Spoken Language Derived Measures for Detecting Mild Cognitive Impairment

Spoken responses produced by subjects during neuropsychological exams can provide diagnostic markers beyond exam performance. In particular, characteristics of the spoken language itself can discriminate between subject groups. We present results on the utility of such markers in discriminating betw...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on audio, speech, and language processing Vol. 19; no. 7; pp. 2081 - 2090
Main Authors Roark, B., Mitchell, M., Hosom, J., Hollingshead, K., Kaye, J.
Format Journal Article
LanguageEnglish
Published Piscataway, NJ IEEE 01.09.2011
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1558-7916
1558-7924
DOI10.1109/TASL.2011.2112351

Cover

Loading…
Abstract Spoken responses produced by subjects during neuropsychological exams can provide diagnostic markers beyond exam performance. In particular, characteristics of the spoken language itself can discriminate between subject groups. We present results on the utility of such markers in discriminating between healthy elderly subjects and subjects with mild cognitive impairment (MCI). Given the audio and transcript of a spoken narrative recall task, a range of markers are automatically derived. These markers include speech features such as pause frequency and duration, and many linguistic complexity measures. We examine measures calculated from manually annotated time alignments (of the transcript with the audio) and syntactic parse trees, as well as the same measures calculated from automatic (forced) time alignments and automatic parses. We show statistically significant differences between clinical subject groups for a number of measures. These differences are largely preserved with automation. We then present classification results, and demonstrate a statistically significant improvement in the area under the ROC curve (AUC) when using automatic spoken language derived features in addition to the neuropsychological test scores. Our results indicate that using multiple, complementary measures can aid in automatic detection of MCI.
AbstractList Spoken responses produced by subjects during neuropsychological exams can provide diagnostic markers beyond exam performance. In particular, characteristics of the spoken language itself can discriminate between subject groups. We present results on the utility of such markers in discriminating between healthy elderly subjects and subjects with mild cognitive impairment (MCI). Given the audio and transcript of a spoken narrative recall task, a range of markers are automatically derived. These markers include speech features such as pause frequency and duration, and many linguistic complexity measures. We examine measures calculated from manually annotated time alignments (of the transcript with the audio) and syntactic parse trees, as well as the same measures calculated from automatic (forced) time alignments and automatic parses. We show statistically significant differences between clinical subject groups for a number of measures. These differences are largely preserved with automation. We then present classification results, and demonstrate a statistically significant improvement in the area under the ROC curve (AUC) when using automatic spoken language derived features in addition to the neuropsychological test scores. Our results indicate that using multiple, complementary measures can aid in automatic detection of MCI.
Spoken responses produced by subjects during neuropsychological exams can provide diagnostic markers beyond exam performance. In particular, characteristics of the spoken language itself can discriminate between subject groups. We present results on the utility of such markers in discriminating between healthy elderly subjects and subjects with mild cognitive impairment (MCI). Given the audio and transcript of a spoken narrative recall task, a range of markers are automatically derived. These markers include speech features such as pause frequency and duration, and many linguistic complexity measures. We examine measures calculated from manually annotated time alignments (of the transcript with the audio) and syntactic parse trees, as well as the same measures calculated from automatic (forced) time alignments and automatic parses. We show statistically significant differences between clinical subject groups for a number of measures. These differences are largely preserved with automation. We then present classification results, and demonstrate a statistically significant improvement in the area under the ROC curve (AUC) when using automatic spoken language derived features in addition to the neuropsychological test scores. Our results indicate that using multiple, complementary measures can aid in automatic detection of MCI.Spoken responses produced by subjects during neuropsychological exams can provide diagnostic markers beyond exam performance. In particular, characteristics of the spoken language itself can discriminate between subject groups. We present results on the utility of such markers in discriminating between healthy elderly subjects and subjects with mild cognitive impairment (MCI). Given the audio and transcript of a spoken narrative recall task, a range of markers are automatically derived. These markers include speech features such as pause frequency and duration, and many linguistic complexity measures. We examine measures calculated from manually annotated time alignments (of the transcript with the audio) and syntactic parse trees, as well as the same measures calculated from automatic (forced) time alignments and automatic parses. We show statistically significant differences between clinical subject groups for a number of measures. These differences are largely preserved with automation. We then present classification results, and demonstrate a statistically significant improvement in the area under the ROC curve (AUC) when using automatic spoken language derived features in addition to the neuropsychological test scores. Our results indicate that using multiple, complementary measures can aid in automatic detection of MCI.
