Improving the solvent-extraction process of rice bran oil
•The pilot-plant extraction of rice bran oil was assessed.•The solvent-extraction and associated processes were simulated.•Results and field data are shown to be in good agreement.•Energy optimization was performed using pinch technology and gas membrane technology.•Nearly 50% of energy can be saved...
Saved in:
Published in | Chemical engineering research & design Vol. 104; pp. 1 - 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0263-8762 1744-3563 |
DOI | 10.1016/j.cherd.2015.06.001 |
Cover
Abstract | •The pilot-plant extraction of rice bran oil was assessed.•The solvent-extraction and associated processes were simulated.•Results and field data are shown to be in good agreement.•Energy optimization was performed using pinch technology and gas membrane technology.•Nearly 50% of energy can be saved in comparison with the original process.
Extracting crude oil from oilseeds is the first step in the production of vegetable oil. Organic solvent-extraction is widely applied. The production of high value rice bran oil is gaining increased interest, and is the subject of the present paper. Field data from a 32T/day pilot plant in Heilongjiang will be compared with engineering simulations. Since these processes are energy-intensive, two strategies for saving energy in the process will be assessed. Field data and simulation results will be shown to be in excellent agreement. Two energy optimization strategies were designed by both energy pinch technology to integrate heat recovery, and by using nitrogen instead of steam in the desolventizer/toaster, subsequently using a solvent recovery unit with gas membrane. As a result, 45.2% of the total energy consumption of the rice bran oil process can be saved whilst maintaining the original production capacity and high purity of the crude rice bran oil. The results confirm the possible energy savings and improvements in the solvent extraction process. It is also noteworthy that simulation techniques, commonly used in gas/liquid chemical engineering design, can be adapted and completed to cover the more complex design of solid/gas/liquid biochemical processes. |
---|---|
AbstractList | Extracting crude oil from oilseeds is the first step in the production of vegetable oil. Organic solvent-extraction is widely applied. The production of high value rice bran oil is gaining increased interest, and is the subject of the present paper. Field data from a 32 T/day pilot plant in Heilongjiang will be compared with engineering simulations. Since these processes are energy-intensive, two strategies for saving energy in the process will be assessed. Field data and simulation results will be shown to be in excellent agreement. Two energy optimization strategies were designed by both energy pinch technology to integrate heat recovery, and by using nitrogen instead of steam in the desolventizer/toaster, subsequently using a solvent recovery unit with gas membrane. As a result, 45.2% of the total energy consumption of the rice bran oil process can be saved whilst maintaining the original production capacity and high purity of the crude rice bran oil. The results confirm the possible energy savings and improvements in the solvent extraction process. It is also noteworthy that simulation techniques, commonly used in gas/liquid chemical engineering design, can be adapted and completed to cover the more complex design of solid/gas/liquid biochemical processes. •The pilot-plant extraction of rice bran oil was assessed.•The solvent-extraction and associated processes were simulated.