) 1995; vol. 4
Rodriguez Sossa, Buyya (b0345) 2014; 2
Wang, Shuang, Long Yang (b0435) 2012; 7
Xiong, Xu (b0420) 2014
Yu, Buyya, Ramamohanarao (b0010) 2008
Pu X, Liu L, Mei Y/O workload in virtualized cloud environments. In: 3rd int conf cloud comput, vol. 51–8; 2010. p. 51–8.
Abdulhamid, Latiff, Madni, Oluwafemi (b0445) 2015; 8
Guo-ning G, Ting-lei H, Shuai G. Genetic simulated annealing algorithm for task scheduling based on cloud computing environment. In: Int conf intell comput integr syst; 2010. p. 60–3.
Jang, Kim, Kim, Lee (b0265) 2012; 5
Yang (b0460) 2010; 284
Chiang, Lee, Lee, Chou (b0070) 2006; 153
Shojafar, Javanmardi, Abolfazli, Cordeschi (b0285) 2015
.
Carretero, Xhafa, Abraham (b0255) 2007; 3
Nishant K, Sharma P, Krishna V, Gupta C, Singh KP, Nitin, et al. Load balancing of nodes in cloud using ant colony optimization. In: UKSim 14th int conf comput model simul; 2012. p. 3–8.
Lu X, Gu Z. A load-adapative cloud resource scheduling model based on ant colony algorithm. In: IEEE int conf cloud comput intell syst; 2011. p. 296–300.
Dasgupta, Mandal, Dutta, Mandal, Dam (b0140) 2013; 10
Ghorbannia Delavar, Aryan (b0215) 2014; 17
Kashan (b0440) 2009
Sidhu MS, Thulasiraman P, Thulasiram RK. A load-rebalance PSO heuristic for task matching in heterogeneous computing systems. In: Proc IEEE symp swarm intell SIS 2013, IEEE symp ser comput intell SSCI 2013; 2013. p. 180–7.
Kessaci Y, Melab N, Talbi EG. A pareto-based genetic algorithm for optimized assignment of VM requests on a cloud brokering environment. IEEE congr evol comput; 2013. p. 2496–503.
Abdi, Motamedi, Sharifian (b0370) 2014
Lenin, Reddy, Kalavathi (b0510) 2013; 1
Tawfeek MA, El-Sisi A, Keshk AE, Torkey FA. Cloud task scheduling based on ant colony optimization. In: 8th int conf comput eng syst; 2013. p. 64–9.
Wood, Shenoy, Venkataramani, Yousif (b0180) 2009; 53
Jacob (b0465) 2014; 2
Xhafa, Abraham (b0025) 2010; 26
Khan, Sharma (b0125) 2014; 4
Wang, Wang, Zhu (b0295) 2012
Chen, Zhang (b0075) 2009; 39
Zhao C, Zhang S, Liu Q, Xie J, Hu J. Independent tasks scheduling based on genetic algorithm in cloud computing. In: 5th int conf wirel commun netw mob comput; 2009. p. 1–4.
Setzer T, Stage A. Decision support for virtual machine reassignments in enterprise data centers. In: Netw oper manag symp work. IEEE/IFIP; 2010. p. 88–94.
Yassa, Chelouah, Kadima, Granado (b0415) 2013
George S. Hybrid PSO-MOBA for profit maximization in cloud computing 2015;6:159–63.
Mathiyalagan, Suriya, Sivanandam (b0055) 2010; 02
Dean, Ghemawat (b0300) 2008
Ramezani, Lu, Hussain (b0410) 2014; 42
Feller E, Rilling L, Morin C. Energy-aware ant colony based workload placement in clouds. In: Proc 12th IEEE/ACM int conf grid comput; 2011. p. 26–33.
Shen, Zhang (b0305) 2011; vol. 6728
Moraga, DePuy, Whitehouse (b0190) 2006
Kousalya (b0040) 2009; 7
Khajemohammadi, Fanian, Gulliver (b0260) 2013
Patel CD, Bash CE, Beitelmal AH. Smart cooling of data centers. Appl No 09/970,707; 2003.
Zhang, Chen, Sun (b0330) 2008; 4
Aron, Chana, Abraham (b0390) 2015
Pacini, Mateos, Garino (b0395) 2014; 14
Dam, Mandal, Dasgupta, Dutta (b0135) 2014; 2
Zheng, Wang, Zhong, Zhang (b0210) 2011
Talbi (b0015) 2009
Kaur K, Chhabra A, Singh G. Heuristics based genetic algorithm for scheduling static tasks in homogeneous parallel system. Int J Comput Sci Secur n.d.;4:183–98.
Beloglazov, Abawajy, Buyya (b0430) 2012; 28
Wu, Maolin, Tian, Li (b0290) 2012
Suresh Kumar, Aramudhan (b0470) 2014; 69
Pandey S, Wu L, Guru SMSMSM, Buyya R. A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. In: 24th ieee int conf adv inf netw appl; 2010. p. 400–7.
Abdulhamid, Latiff, Idris (b0450) 2014; 9
Bagherzadeh J, MadadyarAdeh M. An improved ant algorithm for grid scheduling problem using biased initial ants. In: 3rd int conf comput res dev; 2011. p. 373–8.
Gomathi, Krishnasamy (b0360) 2013; 55
Ajiro Y, Tanaka A. Improving packing algorithms for server consolidation. In: Int C conf; 2007.
Yu, Buyya, Tham (b0085) 2005
Kaur, Verma (b0235) 2012; 4
Ge Y, Wei G. GA-based task scheduler for the cloud computing systems. In: Proc int conf web inf syst min, vol. 2; 2010. p. 181–6.
Tao, Feng, Zhang, Liao (b0315) 2014; 19
Zhu K, Song H, Liu L, Gao J, Cheng G. Hybrid genetic algorithm for cloud computing applications. In: IEEE Asia-Pacific serv comput conf; 2011. p. 182–7.
Wen X, Huang M, Shi J. Study on resources scheduling based on ACO algorithm and PSO algorithm in cloud computing. In: Proc – 11th int symp distrib comput appl to business eng sci; 2012. p. 219–22.
Liu ALA, Wang ZWZ. Grid task scheduling based on adaptive ant colony algorithm. In: Int conf manag e-commerce e-government. IEEE; 2008. p. 415–8.
Wu, Ni, Gu, Liu (b0340) 2010
Yu, Buyya (b0240) 2006; 14
Guo, Zhao, Shen, Jiang (b0325) 2012; 7
Liu, Wang (b0400) 2012; 7331 LNCS
Karger, Stein, Wein (b0005) 2010
Wang S, Liu Z, Zheng Z, Sun Q, Yang F. Particle swarm optimization for energy-aware virtual machine placement optimization in virtualized data centers. Proc int conf parallel distrib syst – ICPADS; 2013. p. 102–9.
Chen, Shi, Zhang (b0090) 2009
Dorigo, Stützle (b0035) 2004
Portaluri G, Giordano S. A power efficient genetic algorithm for resource allocation in cloud computing data centers. In: 3rd int conf cloud netw. IEEE; 2014. p. 58–63.
Izakian, Ladani, Zamanifar, Abraham (b0365) 2009; vol. 31
Pacini, Mateos, García (b0105) 2015; 84
Raju R, Babukarthik RG, Chandramohan D, Dhavachelvan P, Vengattaraman T. Minimizing the makespan using Hybrid algorithm for cloud computing. In: Proc 3rd IEEE int adv comput conf; 2013. p. 957–62.
Gu, Hu, Zhao, Sun (b0245) 2012; 7
Pooranian, Shojafar, Abawajy, Abraham (b0355) 2013
Mondal, Dasgupta, Dutta (b0145) 2012; 4
Wang T, Liu Z, Chen Y, Xu Y, Dai X. Load balancing task scheduling based on genetic algorithm in cloud computing. In: IEEE 12th int conf dependable auton secur comput; 2014. p. 146–52.