Author Kaye, J.
Roark, B.
Mitchell, M.
Hosom, J.
Hollingshead, K.
Author_xml – sequence: 1
  givenname: B.
  surname: Roark
  fullname: Roark, B.
  email: roark@cslu.ogi.edu
  organization: Dept. of Biomed. Eng., Oregon Health & Sci. Univ., Portland, OR, USA
– sequence: 2
  givenname: M.
  surname: Mitchell
  fullname: Mitchell, M.
  email: m.mitchell@abdn.ac.uk
  organization: Dept. of Comput. Sci., Univ. of Aberdeen, Aberdeen, UK
– sequence: 3
  givenname: J.
  surname: Hosom
  fullname: Hosom, J.
  email: hosom@cslu.ogi.edu
  organization: Dept. of Biomed. Eng., Oregon Health & Sci. Univ., Portland, OR, USA
– sequence: 4
  givenname: K.
  surname: Hollingshead
  fullname: Hollingshead, K.
  email: hollingk@gmail.com
  organization: Dept. of Biomed. Eng., Oregon Health & Sci. Univ., Portland, OR, USA
– sequence: 5
  givenname: J.
  surname: Kaye
  fullname: Kaye, J.
  email: kaye@ohsu.edu
  organization: Dept. of Neurology, Oregon Health & Sci. Univ., Portland, OR, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24484870$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22199464$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URB_wAxASygaJzUz9drxBqqZAK03ForO37OQmGBJ7sJNK_Pt6NNPhsejKlv2dc658fI5OQgyA0FuCl4Rgfbm5ul8vKSZkSQmhTJAX6IwIUS-UpvzkuCfyFJ3n_ANjziQnr9AppURrLvkZurnfxp8QqrUN_Wx7qK4h-QdoqzuweU6Qqy6mcjhBM_nQV3d-aKtV7IOfClbdjlvr0whheo1ednbI8OawXqDNl8-b1c1i_e3r7epqvWg4ltNCUsXatgXsqJNaYEkkVg3gjknnJBPOWqZ1Gb9TmlmpXes6IhxtlVJcA7tAn_a229mN0DYlOdnBbJMfbfptovXm35vgv5s-PhhGOadSF4OPB4MUf82QJzP63MAw2ABxzobUTAheM64K-v7vrGPI0-sV4MMBsLmxQ5dsaHz-w3Fe81rhwqk916SYc4LONH6yk4-7Ef1gCDa7Ps2uT7Pr0xz6LEryn_LJ_DnNu73GA8CRF4pgXj7AIxGDqt0
CODEN ITASD8
CitedBy_id crossref_primary_10_1186_s12911_022_01864_z
crossref_primary_10_1089_rej_2018_2075
crossref_primary_10_1044_2016_AJSLP_15_0147
crossref_primary_10_1109_MPRV_2015_85
crossref_primary_10_1371_journal_pone_0197004
crossref_primary_10_1109_JSTSP_2019_2955022
crossref_primary_10_1016_j_csl_2020_101113
crossref_primary_10_1016_j_csl_2023_101514
crossref_primary_10_1371_journal_pdig_0000197
crossref_primary_10_1016_j_neucom_2015_03_087
crossref_primary_10_3233_JAD_210684
crossref_primary_10_1016_j_cortex_2012_12_006
crossref_primary_10_2196_28333
crossref_primary_10_1109_RBME_2020_3006860
crossref_primary_10_3389_fpsyt_2018_00105
crossref_primary_10_1038_s41598_020_61994_0
crossref_primary_10_1111_lnc3_12054
crossref_primary_10_1016_j_csl_2012_04_002
crossref_primary_10_1371_journal_pone_0212342
crossref_primary_10_1016_j_specom_2018_04_001
crossref_primary_10_1590_S1980_57642014DN83000006
crossref_primary_10_2174_1567205019666220805110248
crossref_primary_10_1109_ACCESS_2018_2856478
crossref_primary_10_1016_j_cortex_2020_05_001
crossref_primary_10_1016_j_schres_2022_07_011
crossref_primary_10_1097_WAD_0000000000000492
crossref_primary_10_2196_jmir_7215
crossref_primary_10_1016_j_procs_2017_09_061
crossref_primary_10_1155_2020_4683573
crossref_primary_10_1177_13872877241300149
crossref_primary_10_1176_appi_prcp_20230003
