The corrosion characteristics and mechanism of directionally solidified Mg-3Zn-xCa alloys

An investigation into the corrosion characteristics and mechanism of directionally solidified (DSed) Mg-3Zn-xCa (x = 0, 0.2, 0.5, 0.8 wt.%) alloys in 0.9 wt.% NaCl solution is presented. The DSed microstructure consists of columnar dendrites and eutectics distributed in the interdendritic region. Th...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnesium and alloys Vol. 11; no. 10; pp. 3673 - 3687
Main Authors Zhang, Yi, Feng, Xiaohui, Huang, Qiuyan, Li, Yingju, Hao, Xuehui, Wang, Changzheng, Yang, Yuansheng
Format Journal Article
LanguageEnglish
Published KeAi Communications Co., Ltd 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An investigation into the corrosion characteristics and mechanism of directionally solidified (DSed) Mg-3Zn-xCa (x = 0, 0.2, 0.5, 0.8 wt.%) alloys in 0.9 wt.% NaCl solution is presented. The DSed microstructure consists of columnar dendrites and eutectics distributed in the interdendritic region. The primary dendritic arm spacing (PDAS) and the volume fraction (fv) of the secondary phases are under the significant impact of the content of Ca. The corrosion rates evaluated using electrochemical measurements and immersion tests are accelerated monotonously with the increase of Ca content in DSed alloys. The corrosion resistance of the DSed alloys is significantly affected by the corrosion products film (CPF) and the secondary phases. The corrosion products of DSed Mg-3Zn alloy contain Mg(OH)2 and ZnO. The existence of ZnO greatly enhances the corrosion resistance of DSed Mg-3Zn alloy. As for the DSed alloys containing Ca content, a relatively protective CPF without deep pits can form on the surface of DSed Mg-3Zn-0.2Ca specimen during the corrosion. The fv of the secondary phases dominates the corrosion rate of the DSed Mg-Zn-Ca alloys. The corrosion of DSed Mg-3Zn-xCa alloys initiates as a result of micro-galvanic coupling between the cathodes of secondary phases and α-Mg matrix anode. Then, the corrosion gradually extends longitudinally with the breakdown of CPF.
AbstractList An investigation into the corrosion characteristics and mechanism of directionally solidified (DSed) Mg-3Zn-xCa (x = 0, 0.2, 0.5, 0.8 wt.%) alloys in 0.9 wt.% NaCl solution is presented. The DSed microstructure consists of columnar dendrites and eutectics distributed in the interdendritic region. The primary dendritic arm spacing (PDAS) and the volume fraction (fv) of the secondary phases are under the significant impact of the content of Ca. The corrosion rates evaluated using electrochemical measurements and immersion tests are accelerated monotonously with the increase of Ca content in DSed alloys. The corrosion resistance of the DSed alloys is significantly affected by the corrosion products film (CPF) and the secondary phases. The corrosion products of DSed Mg-3Zn alloy contain Mg(OH)2 and ZnO. The existence of ZnO greatly enhances the corrosion resistance of DSed Mg-3Zn alloy. As for the DSed alloys containing Ca content, a relatively protective CPF without deep pits can form on the surface of DSed Mg-3Zn-0.2Ca specimen during the corrosion. The fv of the secondary phases dominates the corrosion rate of the DSed Mg-Zn-Ca alloys. The corrosion of DSed Mg-3Zn-xCa alloys initiates as a result of micro-galvanic coupling between the cathodes of secondary phases and α-Mg matrix anode. Then, the corrosion gradually extends longitudinally with the breakdown of CPF.