Zhong Y-WZY-W, Yang J-GYJ-G. A genetic algorithm for tasks scheduling in parallel multiprocessor systems. In: Proc 2nd int conf mach learn cybern, vol. 3; 2003. p. 1785–90.
Xue, Wu (b0350) 2012; 10
Chimakurthi L, Madhu Kumar S. Power efficient resource allocation for clouds using ant colony framework; 2011. Available from
Sun, Wang, Li, Wu, Huang, Wang (b0455) 2013; 8299
Hu, Xing, Zhang, Xiao, Tang (b0095) 2010
Li, Xu, Zhao, Dong, Wang (b0110) 2011; 2011
Sawant S. A genetic algorithm scheduling approach for virtual machine resources in a cloud computing environment; Master's Projects, San Jose State University, Master's Theses and Graduates Research, Paper 198, 2011.
Liu, Abraham, Hassanien (b0375) 2010; 26
Braun, Siegel, Beck, Bölöni, Maheswaran, Reuther (b0020) 2001; 61
Kołodziej J, Khan SU, Xhafa F. Genetic algorithms for energy-aware scheduling in computational grids. In: Proc – int conf P2P, parallel, grid, cloud internet comput; 2011. p. 17–24.
Raghavan S, Marimuthu, C, Sarwesh, P, & Chandrasekaran K. Bat algorithm for scheduling workflow applications in cloud. Int Conf Electron Des Comput Networks Autom Verif (EDCAV). IEEE; 2015. p. 139–44.
Zhang, Zhang (b0115) 2010; 2
Liu X, Zhan Z, Du K, Chen W. Energy aware virtual machine placement scheduling in cloud computing based on ant colony optimization. In: Proc conf genet evol comput. ACM; 2014. p. 41–7.
Mathiyalagan, Sivanandam, Saranya (b0495) 2013; 4
Talbi (10.1016/j.eij.2015.07.001_b0015) 2009
Lenin (10.1016/j.eij.2015.07.001_b0510) 2013; 1
10.1016/j.eij.2015.07.001_b0520
10.1016/j.eij.2015.07.001_b0120
10.1016/j.eij.2015.07.001_b0485
Wieczorek (10.1016/j.eij.2015.07.001_b0030) 2008
Li (10.1016/j.eij.2015.07.001_b0110) 2011; 2011
10.1016/j.eij.2015.07.001_b0405
Ferdaus (10.1016/j.eij.2015.07.001_b0170) 2014
Wu (10.1016/j.eij.2015.07.001_b0340) 2010
Mondal (10.1016/j.eij.2015.07.001_b0145) 2012; 4
Wang (10.1016/j.eij.2015.07.001_b0435) 2012; 7
10.1016/j.eij.2015.07.001_b0480
Dam (10.1016/j.eij.2015.07.001_b0135) 2014; 2
Izakian (10.1016/j.eij.2015.07.001_b0365) 2009; vol. 31
Pacini (10.1016/j.eij.2015.07.001_b0395) 2014; 14
Zhang (10.1016/j.eij.2015.07.001_b0115) 2010; 2
Aron (10.1016/j.eij.2015.07.001_b0390) 2015
Ramezani (10.1016/j.eij.2015.07.001_b0410) 2014; 42
10.1016/j.eij.2015.07.001_b0230
10.1016/j.eij.2015.07.001_b0475
Shen (10.1016/j.eij.2015.07.001_b0305) 2011; vol. 6728
Wood (10.1016/j.eij.2015.07.001_b0180) 2009; 53
Shojafar (10.1016/j.eij.2015.07.001_b0285) 2015
10.1016/j.eij.2015.07.001_b0515
10.1016/j.eij.2015.07.001_b0195
Liu (10.1016/j.eij.2015.07.001_b0400) 2012; 7331 LNCS
Jacob (10.1016/j.eij.2015.07.001_b0465) 2014; 2
Xiong (10.1016/j.eij.2015.07.001_b0420) 2014
Pacini (10.1016/j.eij.2015.07.001_b0105) 2015; 84
10.1016/j.eij.2015.07.001_b0225
10.1016/j.eij.2015.07.001_b0500
10.1016/j.eij.2015.07.001_b0220
10.1016/j.eij.2015.07.001_b0065
10.1016/j.eij.2015.07.001_b0100
Carretero (10.1016/j.eij.2015.07.001_b0255) 2007; 3
10.1016/j.eij.2015.07.001_b0505
Ghorbannia Delavar (10.1016/j.eij.2015.07.001_b0215) 2014; 17
Khan (10.1016/j.eij.2015.07.001_b0125) 2014; 4
Tao (10.1016/j.eij.2015.07.001_b0315) 2014; 19
Yu (10.1016/j.eij.2015.07.001_b0240) 2006; 14
10.1016/j.eij.2015.07.001_b0185
Pooranian (10.1016/j.eij.2015.07.001_b0355) 2013
10.1016/j.eij.2015.07.001_b0060
10.1016/j.eij.2015.07.001_b0335
Braun (10.1016/j.eij.2015.07.001_b0020) 2001; 61
Zheng (10.1016/j.eij.2015.07.001_b0210) 2011
Kaur (10.1016/j.eij.2015.07.001_b0235) 2012; 4
Yang (10.1016/j.eij.2015.07.001_b0460) 2010; 284
Abdi (10.1016/j.eij.2015.07.001_b0370) 2014
Xhafa (10.1016/j.eij.2015.07.001_b0025) 2010; 26
Xue (10.1016/j.eij.2015.07.001_b0350) 2012; 10
Beloglazov (10.1016/j.eij.2015.07.001_b0430) 2012; 28
Gomathi (10.1016/j.eij.2015.07.001_b0360) 2013; 55
10.1016/j.eij.2015.07.001_b0050
Wang (10.1016/j.eij.2015.07.001_b0295) 2012
Sellami (10.1016/j.eij.2015.07.001_b0270) 2013; 24
Beegom (10.1016/j.eij.2015.07.001_b0380) 2014
Kashan (10.1016/j.eij.2015.07.001_b0440) 2009
10.1016/j.eij.2015.07.001_b0165
10.1016/j.eij.2015.07.001_b0200
10.1016/j.eij.2015.07.001_b0045
Zhang (10.1016/j.eij.2015.07.001_b0330) 2008; 4
10.1016/j.eij.2015.07.001_b0205
Kennedy (10.1016/j.eij.2015.07.001_b0320) 1995; vol. 4
Guo (10.1016/j.eij.2015.07.001_b0325) 2012; 7
Rodriguez Sossa (10.1016/j.eij.2015.07.001_b0345) 2014; 2
10.1016/j.eij.2015.07.001_b0160
Karger (10.1016/j.eij.2015.07.001_b0005) 2010
Chen (10.1016/j.eij.2015.07.001_b0075) 2009; 39
Chen (10.1016/j.eij.2015.07.001_b0090) 2009
10.1016/j.eij.2015.07.001_b0275
10.1016/j.eij.2015.07.001_b0310
10.1016/j.eij.2015.07.001_b0155
Gu (10.1016/j.eij.2015.07.001_b0245) 2012; 7
Yu (10.1016/j.eij.2015.07.001_b0010) 2008
Mishra (10.1016/j.eij.2015.07.001_b0175) 2011
10.1016/j.eij.2015.07.001_b0150
Chiang (10.1016/j.eij.2015.07.001_b0070) 2006; 153
Dean (10.1016/j.eij.2015.07.001_b0300) 2008
Jang (10.1016/j.eij.2015.07.001_b0265) 2012; 5
Yassa (10.1016/j.eij.2015.07.001_b0415) 2013
Mathiyalagan (10.1016/j.eij.2015.07.001_b0055) 2010; 02
10.1016/j.eij.2015.07.001_b0385
Yu (10.1016/j.eij.2015.07.001_b0085) 2005
Dasgupta (10.1016/j.eij.2015.07.001_b0140) 2013; 10
10.1016/j.eij.2015.07.001_b0425
Abdulhamid (10.1016/j.eij.2015.07.001_b0450) 2014; 9
Mathiyalagan (10.1016/j.eij.2015.07.001_b0495) 2013; 4
Wu (10.1016/j.eij.2015.07.001_b0290) 2012
Joseph (10.1016/j.eij.2015.07.001_b0280) 2015; 46
Dorigo (10.1016/j.eij.2015.07.001_b0035) 2004
Sun (10.1016/j.eij.2015.07.001_b0455) 2013; 8299
Moraga (10.1016/j.eij.2015.07.001_b0190) 2006
Abdulhamid (10.1016/j.eij.2015.07.001_b0445) 2015; 8
Suresh Kumar (10.1016/j.eij.2015.07.001_b0470) 2014; 69
Hu (10.1016/j.eij.2015.07.001_b0095) 2010
Kousalya (10.1016/j.eij.2015.07.001_b0040) 2009; 7
10.1016/j.eij.2015.07.001_b0490
10.1016/j.eij.2015.07.001_b0130
10.1016/j.eij.2015.07.001_b0250
Khajemohammadi (10.1016/j.eij.2015.07.001_b0260) 2013
Chen (10.1016/j.eij.2015.07.001_b0080) 2007
Liu (10.1016/j.eij.2015.07.001_b0375) 2010; 26
References_xml – volume: vol. 31
  start-page: 100
  year: 2009
  end-page: 109
  ident: b0365
  article-title: A novel particle swarm optimization approach for grid job scheduling
  publication-title: Inf syst technol manage
– volume: 10
  start-page: 340
  year: 2013
  end-page: 347
  ident: b0140
  article-title: A Genetic Algorithm (GA) based load balancing strategy for cloud computing
  publication-title: Proc Technol
– volume: 69
  start-page: 434
  year: 2014
  end-page: 442
  ident: b0470
  article-title: Hybrid optimized list scheduling and trust based resource selection in cloud computing
  publication-title: J Theor Appl Inf Technol
– reference: Wen X, Huang M, Shi J. Study on resources scheduling based on ACO algorithm and PSO algorithm in cloud computing. In: Proc – 11th int symp distrib comput appl to business eng sci; 2012. p. 219–22.