•Results and field data are shown to be in good agreement.•Energy optimization was performed using pinch technology and gas membrane technology.•Nearly 50% of energy can be saved in comparison with the original process. Extracting crude oil from oilseeds is the first step in the production of vegetable oil. Organic solvent-extraction is widely applied. The production of high value rice bran oil is gaining increased interest, and is the subject of the present paper. Field data from a 32T/day pilot plant in Heilongjiang will be compared with engineering simulations. Since these processes are energy-intensive, two strategies for saving energy in the process will be assessed. Field data and simulation results will be shown to be in excellent agreement. Two energy optimization strategies were designed by both energy pinch technology to integrate heat recovery, and by using nitrogen instead of steam in the desolventizer/toaster, subsequently using a solvent recovery unit with gas membrane. As a result, 45.2% of the total energy consumption of the rice bran oil process can be saved whilst maintaining the original production capacity and high purity of the crude rice bran oil. The results confirm the possible energy savings and improvements in the solvent extraction process. It is also noteworthy that simulation techniques, commonly used in gas/liquid chemical engineering design, can be adapted and completed to cover the more complex design of solid/gas/liquid biochemical processes. |
Author | Kong, Weibin Tan, Tianwei Kang, Qian Feng, Wei |
Author_xml | – sequence: 1 givenname: Weibin surname: Kong fullname: Kong, Weibin – sequence: 2 givenname: Qian surname: Kang fullname: Kang, Qian – sequence: 3 givenname: Wei surname: Feng fullname: Feng, Wei – sequence: 4 givenname: Tianwei surname: Tan fullname: Tan, Tianwei email: twtan@mail.buct.edu.cn, biorefinerymail@gmail.com |
BookMark | eNqFkD1PwzAQhi0EEqXwC1gysiT4I7GdgQFVfFSqxAKz5Vwu1FUaFzut4N_jUiYGOt2d7n1Op-eCnA5-QEKuGS0YZfJ2VcASQ1twyqqCyoJSdkImTJVlLiopTsmEcilyrSQ_JxcxrmhKqFJPSD1fb4LfueE9G5eYRd_vcBhz_ByDhdH5IUtrwBgz32XBAWZNsEPmXX9JzjrbR7z6rVPy9vjwOnvOFy9P89n9IoeSyjGXlSoFt1RCpcGyVqhWN1JxLaBMXcu5kLxrgKOsdc1spStsoLGYJkDdiSm5OdxNj3xsMY5m7SJg39sB_TYappXSnNclPR5VteCl5JKlqDhEIfgYA3ZmE9zahi_DqNk7NSvz49TsnRoqTTKWqPoPBW60e01Jl-uPsHcHFpOsncNgIjgcAFsXEEbTevcv_w0HhJTa |
CitedBy_id | crossref_primary_10_1016_j_fuel_2019_04_174 crossref_primary_10_1016_j_enconman_2024_118157 crossref_primary_10_1016_j_rser_2016_05_035 crossref_primary_10_1016_j_jfoodeng_2021_110870 crossref_primary_10_1155_2017_3837506 crossref_primary_10_1016_j_ijhydene_2023_09_154 crossref_primary_10_1016_j_seppur_2017_03_050 crossref_primary_10_1016_j_fuel_2019_05_063 crossref_primary_10_1016_j_focha_2024_100762 crossref_primary_10_1016_j_jfoodeng_2017_01_019 crossref_primary_10_1016_j_fbp_2016_12_010 crossref_primary_10_1093_nutrit_nuae174 crossref_primary_10_1016_j_jenvman_2018_03_061 crossref_primary_10_1186_s40643_021_00386_2 crossref_primary_10_1002_bbb_1738 crossref_primary_10_1007_s11705_017_1616_4 crossref_primary_10_1016_j_jenvman_2018_09_059 |
Cites_doi | 10.1016/j.seppur.2014.02.008 10.1016/S0376-7388(00)00431-2 10.1016/j.fbp.2011.03.002 10.1016/j.cherd.2013.08.019 10.1002/aic.13885 10.1021/ja907359t 10.1016/0009-2509(83)80185-7 10.1016/S0376-7388(00)80774-7 10.1016/j.rser.2013.11.001 10.1016/j.apenergy.2008.06.002 10.1016/j.energy.2013.01.002 10.1016/j.arabjc.2013.12.023 10.1021/ef300411k 10.1016/j.jfoodeng.2007.08.003 10.1021/ie403894u 10.1016/S0015-1882(01)80295-0 10.1021/ie0108088 10.1016/j.memsci.2009.12.021 10.1016/j.fbp.2008.03.009 10.4236/abb.2014.512107 10.1205/026387603765444483 |