Author Feng, Xiaohui
Huang, Qiuyan
Li, Yingju
Yang, Yuansheng
Hao, Xuehui
Zhang, Yi
Wang, Changzheng
Author_xml – sequence: 1
  givenname: Yi
  surname: Zhang
  fullname: Zhang, Yi
– sequence: 2
  givenname: Xiaohui
  orcidid: 0000-0003-0758-6609
  surname: Feng
  fullname: Feng, Xiaohui
– sequence: 3
  givenname: Qiuyan
  surname: Huang
  fullname: Huang, Qiuyan
– sequence: 4
  givenname: Yingju
  surname: Li
  fullname: Li, Yingju
– sequence: 5
  givenname: Xuehui
  orcidid: 0000-0002-2646-7966
  surname: Hao
  fullname: Hao, Xuehui
– sequence: 6
  givenname: Changzheng
  surname: Wang
  fullname: Wang, Changzheng
– sequence: 7
  givenname: Yuansheng
  surname: Yang
  fullname: Yang, Yuansheng
BookMark eNp1UMtKxTAQDaLg9fEB7vIDrXlM0nYpF19wxY0udBOmaaopbSNJF96_N9cHiCAMzHBmzpmZc0T25zA7Qs44Kznj-nwohwlLwYQoWQ7O9shKCC6LRulq_1d9SE5TGhhjvFZSc7kiTw-vjtoQY0g-zNS-YkS7uOjT4m2iOHd0chmdfZpo6Gnno7NLHsVx3NIURt_53ruO3r0U8nku3tdIcyts0wk56HFM7vQ7H5PHq8uH9U2xub--XV9sCgtML4WyugHBwCmlVSc0SA0WtWt1DdiDbVsHPVbMgawaYZ2QqLFSUMveamgbeUxuv3S7gIN5i37CuDUBvfkEQnwxGPMzozNNDbqyulUtSIC8QSHvQGgloK0401mr-tKy2Y8UXW-sX3D37hLRj4YzszPcDCYbbnaGG5aDs8zkf5g_l_zP-QBomIX5
CitedBy_id crossref_primary_10_1016_j_est_2024_112332
crossref_primary_10_1021_acsbiomaterials_4c00823
crossref_primary_10_1007_s12613_023_2775_6
crossref_primary_10_3390_ma16031324
crossref_primary_10_1016_j_jma_2024_10_001
crossref_primary_10_1016_j_jmrt_2024_07_046
crossref_primary_10_1177_02670844241270185
Cites_doi 10.1016/j.jallcom.2020.154735
10.1016/j.jma.2021.06.022
10.4028/www.scientific.net/MSF.816.411
10.1016/j.matchar.2015.12.003
10.1007/s41230-018-7203-6
10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
10.1016/j.jmst.2021.02.070
10.1016/j.jmst.2018.10.008
10.1016/j.msea.2017.06.053
10.1016/j.jpcs.2021.109952
10.1016/j.corsci.2017.02.023
10.1016/j.msea.2018.05.061
10.1016/j.jma.2020.02.007
10.1016/j.msea.2021.142002
10.1016/j.jma.2020.08.004
10.1016/j.jma.2020.03.012
10.4028/www.scientific.net/MSF.993.161
10.1016/S1003-6326(21)65501-2
10.1016/j.matchemphys.2021.124928
10.1016/j.corcom.2021.08.002
10.1016/j.corsci.2014.12.004
10.1016/j.intermet.2007.01.009
10.1016/j.jallcom.2017.05.129
10.1016/j.jma.2021.08.020
10.1016/j.msec.2011.07.015
10.1016/j.corsci.2019.108133
10.1016/j.msea.2016.03.065
10.1016/j.jmrt.2021.10.099
10.1016/j.jma.2021.06.024
10.1016/S1003-6326(21)65602-9
10.1016/j.actbio.2019.09.021
10.1016/j.corsci.2019.108303
10.1016/j.jma.2020.11.008
10.1016/j.jma.2021.09.005
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.jma.2022.02.010
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2213-9567
EndPage 3687
ExternalDocumentID oai_doaj_org_article_98467c6b5b4344b685a1d426524b7106
10_1016_j_jma_2022_02_010
GroupedDBID -SB
-S~
0R~
4.4
457
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXDM
AAXUO
AAYWO
AAYXX
ABMAC
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
CAJEB
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
O-L
O9-
OK1
Q--
RIG
ROL
SSZ
U1G
U5L
ID FETCH-LOGICAL-c406t-5c694204e5565d264364ca6eb684af4cbbe4fa70e43792ce23a6a75483fc64b93
IEDL.DBID DOA
ISSN 2213-9567
IngestDate Wed Aug 27 00:44:24 EDT 2025
Thu Apr 24 23:00:49 EDT 2025
Tue Jul 01 02:14:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-5c694204e5565d264364ca6eb684af4cbbe4fa70e43792ce23a6a75483fc64b93
ORCID 0000-0002-2646-7966
0000-0003-0758-6609
OpenAccessLink https://doaj.org/article/98467c6b5b4344b685a1d426524b7106
