Spoken Language Derived Measures for Detecting Mild Cognitive Impairment
Spoken responses produced by subjects during neuropsychological exams can provide diagnostic markers beyond exam performance. In particular, characteristics of the spoken language itself can discriminate between subject groups. We present results on the utility of such markers in discriminating betw...
Saved in:
Published in | IEEE transactions on audio, speech, and language processing Vol. 19; no. 7; pp. 2081 - 2090 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway, NJ
IEEE
01.09.2011
Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 1558-7916 1558-7924 |
DOI | 10.1109/TASL.2011.2112351 |
Cover
Loading…
Abstract | Spoken responses produced by subjects during neuropsychological exams can provide diagnostic markers beyond exam performance. In particular, characteristics of the spoken language itself can discriminate between subject groups. We present results on the utility of such markers in discriminating between healthy elderly subjects and subjects with mild cognitive impairment (MCI). Given the audio and transcript of a spoken narrative recall task, a range of markers are automatically derived. These markers include speech features such as pause frequency and duration, and many linguistic complexity measures. We examine measures calculated from manually annotated time alignments (of the transcript with the audio) and syntactic parse trees, as well as the same measures calculated from automatic (forced) time alignments and automatic parses. We show statistically significant differences between clinical subject groups for a number of measures. These differences are largely preserved with automation. We then present classification results, and demonstrate a statistically significant improvement in the area under the ROC curve (AUC) when using automatic spoken language derived features in addition to the neuropsychological test scores. Our results indicate that using multiple, complementary measures can aid in automatic detection of MCI. |
---|---|
AbstractList | Spoken responses produced by subjects during neuropsychological exams can provide diagnostic markers beyond exam performance. In particular, characteristics of the spoken language itself can discriminate between subject groups. We present results on the utility of such markers in discriminating between healthy elderly subjects and subjects with mild cognitive impairment (MCI). Given the audio and transcript of a spoken narrative recall task, a range of markers are automatically derived. These markers include speech features such as pause frequency and duration, and many linguistic complexity measures. We examine measures calculated from manually annotated time alignments (of the transcript with the audio) and syntactic parse trees, as well as the same measures calculated from automatic (forced) time alignments and automatic parses. We show statistically significant differences between clinical subject groups for a number of measures. These differences are largely preserved with automation. We then present classification results, and demonstrate a statistically significant improvement in the area under the ROC curve (AUC) when using automatic spoken language derived features in addition to the neuropsychological test scores. Our results indicate that using multiple, complementary measures can aid in automatic detection of MCI. Spoken responses produced by