crossref_primary_10_1080_02687038_2020_1742282
crossref_primary_10_1080_02699206_2020_1827043
crossref_primary_10_1016_j_compbiomed_2024_108606
crossref_primary_10_2196_51501
crossref_primary_10_1371_journal_pone_0236009
crossref_primary_10_1093_schizbullopen_sgac026
crossref_primary_10_1109_JSTSP_2019_2939998
crossref_primary_10_3389_fnagi_2023_1281726
crossref_primary_10_3390_s23115346
crossref_primary_10_1080_02687038_2019_1608502
crossref_primary_10_1007_s00702_020_02229_4
crossref_primary_10_1109_ACCESS_2022_3203068
crossref_primary_10_1145_3380785
crossref_primary_10_2174_1567205019666220418155130
crossref_primary_10_1186_s12859_024_05911_6
crossref_primary_10_1016_j_brainres_2024_148806
crossref_primary_10_1016_j_laheal_2024_09_002
crossref_primary_10_2196_27667
crossref_primary_10_1016_j_specom_2014_09_005
crossref_primary_10_1016_j_bandl_2021_105025
crossref_primary_10_1044_2020_JSLHR_20_00288
crossref_primary_10_3389_fnagi_2021_637404
crossref_primary_10_1044_2020_JSLHR_19_00222
crossref_primary_10_2174_0118743501354793241220043615
crossref_primary_10_1177_13872877241291239
crossref_primary_10_12968_ijtr_2022_0058
crossref_primary_10_2196_50537
crossref_primary_10_1044_2020_JSLHR_19_00183
crossref_primary_10_3389_fcomp_2021_624594
crossref_primary_10_1109_MIM_2021_9513645
crossref_primary_10_1371_journal_pone_0253988
crossref_primary_10_1002_dad2_12364
crossref_primary_10_2196_jmir_7671
crossref_primary_10_3389_fneur_2018_00975
crossref_primary_10_1159_000487852
crossref_primary_10_2174_1567205017666201008110854
crossref_primary_10_1002_dad2_12366
crossref_primary_10_1016_j_jbi_2021_103803
crossref_primary_10_1109_JTEHM_2017_2752152
crossref_primary_10_1371_journal_pone_0205636
crossref_primary_10_3389_fdgth_2021_653904
crossref_primary_10_3389_fnagi_2015_00195
crossref_primary_10_1371_journal_pone_0217388
crossref_primary_10_3389_fnagi_2021_642647
crossref_primary_10_3233_JAD_150520
crossref_primary_10_3233_JAD_190783
crossref_primary_10_1080_0361073X_2022_2163831
crossref_primary_10_1145_2744206
crossref_primary_10_1136_bmjopen_2018_026254
crossref_primary_10_1016_j_maturitas_2015_05_013
crossref_primary_10_1016_j_specom_2021_11_009
crossref_primary_10_1111_1460_6984_12870
crossref_primary_10_1162_coli_a_00428
crossref_primary_10_1016_j_dadm_2017_03_001
crossref_primary_10_3233_JAD_230373
crossref_primary_10_1002_dad2_12516
crossref_primary_10_1007_s11554_023_01334_3
crossref_primary_10_1186_s12859_016_1456_0
crossref_primary_10_1016_j_csl_2024_101691
crossref_primary_10_1057_s41599_024_04355_w
crossref_primary_10_1162_COLI_a_00290
crossref_primary_10_1016_j_bspc_2024_106023
crossref_primary_10_3389_fpsyt_2021_712251
crossref_primary_10_1109_TCDS_2021_3115228
crossref_primary_10_1111_psyp_13964
crossref_primary_10_1109_ACCESS_2020_3029907
crossref_primary_10_1016_j_jcomdis_2022_106214
crossref_primary_10_1109_TASLP_2016_2598428
crossref_primary_10_1016_j_jcomdis_2020_105994
crossref_primary_10_1016_j_measen_2022_100565
crossref_primary_10_1109_OJSP_2024_3378595
crossref_primary_10_2196_16790
