Improving the solvent-extraction process of rice bran oil

•The pilot-plant extraction of rice bran oil was assessed.•The solvent-extraction and associated processes were simulated.•Results and field data are shown to be in good agreement.•Energy optimization was performed using pinch technology and gas membrane technology.•Nearly 50% of energy can be saved...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering research & design Vol. 104; pp. 1 - 10
Main Authors Kong, Weibin, Kang, Qian, Feng, Wei, Tan, Tianwei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2015
Subjects
Online AccessGet full text
ISSN0263-8762
1744-3563
DOI10.1016/j.cherd.2015.06.001

Cover

Abstract •The pilot-plant extraction of rice bran oil was assessed.•The solvent-extraction and associated processes were simulated.•Results and field data are shown to be in good agreement.•Energy optimization was performed using pinch technology and gas membrane technology.•Nearly 50% of energy can be saved in comparison with the original process. Extracting crude oil from oilseeds is the first step in the production of vegetable oil. Organic solvent-extraction is widely applied. The production of high value rice bran oil is gaining increased interest, and is the subject of the present paper. Field data from a 32T/day pilot plant in Heilongjiang will be compared with engineering simulations. Since these processes are energy-intensive, two strategies for saving energy in the process will be assessed. Field data and simulation results will be shown to be in excellent agreement. Two energy optimization strategies were designed by both energy pinch technology to integrate heat recovery, and by using nitrogen instead of steam in the desolventizer/toaster, subsequently using a solvent recovery unit with gas membrane. As a result, 45.2% of the total energy consumption of the rice bran oil process can be saved whilst maintaining the original production capacity and high purity of the crude rice bran oil. The results confirm the possible energy savings and improvements in the solvent extraction process. It is also noteworthy that simulation techniques, commonly used in gas/liquid chemical engineering design, can be adapted and completed to cover the more complex design of solid/gas/liquid biochemical processes.
AbstractList Extracting crude oil from oilseeds is the first step in the production of vegetable oil. Organic solvent-extraction is widely applied. The production of high value rice bran oil is gaining increased interest, and is the subject of the present paper. Field data from a 32 T/day pilot plant in Heilongjiang will be compared with engineering simulations. Since these processes are energy-intensive, two strategies for saving energy in the process will be assessed. Field data and simulation results will be shown to be in excellent agreement. Two energy optimization strategies were designed by both energy pinch technology to integrate heat recovery, and by using nitrogen instead of steam in the desolventizer/toaster, subsequently using a solvent recovery unit with gas membrane. As a result, 45.2% of the total energy consumption of the rice bran oil process can be saved whilst maintaining the original production capacity and high purity of the crude rice bran oil. The results confirm the possible energy savings and improvements in the solvent extraction process. It is also noteworthy that simulation techniques, commonly used in gas/liquid chemical engineering design, can be adapted and completed to cover the more complex design of solid/gas/liquid biochemical processes.
•The pilot-plant extraction of rice bran oil was assessed.•The solvent-extraction and associated processes were simulated.•Results and field data are shown to be in good agreement.•Energy optimization was performed using pinch technology and gas membrane technology.•Nearly 50% of energy can be saved in comparison with the original process. Extracting crude oil from oilseeds is the first step in the production of vegetable oil. Organic solvent-extraction is widely applied. The production of high value rice bran oil is gaining increased interest, and is the subject of the present paper. Field data from a 32T/day pilot plant in Heilongjiang will be compared with engineering simulations. Since these processes are energy-intensive, two strategies for saving energy in the process will be assessed. Field data and simulation results will be shown to be in excellent agreement. Two energy optimization strategies were designed by both energy pinch technology to integrate heat recovery, and by using nitrogen instead of steam in the desolventizer/toaster, subsequently using a solvent recovery unit with gas membrane. As a result, 45.2% of the total energy consumption of the rice bran oil process can be saved whilst maintaining the original production capacity and high purity of the crude rice bran oil. The results confirm the possible energy savings and improvements in the solvent extraction process. It is also noteworthy that simulation techniques, commonly used in gas/liquid chemical engineering design, can be adapted and completed to cover the more complex design of solid/gas/liquid biochemical processes.