– volume: 2
  start-page: 53
  year: 2014
  end-page: 57
  ident: b0465
  article-title: Bat algorithm for resource scheduling in cloud computing
  publication-title: Int J Res Appl Sci Eng Technol
– year: 2009
  ident: b0015
  article-title: Metaheuristics: from Design to Implementation
– volume: 2011
  start-page: 3
  year: 2011
  end-page: 9
  ident: b0110
  article-title: Cloud task scheduling based on load balancing ant colony optimization
  publication-title: Sixth Annu Chinagrid Conf
– volume: 42
  start-page: 739
  year: 2014
  end-page: 754
  ident: b0410
  article-title: Task-based system load balancing in cloud computing using particle swarm optimization
  publication-title: Int J Parallel Program
– reference: Pu X, Liu L, Mei Y/O workload in virtualized cloud environments. In: 3rd int conf cloud comput, vol. 51–8; 2010. p. 51–8.
– reference: Kołodziej J, Khan SU, Xhafa F. Genetic algorithms for energy-aware scheduling in computational grids. In: Proc – int conf P2P, parallel, grid, cloud internet comput; 2011. p. 17–24.
– start-page: 237
  year: 2008
  end-page: 264
  ident: b0030
  article-title: Taxonomies of the multi-criteria grid workflow scheduling problem
  publication-title: Grid Middlew Serv
– start-page: 37
  year: 2014
  end-page: 41
  ident: b0370
  article-title: Task scheduling using modified PSO algorithm in cloud computing environment
  publication-title: Int Conf Mach Learn Electr Mech Eng
– year: 2006
  ident: b0190
  article-title: Metaheuristics: a solution methodology for optimization problems
  publication-title: Handb Ind Optim Probl Handb Ind Syst Eng AB Badiru
– reference: Nishant K, Sharma P, Krishna V, Gupta C, Singh KP, Nitin, et al. Load balancing of nodes in cloud using ant colony optimization. In: UKSim 14th int conf comput model simul; 2012. p. 3–8.
– start-page: 1
  year: 2015
  end-page: 16
  ident: b0285
  article-title: FUGE: A joint meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory and a genetic method
  publication-title: Cluster Comput
– reference: Pandey S, Wu L, Guru SMSMSM, Buyya R. A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments. In: 24th ieee int conf adv inf netw appl; 2010. p. 400–7.
– volume: 9
  start-page: 2528
  year: 2014
  end-page: 2533
  ident: b0450
  article-title: Tasks scheduling technique using League Championship Algorithm for makespan minimization in IaaS cloud
  publication-title: ARPN J Eng Appl Sci
– reference: Bagherzadeh J, MadadyarAdeh M. An improved ant algorithm for grid scheduling problem using biased initial ants. In: 3rd int conf comput res dev; 2011. p. 373–8.
– reference: Raghavan S, Marimuthu, C, Sarwesh, P, & Chandrasekaran K. Bat algorithm for scheduling workflow applications in cloud. Int Conf Electron Des Comput Networks Autom Verif (EDCAV). IEEE; 2015. p. 139–44.
– reference: Zhong Y-WZY-W, Yang J-GYJ-G. A genetic algorithm for tasks scheduling in parallel multiprocessor systems. In: Proc 2nd int conf mach learn cybern, vol. 3; 2003. p. 1785–90.
– reference: Portaluri G, Giordano S. A power efficient genetic algorithm for resource allocation in cloud computing data centers. In: 3rd int conf cloud netw. IEEE; 2014. p. 58–63.
– reference: Sawant S. A genetic algorithm scheduling approach for virtual machine resources in a cloud computing environment; Master's Projects, San Jose State University, Master's Theses and Graduates Research, Paper 198, 2011.
– volume: 14
  start-page: 217
  year: 2006
  end-page: 230
  ident: b0240
  article-title: Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms
  publication-title: Sci Program
– reference: Lu X, Gu Z. A load-adapative cloud resource scheduling model based on ant colony algorithm. In: IEEE int conf cloud comput intell syst; 2011. p. 296–300.
– reference: Kaur K, Chhabra A, Singh G. Heuristics based genetic algorithm for scheduling static tasks in homogeneous parallel system. Int J Comput Sci Secur n.d.;4:183–98.
– volume: 61
  start-page: 810
  year: 2001
  end-page: 837
  ident: b0020
  article-title: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems
  publication-title: J Parallel Distrib Comput
– reference: Wang T, Liu Z, Chen Y, Xu Y, Dai X. Load balancing task scheduling based on genetic algorithm in cloud computing. In: IEEE 12th int conf dependable auton secur comput; 2014. p. 146–52.
– volume: 02
  start-page: 132
  year: 2010
  end-page: 139
  ident: b0055
  article-title: Modified ant colony algorithm for grid scheduling
  publication-title: Int J Comput Sci Eng
– reference: Feller E, Rilling L, Morin C. Energy-aware ant colony based workload placement in clouds. In: Proc 12th IEEE/ACM int conf grid comput; 2011. p. 26–33.
– start-page: 79
  year: 2014
  end-page: 86
  ident: b0380
  article-title: A particle swarm optimization based pareto optimal task scheduling in cloud computing
  publication-title: Adv swarm intell notes comput sci
– volume: 14
  start-page: 1
  year: 2014
  end-page: 12
  ident: b0395
  article-title: Dynamic scheduling based on particle swarm optimization for cloud-based scientific experiments
  publication-title: CLEI Electron J
– volume: 153
  start-page: 373
  year: 2006
  end-page: 380
  ident: b0070
  article-title: Ant colony optimisation for task matching and scheduling
  publication-title: IEE Proc Comput Digit Tech
– reference: Ge Y, Wei G. GA-based task scheduler for the cloud computing systems. In: Proc int conf web inf syst min, vol. 2; 2010. p. 181–6.