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_98467c6b5b4344b685a1d426524b7106
crossref_citationtrail_10_1016_j_jma_2022_02_010
crossref_primary_10_1016_j_jma_2022_02_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-00
2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-00
PublicationDecade 2020
PublicationTitle Journal of magnesium and alloys
PublicationYear 2023
Publisher KeAi Communications Co., Ltd
Publisher_xml – name: KeAi Communications Co., Ltd
References Jing (10.1016/j.jma.2022.02.010_bib0023) 2016; 52
Zhang (10.1016/j.jma.2022.02.010_bib0029) 2020; 993
Liu (10.1016/j.jma.2022.02.010_bib0037) 2021; 31
Yan (10.1016/j.jma.2022.02.010_bib0027) 2019; 55
Feng (10.1016/j.jma.2022.02.010_bib0035) 2019; 159
Zhao (10.1016/j.jma.2022.02.010_bib0009) 2021; 95
Du (10.1016/j.jma.2022.02.010_bib0014) 2022; 10
Wang (10.1016/j.jma.2022.02.010_bib0043) 2021; 2
Kurz (10.1016/j.jma.2022.02.010_bib0040) 1992
Li (10.1016/j.jma.2022.02.010_bib0011) 2018; 15
Liu (10.1016/j.jma.2022.02.010_bib0038) 2021; 9
Jia (10.1016/j.jma.2022.02.010_bib0018) 2015; 816
Chen (10.1016/j.jma.2022.02.010_bib0042) 2021; 15
Chen (10.1016/j.jma.2022.02.010_bib0036) 2020; 163
Jia (10.1016/j.jma.2022.02.010_bib0030) 2017; 120
Yang (10.1016/j.jma.2022.02.010_bib0026) 2017; 725
Song (10.1016/j.jma.2022.02.010_bib0045) 2019; 35
Liu (10.1016/j.jma.2022.02.010_bib0031) 2022; 891
Wang (10.1016/j.jma.2022.02.010_bib0015) 2020; 795
Li (10.1016/j.jma.2022.02.010_bib0039) 2018; 15
Tsakiris (10.1016/j.jma.2022.02.010_bib0002) 2021; 9
Zhao (10.1016/j.jma.2022.02.010_bib0025) 2018; 729
Kiani (10.1016/j.jma.2022.02.010_bib0049) 2021; 831
Pulido-González (10.1016/j.jma.2022.02.010_bib0012) 2020; 8
Li (10.1016/j.jma.2022.02.010_bib0044) 2021; 179
Asadi (10.1016/j.jma.2022.02.010_bib0007) 2021; 28
Parfenov (10.1016/j.jma.2022.02.010_bib0017) 2020; 163
Yang (10.1016/j.jma.2022.02.010_bib0020) 2017; 725
Atrens (10.1016/j.jma.2022.02.010_bib0033) 2015; 92
Gong (10.1016/j.jma.2022.02.010_bib0013) 2021; 152
Pulido-González (10.1016/j.jma.2022.02.010_bib0003) 2020; 831
Xia (10.1016/j.jma.2022.02.010_bib0008) 2021; 31
Wang (10.1016/j.jma.2022.02.010_bib0022) 2020; 815
Song (10.1016/j.jma.2022.02.010_bib0048) 1999; 1
Cihova (10.1016/j.jma.2022.02.010_bib0005) 2019; 100
Bairagi (10.1016/j.jma.2022.02.010_bib0001) 2022; 10
Luo (10.1016/j.jma.2022.02.010_bib0019) 2016; 662
Dobkowska (10.1016/j.jma.2022.02.010_bib0046) 2022; 10
Zhang (10.1016/j.jma.2022.02.010_bib0010) 2011; 31
Lin (10.1016/j.jma.2022.02.010_bib0024) 2017; 700
Yang (10.1016/j.jma.2022.02.010_bib0034) 2021; 187
Zhang (10.1016/j.jma.2022.02.010_bib0028) 2007; 15
Shuai (10.1016/j.jma.2022.02.010_bib0021) 2016; 111
Horky (10.1016/j.jma.2022.02.010_bib0004) 2021; 826
Pulido-González (10.1016/j.jma.2022.02.010_bib0006) 2022; 10
Zhou (10.1016/j.jma.2022.02.010_bib0016) 2020; 769
Li (10.1016/j.jma.2022.02.010_bib0032) 2021; 189
Bazhenov (10.1016/j.jma.2022.02.010_bib0041) 2021; 9
Cao (10.1016/j.jma.2022.02.010_bib0047) 2021; 271
References_xml – volume: 831
  year: 2020
  ident: 10.1016/j.jma.2022.02.010_bib0003
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2020.154735
– volume: 10
  start-page: 540
  year: 2022
  ident: 10.1016/j.jma.2022.02.010_bib0006
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2021.06.022
– volume: 179
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0044
  publication-title: Mater. Charact.