Author Kong, Weibin
Tan, Tianwei
Kang, Qian
Feng, Wei
Author_xml – sequence: 1
  givenname: Weibin
  surname: Kong
  fullname: Kong, Weibin
– sequence: 2
  givenname: Qian
  surname: Kang
  fullname: Kang, Qian
– sequence: 3
  givenname: Wei
  surname: Feng
  fullname: Feng, Wei
– sequence: 4
  givenname: Tianwei
  surname: Tan
  fullname: Tan, Tianwei
  email: twtan@mail.buct.edu.cn, biorefinerymail@gmail.com
BookMark eNqFkD1PwzAQhi0EEqXwC1gysiT4I7GdgQFVfFSqxAKz5Vwu1FUaFzut4N_jUiYGOt2d7n1Op-eCnA5-QEKuGS0YZfJ2VcASQ1twyqqCyoJSdkImTJVlLiopTsmEcilyrSQ_JxcxrmhKqFJPSD1fb4LfueE9G5eYRd_vcBhz_ByDhdH5IUtrwBgz32XBAWZNsEPmXX9JzjrbR7z6rVPy9vjwOnvOFy9P89n9IoeSyjGXlSoFt1RCpcGyVqhWN1JxLaBMXcu5kLxrgKOsdc1spStsoLGYJkDdiSm5OdxNj3xsMY5m7SJg39sB_TYappXSnNclPR5VteCl5JKlqDhEIfgYA3ZmE9zahi_DqNk7NSvz49TsnRoqTTKWqPoPBW60e01Jl-uPsHcHFpOsncNgIjgcAFsXEEbTevcv_w0HhJTa
CitedBy_id crossref_primary_10_1016_j_fuel_2019_04_174
crossref_primary_10_1016_j_enconman_2024_118157
crossref_primary_10_1016_j_rser_2016_05_035
crossref_primary_10_1016_j_jfoodeng_2021_110870
crossref_primary_10_1155_2017_3837506
crossref_primary_10_1016_j_ijhydene_2023_09_154
crossref_primary_10_1016_j_seppur_2017_03_050
crossref_primary_10_1016_j_fuel_2019_05_063
crossref_primary_10_1016_j_focha_2024_100762
crossref_primary_10_1016_j_jfoodeng_2017_01_019
crossref_primary_10_1016_j_fbp_2016_12_010
crossref_primary_10_1093_nutrit_nuae174
crossref_primary_10_1016_j_jenvman_2018_03_061
crossref_primary_10_1186_s40643_021_00386_2
crossref_primary_10_1002_bbb_1738
crossref_primary_10_1007_s11705_017_1616_4
crossref_primary_10_1016_j_jenvman_2018_09_059
Cites_doi 10.1016/j.seppur.2014.02.008
10.1016/S0376-7388(00)00431-2
10.1016/j.fbp.2011.03.002
10.1016/j.cherd.2013.08.019
10.1002/aic.13885
10.1021/ja907359t
10.1016/0009-2509(83)80185-7
10.1016/S0376-7388(00)80774-7
10.1016/j.rser.2013.11.001
10.1016/j.apenergy.2008.06.002
10.1016/j.energy.2013.01.002
10.1016/j.arabjc.2013.12.023
10.1021/ef300411k
10.1016/j.jfoodeng.2007.08.003
10.1021/ie403894u
10.1016/S0015-1882(01)80295-0
10.1021/ie0108088
10.1016/j.memsci.2009.12.021
10.1016/j.fbp.2008.03.009
10.4236/abb.2014.512107
10.1205/026387603765444483
ContentType Journal Article
Copyright 2015
Copyright_xml – notice: 2015
DBID AAYXX
CITATION
7SR
7SU
7TB
7U5
8BQ
8FD
C1K
F28
FR3
JG9
L7M
7ST
SOI
DOI 10.1016/j.cherd.2015.06.001
DatabaseName CrossRef
Engineered Materials Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitleList Materials Research Database

Environment Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1744-3563
EndPage 10
ExternalDocumentID 10_1016_j_cherd_2015_06_001
S0263876215002063
GroupedDBID --K
--M
-QF
-~X
.~1
0R~
1B1
1~.
1~5
29B
3EH
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDBF
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHPOS
AI.