subjects during neuropsychological exams can provide diagnostic markers beyond exam performance. In particular, characteristics of the spoken language itself can discriminate between subject groups. We present results on the utility of such markers in discriminating between healthy elderly subjects and subjects with mild cognitive impairment (MCI). Given the audio and transcript of a spoken narrative recall task, a range of markers are automatically derived. These markers include speech features such as pause frequency and duration, and many linguistic complexity measures. We examine measures calculated from manually annotated time alignments (of the transcript with the audio) and syntactic parse trees, as well as the same measures calculated from automatic (forced) time alignments and automatic parses. We show statistically significant differences between clinical subject groups for a number of measures. These differences are largely preserved with automation. We then present classification results, and demonstrate a statistically significant improvement in the area under the ROC curve (AUC) when using automatic spoken language derived features in addition to the neuropsychological test scores. Our results indicate that using multiple, complementary measures can aid in automatic detection of MCI.Spoken responses produced by subjects during neuropsychological exams can provide diagnostic markers beyond exam performance. In particular, characteristics of the spoken language itself can discriminate between subject groups. We present results on the utility of such markers in discriminating between healthy elderly subjects and subjects with mild cognitive impairment (MCI). Given the audio and transcript of a spoken narrative recall task, a range of markers are automatically derived. These markers include speech features such as pause frequency and duration, and many linguistic complexity measures. We examine measures calculated from manually annotated time alignments (of the transcript with the audio) and syntactic parse trees, as well as the same measures calculated from automatic (forced) time alignments and automatic parses. We show statistically significant differences between clinical subject groups for a number of measures. These differences are largely preserved with automation. We then present classification results, and demonstrate a statistically significant improvement in the area under the ROC curve (AUC) when using automatic spoken language derived features in addition to the neuropsychological test scores. Our results indicate that using multiple, complementary measures can aid in automatic detection of MCI. |
Author | Kaye, J. Roark, B. Mitchell, M. Hosom, J. Hollingshead, K. |
Author_xml | – sequence: 1 givenname: B. surname: Roark fullname: Roark, B. email: roark@cslu.ogi.edu organization: Dept. of Biomed. Eng., Oregon Health & Sci. Univ., Portland, OR, USA – sequence: 2 givenname: M. surname: Mitchell fullname: Mitchell, M. email: m.mitchell@abdn.ac.uk organization: Dept. of Comput. Sci., Univ. of Aberdeen, Aberdeen, UK – sequence: 3 givenname: J. surname: Hosom fullname: Hosom, J. email: hosom@cslu.ogi.edu organization: Dept. of Biomed. Eng., Oregon Health & Sci. Univ., Portland, OR, USA – sequence: 4 givenname: K. surname: Hollingshead fullname: Hollingshead, K. email: hollingk@gmail.com organization: Dept. of Biomed. Eng., Oregon Health & Sci. Univ., Portland, OR, USA – sequence: 5 