– volume: 163
  year: 2020
  ident: 10.1016/j.jma.2022.02.010_bib0036
  publication-title: Corros. Sci.
– volume: 816
  start-page: 411
  year: 2015
  ident: 10.1016/j.jma.2022.02.010_bib0018
  publication-title: Mater. Sci. Forum.
  doi: 10.4028/www.scientific.net/MSF.816.411
– volume: 831
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0049
  publication-title: Mater. Sci. Eng. A
– volume: 795
  year: 2020
  ident: 10.1016/j.jma.2022.02.010_bib0015
  publication-title: Mater. Sci. Eng. A
– volume: 111
  start-page: 170
  year: 2016
  ident: 10.1016/j.jma.2022.02.010_bib0021
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2015.12.003
– volume: 55
  start-page: 202
  year: 2019
  ident: 10.1016/j.jma.2022.02.010_bib0027
  publication-title: Acta Metall. Sin.
– volume: 15
  start-page: 363
  year: 2018
  ident: 10.1016/j.jma.2022.02.010_bib0039
  publication-title: China Foundry
  doi: 10.1007/s41230-018-7203-6
– volume: 187
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0034
  publication-title: Corros. Sci.
– volume: 1
  start-page: 11
  year: 1999
  ident: 10.1016/j.jma.2022.02.010_bib0048
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
– volume: 189
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0032
  publication-title: Corros. Sci.
– volume: 95
  start-page: 20
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0009
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.02.070
– volume: 35
  start-page: 535
  year: 2019
  ident: 10.1016/j.jma.2022.02.010_bib0045
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.10.008
– volume: 891
  year: 2022
  ident: 10.1016/j.jma.2022.02.010_bib0031
  publication-title: J. Alloy. Compd.
– volume: 769
  year: 2020
  ident: 10.1016/j.jma.2022.02.010_bib0016
  publication-title: Mater. Sci. Eng. A
– volume: 700
  start-page: 681
  year: 2017
  ident: 10.1016/j.jma.2022.02.010_bib0024
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2017.06.053
– volume: 152
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0013
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2021.109952
– volume: 120
  start-page: 75
  year: 2017
  ident: 10.1016/j.jma.2022.02.010_bib0030
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2017.02.023
– volume: 729
  start-page: 300
  year: 2018
  ident: 10.1016/j.jma.2022.02.010_bib0025
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2018.05.061
– volume: 8
  start-page: 510
  year: 2020
  ident: 10.1016/j.jma.2022.02.010_bib0012
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2020.02.007
– volume: 826
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0004
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2021.142002
– volume: 10
  start-page: 527
  year: 2022
  ident: 10.1016/j.jma.2022.02.010_bib0014
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2020.08.004
– volume: 28
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0007
  publication-title: Mater. Today Commun.
– volume: 9
  start-page: 1084
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0038
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2020.03.012
– volume: 993
  start-page: 161
  year: 2020
  ident: 10.1016/j.jma.2022.02.010_bib0029
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.993.161
– volume: 31
  start-page: 358
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0037
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(21)65501-2
– volume: 271
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0047
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2021.124928
– volume: 2
  start-page: 24
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0043
  publication-title: Corros. Commun.
  doi: 10.1016/j.corcom.2021.08.002
– volume: 92
  start-page: 173
  year: 2015
  ident: 10.1016/j.jma.2022.02.010_bib0033
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2014.12.004
– volume: 15
  start-page: 1395
  year: 2007
  ident: 10.1016/j.jma.2022.02.010_bib0028
  publication-title: Intermetallics
  doi: 10.1016/j.intermet.2007.01.009
– volume: 725
  start-page: 145
  year: 2017
  ident: 10.1016/j.jma.2022.02.010_bib0020
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2017.05.129
– volume: 10
  start-page: 811
  year: 2022
  ident: 10.1016/j.jma.2022.02.010_bib0046
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2021.08.020
– volume: 31
  start-page: 1667
  year: 2011
  ident: 10.1016/j.jma.2022.02.010_bib0010
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2011.07.015
– volume: 815
  year: 2020
  ident: 10.1016/j.jma.2022.02.010_bib0022
  publication-title: J. Alloy. Compd.
