The corrosion characteristics and mechanism of directionally solidified Mg-3Zn-xCa alloys
An investigation into the corrosion characteristics and mechanism of directionally solidified (DSed) Mg-3Zn-xCa (x = 0, 0.2, 0.5, 0.8 wt.%) alloys in 0.9 wt.% NaCl solution is presented. The DSed microstructure consists of columnar dendrites and eutectics distributed in the interdendritic region. Th...
Saved in:
Published in | Journal of magnesium and alloys Vol. 11; no. 10; pp. 3673 - 3687 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
KeAi Communications Co., Ltd
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An investigation into the corrosion characteristics and mechanism of directionally solidified (DSed) Mg-3Zn-xCa (x = 0, 0.2, 0.5, 0.8 wt.%) alloys in 0.9 wt.% NaCl solution is presented. The DSed microstructure consists of columnar dendrites and eutectics distributed in the interdendritic region. The primary dendritic arm spacing (PDAS) and the volume fraction (fv) of the secondary phases are under the significant impact of the content of Ca. The corrosion rates evaluated using electrochemical measurements and immersion tests are accelerated monotonously with the increase of Ca content in DSed alloys. The corrosion resistance of the DSed alloys is significantly affected by the corrosion products film (CPF) and the secondary phases. The corrosion products of DSed Mg-3Zn alloy contain Mg(OH)2 and ZnO. The existence of ZnO greatly enhances the corrosion resistance of DSed Mg-3Zn alloy. As for the DSed alloys containing Ca content, a relatively protective CPF without deep pits can form on the surface of DSed Mg-3Zn-0.2Ca specimen during the corrosion. The fv of the secondary phases dominates the corrosion rate of the DSed Mg-Zn-Ca alloys. The corrosion of DSed Mg-3Zn-xCa alloys initiates as a result of micro-galvanic coupling between the cathodes of secondary phases and α-Mg matrix anode. Then, the corrosion gradually extends longitudinally with the breakdown of CPF. |
---|---|
AbstractList | An investigation into the corrosion characteristics and mechanism of directionally solidified (DSed) Mg-3Zn-xCa (x = 0, 0.2, 0.5, 0.8 wt.%) alloys in 0.9 wt.% NaCl solution is presented. The DSed microstructure consists of columnar dendrites and eutectics distributed in the interdendritic region. The primary dendritic arm spacing (PDAS) and the volume fraction (fv) of the secondary phases are under the significant impact of the content of Ca. The corrosion rates evaluated using electrochemical measurements and immersion tests are accelerated monotonously with the increase of Ca content in DSed alloys. The corrosion resistance of the DSed alloys is significantly affected by the corrosion products film (CPF) and the secondary phases. The corrosion products of DSed Mg-3Zn alloy contain Mg(OH)2 and ZnO. The existence of ZnO greatly enhances the corrosion resistance of DSed Mg-3Zn alloy. As for the DSed alloys containing Ca content, a relatively protective CPF without deep pits can form on the surface of DSed Mg-3Zn-0.2Ca specimen during the corrosion. The fv of the secondary phases dominates the corrosion rate of the DSed Mg-Zn-Ca alloys. The corrosion of DSed Mg-3Zn-xCa alloys initiates as a result of micro-galvanic coupling between the cathodes of secondary phases and α-Mg matrix anode. Then, the corrosion gradually extends longitudinally with the breakdown of CPF. |
Author | Feng, Xiaohui Huang, Qiuyan Li, Yingju Yang, Yuansheng Hao, Xuehui Zhang, Yi Wang, Changzheng |