AIAGR
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
ESX
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KOM
M41
ML-
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSR
SSZ
T5K
T9H
TUS
UNMZH
VH1
XFK
~02
~8M
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACUHS
ACVFH
ADCNI
ADMLS
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7SU
7TB
7U5
8BQ
8FD
C1K
EFKBS
F28
FR3
JG9
L7M
7ST
SOI
ID FETCH-LOGICAL-c406t-657432a06c58ca1d37d8b67283c4d8bd22362fbc2e69891a585ebcbae989ce8f3
IEDL.DBID AIKHN
ISSN 0263-8762
IngestDate Thu Sep 04 22:22:01 EDT 2025
Thu Sep 04 22:39:47 EDT 2025
Tue Jul 01 00:52:52 EDT 2025
Thu Apr 24 22:53:14 EDT 2025
Fri Feb 23 02:23:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Gas membrane
Energy saving
Rice bran oil
Process simulation
Pinch technology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-657432a06c58ca1d37d8b67283c4d8bd22362fbc2e69891a585ebcbae989ce8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1793246261
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1877822940
proquest_miscellaneous_1793246261
crossref_primary_10_1016_j_cherd_2015_06_001
crossref_citationtrail_10_1016_j_cherd_2015_06_001
elsevier_sciencedirect_doi_10_1016_j_cherd_2015_06_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Chemical engineering research & design
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bux, Liang, Li, Cravillon, Wiebcke, Caro (bib0030) 2009; 131
Martinho, Matos, Gani, Sarup, Youngreen (bib0100) 2008; 86
Lin, Ying, Chaitep, Vittayapadung (bib0090) 2009; 86
Cerutti, de Souza, de Souza (bib0045) 2012; 90
Kang, Apples, Baeyens, Dewil, Tan (bib0070) 2014; 5
Kemp (bib0075) 2007
Campo, Magalh Es, Mendes (bib0035) 2010; 350
Xu, Wang, Kanezashi, Yoshioka, Tsuru (bib0130) 2013; 59
Alam, Akram, Sharmin, Zafar, Ahmad (bib0010) 2014; 7
Gugliuzza, Basile (bib0060) 2014
Baker (bib0020) 2006
Klemeša, Varbanova, Kravanjab (bib0080) 2013; 91
Linnhoff, Hindmarsh (bib0095) 1983; 38
Tomita, Machmudah, Wahyudiono, Fukuzato, Kanda, Quitain, Sasaki, Goto (bib0120) 2014; 125
Carrín, Crapiste (bib0040) 2008; 85
Vareltzis, Kikkinides, Georgiadis (bib0125) 2003; 81
Flanders, Tuan, Noble, Falconer (bib0055) 2000; 176
Sun, Luo, Zhao (bib0115) 2014
Ni, Tang (bib0105) 2009
Abdelouahed, Authier, Mauviel, Corriou, Verdier, Dufour (bib0005) 2012; 26
Stern, Vaidyanathan, Pratt (bib0110) 1990; 49
Baker (bib0025) 2002; 41
Li, Zhong, Huang, Xu, Zhang, Shao, Gu (bib0085) 2014; 53
Baeyens, Kang, Apples, Dewil, Lv, Tan (bib0015) 2014
Degrève, Everaert, Baeyens (bib0050) 2001; 38
Issariyakul, Dalai (bib0065) 2014; 31
Yun, Wang, Feng, Tan (bib0135) 2013; 54
Degrève (10.1016/j.cherd.2015.06.001_bib0050) 2001; 38
Martinho (10.1016/j.cherd.2015.06.001_bib0100) 2008; 86
Cerutti (10.1016/j.cherd.2015.06.001_bib0045) 2012; 90
Bux (10.1016/j.cherd.2015.06.001_bib0030) 2009; 131
Flanders (10.1016/j.cherd.2015.06.001_bib0055) 2000; 176
Tomita (10.1016/j.cherd.2015.06.001_bib0120) 2014; 125
Carrín (10.1016/j.cherd.2015.06.001_bib0040) 2008; 85
Baker (10.1016/j.cherd.2015.06.001_bib0025) 2002; 41
Stern (10.1016/j.cherd.2015.06.001_bib0110) 1990; 49
Kemp (10.1016/j.cherd.2015.06.001_bib0075) 2007
Li (10.1016/j.cherd.2015.06.001_bib0085) 2014; 53
Lin (10.1016/j.cherd.2015.06.001_bib0090) 2009; 86
Vareltzis (10.1016/j.cherd.2015.06.001_bib0125) 2003; 81