givenname: J. surname: Kaye fullname: Kaye, J. email: kaye@ohsu.edu organization: Dept. of Neurology, Oregon Health & Sci. Univ., Portland, OR, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24484870$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22199464$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1URB_wAxASygaJzUz9drxBqqZAK03ForO37OQmGBJ7sJNK_Pt6NNPhsejKlv2dc658fI5OQgyA0FuCl4Rgfbm5ul8vKSZkSQmhTJAX6IwIUS-UpvzkuCfyFJ3n_ANjziQnr9AppURrLvkZurnfxp8QqrUN_Wx7qK4h-QdoqzuweU6Qqy6mcjhBM_nQV3d-aKtV7IOfClbdjlvr0whheo1ednbI8OawXqDNl8-b1c1i_e3r7epqvWg4ltNCUsXatgXsqJNaYEkkVg3gjknnJBPOWqZ1Gb9TmlmpXes6IhxtlVJcA7tAn_a229mN0DYlOdnBbJMfbfptovXm35vgv5s-PhhGOadSF4OPB4MUf82QJzP63MAw2ABxzobUTAheM64K-v7vrGPI0-sV4MMBsLmxQ5dsaHz-w3Fe81rhwqk916SYc4LONH6yk4-7Ef1gCDa7Ps2uT7Pr0xz6LEryn_LJ_DnNu73GA8CRF4pgXj7AIxGDqt0 |
CODEN | ITASD8 |
CitedBy_id | crossref_primary_10_1186_s12911_022_01864_z crossref_primary_10_1089_rej_2018_2075 crossref_primary_10_1044_2016_AJSLP_15_0147 crossref_primary_10_1109_MPRV_2015_85 crossref_primary_10_1371_journal_pone_0197004 crossref_primary_10_1109_JSTSP_2019_2955022 crossref_primary_10_1016_j_csl_2020_101113 crossref_primary_10_1016_j_csl_2023_101514 crossref_primary_10_1371_journal_pdig_0000197 crossref_primary_10_1016_j_neucom_2015_03_087 crossref_primary_10_3233_JAD_210684 crossref_primary_10_1016_j_cortex_2012_12_006 crossref_primary_10_2196_28333 crossref_primary_10_1109_RBME_2020_3006860 crossref_primary_10_3389_fpsyt_2018_00105 crossref_primary_10_1038_s41598_020_61994_0 crossref_primary_10_1111_lnc3_12054 crossref_primary_10_1016_j_csl_2012_04_002 crossref_primary_10_1371_journal_pone_0212342 crossref_primary_10_1016_j_specom_2018_04_001 crossref_primary_10_1590_S1980_57642014DN83000006 crossref_primary_10_2174_1567205019666220805110248 crossref_primary_10_1109_ACCESS_2018_2856478 crossref_primary_10_1016_j_cortex_2020_05_001 crossref_primary_10_1016_j_schres_2022_07_011 crossref_primary_10_1097_WAD_0000000000000492 crossref_primary_10_2196_jmir_7215 crossref_primary_10_1016_j_procs_2017_09_061 crossref_primary_10_1155_2020_4683573 crossref_primary_10_1177_13872877241300149 crossref_primary_10_1176_appi_prcp_20230003 crossref_primary_10_1080_02687038_2020_1742282 crossref_primary_10_1080_02699206_2020_1827043 crossref_primary_10_1016_j_compbiomed_2024_108606 crossref_primary_10_2196_51501 crossref_primary_10_1371_journal_pone_0236009 crossref_primary_10_1093_schizbullopen_sgac026 crossref_primary_10_1109_JSTSP_2019_2939998 crossref_primary_10_3389_fnagi_2023_1281726 crossref_primary_10_3390_s23115346 crossref_primary_10_1080_02687038_2019_1608502 crossref_primary_10_1007_s00702_020_02229_4 crossref_primary_10_1109_ACCESS_2022_3203068 crossref_primary_10_1145_3380785 crossref_primary_10_2174_1567205019666220418155130 crossref_primary_10_1186_s12859_024_05911_6 crossref_primary_10_1016_j_brainres_2024_148806 crossref_primary_10_1016_j_laheal_2024_09_002 crossref_primary_10_2196_27667 crossref_primary_10_1016_j_specom_2014_09_005 crossref_primary_10_1016_j_bandl_2021_105025 crossref_primary_10_1044_2020_JSLHR_20_00288 crossref_primary_10_3389_fnagi_2021_637404 crossref_primary_10_1044_2020_JSLHR_19_00222 crossref_primary_10_2174_0118743501354793241220043615 crossref_primary_10_1177_13872877241291239 crossref_primary_10_12968_ijtr_2022_0058 crossref_primary_10_2196_50537 crossref_primary_10_1044_2020_JSLHR_19_00183 crossref_primary_10_3389_fcomp_2021_624594 