– start-page: 96
  year: 2013
  end-page: 101
  ident: b0260
  article-title: Fast workflow scheduling for grid computing based on a multi-objective genetic algorithm
  publication-title: IEEE Pacific Rim Conf Commun Comput Signal Process
– start-page: 184
  year: 2010
  end-page: 188
  ident: b0340
  article-title: A revised discrete particle swarm optimization for cloud workflow scheduling
  publication-title: Proc – 2010 int conf comput intell secur cis
– year: 2008
  ident: b0010
  article-title: Workflow Scheduling Algorithms for Grid Computing. Metaheuristics for Scheduling in Distributed Computing Environments
– volume: 1
  start-page: 262
  year: 2013
  end-page: 268
  ident: b0510
  article-title: Hybrid genetic algorithm and particle swarm optimization (HGAPSO) algorithm for solving optimal reactive power dispatch problem
  publication-title: Int J Electron Electr Eng
– start-page: 140
  year: 2005
  end-page: 147
  ident: b0085
  article-title: Cost-based scheduling of scientific workflow applications on utility grids
  publication-title: Proc First Int Conf E-Science Grid Comput E-Sci
– volume: 84
  start-page: 31
  year: 2015
  end-page: 47
  ident: b0105
  article-title: Balancing throughput and response time in online scientific clouds via ant colony optimization
  publication-title: Adv Eng Software
– reference: Pop F, Dobre C, Cristea V. Genetic algorithm for DAG scheduling in grid environments. In: 5th IEEE int conf intell comput commun process; 2009. p. 299–305.
– volume: 4
  start-page: 783
  year: 2012
  end-page: 789
  ident: b0145
  article-title: Load balancing in cloud computing using stochastic hill climbing – a soft computing approach
  publication-title: Proc Technol
– volume: 55
  start-page: 33
  year: 2013
  end-page: 38
  ident: b0360
  article-title: Task scheduling algorithm based on hybrid particle swarm optimization in cloud computing environment
  publication-title: J Theor Appl Inf Technol
– reference: Kessaci Y, Melab N, Talbi EG. A pareto-based genetic algorithm for optimized assignment of VM requests on a cloud brokering environment. IEEE congr evol comput; 2013. p. 2496–503.
– start-page: 241
  year: 2010
  end-page: 248
  ident: b0095
  article-title: A knowledge-based ant colony optimization for a grid workflow scheduling problem
  publication-title: Adv Swarm Intell Notes Comput Sci
– reference: Liu X, Zhan Z, Du K, Chen W. Energy aware virtual machine placement scheduling in cloud computing based on ant colony optimization. In: Proc conf genet evol comput. ACM; 2014. p. 41–7.
– year: 2004
  ident: b0035
  article-title: Ant colony optimization
– start-page: 43
  year: 2009
  end-page: 48
  ident: b0440
  article-title: League Championship Algorithm: a new algorithm for numerical function optimization
  publication-title: Int Conf Soft Comput Pattern Recognit
– volume: 26
  start-page: 1336
  year: 2010
  end-page: 1343
  ident: b0375
  article-title: Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm
  publication-title: Futur Gener Comput Syst
– start-page: 107
  year: 2008
  end-page: 113
  ident: b0300
  article-title: MapReduce. Simplified data processing on large clusters
  publication-title: Commun ACM
– year: 2013
  ident: b0415
  article-title: Multi-objective approach for energy-aware workflow scheduling in cloud computing environments
  publication-title: Sci World J
– volume: 284
  start-page: 65
  year: 2010
  end-page: 74
  ident: b0460
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Nat Inspired Coop Strateg Optim Comput Intell
– volume: vol. 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: b0320
  article-title: Particle swarm optimization
  publication-title: Proc int conf neural networks
– reference: Sun JSJ, Xiong S-WXS-W, Guo F-MGF-M. A new pheromone updating strategy in ant colony optimization. Proc Int Conf Mach Learn Cybern (IEEE Cat. No. 04EX826), vol. 1, IEEE; 2004, p. 620–5.
– volume: 7
  start-page: 47
  year: 2009
  end-page: 57
  ident: b0040
  article-title: To improve ant algorithm’ s grid scheduling using local search
  publication-title: Int J Comput Cogn
– volume: 2
  start-page: 403
  year: 2014
  end-page: 413
  ident: b0135
  article-title: An ant colony based load balancing strategy in cloud computing
  publication-title: Adv Comput Netw Informatics
– reference: Raju R, Babukarthik RG, Chandramohan D, Dhavachelvan P, Vengattaraman T. Minimizing the makespan using Hybrid algorithm for cloud computing. In: Proc 3rd IEEE int adv comput conf; 2013. p. 957–62.
– volume: 28
  start-page: 755
  year: 2012
  end-page: 768
  ident: b0430
  article-title: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing
  publication-title: Futur Gener Comput Syst
– reference: George S. Hybrid PSO-MOBA for profit maximization in cloud computing 2015;6:159–63.
– volume: 7
  start-page: 42
  year: 2012
  end-page: 52
  ident: b0245
  article-title: A new resource scheduling strategy based on genetic algorithm in cloud computing environment
  publication-title: J Comput
– reference: Liu ALA, Wang ZWZ. Grid task scheduling based on adaptive ant colony algorithm. In: Int conf manag e-commerce e-government. IEEE; 2008. p. 415–8.
– volume: 7
  start-page: 62
  year: 2012
  end-page: 70
  ident: b0435
  article-title: Energy-aware and revenue-enhancing combinatorial scheduling in virtualized of cloud datacenter
  publication-title: J Converg Inf Technol
– volume: 4
  start-page: 651
  year: 2013
  end-page: 655
  ident: b0495
  article-title: Hybridization of modified ant colony optimization and intelligent water drops algorithm for job scheduling in computational grid
  publication-title: ICTACT J SOFT Comput
– volume: 53
  start-page: 2923
  year: 2009
  end-page: 2938
  ident: b0180
  article-title: Sandpiper: black-box and gray-box resource management for virtual machines
  publication-title: Comput Networks
– reference: Zhu K, Song H, Liu L, Gao J, Cheng G. Hybrid genetic algorithm for cloud computing applications. In: IEEE Asia-Pacific serv comput conf; 2011. p. 182–7.
– reference: Zarei B, Ghanbarzadeh R, Khodabande P, Toofani H. MHPSO: a new method to enhance the particle swarm optimizer. In: Sixth IEEE int conf digit inf manage; 2011. p. 305–9.
– volume: 2
  start-page: 240
  year: 2010
  end-page: 243
  ident: b0115
  article-title: A load balancing mechanism based on ant colony and complex network theory in open cloud computing federation
  publication-title: Int Conf Ind Mechatronics Autom
– volume: 7331 LNCS
  start-page: 142
  year: 2012
  end-page: 147
  ident: b0400
  article-title: A PSO-based algorithm for load balancing in virtual machines of cloud computing environment
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
– volume: 3
  start-page: 1
  year: 2007
  end-page: 19
  ident: b0255
  article-title: Genetic algorithm based schedulers for grid computing systems
  publication-title: Int J Innov Comput Inf Control
– start-page: 875
  year: 2009
  end-page: 880
  ident: b0090
  article-title: An ant colony optimization algorithm for the time-varying workflow scheduling problem in grids
  publication-title: IEEE Congr Evol Comput
– volume: vol. 6728
  start-page: 522
  year: 2011
  end-page: 529
  ident: b0305
  article-title: A shadow price guided genetic algorithm for energy aware task scheduling on cloud computers
  publication-title: Adv Swarm Intell Notes Comput Sci
– reference: Setzer T, Stage A. Decision support for virtual machine reassignments in enterprise data centers. In: Netw oper manag symp work. IEEE/IFIP; 2010. p. 88–94.