ContentType | Journal Article |
Copyright | 2015 |
Copyright_xml | – notice: 2015 |
DBID | AAYXX CITATION 7SR 7SU 7TB 7U5 8BQ 8FD C1K F28 FR3 JG9 L7M 7ST SOI |
DOI | 10.1016/j.cherd.2015.06.001 |
DatabaseName | CrossRef Engineered Materials Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace Environment Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX Environmental Sciences and Pollution Management Environment Abstracts |
DatabaseTitleList | Materials Research Database Environment Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1744-3563 |
EndPage | 10 |
ExternalDocumentID | 10_1016_j_cherd_2015_06_001 S0263876215002063 |
GroupedDBID | --K --M -QF -~X .~1 0R~ 1B1 1~. 1~5 29B 3EH 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABDBF ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHPOS AI. AIAGR AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CAG COF CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO9 EP2 EP3 ESX FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HVGLF HZ~ I-F IHE J1W JARJE KOM M41 ML- MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SJN SPC SPCBC SSG SSR SSZ T5K T9H TUS UNMZH VH1 XFK ~02 ~8M ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACUHS ACVFH ADCNI ADMLS ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SR 7SU 7TB 7U5 8BQ 8FD C1K EFKBS F28 FR3 JG9 L7M 7ST SOI |
ID | FETCH-LOGICAL-c406t-657432a06c58ca1d37d8b67283c4d8bd22362fbc2e69891a585ebcbae989ce8f3 |
IEDL.DBID | AIKHN |
ISSN | 0263-8762 |
IngestDate | Thu Sep 04 22:22:01 EDT 2025 Thu Sep 04 22:39:47 EDT 2025 Tue Jul 01 00:52:52 EDT 2025 Thu Apr 24 22:53:14 EDT 2025 Fri Feb 23 02:23:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Gas membrane Energy saving Rice bran oil Process simulation Pinch technology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-657432a06c58ca1d37d8b67283c4d8bd22362fbc2e69891a585ebcbae989ce8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1793246261 |
PQPubID | 23500 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1877822940 proquest_miscellaneous_1793246261 crossref_primary_10_1016_j_cherd_2015_06_001 crossref_citationtrail_10_1016_j_cherd_2015_06_001 elsevier_sciencedirect_doi_10_1016_j_cherd_2015_06_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chemical engineering research & design |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bux, Liang, Li, Cravillon, Wiebcke, Caro (bib0030) 2009; 131 Martinho, Matos, Gani, Sarup, Youngreen (bib0100) 2008; 86 Lin, Ying, Chaitep, Vittayapadung (bib0090) 2009; 86 Cerutti, de Souza, de Souza (bib0045) 2012; 90 Kang, Apples, Baeyens, Dewil, Tan (bib0070) 2014; 5 Kemp (bib0075) 2007 Campo, Magalh Es, Mendes (bib0035) 2010; 350 Xu, Wang, Kanezashi, Yoshioka, Tsuru (bib0130) 2013; 59 Alam, Akram, Sharmin, Zafar, Ahmad (bib0010) 2014; 7 Gugliuzza, Basile (bib0060) 2014 Baker (bib0020) 2006 Klemeša, Varbanova, Kravanjab (bib0080) 2013; 91 Linnhoff, Hindmarsh (bib0095) 1983; 38 Tomita, Machmudah, Wahyudiono, Fukuzato, Kanda, Quitain, Sasaki, Goto (bib0120) 2014; 125 Carrín, Crapiste (bib0040) 2008; 85 Vareltzis, Kikkinides, Georgiadis (bib0125) 2003; 81 Flanders, Tuan, Noble, Falconer (bib0055) 2000; 176 Sun, Luo, Zhao (bib0115) 2014 Ni, Tang (bib0105) 2009 Abdelouahed, Authier, Mauviel, Corriou, Verdier, Dufour (bib0005) 2012; 26 Stern, Vaidyanathan, Pratt (bib0110) 1990; 49 Baker (bib0025) 2002; 41 Li, Zhong, Huang, Xu, Zhang, Shao, Gu (bib0085) 2014; 53 Baeyens, Kang, Apples, Dewil, Lv, Tan (bib0015) 2014 Degrève, Everaert, Baeyens (bib0050) 2001; 38 Issariyakul, Dalai (bib0065) 2014; 