Campo (10.1016/j.cherd.2015.06.001_bib0035) 2010; 350
Linnhoff (10.1016/j.cherd.2015.06.001_bib0095) 1983; 38
Xu (10.1016/j.cherd.2015.06.001_bib0130) 2013; 59
Kang (10.1016/j.cherd.2015.06.001_bib0070) 2014; 5
Ni (10.1016/j.cherd.2015.06.001_bib0105) 2009
Alam (10.1016/j.cherd.2015.06.001_bib0010) 2014; 7
Gugliuzza (10.1016/j.cherd.2015.06.001_bib0060) 2014
Sun (10.1016/j.cherd.2015.06.001_bib0115) 2014
Baeyens (10.1016/j.cherd.2015.06.001_bib0015) 2014
Klemeša (10.1016/j.cherd.2015.06.001_bib0080) 2013; 91
Yun (10.1016/j.cherd.2015.06.001_bib0135) 2013; 54
Abdelouahed (10.1016/j.cherd.2015.06.001_bib0005) 2012; 26
Baker (10.1016/j.cherd.2015.06.001_bib0020) 2006
Issariyakul (10.1016/j.cherd.2015.06.001_bib0065) 2014; 31
References_xml – volume: 86
  start-page: 87
  year: 2008
  end-page: 95
  ident: bib0100
  article-title: Modelling and simulation of vegetable oil processes
  publication-title: Food Bioprod. Process.
– volume: 131
  start-page: 16000
  year: 2009
  end-page: 16001
  ident: bib0030
  article-title: Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis
  publication-title: J. Am Chem. Soc.
– volume: 38
  start-page: 48
  year: 2001
  end-page: 54
  ident: bib0050
  article-title: The use of gas membranes for VOC-air separations
  publication-title: Filtr. Sep.
– volume: 31
  start-page: 446
  year: 2014
  end-page: 471
  ident: bib0065
  article-title: Biodiesel from vegetable oils
  publication-title: Renew. Sustain. Energy Rev.
– volume: 38
  start-page: 745
  year: 1983
  end-page: 763
  ident: bib0095
  article-title: The pinch design method for heat exchanger networks
  publication-title: Chem. Eng. Sci.
– year: 2014
  ident: bib0015
  article-title: Challenges and opportunities in improving the production of bio-ethanol
  publication-title: Prog. Energy Combust. Sci.
– volume: 86
  start-page: 681
  year: 2009
  end-page: 688
  ident: bib0090
  article-title: Biodiesel production from crude rice bran oil and properties as fuel
  publication-title: Appl. Energy
– volume: 350
  start-page: 139
  year: 2010
  end-page: 147
  ident: bib0035
  article-title: Separation of nitrogen from air by carbon molecular sieve membranes
  publication-title: J. Membr. Sci.
– volume: 176
  start-page: 43
  year: 2000
  end-page: 53
  ident: bib0055
  article-title: Separation of C6 isomers by vapor permeation and pervaporation through ZSM-5 membranes
  publication-title: J. Membr. Sci.
– volume: 125
  start-page: 319
  year: 2014
  end-page: 325
  ident: bib0120
  article-title: Extraction of rice bran oil by supercritical carbon dioxide and solubility consideration
  publication-title: Sep. Purif. Technol.
– volume: 7
  start-page: 469
  year: 2014
  end-page: 479
  ident: bib0010
  article-title: Vegetable oil based eco-friendly coating materials: a review article
  publication-title: Arabian J. Chem.
– volume: 41
  start-page: 1393
  year: 2002
  end-page: 1411
  ident: bib0025
  article-title: Future directions of membrane gas separation technology
  publication-title: Ind. Eng. Chem. Res.
– volume: 90
  start-page: 199
  year: 2012
  end-page: 204
  ident: bib0045
  article-title: Solvent extraction of vegetable oils: Numerical and experimental study
  publication-title: Food Bioprod. Process.