– start-page: 306
  year: 2014
  end-page: 317
  ident: b0170
  article-title: Virtual machine consolidation in cloud data centers using ACO metaheuristic
  publication-title: Euro-Par 2014 parallel process
– volume: 4
  start-page: 74
  year: 2012
  end-page: 79
  ident: b0235
  article-title: An efficient approach to genetic algorithm for task scheduling in cloud computing environment
  publication-title: Int J Inf Technol Comput Sci
– start-page: 3308
  year: 2007
  end-page: 3315
  ident: b0080
  article-title: Workflow scheduling in grids: an ant colony optimization approach
  publication-title: IEEE Congr Evol Comput
– volume: 39
  start-page: 29
  year: 2009
  end-page: 43
  ident: b0075
  article-title: An ant colony optimization approach to a grid workflow scheduling problem with various QoS requirements
  publication-title: IEEE Trans Syst Man Cybern Part C (Appl Rev
– start-page: 444
  year: 2011
  end-page: 447
  ident: b0210
  article-title: An approach for cloud resource scheduling based on parallel genetic algorithm
  publication-title: 3rd IEEE int conf comput res dev
– reference: Patel CD, Bash CE, Beitelmal AH. Smart cooling of data centers. Appl No 09/970,707; 2003.
– start-page: 275
  year: 2011
  end-page: 282
  ident: b0175
  article-title: On theory of vm placement: anomalies in existing methodologies and their mitigation using a novel vector based approach
  publication-title: 4th int conf cloud comput
– volume: 7
  start-page: 547
  year: 2012
  end-page: 553
  ident: b0325
  article-title: Task scheduling optimization in cloud computing based on heuristic Algorithm
  publication-title: J Networks
– reference: Zhao C, Zhang S, Liu Q, Xie J, Hu J. Independent tasks scheduling based on genetic algorithm in cloud computing. In: 5th int conf wirel commun netw mob comput; 2009. p. 1–4.
– volume: 4
  start-page: 37
  year: 2008
  end-page: 43
  ident: b0330
  article-title: A task scheduling algorithm based on PSO for grid computing
  publication-title: Int J Comput Intell Res
– start-page: 2014
  year: 2014
  ident: b0420
  article-title: Energy efficient multiresource allocation of virtual machine based on PSO in cloud data center
  publication-title: Math Probl Eng
– start-page: 315
  year: 2012
  end-page: 323
  ident: b0290
  article-title: Energy-efficient virtual machine placement in data centers by genetic algorithm
  publication-title: Neural inf process
– volume: 8299
  start-page: 334
  year: 2013
  end-page: 346
  ident: b0455
  article-title: An auction and League Championship Algorithm based resource allocation mechanism for distributed cloud
  publication-title: Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
– volume: 10
  start-page: 1560
  year: 2012
  end-page: 1566
  ident: b0350
  article-title: Scheduling workflow in cloud computing based on hybrid particle swarm algorithm
  publication-title: TELKOMNIKA Indones J Electr Eng
– reference: Wang S, Liu Z, Zheng Z, Sun Q, Yang F. Particle swarm optimization for energy-aware virtual machine placement optimization in virtualized data centers. Proc int conf parallel distrib syst – ICPADS; 2013. p. 102–9.
– volume: 8
  start-page: 101
  year: 2015
  end-page: 110
  ident: b0445
  article-title: A survey of League Championship Algorithm: prospects and challenges
  publication-title: Indian J Sci Technol
– start-page: 1427
  year: 2015
  end-page: 1450
  ident: b0390
  article-title: A hyper-heuristic approach for resource provisioning-based scheduling in grid environment
  publication-title: J Supercomput
– volume: 19
  start-page: 264
  year: 2014
  end-page: 279
  ident: b0315
  article-title: CLPS-GA: a case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling
  publication-title: Appl Soft Comput J
– volume: 5
  start-page: 157
  year: 2012
  end-page: 162
  ident: b0265
  article-title: The study of genetic algorithm-based task scheduling for cloud computing
  publication-title: Int J Control Autom
– reference: Guo-ning G, Ting-lei H, Shuai G. Genetic simulated annealing algorithm for task scheduling based on cloud computing environment. In: Int conf intell comput integr syst; 2010. p. 60–3.
– reference: Ajiro Y, Tanaka A. Improving packing algorithms for server consolidation. In: Int C conf; 2007.
– year: 2010
  ident: b0005
  article-title: Scheduling Algorithms. Algorithms and Theory of Computation Handbook: special topics and techniques
– reference: Tawfeek MA, El-Sisi A, Keshk AE, Torkey FA. Cloud task scheduling based on ant colony optimization. In: 8th int conf comput eng syst; 2013. p. 64–9.
– volume: 24
  start-page: 68
  year: 2013
  end-page: 82
  ident: b0270
  article-title: Immune genetic algorithm for scheduling service workflows with Qos constraints in cloud computing
  publication-title: South African J Ind Eng
– start-page: 1
  year: 2013
  end-page: 22
  ident: b0355
  article-title: An efficient meta-heuristic algorithm for grid computing
  publication-title: J Comb Optim
– reference: .
– reference: Sidhu MS, Thulasiraman P, Thulasiram RK. A load-rebalance PSO heuristic for task matching in heterogeneous computing systems. In: Proc IEEE symp swarm intell SIS 2013, IEEE symp ser comput intell SSCI 2013; 2013. p. 180–7.
– volume: 2
  start-page: 222
  year: 2014
  end-page: 235
  ident: b0345
  article-title: Deadline based resource provisioning and scheduling algorithm for scientific workflows on clouds
  publication-title: IEEE Trans Cloud Comput
– volume: 26
  start-page: 608
  year: 2010
  end-page: 621
  ident: b0025
  article-title: Computational models and heuristic methods for Grid scheduling problems
  publication-title: Futur Gener Comput Syst
– volume: 46
  start-page: 558
  year: 2015
  end-page: 565
  ident: b0280
  article-title: A novel family genetic approach for virtual machine allocation
  publication-title: Proc Comput Sci
– start-page: 2012
  year: 2012
  ident: b0295
  article-title: Energy-efficient multi-job scheduling model for cloud computing and its genetic algorithm
  publication-title: Math Probl Eng
– volume: 4
  start-page: 966
  year: 2014
  end-page: 973
  ident: b0125
  article-title: Effective scheduling algorithm for load balancing (SALB) using ant colony optimization in cloud computing
  publication-title: Int J Adv Res Comput Sci Softw Eng
– reference: Chimakurthi L, Madhu Kumar S. Power efficient resource allocation for clouds using ant colony framework; 2011. Available from
– volume: 17
  start-page: 129
  year: 2014
  end-page: 137
  ident: b0215
  article-title: HSGA: a hybrid heuristic algorithm for workflow scheduling in cloud systems
  publication-title: Cluster Comput
– start-page: 1427
  year: 2015
  ident: 10.1016/j.eij.2015.07.001_b0390
  article-title: A hyper-heuristic approach for resource provisioning-based scheduling in grid environment
  publication-title: J Supercomput
  doi: 10.1007/s11227-014-1373-9