crossref_primary_10_1109_MIM_2021_9513645 crossref_primary_10_1371_journal_pone_0253988 crossref_primary_10_1002_dad2_12364 crossref_primary_10_2196_jmir_7671 crossref_primary_10_3389_fneur_2018_00975 crossref_primary_10_1159_000487852 crossref_primary_10_2174_1567205017666201008110854 crossref_primary_10_1002_dad2_12366 crossref_primary_10_1016_j_jbi_2021_103803 crossref_primary_10_1109_JTEHM_2017_2752152 crossref_primary_10_1371_journal_pone_0205636 crossref_primary_10_3389_fdgth_2021_653904 crossref_primary_10_3389_fnagi_2015_00195 crossref_primary_10_1371_journal_pone_0217388 crossref_primary_10_3389_fnagi_2021_642647 crossref_primary_10_3233_JAD_150520 crossref_primary_10_3233_JAD_190783 crossref_primary_10_1080_0361073X_2022_2163831 crossref_primary_10_1145_2744206 crossref_primary_10_1136_bmjopen_2018_026254 crossref_primary_10_1016_j_maturitas_2015_05_013 crossref_primary_10_1016_j_specom_2021_11_009 crossref_primary_10_1111_1460_6984_12870 crossref_primary_10_1162_coli_a_00428 crossref_primary_10_1016_j_dadm_2017_03_001 crossref_primary_10_3233_JAD_230373 crossref_primary_10_1002_dad2_12516 crossref_primary_10_1007_s11554_023_01334_3 crossref_primary_10_1186_s12859_016_1456_0 crossref_primary_10_1016_j_csl_2024_101691 crossref_primary_10_1057_s41599_024_04355_w crossref_primary_10_1162_COLI_a_00290 crossref_primary_10_1016_j_bspc_2024_106023 crossref_primary_10_3389_fpsyt_2021_712251 crossref_primary_10_1109_TCDS_2021_3115228 crossref_primary_10_1111_psyp_13964 crossref_primary_10_1109_ACCESS_2020_3029907 crossref_primary_10_1016_j_jcomdis_2022_106214 crossref_primary_10_1109_TASLP_2016_2598428 crossref_primary_10_1016_j_jcomdis_2020_105994 crossref_primary_10_1016_j_measen_2022_100565 crossref_primary_10_1109_OJSP_2024_3378595 crossref_primary_10_2196_16790 crossref_primary_10_3389_fnagi_2019_00205 crossref_primary_10_3389_fnagi_2023_1122799 crossref_primary_10_1007_s10772_023_10016_1 crossref_primary_10_1007_s11042_015_3047_x crossref_primary_10_1016_j_neuropsychologia_2020_107725 crossref_primary_10_3390_brainsci12020270 crossref_primary_10_1007_s10916_019_1417_z crossref_primary_10_1080_02687038_2024_2366285 crossref_primary_10_3233_JAD_191056 crossref_primary_10_1016_j_artmed_2016_06_003 crossref_primary_10_1109_ACCESS_2022_3161749 crossref_primary_10_3233_JAD_201387 crossref_primary_10_1044_2016_JSLHR_L_15_0401 crossref_primary_10_2200_S01121ED1V01Y202108HLT052 crossref_primary_10_2217_nmt_12_5 crossref_primary_10_3233_JAD_151122 crossref_primary_10_3233_JAD_180037 crossref_primary_10_1016_j_csl_2022_101377 crossref_primary_10_1093_jamia_ocae300 crossref_primary_10_1371_journal_pone_0208418 crossref_primary_10_1080_23279095_2024_2364229 crossref_primary_10_3389_fnagi_2018_00369 crossref_primary_10_1016_j_mcpdig_2025_100205 crossref_primary_10_1044_2023_JSLHR_23_00009 crossref_primary_10_3389_fnagi_2024_1451326 crossref_primary_10_1016_j_neuropsychologia_2019_05_006 crossref_primary_10_1080_13607863_2021_1998347 crossref_primary_10_1016_j_artmed_2023_102624 crossref_primary_10_1162_COLI_a_00232 crossref_primary_10_1093_schbul_sbac176 crossref_primary_10_3390_info15010002 crossref_primary_10_1016_j_neuroimage_2019_03_054 crossref_primary_10_1080_02699206_2020_1777586 crossref_primary_10_1109_LSP_2023_3291651 crossref_primary_10_1527_tjsai_B_J11 crossref_primary_10_1016_j_bandl_2017_02_003 crossref_primary_10_1109_JIOT_2023_3290833 crossref_primary_10_1016_j_dadm_2014_11_012 crossref_primary_10_2196_37090 