crossref_primary_10_3389_fnagi_2019_00205
crossref_primary_10_3389_fnagi_2023_1122799
crossref_primary_10_1007_s10772_023_10016_1
crossref_primary_10_1007_s11042_015_3047_x
crossref_primary_10_1016_j_neuropsychologia_2020_107725
crossref_primary_10_3390_brainsci12020270
crossref_primary_10_1007_s10916_019_1417_z
crossref_primary_10_1080_02687038_2024_2366285
crossref_primary_10_3233_JAD_191056
crossref_primary_10_1016_j_artmed_2016_06_003
crossref_primary_10_1109_ACCESS_2022_3161749
crossref_primary_10_3233_JAD_201387
crossref_primary_10_1044_2016_JSLHR_L_15_0401
crossref_primary_10_2200_S01121ED1V01Y202108HLT052
crossref_primary_10_2217_nmt_12_5
crossref_primary_10_3233_JAD_151122
crossref_primary_10_3233_JAD_180037
crossref_primary_10_1016_j_csl_2022_101377
crossref_primary_10_1093_jamia_ocae300
crossref_primary_10_1371_journal_pone_0208418
crossref_primary_10_1080_23279095_2024_2364229
crossref_primary_10_3389_fnagi_2018_00369
crossref_primary_10_1016_j_mcpdig_2025_100205
crossref_primary_10_1044_2023_JSLHR_23_00009
crossref_primary_10_3389_fnagi_2024_1451326
crossref_primary_10_1016_j_neuropsychologia_2019_05_006
crossref_primary_10_1080_13607863_2021_1998347
crossref_primary_10_1016_j_artmed_2023_102624
crossref_primary_10_1162_COLI_a_00232
crossref_primary_10_1093_schbul_sbac176
crossref_primary_10_3390_info15010002
crossref_primary_10_1016_j_neuroimage_2019_03_054
crossref_primary_10_1080_02699206_2020_1777586
crossref_primary_10_1109_LSP_2023_3291651
crossref_primary_10_1527_tjsai_B_J11
crossref_primary_10_1016_j_bandl_2017_02_003
crossref_primary_10_1109_JIOT_2023_3290833
crossref_primary_10_1016_j_dadm_2014_11_012
crossref_primary_10_2196_37090
crossref_primary_10_3390_sports12020057
crossref_primary_10_1371_journal_pone_0229460
crossref_primary_10_2196_42792
crossref_primary_10_54103_2037_3597_21986
crossref_primary_10_1016_j_csl_2018_07_005
crossref_primary_10_1080_13825585_2023_2221020
crossref_primary_10_1186_s13636_015_0052_y
crossref_primary_10_1109_JSTSP_2019_2952087
crossref_primary_10_1080_02687038_2017_1303441
crossref_primary_10_1007_s12204_021_2384_3
crossref_primary_10_1016_j_csl_2018_07_007
crossref_primary_10_1038_s41598_023_36804_y
crossref_primary_10_1016_j_csl_2018_07_006
crossref_primary_10_3389_fdgth_2021_702772
Cites_doi 10.3115/1073336.1073352
10.1016/S0010-0277(98)00034-1
10.1515/9783110814156.365
10.1080/02687040143000041
10.3115/1620754.1620762
10.1007/978-3-540-72845-0_1
10.1001/archneur.56.3.303
10.3115/1219840.1219865
10.1001/archneur.1993.00540010075021
10.1017/CBO9780511597855.005
10.1017/S0142716400008262
10.1212/WNL.43.11.2412-a
10.1109/SWAT.1970.5
10.1093/gerona/59.6.M621
10.1080/13825589408256581
10.1017/S0142716400000047
10.1212/01.WNL.0000034176.07159.F8
10.3115/1572392.1572394
10.1016/j.specom.2008.11.003
10.1001/jama.1996.03530310034029
10.1044/jshr.2402.154
10.1148/radiology.143.1.7063747
10.1212/WNL.44.4.609
10.3115/112405.112467
10.1212/WNL.48.6.1508
10.1212/01.WNL.0000063317.44167.5C
10.3758/BRM.40.2.540