– year: 2009
  ident: 10.1016/j.eij.2015.07.001_b0015
– ident: 10.1016/j.eij.2015.07.001_b0060
  doi: 10.1109/ICMECG.2008.50
– start-page: 241
  year: 2010
  ident: 10.1016/j.eij.2015.07.001_b0095
  article-title: A knowledge-based ant colony optimization for a grid workflow scheduling problem
– volume: 10
  start-page: 340
  year: 2013
  ident: 10.1016/j.eij.2015.07.001_b0140
  article-title: A Genetic Algorithm (GA) based load balancing strategy for cloud computing
  publication-title: Proc Technol
  doi: 10.1016/j.protcy.2013.12.369
– ident: 10.1016/j.eij.2015.07.001_b0045
  doi: 10.1109/ICCES.2013.6707172
– volume: 7
  start-page: 42
  year: 2012
  ident: 10.1016/j.eij.2015.07.001_b0245
  article-title: A new resource scheduling strategy based on genetic algorithm in cloud computing environment
  publication-title: J Comput
  doi: 10.4304/jcp.7.1.42-52
– volume: 26
  start-page: 1336
  year: 2010
  ident: 10.1016/j.eij.2015.07.001_b0375
  article-title: Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2009.05.022
– volume: 5
  start-page: 157
  year: 2012
  ident: 10.1016/j.eij.2015.07.001_b0265
  article-title: The study of genetic algorithm-based task scheduling for cloud computing
  publication-title: Int J Control Autom
– ident: 10.1016/j.eij.2015.07.001_b0050
  doi: 10.1109/ICMLC.2004.1380766
– volume: 53
  start-page: 2923
  year: 2009
  ident: 10.1016/j.eij.2015.07.001_b0180
  article-title: Sandpiper: black-box and gray-box resource management for virtual machines
  publication-title: Comput Networks
  doi: 10.1016/j.comnet.2009.04.014
– ident: 10.1016/j.eij.2015.07.001_b0200
  doi: 10.1109/WISM.2010.87
– ident: 10.1016/j.eij.2015.07.001_b0250
– volume: 4
  start-page: 74
  year: 2012
  ident: 10.1016/j.eij.2015.07.001_b0235
  article-title: An efficient approach to genetic algorithm for task scheduling in cloud computing environment
  publication-title: Int J Inf Technol Comput Sci
– volume: 39
  start-page: 29
  year: 2009
  ident: 10.1016/j.eij.2015.07.001_b0075
  article-title: An ant colony optimization approach to a grid workflow scheduling problem with various QoS requirements
  publication-title: IEEE Trans Syst Man Cybern Part C (Appl Rev
  doi: 10.1109/TSMCC.2008.2001722
– volume: 284
  start-page: 65
  year: 2010
  ident: 10.1016/j.eij.2015.07.001_b0460
  article-title: A new metaheuristic bat-inspired algorithm
  publication-title: Nat Inspired Coop Strateg Optim Comput Intell
– start-page: 1
  year: 2013
  ident: 10.1016/j.eij.2015.07.001_b0355
  article-title: An efficient meta-heuristic algorithm for grid computing
  publication-title: J Comb Optim
– start-page: 79
  year: 2014
  ident: 10.1016/j.eij.2015.07.001_b0380
  article-title: A particle swarm optimization based pareto optimal task scheduling in cloud computing
– year: 2004
  ident: 10.1016/j.eij.2015.07.001_b0035
– ident: 10.1016/j.eij.2015.07.001_b0130
  doi: 10.1109/CCIS.2011.6045078
– volume: vol. 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.eij.2015.07.001_b0320
  article-title: Particle swarm optimization
– ident: 10.1016/j.eij.2015.07.001_b0425
  doi: 10.1109/ICPADS.2013.26
– volume: 14
  start-page: 1
  year: 2014
  ident: 10.1016/j.eij.2015.07.001_b0395
  article-title: Dynamic scheduling based on particle swarm optimization for cloud-based scientific experiments
  publication-title: CLEI Electron J
– year: 2010
  ident: 10.1016/j.eij.2015.07.001_b0005
– ident: 10.1016/j.eij.2015.07.001_b0160
  doi: 10.1145/2576768.2598265
– year: 2008
  ident: 10.1016/j.eij.2015.07.001_b0010
– volume: 42
  start-page: 739
  year: 2014
  ident: 10.1016/j.eij.2015.07.001_b0410
  article-title: Task-based system load balancing in cloud computing using particle swarm optimization
  publication-title: Int J Parallel Program
  doi: 10.1007/s10766-013-0275-4
– start-page: 2014
  year: 2014
  ident: 10.1016/j.eij.2015.07.001_b0420
  article-title: Energy efficient multiresource allocation of virtual machine based on PSO in cloud data center
  publication-title: Math Probl Eng
– start-page: 43
  year: 2009
  ident: 10.1016/j.eij.2015.07.001_b0440
  article-title: League Championship Algorithm: a new algorithm for numerical function optimization
  publication-title: Int Conf Soft Comput Pattern Recognit
– volume: vol. 31
  start-page: 100
  year: 2009
  ident: 10.1016/j.eij.2015.07.001_b0365
  article-title: A novel particle swarm optimization approach for grid job scheduling
– volume: 02
  start-page: 132
  year: 2010
  ident: 10.1016/j.eij.2015.07.001_b0055
  article-title: Modified ant colony algorithm for grid scheduling
  publication-title: Int J Comput Sci Eng
– start-page: 444
  year: 2011
  ident: 10.1016/j.eij.2015.07.001_b0210
  article-title: An approach for cloud resource scheduling based on parallel genetic algorithm
– year: 2006
  ident: 10.1016/j.eij.2015.07.001_b0190
  article-title: Metaheuristics: a solution methodology for optimization problems
  publication-title: Handb Ind Optim Probl Handb Ind Syst Eng AB Badiru
– ident: 10.1016/j.eij.2015.07.001_b0505
  doi: 10.1109/ICISS.2010.5655013
– volume: 55
  start-page: 33
  year: 2013
  ident: 10.1016/j.eij.2015.07.001_b0360
  article-title: Task scheduling algorithm based on hybrid particle swarm optimization in cloud computing environment
  publication-title: J Theor Appl Inf Technol
– start-page: 140
  year: 2005
  ident: 10.1016/j.eij.2015.07.001_b0085
  article-title: Cost-based scheduling of scientific workflow applications on utility grids
  publication-title: Proc First Int Conf E-Science Grid Comput E-Sci
– start-page: 237
  year: 2008
  ident: 10.1016/j.eij.2015.07.001_b0030
  article-title: Taxonomies of the multi-criteria grid workflow scheduling problem
  publication-title: Grid Middlew Serv
  doi: 10.1007/978-0-387-78446-5_16
– ident: 10.1016/j.eij.2015.07.001_b0405
  doi: 10.1109/SIS.2013.6615176
– start-page: 275
  year: 2011
  ident: 10.1016/j.eij.2015.07.001_b0175
  article-title: On theory of vm placement: anomalies in existing methodologies and their mitigation using a novel vector based approach
– ident: 10.1016/j.eij.2015.07.001_b0195
  doi: 10.1109/ICCP.2009.5284747
– ident: 10.1016/j.eij.2015.07.001_b0475
  doi: 10.1109/EDCAV.2015.7060555
– ident: 10.1016/j.eij.2015.07.001_b0155
  doi: 10.1109/NOMSW.2010.5486597
– ident: 10.1016/j.eij.2015.07.001_b0515
  doi: 10.1109/CLOUD.2010.65
– volume: 8299
  start-page: 334
  year: 2013
  ident: 10.1016/j.eij.2015.07.001_b0455
  article-title: An auction and League Championship Algorithm based resource allocation mechanism for distributed cloud
  publication-title: Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
– volume: 84
  start-page: 31
  year: 2015
  ident: 10.1016/j.eij.2015.07.001_b0105
  article-title: Balancing throughput and response time in online scientific clouds via ant colony optimization
  publication-title: Adv Eng Software