Author_xml | – sequence: 1 givenname: Yi surname: Zhang fullname: Zhang, Yi – sequence: 2 givenname: Xiaohui orcidid: 0000-0003-0758-6609 surname: Feng fullname: Feng, Xiaohui – sequence: 3 givenname: Qiuyan surname: Huang fullname: Huang, Qiuyan – sequence: 4 givenname: Yingju surname: Li fullname: Li, Yingju – sequence: 5 givenname: Xuehui orcidid: 0000-0002-2646-7966 surname: Hao fullname: Hao, Xuehui – sequence: 6 givenname: Changzheng surname: Wang fullname: Wang, Changzheng – sequence: 7 givenname: Yuansheng surname: Yang fullname: Yang, Yuansheng |
BookMark | eNp1UMtKxTAQDaLg9fEB7vIDrXlM0nYpF19wxY0udBOmaaopbSNJF96_N9cHiCAMzHBmzpmZc0T25zA7Qs44Kznj-nwohwlLwYQoWQ7O9shKCC6LRulq_1d9SE5TGhhjvFZSc7kiTw-vjtoQY0g-zNS-YkS7uOjT4m2iOHd0chmdfZpo6Gnno7NLHsVx3NIURt_53ruO3r0U8nku3tdIcyts0wk56HFM7vQ7H5PHq8uH9U2xub--XV9sCgtML4WyugHBwCmlVSc0SA0WtWt1DdiDbVsHPVbMgawaYZ2QqLFSUMveamgbeUxuv3S7gIN5i37CuDUBvfkEQnwxGPMzozNNDbqyulUtSIC8QSHvQGgloK0401mr-tKy2Y8UXW-sX3D37hLRj4YzszPcDCYbbnaGG5aDs8zkf5g_l_zP-QBomIX5 |
CitedBy_id | crossref_primary_10_1016_j_est_2024_112332 crossref_primary_10_1021_acsbiomaterials_4c00823 crossref_primary_10_1007_s12613_023_2775_6 crossref_primary_10_3390_ma16031324 crossref_primary_10_1016_j_jma_2024_10_001 crossref_primary_10_1016_j_jmrt_2024_07_046 crossref_primary_10_1177_02670844241270185 |
Cites_doi | 10.1016/j.jallcom.2020.154735 10.1016/j.jma.2021.06.022 10.4028/www.scientific.net/MSF.816.411 10.1016/j.matchar.2015.12.003 10.1007/s41230-018-7203-6 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N 10.1016/j.jmst.2021.02.070 10.1016/j.jmst.2018.10.008 10.1016/j.msea.2017.06.053 10.1016/j.jpcs.2021.109952 10.1016/j.corsci.2017.02.023 10.1016/j.msea.2018.05.061 10.1016/j.jma.2020.02.007 10.1016/j.msea.2021.142002 10.1016/j.jma.2020.08.004 10.1016/j.jma.2020.03.012 10.4028/www.scientific.net/MSF.993.161 10.1016/S1003-6326(21)65501-2 10.1016/j.matchemphys.2021.124928 10.1016/j.corcom.2021.08.002 10.1016/j.corsci.2014.12.004 10.1016/j.intermet.2007.01.009 10.1016/j.jallcom.2017.05.129 10.1016/j.jma.2021.08.020 10.1016/j.msec.2011.07.015 10.1016/j.corsci.2019.108133 10.1016/j.msea.2016.03.065 10.1016/j.jmrt.2021.10.099 10.1016/j.jma.2021.06.024 10.1016/S1003-6326(21)65602-9 10.1016/j.actbio.2019.09.021 10.1016/j.corsci.2019.108303 10.1016/j.jma.2020.11.008 10.1016/j.jma.2021.09.005 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1016/j.jma.2022.02.010 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2213-9567 |
EndPage | 3687 |
ExternalDocumentID | oai_doaj_org_article_98467c6b5b4344b685a1d426524b7106 10_1016_j_jma_2022_02_010 |
GroupedDBID | -SB -S~ 0R~ 4.4 457 5VS AAEDT AAEDW AAIKJ AALRI AAXDM AAXUO AAYWO AAYXX ABMAC ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV CAJEB CITATION EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E O-L O9- OK1 Q-- RIG ROL SSZ U1G U5L |
ID | FETCH-LOGICAL-c406t-5c694204e5565d264364ca6eb684af4cbbe4fa70e43792ce23a6a75483fc64b93 |
IEDL.DBID | DOA |
ISSN | 2213-9567 |
IngestDate | Wed Aug 27 00:44:24 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Tue Jul 01 02:14:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-5c694204e5565d264364ca6eb684af4cbbe4fa70e43792ce23a6a75483fc64b93 |
ORCID | 0000-0002-2646-7966 0000-0003-0758-6609 |
OpenAccessLink | https://doaj.org/article/98467c6b5b4344b685a1d426524b7106 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_98467c6b5b4344b685a1d426524b7106 crossref_citationtrail_10_1016_j_jma_2022_02_010 crossref_primary_10_1016_j_jma_2022_02_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-00 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of magnesium and alloys |
PublicationYear | 2023 |
Publisher | KeAi Communications Co., Ltd |
Publisher_xml | – name: KeAi Communications Co., Ltd |