– year: 2014
  ident: bib0115
  article-title: Synthesis of multipass heat exchanger network with the optimal number of shells and tubes based on pinch technology
  publication-title: Chem. Eng. Res. Des.
– volume: 49
  start-page: 1
  year: 1990
  end-page: 14
  ident: bib0110
  article-title: Structure/permeability relationships of silicon containing polyimides
  publication-title: J. Membr. Sci.
– volume: 53
  start-page: 3662
  year: 2014
  end-page: 3668
  ident: bib0085
  article-title: Study on the development of ZIF-8 membranes for gasoline vapor recovery
  publication-title: Ind. Eng. Chem. Res.
– volume: 26
  start-page: 3840
  year: 2012
  end-page: 3855
  ident: bib0005
  article-title: Detailed modeling of biomass gasification in dual fluidized bed reactors under aspen plus
  publication-title: Energy Fuels
– volume: 81
  start-page: 525
  year: 2003
  end-page: 536
  ident: bib0125
  article-title: On the optimization of gas separation processes using zeolite membranes
  publication-title: Chem. Eng. Res. Des.
– year: 2009
  ident: bib0105
  article-title: Questions and Answers in Opration Techniques of Oil Process
– volume: 59
  start-page: 1298
  year: 2013
  end-page: 1307
  ident: bib0130
  article-title: Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties
  publication-title: AIChE J.
– start-page: 65
  year: 2014
  end-page: 103
  ident: bib0060
  article-title: 3—Membrane processes for biofuel separation: an introduction
  publication-title: Membranes for Clean and Renewable Power Applications
– volume: 85
  start-page: 418
  year: 2008
  end-page: 425
  ident: bib0040
  article-title: Mathematical modeling of vegetable oil–solvent extraction in a multistage horizontal extractor
  publication-title: J. Food Eng.
– volume: 91
  start-page: 2037
  year: 2013
  end-page: 2053
  ident: bib0080
  article-title: Recent developments in process integration
  publication-title: Chem. Eng. Res. Des.
– year: 2006
  ident: bib0020
  article-title: Membrane Technology and Applications
– volume: 54
  start-page: 84
  year: 2013
  end-page: 96
  ident: bib0135
  article-title: Process simulation and energy optimization of the enzyme-catalyzed biodiesel production
  publication-title: Energy
– volume: 5
  start-page: 925
  year: 2014
  end-page: 939
  ident: bib0070
  article-title: Energy-efficient production of cassava-based bio-ethanol
  publication-title: Adv. Biosci. Biotechnol.
– year: 2007
  ident: bib0075
  article-title: Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy
– volume: 125
  start-page: 319
  year: 2014
  ident: 10.1016/j.cherd.2015.06.001_bib0120
  article-title: Extraction of rice bran oil by supercritical carbon dioxide and solubility consideration
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2014.02.008
– volume: 176
  start-page: 43
  year: 2000
  ident: 10.1016/j.cherd.2015.06.001_bib0055
  article-title: Separation of C6 isomers by vapor permeation and pervaporation through ZSM-5 membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)00431-2
– year: 2006
  ident: 10.1016/j.cherd.2015.06.001_bib0020
– volume: 90
  start-page: 199
  year: 2012
  ident: 10.1016/j.cherd.2015.06.001_bib0045
  article-title: Solvent extraction of vegetable oils: Numerical and experimental study
  publication-title: Food Bioprod. Process.
  doi: 10.1016/j.fbp.2011.03.002
– volume: 91
  start-page: 2037
  year: 2013
  ident: 10.1016/j.cherd.2015.06.001_bib0080
  article-title: Recent developments in process integration
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2013.08.019
– volume: 59
  start-page: 1298
  year: 2013
  ident: 10.1016/j.cherd.2015.06.001_bib0130
  article-title: Reverse osmosis performance of organosilica membranes and comparison with the pervaporation and gas permeation properties
  publication-title: AIChE J.
  doi: 10.1002/aic.13885
– volume: 131
  start-page: 16000
  year: 2009
  ident: 10.1016/j.cherd.2015.06.001_bib0030
  article-title: Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis
  publication-title: J. Am Chem. Soc.