  doi: 10.1016/j.advengsoft.2015.01.005
– volume: 1
  start-page: 262
  year: 2013
  ident: 10.1016/j.eij.2015.07.001_b0510
  article-title: Hybrid genetic algorithm and particle swarm optimization (HGAPSO) algorithm for solving optimal reactive power dispatch problem
  publication-title: Int J Electron Electr Eng
  doi: 10.12720/ijeee.1.4.262-268
– ident: 10.1016/j.eij.2015.07.001_b0480
  doi: 10.14569/IJACSA.2015.060223
– ident: 10.1016/j.eij.2015.07.001_b0275
  doi: 10.1109/APSCC.2011.66
– start-page: 37
  year: 2014
  ident: 10.1016/j.eij.2015.07.001_b0370
  article-title: Task scheduling using modified PSO algorithm in cloud computing environment
  publication-title: Int Conf Mach Learn Electr Mech Eng
– ident: 10.1016/j.eij.2015.07.001_b0165
– volume: 10
  start-page: 1560
  year: 2012
  ident: 10.1016/j.eij.2015.07.001_b0350
  article-title: Scheduling workflow in cloud computing based on hybrid particle swarm algorithm
  publication-title: TELKOMNIKA Indones J Electr Eng
– ident: 10.1016/j.eij.2015.07.001_b0230
  doi: 10.1109/ICMLC.2003.1259786
– start-page: 315
  year: 2012
  ident: 10.1016/j.eij.2015.07.001_b0290
  article-title: Energy-efficient virtual machine placement in data centers by genetic algorithm
– ident: 10.1016/j.eij.2015.07.001_b0335
  doi: 10.1109/AINA.2010.31
– volume: 28
  start-page: 755
  year: 2012
  ident: 10.1016/j.eij.2015.07.001_b0430
  article-title: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2011.04.017
– volume: 69
  start-page: 434
  year: 2014
  ident: 10.1016/j.eij.2015.07.001_b0470
  article-title: Hybrid optimized list scheduling and trust based resource selection in cloud computing
  publication-title: J Theor Appl Inf Technol
– volume: 19
  start-page: 264
  year: 2014
  ident: 10.1016/j.eij.2015.07.001_b0315
  article-title: CLPS-GA: a case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling
  publication-title: Appl Soft Comput J
  doi: 10.1016/j.asoc.2014.01.036
– volume: 7
  start-page: 547
  year: 2012
  ident: 10.1016/j.eij.2015.07.001_b0325
  article-title: Task scheduling optimization in cloud computing based on heuristic Algorithm
  publication-title: J Networks
  doi: 10.4304/jnw.7.3.547-553
– volume: 46
  start-page: 558
  year: 2015
  ident: 10.1016/j.eij.2015.07.001_b0280
  article-title: A novel family genetic approach for virtual machine allocation
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2015.02.090
– volume: 17
  start-page: 129
  year: 2014
  ident: 10.1016/j.eij.2015.07.001_b0215
  article-title: HSGA: a hybrid heuristic algorithm for workflow scheduling in cloud systems
  publication-title: Cluster Comput
  doi: 10.1007/s10586-013-0275-6
– volume: 7
  start-page: 47
  year: 2009
  ident: 10.1016/j.eij.2015.07.001_b0040
  article-title: To improve ant algorithm’ s grid scheduling using local search
  publication-title: Int J Comput Cogn
– ident: 10.1016/j.eij.2015.07.001_b0490
  doi: 10.1109/CloudNet.2014.6968969
– volume: 2011
  start-page: 3
  year: 2011
  ident: 10.1016/j.eij.2015.07.001_b0110
  article-title: Cloud task scheduling based on load balancing ant colony optimization
  publication-title: Sixth Annu Chinagrid Conf
  doi: 10.1109/ChinaGrid.2011.17
– volume: 24
  start-page: 68
  year: 2013
  ident: 10.1016/j.eij.2015.07.001_b0270
  article-title: Immune genetic algorithm for scheduling service workflows with Qos constraints in cloud computing
  publication-title: South African J Ind Eng
– ident: 10.1016/j.eij.2015.07.001_b0185
– volume: 61
  start-page: 810
  year: 2001
  ident: 10.1016/j.eij.2015.07.001_b0020
  article-title: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems
  publication-title: J Parallel Distrib Comput
  doi: 10.1006/jpdc.2000.1714
– start-page: 96
  year: 2013
  ident: 10.1016/j.eij.2015.07.001_b0260
  article-title: Fast workflow scheduling for grid computing based on a multi-objective genetic algorithm
  publication-title: IEEE Pacific Rim Conf Commun Comput Signal Process
– start-page: 3308
  year: 2007
  ident: 10.1016/j.eij.2015.07.001_b0080
  article-title: Workflow scheduling in grids: an ant colony optimization approach
  publication-title: IEEE Congr Evol Comput
– ident: 10.1016/j.eij.2015.07.001_b0225
– volume: 4
  start-page: 651
  year: 2013
  ident: 10.1016/j.eij.2015.07.001_b0495
  article-title: Hybridization of modified ant colony optimization and intelligent water drops algorithm for job scheduling in computational grid
  publication-title: ICTACT J SOFT Comput
  doi: 10.21917/ijsc.2013.0093
– volume: 4
  start-page: 783
  year: 2012
  ident: 10.1016/j.eij.2015.07.001_b0145
  article-title: Load balancing in cloud computing using stochastic hill climbing – a soft computing approach
  publication-title: Proc Technol
  doi: 10.1016/j.protcy.2012.05.128
– volume: 8
  start-page: 101
  year: 2015
  ident: 10.1016/j.eij.2015.07.001_b0445
  article-title: A survey of League Championship Algorithm: prospects and challenges
  publication-title: Indian J Sci Technol
  doi: 10.17485/ijst/2015/v8iS3/60476
– ident: 10.1016/j.eij.2015.07.001_b0220
  doi: 10.1109/DASC.2014.35
– ident: 10.1016/j.eij.2015.07.001_b0310
  doi: 10.1109/3PGCIC.2011.13
– volume: 153
  start-page: 373
  year: 2006
  ident: 10.1016/j.eij.2015.07.001_b0070
  article-title: Ant colony optimisation for task matching and scheduling
  publication-title: IEE Proc Comput Digit Tech
  doi: 10.1049/ip-cdt:20050196
– ident: 10.1016/j.eij.2015.07.001_b0120
  doi: 10.1109/UKSim.2012.11
– volume: 7331 LNCS
  start-page: 142
  year: 2012
  ident: 10.1016/j.eij.2015.07.001_b0400
  article-title: A PSO-based algorithm for load balancing in virtual machines of cloud computing environment
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
– ident: 10.1016/j.eij.2015.07.001_b0500
  doi: 10.1109/IAdCC.2013.6514356
– ident: 10.1016/j.eij.2015.07.001_b0100
  doi: 10.1109/DCABES.2012.63
– volume: 4
  start-page: 966
  year: 2014
  ident: 10.1016/j.eij.2015.07.001_b0125
  article-title: Effective scheduling algorithm for load balancing (SALB) using ant colony optimization in cloud computing
  publication-title: Int J Adv Res Comput Sci Softw Eng
– volume: 9
  start-page: 2528
  year: 2014
  ident: 10.1016/j.eij.2015.07.001_b0450
  article-title: Tasks scheduling technique using League Championship Algorithm for makespan minimization in IaaS cloud
  publication-title: ARPN J Eng Appl Sci
– volume: 4
  start-page: 37
  year: 2008
  ident: 10.1016/j.eij.2015.07.001_b0330
  article-title: A task scheduling algorithm based on PSO for grid computing
  publication-title: Int J Comput Intell Res
  doi: 10.5019/j.ijcir.2008.123
– ident: 10.1016/j.eij.2015.07.001_b0485
  doi: 10.1109/CEC.2013.6557869
– ident: 10.1016/j.eij.2015.07.001_b0520
  doi: 10.1115/IPACK2003-35059
– start-page: 107
  year: 2008
  ident: 10.1016/j.eij.2015.07.001_b0300
  article-title: MapReduce. Simplified data processing on large clusters