10.1016/j.csl.2004.12.001
10.1016/S0140-6736(99)06155-3
10.1109/ICASSP.1992.225858
10.1016/S1474-4422(03)00262-X
10.3115/993268.993295
10.3115/981658.981695
10.1016/0022-3956(75)90026-6
ContentType Journal Article
Copyright 2015 INIST-CNRS
2011 IEEE 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: 2011 IEEE 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
NPM
7X8
5PM
DOI 10.1109/TASL.2011.2112351
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1558-7924
EndPage 2090
ExternalDocumentID PMC3244269
22199464
24484870
10_1109_TASL_2011_2112351
5710404
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: P30 AG008017
– fundername: NIA NIH HHS
  grantid: P30 AG024978
– fundername: NIA NIH HHS
  grantid: R01 AG024059
– fundername: National Institute on Aging : NIA
  grantid: R01 AG024059-01A1 || AG
– fundername: National Institute on Aging : NIA
  grantid: P30 AG024978-01 || AG
– fundername: National Institute on Aging : NIA
  grantid: P30 AG008017-21 || AG
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AETIX
AGQYO
AGSQL
AHBIQ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
RIG
IQODW
NPM
7X8
5PM
ID FETCH-LOGICAL-c406t-6273ddde0b2b695061607ce0f36bb635baa399924f793a69bdbf15b2d77749e3
IEDL.DBID RIE
ISSN 1558-7916
IngestDate Thu Aug 21 18:27:55 EDT 2025
Fri Jul 11 01:44:31 EDT 2025
Sat May 31 02:07:55 EDT 2025
Mon Jul 21 09:13:46 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
Tue Jul 01 01:00:08 EDT 2025
Tue Aug 26 17:15:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Human
Performance evaluation
Speech analysis
spoken language understanding
linguistic complexity
mild cognitive impairment (MCI)
Syntactic analysis
Complexity measure
parsing
Statistical method
Forced alignment
Automatic measurement
Diagnostic aid
Elderly
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-6273ddde0b2b695061607ce0f36bb635baa399924f793a69bdbf15b2d77749e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22199464
PQID 1835548347
PQPubID 23479
PageCount 10
ParticipantIDs pubmed_primary_22199464
ieee_primary_5710404
pascalfrancis_primary_24484870
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3244269
proquest_miscellaneous_1835548347
crossref_citationtrail_10_1109_TASL_2011_2112351
crossref_primary_10_1109_TASL_2011_2112351
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway, NJ
PublicationPlace_xml – name: Piscataway, NJ
– name: United States
PublicationTitle IEEE transactions on audio, speech, and language processing
PublicationTitleAbbrev TASL
PublicationTitleAlternate IEEE Trans Audio Speech Lang Process
PublicationYear 2011
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
charniak (ref35) 2000
ref30
petersen (ref6) 2003
ref33
ref11
ref32
ref10
marcus (ref24) 1993; 19
joachims (ref40) 1999
strassel (ref22) 2004
ref2
egan (ref41) 1975
ref39
ref17
ref38
ref16
ref19
ref18
roark (ref1) 2007
pahikkala (ref44) 2008
ref23
ref26
ref25
ref42
ref43
ref28
ref27
ref8
ref7
ref9
ref4
wechsler (ref21) 1981
ref3
ref5
frazier (ref29) 1985
wechsler (ref20) 1997