crossref_primary_10_3390_sports12020057 crossref_primary_10_1371_journal_pone_0229460 crossref_primary_10_2196_42792 crossref_primary_10_54103_2037_3597_21986 crossref_primary_10_1016_j_csl_2018_07_005 crossref_primary_10_1080_13825585_2023_2221020 crossref_primary_10_1186_s13636_015_0052_y crossref_primary_10_1109_JSTSP_2019_2952087 crossref_primary_10_1080_02687038_2017_1303441 crossref_primary_10_1007_s12204_021_2384_3 crossref_primary_10_1016_j_csl_2018_07_007 crossref_primary_10_1038_s41598_023_36804_y crossref_primary_10_1016_j_csl_2018_07_006 crossref_primary_10_3389_fdgth_2021_702772 |
Cites_doi | 10.3115/1073336.1073352 10.1016/S0010-0277(98)00034-1 10.1515/9783110814156.365 10.1080/02687040143000041 10.3115/1620754.1620762 10.1007/978-3-540-72845-0_1 10.1001/archneur.56.3.303 10.3115/1219840.1219865 10.1001/archneur.1993.00540010075021 10.1017/CBO9780511597855.005 10.1017/S0142716400008262 10.1212/WNL.43.11.2412-a 10.1109/SWAT.1970.5 10.1093/gerona/59.6.M621 10.1080/13825589408256581 10.1017/S0142716400000047 10.1212/01.WNL.0000034176.07159.F8 10.3115/1572392.1572394 10.1016/j.specom.2008.11.003 10.1001/jama.1996.03530310034029 10.1044/jshr.2402.154 10.1148/radiology.143.1.7063747 10.1212/WNL.44.4.609 10.3115/112405.112467 10.1212/WNL.48.6.1508 10.1212/01.WNL.0000063317.44167.5C 10.3758/BRM.40.2.540 10.1016/j.csl.2004.12.001 10.1016/S0140-6736(99)06155-3 10.1109/ICASSP.1992.225858 10.1016/S1474-4422(03)00262-X 10.3115/993268.993295 10.3115/981658.981695 10.1016/0022-3956(75)90026-6 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS 2011 IEEE 2011 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: 2011 IEEE 2011 |
DBID | 97E RIA RIE AAYXX CITATION IQODW NPM 7X8 5PM |
DOI | 10.1109/TASL.2011.2112351 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1558-7924 |
EndPage | 2090 |
ExternalDocumentID | PMC3244269 22199464 24484870 10_1109_TASL_2011_2112351 5710404 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: P30 AG008017 – fundername: NIA NIH HHS grantid: P30 AG024978 – fundername: NIA NIH HHS grantid: R01 AG024059 – fundername: National Institute on Aging : NIA grantid: R01 AG024059-01A1 || AG – fundername: National Institute on Aging : NIA grantid: P30 AG024978-01 || AG – fundername: National Institute on Aging : NIA grantid: P30 AG008017-21 || AG |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG AETIX AGQYO AGSQL AHBIQ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION RIG IQODW NPM 7X8 5PM |
ID | FETCH-LOGICAL-c406t-6273ddde0b2b695061607ce0f36bb635baa399924f793a69bdbf15b2d77749e3 |
IEDL.DBID | RIE |
ISSN | 1558-7916 |
IngestDate | Thu Aug 21 18:27:55 EDT 2025 Fri Jul 11 01:44:31 EDT 2025 Sat May 31 02:07:55 EDT 2025 Mon Jul 21 09:13:46 EDT 2025 Thu Apr 24 22:59:04 EDT 2025 Tue Jul 01 01:00:08 EDT 2025 Tue Aug 26 17:15:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Human Performance evaluation Speech analysis spoken language understanding linguistic complexity mild cognitive impairment (MCI) Syntactic analysis Complexity measure parsing Statistical method Forced alignment Automatic measurement Diagnostic aid Elderly |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-6273ddde0b2b695061607ce0f36bb635baa399924f793a69bdbf15b2d77749e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22199464 |