References | Jing (10.1016/j.jma.2022.02.010_bib0023) 2016; 52 Zhang (10.1016/j.jma.2022.02.010_bib0029) 2020; 993 Liu (10.1016/j.jma.2022.02.010_bib0037) 2021; 31 Yan (10.1016/j.jma.2022.02.010_bib0027) 2019; 55 Feng (10.1016/j.jma.2022.02.010_bib0035) 2019; 159 Zhao (10.1016/j.jma.2022.02.010_bib0009) 2021; 95 Du (10.1016/j.jma.2022.02.010_bib0014) 2022; 10 Wang (10.1016/j.jma.2022.02.010_bib0043) 2021; 2 Kurz (10.1016/j.jma.2022.02.010_bib0040) 1992 Li (10.1016/j.jma.2022.02.010_bib0011) 2018; 15 Liu (10.1016/j.jma.2022.02.010_bib0038) 2021; 9 Jia (10.1016/j.jma.2022.02.010_bib0018) 2015; 816 Chen (10.1016/j.jma.2022.02.010_bib0042) 2021; 15 Chen (10.1016/j.jma.2022.02.010_bib0036) 2020; 163 Jia (10.1016/j.jma.2022.02.010_bib0030) 2017; 120 Yang (10.1016/j.jma.2022.02.010_bib0026) 2017; 725 Song (10.1016/j.jma.2022.02.010_bib0045) 2019; 35 Liu (10.1016/j.jma.2022.02.010_bib0031) 2022; 891 Wang (10.1016/j.jma.2022.02.010_bib0015) 2020; 795 Li (10.1016/j.jma.2022.02.010_bib0039) 2018; 15 Tsakiris (10.1016/j.jma.2022.02.010_bib0002) 2021; 9 Zhao (10.1016/j.jma.2022.02.010_bib0025) 2018; 729 Kiani (10.1016/j.jma.2022.02.010_bib0049) 2021; 831 Pulido-González (10.1016/j.jma.2022.02.010_bib0012) 2020; 8 Li (10.1016/j.jma.2022.02.010_bib0044) 2021; 179 Asadi (10.1016/j.jma.2022.02.010_bib0007) 2021; 28 Parfenov (10.1016/j.jma.2022.02.010_bib0017) 2020; 163 Yang (10.1016/j.jma.2022.02.010_bib0020) 2017; 725 Atrens (10.1016/j.jma.2022.02.010_bib0033) 2015; 92 Gong (10.1016/j.jma.2022.02.010_bib0013) 2021; 152 Pulido-González (10.1016/j.jma.2022.02.010_bib0003) 2020; 831 Xia (10.1016/j.jma.2022.02.010_bib0008) 2021; 31 Wang (10.1016/j.jma.2022.02.010_bib0022) 2020; 815 Song (10.1016/j.jma.2022.02.010_bib0048) 1999; 1 Cihova (10.1016/j.jma.2022.02.010_bib0005) 2019; 100 Bairagi (10.1016/j.jma.2022.02.010_bib0001) 2022; 10 Luo (10.1016/j.jma.2022.02.010_bib0019) 2016; 662 Dobkowska (10.1016/j.jma.2022.02.010_bib0046) 2022; 10 Zhang (10.1016/j.jma.2022.02.010_bib0010) 2011; 31 Lin (10.1016/j.jma.2022.02.010_bib0024) 2017; 700 Yang (10.1016/j.jma.2022.02.010_bib0034) 2021; 187 Zhang (10.1016/j.jma.2022.02.010_bib0028) 2007; 15 Shuai (10.1016/j.jma.2022.02.010_bib0021) 2016; 111 Horky (10.1016/j.jma.2022.02.010_bib0004) 2021; 826 Pulido-González (10.1016/j.jma.2022.02.010_bib0006) 2022; 10 Zhou (10.1016/j.jma.2022.02.010_bib0016) 2020; 769 Li (10.1016/j.jma.2022.02.010_bib0032) 2021; 189 Bazhenov (10.1016/j.jma.2022.02.010_bib0041) 2021; 9 Cao (10.1016/j.jma.2022.02.010_bib0047) 2021; 271 |
References_xml | – volume: 831 year: 2020 ident: 10.1016/j.jma.2022.02.010_bib0003 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.154735 – volume: 10 start-page: 540 year: 2022 ident: 10.1016/j.jma.2022.02.010_bib0006 publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2021.06.022 – volume: 179 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0044 publication-title: Mater. Charact. – volume: 163 year: 2020 ident: 10.1016/j.jma.2022.02.010_bib0036 publication-title: Corros. Sci. – volume: 816 start-page: 411 year: 2015 ident: 10.1016/j.jma.2022.02.010_bib0018 publication-title: Mater. Sci. Forum. doi: 10.4028/www.scientific.net/MSF.816.411 – volume: 831 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0049 publication-title: Mater. Sci. Eng. A – volume: 795 year: 2020 ident: 10.1016/j.jma.2022.02.010_bib0015 publication-title: Mater. Sci. Eng. A – volume: 111 start-page: 170 year: 2016 ident: 10.1016/j.jma.2022.02.010_bib0021 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2015.12.003 – volume: 55 start-page: 202 year: 2019 ident: 10.1016/j.jma.2022.02.010_bib0027 publication-title: Acta Metall. Sin. – volume: 15 start-page: 363 year: 2018 ident: 