  doi: 10.1021/ja907359t
– volume: 38
  start-page: 745
  year: 1983
  ident: 10.1016/j.cherd.2015.06.001_bib0095
  article-title: The pinch design method for heat exchanger networks
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(83)80185-7
– volume: 49
  start-page: 1
  year: 1990
  ident: 10.1016/j.cherd.2015.06.001_bib0110
  article-title: Structure/permeability relationships of silicon containing polyimides
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(00)80774-7
– volume: 31
  start-page: 446
  year: 2014
  ident: 10.1016/j.cherd.2015.06.001_bib0065
  article-title: Biodiesel from vegetable oils
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.11.001
– volume: 86
  start-page: 681
  year: 2009
  ident: 10.1016/j.cherd.2015.06.001_bib0090
  article-title: Biodiesel production from crude rice bran oil and properties as fuel
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2008.06.002
– volume: 54
  start-page: 84
  year: 2013
  ident: 10.1016/j.cherd.2015.06.001_bib0135
  article-title: Process simulation and energy optimization of the enzyme-catalyzed biodiesel production
  publication-title: Energy
  doi: 10.1016/j.energy.2013.01.002
– volume: 7
  start-page: 469
  year: 2014
  ident: 10.1016/j.cherd.2015.06.001_bib0010
  article-title: Vegetable oil based eco-friendly coating materials: a review article
  publication-title: Arabian J. Chem.
  doi: 10.1016/j.arabjc.2013.12.023
– volume: 26
  start-page: 3840
  year: 2012
  ident: 10.1016/j.cherd.2015.06.001_bib0005
  article-title: Detailed modeling of biomass gasification in dual fluidized bed reactors under aspen plus
  publication-title: Energy Fuels
  doi: 10.1021/ef300411k
– year: 2007
  ident: 10.1016/j.cherd.2015.06.001_bib0075
– volume: 85
  start-page: 418
  year: 2008
  ident: 10.1016/j.cherd.2015.06.001_bib0040
  article-title: Mathematical modeling of vegetable oil–solvent extraction in a multistage horizontal extractor
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2007.08.003
– year: 2009
  ident: 10.1016/j.cherd.2015.06.001_bib0105
– year: 2014
  ident: 10.1016/j.cherd.2015.06.001_bib0115
  article-title: Synthesis of multipass heat exchanger network with the optimal number of shells and tubes based on pinch technology
  publication-title: Chem. Eng. Res. Des.
– volume: 53
  start-page: 3662
  year: 2014
  ident: 10.1016/j.cherd.2015.06.001_bib0085
  article-title: Study on the development of ZIF-8 membranes for gasoline vapor recovery
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie403894u
– year: 2014
  ident: 10.1016/j.cherd.2015.06.001_bib0015
  article-title: Challenges and opportunities in improving the production of bio-ethanol
  publication-title: Prog. Energy Combust. Sci.
– volume: 38
  start-page: 48
  year: 2001
  ident: 10.1016/j.cherd.2015.06.001_bib0050
  article-title: The use of gas membranes for VOC-air separations
  publication-title: Filtr. Sep.
  doi: 10.1016/S0015-1882(01)80295-0
– volume: 41
  start-page: 1393
  year: 2002
  ident: 10.1016/j.cherd.2015.06.001_bib0025
  article-title: Future directions of membrane gas separation technology
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0108088
– volume: 350
  start-page: 139
  year: 2010
  ident: 10.1016/j.cherd.2015.06.001_bib0035
  article-title: Separation of nitrogen from air by carbon molecular sieve membranes
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2009.12.021
– volume: 86
  start-page: 87
  year: 2008
  ident: 10.1016/j.cherd.2015.06.001_bib0100
  article-title: Modelling and simulation of vegetable oil processes
  publication-title: Food Bioprod. Process.
  doi: 10.1016/j.fbp.2008.03.009
– volume: 5
  start-page: 925
  year: 2014
  ident: 10.1016/j.cherd.2015.06.001_bib0070
  article-title: Energy-efficient production of cassava-based bio-ethanol
  publication-title: Adv. Biosci. Biotechnol.
  doi: 10.4236/abb.2014.512107
– volume: 81
  start-page: 525
  year: 2003
  ident: 10.1016/j.cherd.2015.06.001_bib0125
  article-title: On the optimization of gas separation processes using zeolite membranes
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1205/026387603765444483
– start-page: 65
  year: 2014
  ident: 10.1016/j.cherd.2015.06.001_bib0060
  article-title: 3—Membrane processes for biofuel separation: an introduction
SSID ssj0001748
Score 2.2104914
Snippet •The pilot-plant extraction of rice bran oil was assessed.•The solvent-extraction and associated processes were simulated.•Results and field data are shown to...