PQID | 1835548347 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmed_primary_22199464 ieee_primary_5710404 pascalfrancis_primary_24484870 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3244269 proquest_miscellaneous_1835548347 crossref_citationtrail_10_1109_TASL_2011_2112351 crossref_primary_10_1109_TASL_2011_2112351 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway, NJ |
PublicationPlace_xml | – name: Piscataway, NJ – name: United States |
PublicationTitle | IEEE transactions on audio, speech, and language processing |
PublicationTitleAbbrev | TASL |
PublicationTitleAlternate | IEEE Trans Audio Speech Lang Process |
PublicationYear | 2011 |
Publisher | IEEE Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 charniak (ref35) 2000 ref30 petersen (ref6) 2003 ref33 ref11 ref32 ref10 marcus (ref24) 1993; 19 joachims (ref40) 1999 strassel (ref22) 2004 ref2 egan (ref41) 1975 ref39 ref17 ref38 ref16 ref19 ref18 roark (ref1) 2007 pahikkala (ref44) 2008 ref23 ref26 ref25 ref42 ref43 ref28 ref27 ref8 ref7 ref9 ref4 wechsler (ref21) 1981 ref3 ref5 frazier (ref29) 1985 wechsler (ref20) 1997 |
References_xml | – ident: ref36 doi: 10.3115/1073336.1073352 – ident: ref31 doi: 10.1016/S0010-0277(98)00034-1 – ident: ref25 doi: 10.1515/9783110814156.365 – ident: ref16 doi: 10.1080/02687040143000041 – ident: ref4 doi: 10.3115/1620754.1620762 – ident: ref43 doi: 10.1007/978-3-540-72845-0_1 – ident: ref7 doi: 10.1001/archneur.56.3.303 – ident: ref3 doi: 10.3115/1219840.1219865 – ident: ref14 doi: 10.1001/archneur.1993.00540010075021 – start-page: 129 year: 1985 ident: ref29 publication-title: Natural Language Parsing doi: 10.1017/CBO9780511597855.005 – start-page: 1 year: 2008 ident: ref44 article-title: Exact and efficient leave-pair-out cross-validation for ranking RLS publication-title: Proc AKRR08 – ident: ref27 doi: 10.1017/S0142716400008262 – ident: ref11 doi: 10.1212/WNL.43.11.2412-a – year: 1997 ident: ref20 publication-title: Wechsler Memory ScaleThird Edition Manual – ident: ref33 doi: 10.1109/SWAT.1970.5 – ident: ref12 doi: 10.1093/gerona/59.6.M621 – ident: ref15 doi: 10.1080/13825589408256581 – ident: ref28 doi: 10.1017/S0142716400000047 – ident: ref8 doi: 10.1212/01.WNL.0000034176.07159.F8 – ident: ref2 doi: 10.3115/1572392.1572394 – ident: ref39 doi: 10.1016/j.specom.2008.11.003 – ident: ref13 doi: 10.1001/jama.1996.03530310034029 – volume: 19 start-page: 313 year: 1993 ident: ref24 article-title: Building a large annotated corpus of English: The Penn Treebank publication-title: Comput Linguist – start-page: 132 year: 2000 ident: ref35 article-title: A maximum-entropy-inspired parser publication-title: Proc 1st Conf North Amer Chap ACL – ident: ref26 doi: 10.1044/jshr.2402.154 – ident: ref42 doi: 10.1148/radiology.143.1.7063747 – ident: ref19 doi: 10.1212/WNL.44.4.609 – year: 2004 ident: ref22 publication-title: Simple metadata annotation specification V6 2 – ident: ref37 doi: 10.3115/112405.112467 – ident: ref17 doi: 10.1212/WNL.48.6.1508 – start-page: 15 year: 2003 ident: ref6 publication-title: Clinical Features – ident: ref9 doi: 10.1212/01.WNL.0000063317.44167.5C – year: 1999 ident: ref40 publication-title: Advances in Kernel MethodsSupport Vector Learning – ident: ref34 doi: 10.3758/BRM.40.2.540 – ident: ref38 doi: 10.1016/j.csl.2004.12.001 – ident: ref5 doi: 10.1016/S0140-6736(99)06155-3 – ident: ref23 doi: 10.1109/ICASSP.1992.225858 – ident: ref10 doi: 10.1016/S1474-4422(03)00262-X – year: 1981 ident: ref21 publication-title: Wechsler Adult Intelligence Scale-Revised – year: 1975 ident: ref41 publication-title: Signal Detection Theory and ROC Analysis – ident: ref30 doi: 10.3115/993268.993295 – year: 2007 ident: ref1 article-title: Automatically derived spoken language markers for detecting mild cognitive impairment publication-title: Proc 2nd Int Conf Technol Aging (ICTA) – ident: ref32 doi: 10.3115/981658.981695 – ident: ref18 doi: 10.1016/0022-3956(75)90026-6 |