  publication-title: Commun ACM
  doi: 10.1145/1327452.1327492
– ident: 10.1016/j.eij.2015.07.001_b0065
  doi: 10.1109/CSICC.2009.5349368
– start-page: 306
  year: 2014
  ident: 10.1016/j.eij.2015.07.001_b0170
  article-title: Virtual machine consolidation in cloud data centers using ACO metaheuristic
– volume: 2
  start-page: 222
  year: 2014
  ident: 10.1016/j.eij.2015.07.001_b0345
  article-title: Deadline based resource provisioning and scheduling algorithm for scientific workflows on clouds
  publication-title: IEEE Trans Cloud Comput
  doi: 10.1109/TCC.2014.2314655
– volume: 14
  start-page: 217
  year: 2006
  ident: 10.1016/j.eij.2015.07.001_b0240
  article-title: Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms
  publication-title: Sci Program
– start-page: 2012
  year: 2012
  ident: 10.1016/j.eij.2015.07.001_b0295
  article-title: Energy-efficient multi-job scheduling model for cloud computing and its genetic algorithm
  publication-title: Math Probl Eng
– ident: 10.1016/j.eij.2015.07.001_b0205
  doi: 10.1109/WICOM.2009.5301850
– start-page: 184
  year: 2010
  ident: 10.1016/j.eij.2015.07.001_b0340
  article-title: A revised discrete particle swarm optimization for cloud workflow scheduling
– volume: 2
  start-page: 403
  year: 2014
  ident: 10.1016/j.eij.2015.07.001_b0135
  article-title: An ant colony based load balancing strategy in cloud computing
  publication-title: Adv Comput Netw Informatics
  doi: 10.1007/978-3-319-07350-7_45
– volume: 3
  start-page: 1
  year: 2007
  ident: 10.1016/j.eij.2015.07.001_b0255
  article-title: Genetic algorithm based schedulers for grid computing systems
  publication-title: Int J Innov Comput Inf Control
– volume: 26
  start-page: 608
  year: 2010
  ident: 10.1016/j.eij.2015.07.001_b0025
  article-title: Computational models and heuristic methods for Grid scheduling problems
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2009.11.005
– ident: 10.1016/j.eij.2015.07.001_b0150
  doi: 10.1109/Grid.2011.13
– volume: vol. 6728
  start-page: 522
  year: 2011
  ident: 10.1016/j.eij.2015.07.001_b0305
  article-title: A shadow price guided genetic algorithm for energy aware task scheduling on cloud computers
– volume: 2
  start-page: 53
  year: 2014
  ident: 10.1016/j.eij.2015.07.001_b0465
  article-title: Bat algorithm for resource scheduling in cloud computing
  publication-title: Int J Res Appl Sci Eng Technol
– ident: 10.1016/j.eij.2015.07.001_b0385
  doi: 10.1109/ICDIM.2011.6093361
– start-page: 1
  year: 2015
  ident: 10.1016/j.eij.2015.07.001_b0285
  article-title: FUGE: A joint meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory and a genetic method
  publication-title: Cluster Comput
– volume: 7
  start-page: 62
  year: 2012
  ident: 10.1016/j.eij.2015.07.001_b0435
  article-title: Energy-aware and revenue-enhancing combinatorial scheduling in virtualized of cloud datacenter
  publication-title: J Converg Inf Technol
  doi: 10.4156/jcit.vol7.issue1.8
– year: 2013
  ident: 10.1016/j.eij.2015.07.001_b0415
  article-title: Multi-objective approach for energy-aware workflow scheduling in cloud computing environments
  publication-title: Sci World J
  doi: 10.1155/2013/350934
– volume: 2
  start-page: 240
  year: 2010
  ident: 10.1016/j.eij.2015.07.001_b0115
  article-title: A load balancing mechanism based on ant colony and complex network theory in open cloud computing federation
  publication-title: Int Conf Ind Mechatronics Autom
– start-page: 875
  year: 2009
  ident: 10.1016/j.eij.2015.07.001_b0090
  article-title: An ant colony optimization algorithm for the time-varying workflow scheduling problem in grids
  publication-title: IEEE Congr Evol Comput
SSID ssj0000612456
Score 2.4939554
SecondaryResourceType review_article
Snippet Cloud computing has become a buzzword in the area of high performance distributed computing as it provides on-demand access to shared pool of resources over...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 275
SubjectTerms Ant colony optimization
Cloud task scheduling
Genetic algorithm and particle swarm optimization
League Championship Algorithm (LCA) and BAT algorithm
Metaheuristic techniques
SummonAdditionalLinks – databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05T8MwFLaqTjAgTlEueWBCiurYzuGxrUAVEkxU6hY5PiBVSaqS_n_8nENlgIExjp1Ez44_P_u970PonluRCgOpWzwRzkFxDqtURARSU24Ml4IYSE5-eY3nC_68jJYDNOtyYSCssp37mzndz9Ztybi15nhTFGP3H4JKEEh5-_MwYPxkPPVJfMtpv88CEM69iCvUD6BBd7jpw7xMsYIAr8hTeLbSMB08eRb_PZTaQ56nY3TULhnxpPmqEzQw5Sk63CMSPEPTCW5yUHBl8aep5YfZNRTM2HmvDk0g6Rz3fK1fuCixWlc7jZVXdXB3z9Hi6fFtNg9adYRAORCug1jkUSQp17FMGdEpsZZLGlpNVex8GMYSEqVESMapZlYJnVBtmSbOo9NU8ohdoGFZleYSYWmSJAnzXEgT88ia1NBQcUaU8yeEidUIkc4omWqpw0HBYp11MWKrzNkxAztmBA60wxF66JtsGt6MvypPwdJ9RaC89gXV9j1r-zxjuSLUyphZQNRYyZRLLsAdzW2khRgh3vVT9mMEuUcVv7_76n_NrtEBXDVZiTdoWG935tYtT-r8zo-_b3hd4CY
  priority: 102
  providerName: Elsevier
Title A review of metaheuristic scheduling techniques in cloud computing
URI https://dx.doi.org/10.1016/j.eij.2015.07.001
https://doaj.org/article/3bc02fa63f28476ca84a490717bf5d99
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sCEFOH4kcRji6gKCCQkKnWzHD9Eq9IiSP8_5zipsgALi4fEsa27yHef7u47hK64l4V0oXSL5xIACgBWbYhMtKXcOa4lcaE4-ek5G0_4w1RMO62-Qk5YpAeOgrthpSHU64z5cJFmRhdccxlQSOmFlXXpHti8DpiKd3AaInp1ZxW4aAKpWxvSrJO73Gwe0rpETdzZNIRpjVLN3d-xTR17M9pDu42jiAfxgPtoyy0P0E6HPvAQDQc4Vp7glcfvrtJvbh2JlzFgVrAhodQcb1hav_Bsic1itbbY1L0c4O0RmozuXm_HSdMTITFgeqskk6UQmnKb6YIRWxDvuaapt9RkgFwYy4koiNSMU8u8kTan1jNLAMdZqrlgx6i3XC3dCcLa5XmelqXULuPCu8LR1HBGDKAI6TLTR6QVijINYXjoW7FQbWbYXIEcVZCjIiGMnfbR9eaTj8iW8dvkYZD0ZmIguq4fgPpVo371l_r7iLd6Uo3PEH0BWGr2896n_7H3GdoOS8bKxHPUqz7X7gJclKq8rP9GGO-nQxgfX4pvzAziBw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIADYhVl9YETUlTXdhYfKQKV9QRSb5bjBYKgRdD-Px4nqcoBDlztTBKNHT9PPPMewKnwspAOS7dELkOAEgJWbahMtGXCOaEldVicfP-QDZ7EzTAdLsBFWwuDaZXN2l-v6XG1blq6jTe7H1XVDd8hqgShlHc8D-OLsBx2AznqN1wP-7MfLYjhIqq4okGCFu3pZszzctUrZnilkcOz0YZp8SnS-M_B1Bz0XG3AerNnJOf1a23Cghttwdock-A29M9JXYRCxp68u4l-cdOag5mE8DXACVadkxlh6xepRsS8jaeWmCjrEHp34Onq8vFikDTyCIkJKDxJMlmmqWbCZrrg1BbUe6FZz1tmshDEcJ7TtKBSc8Es90banFnPLQ0hnWVapHwXlkbjkdsDol2e572ylNplIvWucKxnBKcmBBTSZaYDtHWKMg13OEpYvKk2SexVBT8q9KOieKLd68DZzOSjJs746-I-enp2IXJex4bx57NqBl3x0lDmdcY9QmpmdCG0kBiPlj61UnZAtOOkfkyhcKvq92fv_8_sBFYGj_d36u764fYAVrGnLlE8hKXJ59Qdhb3KpDyOc_Ebx8njRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+metaheuristic+scheduling+techniques+in+cloud+computing&rft.jtitle=Egyptian+informatics+journal&rft.au=Kalra%2C+Mala&rft.au=Singh%2C+Sarbjeet&rft.date=2015-11-01&rft.issn=1110-8665&rft.volume=16&rft.issue=3&rft.spage=275&rft.epage=295&rft_id=info:doi/10.1016%2Fj.eij.2015.07.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eij_2015_07_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-8665&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-8665&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-8665&client=summon