Extracting crude oil from oilseeds is the first step in the production of vegetable oil. Organic solvent-extraction is widely applied. The production of high...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Crude oil
Design engineering
Energy saving
Energy use
Gas membrane
Liquids
Natural gas
Pinch technology
Process simulation
Rice bran oil
Simulation
Strategy
Title Improving the solvent-extraction process of rice bran oil
URI https://dx.doi.org/10.1016/j.cherd.2015.06.001
https://www.proquest.com/docview/1793246261
https://www.proquest.com/docview/1877822940
Volume 104
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB76uOhBfGJ9lAge3XZ3k91Nj6VY6quIWugtJGkWKmVbanv1tzvZ7BYV7MHbZkkgTJJvvkm-TACuNUUSmvjKS5VPPSap73ETKw-pLuXcSBrmGfiehvFgxO7H0bgCvfIujJVVFtjvMD1H6-JPu7BmezGdtl8xeqB2LSOlQc4T0yrUQ9qJoxrUu3cPg-EGkJF0c7fVQvPFXyYfymVe1jQ2Y2gQtdy5xF8O6hdU5_6nvw97BXEkXde3A6iY7BB2v6UTPILOZoeAIK0jOKusmNFD-F266wtk4a4FkHlKbDIhgqFyRubT2TGM-rdvvYFXPI3gafTAKytYYTSUfqwjrmUwocmEqzhBrqAZfk3Q6cdhqnRo7AORgcSgwCitpMGSNjylJ1DL5pk5BWIUkh4b5jAmWRRJJbEJ99PURCyJgkkDwtIeQhd5w-3zFTNRCsTeRW5EYY0onEyuATebRguXNmN79bg0tPgx-gKBfXvDq3JYBK4Le9ghMzNffwgLPCHDcG1bHZ5YgtRh_tl_O3AOO7bkBC4XUFst1-YSacpKNaHa-gyaOBl7L4_PzWJSfgG5WubU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD-rB-BnxsyYeHWxru5WjIRJU4CIk3Jq26xIM2QjC1b_d13XDj0QO3vbVrHlt3_u99tdfEbrTBEBo7CsvVT7xqCS-x02kPIC6hHMjSVgo8A2GUW9MnydsUkOdai-MpVWWvt_59MJbl09apTVb8-m09QrZA7FjGSANYJ6IbKFtyuDX0KmbH188D4Dc3E20kGLoV9JDBcnLGsbqhQas6VYl_gpPvxx1EX26B2i_hI34wdXsENVMdoT2vokJHqP2en4AA6jD0KcsldED57twmxfw3G0KwHmKrZQQhkQ5w_l0doLG3cdRp-eVByN4GuLv0tJVKAmlH2nGtQwSEidcRTEgBU3hKoGQH4Wp0qGxx0MGElICo7SSBu604Sk5RfUsz8wZwkYB5LFJDqWSMiaVhCLcT1PDaMyCpIHCyh5Cl6rh9vCKmajoYW-iMKKwRhSOJNdA9-tCcyeasfnzqDK0-NH2Atz65oK3VbMIGBV2qUNmJl-9C-t2QgrJ2qZveGzhUZv65_-twA3a6Y0GfdF_Gr5coF37xlFdLlF9uViZKwAsS3VddMhPdkDmCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+solvent-extraction+process+of+rice+bran+oil&rft.jtitle=Chemical+engineering+research+%26+design&rft.au=Kong%2C+Weibin&rft.au=Kang%2C+Qian&rft.au=Feng%2C+Wei&rft.au=Tan%2C+Tianwei&rft.date=2015-12-01&rft.issn=0263-8762&rft.eissn=1744-3563&rft.volume=104&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1016%2Fj.cherd.2015.06.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8762&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8762&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8762&client=summon