References_xml – ident: ref36
  doi: 10.3115/1073336.1073352
– ident: ref31
  doi: 10.1016/S0010-0277(98)00034-1
– ident: ref25
  doi: 10.1515/9783110814156.365
– ident: ref16
  doi: 10.1080/02687040143000041
– ident: ref4
  doi: 10.3115/1620754.1620762
– ident: ref43
  doi: 10.1007/978-3-540-72845-0_1
– ident: ref7
  doi: 10.1001/archneur.56.3.303
– ident: ref3
  doi: 10.3115/1219840.1219865
– ident: ref14
  doi: 10.1001/archneur.1993.00540010075021
– start-page: 129
  year: 1985
  ident: ref29
  publication-title: Natural Language Parsing
  doi: 10.1017/CBO9780511597855.005
– start-page: 1
  year: 2008
  ident: ref44
  article-title: Exact and efficient leave-pair-out cross-validation for ranking RLS
  publication-title: Proc AKRR08
– ident: ref27
  doi: 10.1017/S0142716400008262
– ident: ref11
  doi: 10.1212/WNL.43.11.2412-a
– year: 1997
  ident: ref20
  publication-title: Wechsler Memory ScaleThird Edition Manual
– ident: ref33
  doi: 10.1109/SWAT.1970.5
– ident: ref12
  doi: 10.1093/gerona/59.6.M621
– ident: ref15
  doi: 10.1080/13825589408256581
– ident: ref28
  doi: 10.1017/S0142716400000047
– ident: ref8
  doi: 10.1212/01.WNL.0000034176.07159.F8
– ident: ref2
  doi: 10.3115/1572392.1572394
– ident: ref39
  doi: 10.1016/j.specom.2008.11.003
– ident: ref13
  doi: 10.1001/jama.1996.03530310034029
– volume: 19
  start-page: 313
  year: 1993
  ident: ref24
  article-title: Building a large annotated corpus of English: The Penn Treebank
  publication-title: Comput Linguist
– start-page: 132
  year: 2000
  ident: ref35
  article-title: A maximum-entropy-inspired parser
  publication-title: Proc 1st Conf North Amer Chap ACL
– ident: ref26
  doi: 10.1044/jshr.2402.154
– ident: ref42
  doi: 10.1148/radiology.143.1.7063747
– ident: ref19
  doi: 10.1212/WNL.44.4.609
– year: 2004
  ident: ref22
  publication-title: Simple metadata annotation specification V6 2
– ident: ref37
  doi: 10.3115/112405.112467
– ident: ref17
  doi: 10.1212/WNL.48.6.1508
– start-page: 15
  year: 2003
  ident: ref6
  publication-title: Clinical Features
– ident: ref9
  doi: 10.1212/01.WNL.0000063317.44167.5C
– year: 1999
  ident: ref40
  publication-title: Advances in Kernel MethodsSupport Vector Learning
– ident: ref34
  doi: 10.3758/BRM.40.2.540
– ident: ref38
  doi: 10.1016/j.csl.2004.12.001
– ident: ref5
  doi: 10.1016/S0140-6736(99)06155-3
– ident: ref23
  doi: 10.1109/ICASSP.1992.225858
– ident: ref10
  doi: 10.1016/S1474-4422(03)00262-X
– year: 1981
  ident: ref21
  publication-title: Wechsler Adult Intelligence Scale-Revised
– year: 1975
  ident: ref41
  publication-title: Signal Detection Theory and ROC Analysis
– ident: ref30
  doi: 10.3115/993268.993295
– year: 2007
  ident: ref1
  article-title: Automatically derived spoken language markers for detecting mild cognitive impairment
  publication-title: Proc 2nd Int Conf Technol Aging (ICTA)
– ident: ref32
  doi: 10.3115/981658.981695
– ident: ref18
  doi: 10.1016/0022-3956(75)90026-6
SSID ssj0043641
Score 2.4914553