10.1016/j.jma.2022.02.010_bib0039 publication-title: China Foundry doi: 10.1007/s41230-018-7203-6 – volume: 187 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0034 publication-title: Corros. Sci. – volume: 1 start-page: 11 year: 1999 ident: 10.1016/j.jma.2022.02.010_bib0048 publication-title: Adv. Eng. Mater. doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N – volume: 189 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0032 publication-title: Corros. Sci. – volume: 95 start-page: 20 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0009 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.02.070 – volume: 35 start-page: 535 year: 2019 ident: 10.1016/j.jma.2022.02.010_bib0045 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.10.008 – volume: 891 year: 2022 ident: 10.1016/j.jma.2022.02.010_bib0031 publication-title: J. Alloy. Compd. – volume: 769 year: 2020 ident: 10.1016/j.jma.2022.02.010_bib0016 publication-title: Mater. Sci. Eng. A – volume: 700 start-page: 681 year: 2017 ident: 10.1016/j.jma.2022.02.010_bib0024 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2017.06.053 – volume: 152 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0013 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2021.109952 – volume: 120 start-page: 75 year: 2017 ident: 10.1016/j.jma.2022.02.010_bib0030 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2017.02.023 – volume: 729 start-page: 300 year: 2018 ident: 10.1016/j.jma.2022.02.010_bib0025 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2018.05.061 – volume: 8 start-page: 510 year: 2020 ident: 10.1016/j.jma.2022.02.010_bib0012 publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2020.02.007 – volume: 826 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0004 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2021.142002 – volume: 10 start-page: 527 year: 2022 ident: 10.1016/j.jma.2022.02.010_bib0014 publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2020.08.004 – volume: 28 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0007 publication-title: Mater. Today Commun. – volume: 9 start-page: 1084 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0038 publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2020.03.012 – volume: 993 start-page: 161 year: 2020 ident: 10.1016/j.jma.2022.02.010_bib0029 publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.993.161 – volume: 31 start-page: 358 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0037 publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(21)65501-2 – volume: 271 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0047 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2021.124928 – volume: 2 start-page: 24 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0043 publication-title: Corros. Commun. doi: 10.1016/j.corcom.2021.08.002 – volume: 92 start-page: 173 year: 2015 ident: 10.1016/j.jma.2022.02.010_bib0033 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.12.004 – volume: 15 start-page: 1395 year: 2007 ident: 10.1016/j.jma.2022.02.010_bib0028 publication-title: Intermetallics doi: 10.1016/j.intermet.2007.01.009 – volume: 725 start-page: 145 year: 2017 ident: 10.1016/j.jma.2022.02.010_bib0020 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2017.05.129 – volume: 10 start-page: 811 year: 2022 ident: 10.1016/j.jma.2022.02.010_bib0046 publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2021.08.020 – volume: 31 start-page: 1667 year: 2011 ident: 10.1016/j.jma.2022.02.010_bib0010 publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2011.07.015 – volume: 815 year: 2020 ident: 10.1016/j.jma.2022.02.010_bib0022 publication-title: J. Alloy. Compd. – year: 1992 ident: 10.1016/j.jma.2022.02.010_bib0040 – volume: 159 year: 2019 ident: 10.1016/j.jma.2022.02.010_bib0035 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.108133 – volume: 662 start-page: 241 year: 2016 ident: 10.1016/j.jma.2022.02.010_bib0019 publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2016.03.065 – volume: 15 start-page: 4800 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0042 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.10.099 – volume: 9 start-page: 1884 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0002 publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2021.06.024 – volume: 15 start-page: 363 year: 2018 ident: 10.1016/j.jma.2022.02.010_bib0011 publication-title: China Foundry doi: 10.1007/s41230-018-7203-6 – volume: 52 start-page: 1279 year: 2016 ident: 10.1016/j.jma.2022.02.010_bib0023 publication-title: Acta Metall. Sin. – volume: 31 start-page: 1612 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0008 publication-title: Trans. Nonferrous Met. Soc. China doi: 10.1016/S1003-6326(21)65602-9 – volume: 725 start-page: 145 year: 2017 ident: 10.1016/j.jma.2022.02.010_bib0026 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2017.05.129 – volume: 100 start-page: 398 year: 2019 ident: 10.1016/j.jma.2022.02.010_bib0005 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.09.021 – volume: 163 year: 2020 ident: 10.1016/j.jma.2022.02.010_bib0017 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2019.108303 – volume: 9 start-page: 1428 year: 2021 ident: 10.1016/j.jma.2022.02.010_bib0041 publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2020.11.008 – volume: 10 start-page: 627 year: 2022 ident: 10.1016/j.jma.2022.02.010_bib0001 publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2021.09.005 |
SSID | ssj0001853613 |
Score | 2.332089 |
Snippet | An investigation into the corrosion characteristics and mechanism of directionally solidified (DSed) Mg-3Zn-xCa (x = 0, 0.2, 0.5, 0.8 wt.%) alloys in 0.9 wt.%... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 3673 |
SubjectTerms | Corrosion mechanism Directional solidification Electrochemical characterization Mg-Zn-Ca alloy |
Title | The corrosion characteristics and mechanism of directionally solidified Mg-3Zn-xCa alloys |
URI | https://doaj.org/article/98467c6b5b4344b685a1d426524b7106 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXe_AkBNPN7CY52mKpQj1ZqF7CPqWlTcVWsP_e2U1a4kUvQsghbJbwzYZvdmfmG0KufWEMMwbQAkZGkOX4zyWs7eXudMatBB7CBYMn0R_C44iPGq2-fE5YJQ9cAXebe4LUQnEFCYASGZdtg7TCGShkxyC2jZzX2EyF0xVkISSqdRgzJHRNgs4QY0Gj01fMNoioodcfiKW3T_Zqj5DeVV9yQLZseUh2GzqBR-QFjUlxm4gTIYxU_xRZprI0dGZ9Ce94MaNzRyueCod80xXF1TU2Y4e-Jh28RclrGX11JfUB99XimAx798_dflT3RIg0Uu8y4lrkwGKwHD0xg95MIkBLYREYkA60UhacTGPrdQaZtiyRQqa4LUmcFqDy5IRsl_PSnhKaZpKp1PEcfQLgmUGb5SJz3KTMMa1Yi8RrgApdC4b7vhXTYp0ZNikQ08JjWsR4teMWudm88l6pZfw2uONR3wz0QtfhAZq_qM1f_GX-s_-Y5Jzs-C7yVY7eBdlefnzaS_Q1luoqLCu8P4w63x50zqA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+corrosion+characteristics+and+mechanism+of+directionally+solidified+Mg-3Zn-xCa+alloys&rft.jtitle=Journal+of+magnesium+and+alloys&rft.au=Yi+Zhang&rft.au=Xiaohui+Feng&rft.au=Qiuyan+Huang&rft.au=Yingju+Li&rft.date=2023-10-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2213-9567&rft.volume=11&rft.issue=10&rft.spage=3673&rft.epage=3687&rft_id=info:doi/10.1016%2Fj.jma.2022.02.010&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_98467c6b5b4344b685a1d426524b7106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-9567&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-9567&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-9567&client=summon |