SSID | ssj0043641 |
Score | 2.4914553 |
Snippet | Spoken responses produced by subjects during neuropsychological exams can provide diagnostic markers beyond exam performance. In particular, characteristics of... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2081 |
SubjectTerms | Applied sciences Biological and medical sciences Complexity theory Computerized, statistical medical data processing and models in biomedicine Dementia Exact sciences and technology Forced alignment Information, signal and communications theory linguistic complexity Manuals Medical management aid. Diagnosis aid Medical sciences mild cognitive impairment (MCI) parsing Pragmatics Signal processing Speech Speech processing spoken language understanding Syntactics Telecommunications and information theory |
Title | Spoken Language Derived Measures for Detecting Mild Cognitive Impairment |
URI | https://ieeexplore.ieee.org/document/5710404 https://www.ncbi.nlm.nih.gov/pubmed/22199464 https://www.proquest.com/docview/1835548347 https://pubmed.ncbi.nlm.nih.gov/PMC3244269 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6VPbEHBmxjGWMyEk9oKW5iO8njNJgKWnlZkfYW-RJHVJ3SaW154K_fXZxk7TQh3qLYzg_f-fzd-fwZ4FOUVZEqdBImSulQZTYNU4zi0FZYaWcwTiXvd578NONf6seNvhnAWb8XxjnXJJ-5IV82a_nlolhzqIycd3IemPzzBTlufq9WZ3VVbJTnRtUpUzCadgVzJLMv0_PrK0_WSd5OFOvR1hzUHKrCKZF2Sb1S-eMsnsObT9MmN-ahyz2YdH_g00_mw_UKh8XfJ-SO__uLr-FVC0jFudegNzBw9VvY3aAp3Ifx9d1i7mpx1cY2xVcq-ONKMfEBxqUg5Es3eT2CGojJ7LYUF11ekvhOFmd2z-89gOnlt-nFOGxPYAgLmuhXoSFwU5IBlBihyTTN_UYmhZNVbBAJqqC1BHDIhatomFuTYYnVSGNUJoQqMxcfwk69qN0RCEyc1drqMkWtFFW2SLpjM4nGRkVSBiA7keRFy07Oh2Tc5o2XIrOcpZizFPNWigF87pvceWqOf1Xe587uK7b9HMDpltz7ckI9KflyMoCPnSLkNPB4NcXWbrFe5mQLCYqlsUoCeOcV47F1xJTLhh6fbKlMX4FJvbdL6tnvhtybAC7vLj5-_nvfw0sf1OYktxPYWd2v3QdCRSs8bYbDA-5ACdM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOEAPhZaWpuXhSpyqZvEmthMfERQt7YYLW4lbZCeOWIGyiN3tob--M3GSsghVvUXxOA_P2PONPf4McBzpKhKFTMJECBkKbdIwtVEcmspW0ikbp5z2O2dXavRTfL-RN2vwtd8L45xrks_cgC6btfxyVixpqgyDdwweiPxzA_2-0H63VjfuilgJz44qUyJhVO0a5pDrk8np9djTdWK8E8VyuOKFmmNVKCnSzLFdKn-gxUuI83ni5BNPdLENWfcPPgHlbrBc2EHx-xm94__-5A68biEpO_U29AbWXP0WXj0hKtyF0fXD7M7VbNzObrJzLPjlSpb5KcY5Q-yLN2lFAiuwbHpfsrMuM4ld4pgzfaT3voPJxbfJ2Shsz2AIC3T1i1AhvClxCOQ2skpL9P6KJ4XjVaysRbBijUGIg0FchR3dKG1LWw2ljcoEcaV28XtYr2e1-wDMJs5IaWSZWikEChuL1mM0t8pERVIGwDuV5EXLT07HZNznTZzCdU5azEmLeavFAL70VR48Oce_hHepsXvBtp0DOFzRe1-OuCfFaI4H8LkzhBy7Hq2nmNrNlvMcR0MEY2kskgD2vGH8rR0R6bLCxycrJtMLEK33akk9vW3ovRHi0v7ijy9_7xFsjibZOB9fXv34BFt-iptS3vZhffG4dAeIkRb2sOkafwD9wA0j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spoken+Language+Derived+Measures+for+Detecting+Mild+Cognitive+Impairment&rft.jtitle=IEEE+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Roark%2C+Brian&rft.au=Mitchell%2C+Margaret&rft.au=Hosom%2C+John-Paul&rft.au=Hollingshead%2C+Kristy&rft.date=2011-09-01&rft.issn=1558-7916&rft.volume=19&rft.issue=7&rft.spage=2081&rft_id=info:doi/10.1109%2FTASL.2011.2112351&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-7916&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-7916&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-7916&client=summon |