31 Yun, Wang, Feng, Tan (bib0135) 2013; 54 Degrève (10.1016/j.cherd.2015.06.001_bib0050) 2001; 38 Martinho (10.1016/j.cherd.2015.06.001_bib0100) 2008; 86 Cerutti (10.1016/j.cherd.2015.06.001_bib0045) 2012; 90 Bux (10.1016/j.cherd.2015.06.001_bib0030) 2009; 131 Flanders (10.1016/j.cherd.2015.06.001_bib0055) 2000; 176 Tomita (10.1016/j.cherd.2015.06.001_bib0120) 2014; 125 Carrín (10.1016/j.cherd.2015.06.001_bib0040) 2008; 85 Baker (10.1016/j.cherd.2015.06.001_bib0025) 2002; 41 Stern (10.1016/j.cherd.2015.06.001_bib0110) 1990; 49 Kemp (10.1016/j.cherd.2015.06.001_bib0075) 2007 Li (10.1016/j.cherd.2015.06.001_bib0085) 2014; 53 Lin (10.1016/j.cherd.2015.06.001_bib0090) 2009; 86 Vareltzis (10.1016/j.cherd.2015.06.001_bib0125) 2003; 81 Campo (10.1016/j.cherd.2015.06.001_bib0035) 2010; 350 Linnhoff (10.1016/j.cherd.2015.06.001_bib0095) 1983; 38 Xu (10.1016/j.cherd.2015.06.001_bib0130) 2013; 59 Kang (10.1016/j.cherd.2015.06.001_bib0070) 2014; 5 Ni (10.1016/j.cherd.2015.06.001_bib0105) 2009 Alam (10.1016/j.cherd.2015.06.001_bib0010) 2014; 7 Gugliuzza (10.1016/j.cherd.2015.06.001_bib0060) 2014 Sun (10.1016/j.cherd.2015.06.001_bib0115) 2014 Baeyens (10.1016/j.cherd.2015.06.001_bib0015) 2014 Klemeša (10.1016/j.cherd.2015.06.001_bib0080) 2013; 91 Yun (10.1016/j.cherd.2015.06.001_bib0135) 2013; 54 Abdelouahed (10.1016/j.cherd.2015.06.001_bib0005) 2012; 26 Baker (10.1016/j.cherd.2015.06.001_bib0020) 2006 Issariyakul (10.1016/j.cherd.2015.06.001_bib0065) 2014; 31 |
References_xml | – volume: 86 start-page: 87 year: 2008 end-page: 95 ident: bib0100 article-title: Modelling and simulation of vegetable oil processes publication-title: Food Bioprod. Process. – volume: 131 start-page: 16000 year: 2009 end-page: 16001 ident: bib0030 article-title: Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis publication-title: J. Am Chem. Soc. – volume: 38 start-page: 48 year: 2001 end-page: 54 ident: bib0050 article-title: The use of gas membranes for VOC-air separations publication-title: Filtr. Sep. – volume: 31 start-page: 446 year: 2014 end-page: 471 ident: bib0065 article-title: Biodiesel from vegetable oils publication-title: Renew. Sustain. Energy Rev. – volume: 38 start-page: 745 year: 1983 end-page: 763 ident: bib0095 article-title: The pinch design method for heat exchanger networks publication-title: Chem. Eng. Sci. – year: 2014 ident: bib0015 article-title: Challenges and opportunities in improving the production of bio-ethanol publication-title: Prog. Energy Combust. Sci. – volume: 86 start-page: 681 year: 2009 end-page: 688 ident: bib0090 article-title: Biodiesel production from crude rice bran oil and properties as fuel publication-title: Appl. Energy – volume: 350 start-page: 139 year: 2010 end-page: 147 ident: bib0035 article-title: Separation of nitrogen from air by carbon molecular sieve membranes publication-title: J. Membr. Sci. – volume: 176 start-page: 43 year: 2000 end-page: 53 ident: bib0055 article-title: Separation of C6 isomers by vapor permeation and pervaporation through ZSM-5 membranes publication-title: J. Membr. Sci. – volume: 125 start-page: 319 year: 2014 end-page: 325 ident: bib0120 article-title: Extraction of rice bran oil by supercritical carbon dioxide and solubility consideration publication-title: Sep. Purif. Technol. – volume: 7 start-page: 469 year: 2014 end-page: 479 ident: bib0010 article-title: Vegetable oil based eco-friendly coating materials: a review article publication-title: Arabian J. Chem. – volume: 41 start-page: 1393 year: 2002 end-page: 1411 ident: bib0025 article-title: Future directions of membrane gas separation technology