Snippet Spoken responses produced by subjects during neuropsychological exams can provide diagnostic markers beyond exam performance. In particular, characteristics of...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2081
SubjectTerms Applied sciences
Biological and medical sciences
Complexity theory
Computerized, statistical medical data processing and models in biomedicine
Dementia
Exact sciences and technology
Forced alignment
Information, signal and communications theory
linguistic complexity
Manuals
Medical management aid. Diagnosis aid
Medical sciences
mild cognitive impairment (MCI)
parsing
Pragmatics
Signal processing
Speech
Speech processing
spoken language understanding
Syntactics
Telecommunications and information theory
Title Spoken Language Derived Measures for Detecting Mild Cognitive Impairment
URI https://ieeexplore.ieee.org/document/5710404
https://www.ncbi.nlm.nih.gov/pubmed/22199464
https://www.proquest.com/docview/1835548347
https://pubmed.ncbi.nlm.nih.gov/PMC3244269
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6VPbEHBmxjGWMyEk9oKW5iO8njNJgKWnlZkfYW-RJHVJ3SaW154K_fXZxk7TQh3qLYzg_f-fzd-fwZ4FOUVZEqdBImSulQZTYNU4zi0FZYaWcwTiXvd578NONf6seNvhnAWb8XxjnXJJ-5IV82a_nlolhzqIycd3IemPzzBTlufq9WZ3VVbJTnRtUpUzCadgVzJLMv0_PrK0_WSd5OFOvR1hzUHKrCKZF2Sb1S-eMsnsObT9MmN-ahyz2YdH_g00_mw_UKh8XfJ-SO__uLr-FVC0jFudegNzBw9VvY3aAp3Ifx9d1i7mpx1cY2xVcq-ONKMfEBxqUg5Es3eT2CGojJ7LYUF11ekvhOFmd2z-89gOnlt-nFOGxPYAgLmuhXoSFwU5IBlBihyTTN_UYmhZNVbBAJqqC1BHDIhatomFuTYYnVSGNUJoQqMxcfwk69qN0RCEyc1drqMkWtFFW2SLpjM4nGRkVSBiA7keRFy07Oh2Tc5o2XIrOcpZizFPNWigF87pvceWqOf1Xe587uK7b9HMDpltz7ckI9KflyMoCPnSLkNPB4NcXWbrFe5mQLCYqlsUoCeOcV47F1xJTLhh6fbKlMX4FJvbdL6tnvhtybAC7vLj5-_nvfw0sf1OYktxPYWd2v3QdCRSs8bYbDA-5ACdM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOEAPhZaWpuXhSpyqZvEmthMfERQt7YYLW4lbZCeOWIGyiN3tob--M3GSsghVvUXxOA_P2PONPf4McBzpKhKFTMJECBkKbdIwtVEcmspW0ikbp5z2O2dXavRTfL-RN2vwtd8L45xrks_cgC6btfxyVixpqgyDdwweiPxzA_2-0H63VjfuilgJz44qUyJhVO0a5pDrk8np9djTdWK8E8VyuOKFmmNVKCnSzLFdKn-gxUuI83ni5BNPdLENWfcPPgHlbrBc2EHx-xm94__-5A68biEpO_U29AbWXP0WXj0hKtyF0fXD7M7VbNzObrJzLPjlSpb5KcY5Q-yLN2lFAiuwbHpfsrMuM4ld4pgzfaT3voPJxbfJ2Shsz2AIC3T1i1AhvClxCOQ2skpL9P6KJ4XjVaysRbBijUGIg0FchR3dKG1LWw2ljcoEcaV28XtYr2e1-wDMJs5IaWSZWikEChuL1mM0t8pERVIGwDuV5EXLT07HZNznTZzCdU5azEmLeavFAL70VR48Oce_hHepsXvBtp0DOFzRe1-OuCfFaI4H8LkzhBy7Hq2nmNrNlvMcR0MEY2kskgD2vGH8rR0R6bLCxycrJtMLEK33akk9vW3ovRHi0v7ijy9_7xFsjibZOB9fXv34BFt-iptS3vZhffG4dAeIkRb2sOkafwD9wA0j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spoken+Language+Derived+Measures+for+Detecting+Mild+Cognitive+Impairment&rft.jtitle=IEEE+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Roark%2C+Brian&rft.au=Mitchell%2C+Margaret&rft.au=Hosom%2C+John-Paul&rft.au=Hollingshead%2C+Kristy&rft.date=2011-09-01&rft.issn=1558-7916&rft.volume=19&rft.issue=7&rft.spage=2081&rft_id=info:doi/10.1109%2FTASL.2011.2112351&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-7916&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-7916&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-7916&client=summon