publication-title: Ind. Eng. Chem. Res. – volume: 90 start-page: 199 year: 2012 end-page: 204 ident: bib0045 article-title: Solvent extraction of vegetable oils: Numerical and experimental study publication-title: Food Bioprod. Process. – year: 2014 ident: bib0115 article-title: Synthesis of multipass heat exchanger network with the optimal number of shells and tubes based on pinch technology publication-title: Chem. Eng. Res. Des. – volume: 49 start-page: 1 year: 1990 end-page: 14 ident: bib0110 article-title: Structure/permeability relationships of silicon containing polyimides publication-title: J. Membr. Sci. – volume: 53 start-page: 3662 year: 2014 end-page: 3668 ident: bib0085 article-title: Study on the development of ZIF-8 membranes for gasoline vapor recovery publication-title: Ind. Eng. Chem. Res. – volume: 26 start-page: 3840 year: 2012 end-page: 3855 ident: bib0005 article-title: Detailed modeling of biomass gasification in dual fluidized bed reactors under aspen plus publication-title: Energy Fuels – volume: 81 start-page: 525 year: 2003 end-page: 536 ident: bib0125 article-title: On the optimization of gas separation processes using zeolite membranes publication-title: Chem. Eng. Res. Des. – year: 2009 ident: bib0105 article-title: Questions and Answers in Opration Techniques of Oil Process – volume: 59 start-page: 1298 year: 2013 end-page: 1307 ident: bib0130 article-title: Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties publication-title: AIChE J. – start-page: 65 year: 2014 end-page: 103 ident: bib0060 article-title: 3—Membrane processes for biofuel separation: an introduction publication-title: Membranes for Clean and Renewable Power Applications – volume: 85 start-page: 418 year: 2008 end-page: 425 ident: bib0040 article-title: Mathematical modeling of vegetable oil–solvent extraction in a multistage horizontal extractor publication-title: J. Food Eng. – volume: 91 start-page: 2037 year: 2013 end-page: 2053 ident: bib0080 article-title: Recent developments in process integration publication-title: Chem. Eng. Res. Des. – year: 2006 ident: bib0020 article-title: Membrane Technology and Applications – volume: 54 start-page: 84 year: 2013 end-page: 96 ident: bib0135 article-title: Process simulation and energy optimization of the enzyme-catalyzed biodiesel production publication-title: Energy – volume: 5 start-page: 925 year: 2014 end-page: 939 ident: bib0070 article-title: Energy-efficient production of cassava-based bio-ethanol publication-title: Adv. Biosci. Biotechnol. – year: 2007 ident: bib0075 article-title: Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy – volume: 125 start-page: 319 year: 2014 ident: 10.1016/j.cherd.2015.06.001_bib0120 article-title: Extraction of rice bran oil by supercritical carbon dioxide and solubility consideration publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2014.02.008 – volume: 176 start-page: 43 year: 2000 ident: 10.1016/j.cherd.2015.06.001_bib0055 article-title: Separation of C6 isomers by vapor permeation and pervaporation through ZSM-5 membranes publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)00431-2 – year: 2006 ident: 10.1016/j.cherd.2015.06.001_bib0020 – volume: 90 start-page: 199 year: 2012 ident: 10.1016/j.cherd.2015.06.001_bib0045 article-title: Solvent extraction of vegetable oils: Numerical and experimental study publication-title: Food Bioprod. Process. doi: 10.1016/j.fbp.2011.03.002 – volume: 91 start-page: 2037 year: 2013 ident: 10.1016/j.cherd.2015.06.001_bib0080 article-title: Recent developments in process integration publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2013.08.019 – volume: 59 start-page: 1298 year: 2013 ident: 10.1016/j.cherd.2015.06.001_bib0130 article-title: Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties publication-title: AIChE J. doi: 10.1002/aic.13885 – volume: 131 start-page: 16000 year: 2009 ident: 10.1016/j.cherd.2015.06.001_bib0030 article-title: Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis publication-title: J. Am Chem. Soc. doi: 10.1021/ja907359t – volume: 38 start-page: 745 year: 1983 ident: 10.1016/j.cherd.2015.06.001_bib0095 article-title: The pinch design method for heat exchanger networks publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(83)80185-7 – volume: 49 start-page: 1 year: 1990 ident: 10.1016/j.cherd.2015.06.001_bib0110 article-title: Structure/permeability relationships of silicon containing polyimides publication-title: J. Membr. Sci. doi: 10.1016/S0376-7388(00)80774-7 – volume: 31 start-page: 446 year: 2014 ident: 10.1016/j.cherd.2015.06.001_bib0065 article-title: Biodiesel from vegetable oils publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.11.001 – volume: 86 start-page: 681 year: 2009 ident: 10.1016/j.cherd.2015.06.001_bib0090 article-title: Biodiesel production from crude rice bran oil and properties as fuel publication-title: Appl. Energy doi: 10.1016/j.apenergy.2008.06.002 – volume: 54 start-page: 84 year: 2013 ident: 10.1016/j.cherd.2015.06.001_bib0135 article-title: Process simulation and energy optimization of the enzyme-catalyzed biodiesel production publication-title: Energy doi: 10.1016/j.energy.2013.01.002 – volume: 7 start-page: 469 year: 2014 ident: 10.1016/j.cherd.2015.06.001_bib0010 article-title: Vegetable oil based eco-friendly coating materials: a review article publication-title: Arabian J. Chem. doi: 10.1016/j.arabjc.2013.12.023 – volume: 26 start-page: 3840 year: 2012 ident: 10.1016/j.cherd.2015.06.001_bib0005 article-title: Detailed modeling of biomass gasification in dual fluidized bed reactors under aspen plus publication-title: Energy Fuels doi: 10.1021/ef300411k – year: 2007 ident: 10.1016/j.cherd.2015.06.001_bib0075 – volume: 85 start-page: 418 year: 2008 ident: 10.1016/j.cherd.2015.06.001_bib0040 article-title: Mathematical modeling of vegetable oil–solvent extraction in a multistage horizontal extractor publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2007.08.003 – year: 2009 ident: 10.1016/j.cherd.2015.06.001_bib0105 – year: 2014 ident: 10.1016/j.cherd.2015.06.001_bib0115 article-title: Synthesis of multipass heat exchanger network with the optimal number of shells and tubes based on pinch technology publication-title: Chem. Eng. Res. Des. – volume: 53 start-page: 3662 year: 2014 ident: 10.1016/j.cherd.2015.06.001_bib0085 article-title: Study on the development of ZIF-8 membranes for gasoline vapor recovery publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie403894u – year: 2014 ident: 10.1016/j.cherd.2015.06.001_bib0015 article-title: Challenges and opportunities in improving the production of bio-ethanol publication-title: Prog. Energy Combust. Sci. – volume: 38 start-page: 48 year: 2001 ident: 10.1016/j.cherd.2015.06.001_bib0050 article-title: The use of gas membranes for VOC-air separations publication-title: Filtr. Sep. doi: 10.1016/S0015-1882(01)80295-0 – volume: 41 start-page: 1393 year: 2002 ident: 10.1016/j.cherd.2015.06.001_bib0025 article-title: Future directions of membrane gas separation technology publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0108088 – volume: 350 start-page: 139 year: 2010 ident: 10.1016/j.cherd.2015.06.001_bib0035 article-title: Separation of nitrogen from air by carbon molecular sieve membranes publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2009.12.021 – volume: 86 start-page: 87 year: 2008 ident: 10.1016/j.cherd.2015.06.001_bib0100 article-title: Modelling and simulation of vegetable oil processes publication-title: Food Bioprod. Process. doi: 10.1016/j.fbp.2008.03.009 – volume: 5 start-page: 925 year: 2014 ident: 10.1016/j.cherd.2015.06.001_bib0070 article-title: Energy-efficient production of cassava-based bio-ethanol publication-title: Adv. Biosci. Biotechnol. doi: 10.4236/abb.2014.512107 – volume: 81 start-page: 525 year: 2003 ident: 10.1016/j.cherd.2015.06.001_bib0125 article-title: On the optimization of gas separation processes using zeolite membranes publication-title: Chem. Eng. Res. Des. doi: 10.1205/026387603765444483 – start-page: 65 year: 2014 ident: 10.1016/j.cherd.2015.06.001_bib0060 article-title: 3—Membrane processes for biofuel separation: an introduction |
SSID | ssj0001748 |
Score | 2.2104914 |
Snippet | •The pilot-plant extraction of rice bran oil was assessed.•The solvent-extraction and associated processes were simulated.•Results and field data are shown to... Extracting crude oil from oilseeds is the first step in the production of vegetable oil. Organic solvent-extraction is widely applied. The production of high... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Crude oil Design engineering Energy saving Energy use Gas membrane Liquids Natural gas Pinch technology Process simulation Rice bran oil Simulation Strategy |
Title | Improving the solvent-extraction process of rice bran oil |
URI | https://dx.doi.org/10.1016/j.cherd.2015.06.001 https://www.proquest.com/docview/1793246261 https://www.proquest.com/docview/1877822940 |
Volume | 104 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB76uOhBfGJ9lAge3XZ3k91Nj6VY6quIWugtJGkWKmVbanv1tzvZ7BYV7MHbZkkgTJJvvkm-TACuNUUSmvjKS5VPPSap73ETKw-pLuXcSBrmGfiehvFgxO7H0bgCvfIujJVVFtjvMD1H6-JPu7BmezGdtl8xeqB2LSOlQc4T0yrUQ9qJoxrUu3cPg-EGkJF0c7fVQvPFXyYfymVe1jQ2Y2gQtdy5xF8O6hdU5_6nvw97BXEkXde3A6iY7BB2v6UTPILOZoeAIK0jOKusmNFD-F266wtk4a4FkHlKbDIhgqFyRubT2TGM-rdvvYFXPI3gafTAKytYYTSUfqwjrmUwocmEqzhBrqAZfk3Q6cdhqnRo7AORgcSgwCitpMGSNjylJ1DL5pk5BWIUkh4b5jAmWRRJJbEJ99PURCyJgkkDwtIeQhd5w-3zFTNRCsTeRW5EYY0onEyuATebRguXNmN79bg0tPgx-gKBfXvDq3JYBK4Le9ghMzNffwgLPCHDcG1bHZ5YgtRh_tl_O3AOO7bkBC4XUFst1-YSacpKNaHa-gyaOBl7L4_PzWJSfgG5WubU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD-rB-BnxsyYeHWxru5WjIRJU4CIk3Jq26xIM2QjC1b_d13XDj0QO3vbVrHlt3_u99tdfEbrTBEBo7CsvVT7xqCS-x02kPIC6hHMjSVgo8A2GUW9MnydsUkOdai-MpVWWvt_59MJbl09apTVb8-m09QrZA7FjGSANYJ6IbKFtyuDX0KmbH188D4Dc3E20kGLoV9JDBcnLGsbqhQas6VYl_gpPvxx1EX26B2i_hI34wdXsENVMdoT2vokJHqP2en4AA6jD0KcsldED57twmxfw3G0KwHmKrZQQhkQ5w_l0doLG3cdRp-eVByN4GuLv0tJVKAmlH2nGtQwSEidcRTEgBU3hKoGQH4Wp0qGxx0MGElICo7SSBu604Sk5RfUsz8wZwkYB5LFJDqWSMiaVhCLcT1PDaMyCpIHCyh5Cl6rh9vCKmajoYW-iMKKwRhSOJNdA9-tCcyeasfnzqDK0-NH2Atz65oK3VbMIGBV2qUNmJl-9C-t2QgrJ2qZveGzhUZv65_-twA3a6Y0GfdF_Gr5coF37xlFdLlF9uViZKwAsS3VddMhPdkDmCg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+solvent-extraction+process+of+rice+bran+oil&rft.jtitle=Chemical+engineering+research+%26+design&rft.au=Kong%2C+Weibin&rft.au=Kang%2C+Qian&rft.au=Feng%2C+Wei&rft.au=Tan%2C+Tianwei&rft.date=2015-12-01&rft.issn=0263-8762&rft.eissn=1744-3563&rft.volume=104&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1016%2Fj.cherd.2015.06.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8762&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8762&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8762&client=summon |