– year: 1992
  ident: 10.1016/j.jma.2022.02.010_bib0040
– volume: 159
  year: 2019
  ident: 10.1016/j.jma.2022.02.010_bib0035
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.108133
– volume: 662
  start-page: 241
  year: 2016
  ident: 10.1016/j.jma.2022.02.010_bib0019
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2016.03.065
– volume: 15
  start-page: 4800
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0042
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.10.099
– volume: 9
  start-page: 1884
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0002
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2021.06.024
– volume: 15
  start-page: 363
  year: 2018
  ident: 10.1016/j.jma.2022.02.010_bib0011
  publication-title: China Foundry
  doi: 10.1007/s41230-018-7203-6
– volume: 52
  start-page: 1279
  year: 2016
  ident: 10.1016/j.jma.2022.02.010_bib0023
  publication-title: Acta Metall. Sin.
– volume: 31
  start-page: 1612
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0008
  publication-title: Trans. Nonferrous Met. Soc. China
  doi: 10.1016/S1003-6326(21)65602-9
– volume: 725
  start-page: 145
  year: 2017
  ident: 10.1016/j.jma.2022.02.010_bib0026
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2017.05.129
– volume: 100
  start-page: 398
  year: 2019
  ident: 10.1016/j.jma.2022.02.010_bib0005
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.09.021
– volume: 163
  year: 2020
  ident: 10.1016/j.jma.2022.02.010_bib0017
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2019.108303
– volume: 9
  start-page: 1428
  year: 2021
  ident: 10.1016/j.jma.2022.02.010_bib0041
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2020.11.008
– volume: 10
  start-page: 627
  year: 2022
  ident: 10.1016/j.jma.2022.02.010_bib0001
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2021.09.005
SSID ssj0001853613
Score 2.332089
Snippet An investigation into the corrosion characteristics and mechanism of directionally solidified (DSed) Mg-3Zn-xCa (x = 0, 0.2, 0.5, 0.8 wt.%) alloys in 0.9 wt.%...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 3673
SubjectTerms Corrosion mechanism
Directional solidification
Electrochemical characterization
Mg-Zn-Ca alloy
Title The corrosion characteristics and mechanism of directionally solidified Mg-3Zn-xCa alloys
URI https://doaj.org/article/98467c6b5b4344b685a1d426524b7106
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF7Ekx7EJ9YXe_AkBNPN7CY52mKpQj1ZqF7CPqWlTcVWsP_e2U1a4kUvQsghbJbwzYZvdmfmG0KufWEMMwbQAkZGkOX4zyWs7eXudMatBB7CBYMn0R_C44iPGq2-fE5YJQ9cAXebe4LUQnEFCYASGZdtg7TCGShkxyC2jZzX2EyF0xVkISSqdRgzJHRNgs4QY0Gj01fMNoioodcfiKW3T_Zqj5DeVV9yQLZseUh2GzqBR-QFjUlxm4gTIYxU_xRZprI0dGZ9Ce94MaNzRyueCod80xXF1TU2Y4e-Jh28RclrGX11JfUB99XimAx798_dflT3RIg0Uu8y4lrkwGKwHD0xg95MIkBLYREYkA60UhacTGPrdQaZtiyRQqa4LUmcFqDy5IRsl_PSnhKaZpKp1PEcfQLgmUGb5SJz3KTMMa1Yi8RrgApdC4b7vhXTYp0ZNikQ08JjWsR4teMWudm88l6pZfw2uONR3wz0QtfhAZq_qM1f_GX-s_-Y5Jzs-C7yVY7eBdlefnzaS_Q1luoqLCu8P4w63x50zqA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+corrosion+characteristics+and+mechanism+of+directionally+solidified+Mg-3Zn-xCa+alloys&rft.jtitle=Journal+of+magnesium+and+alloys&rft.au=Yi+Zhang&rft.au=Xiaohui+Feng&rft.au=Qiuyan+Huang&rft.au=Yingju+Li&rft.date=2023-10-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2213-9567&rft.volume=11&rft.issue=10&rft.spage=3673&rft.epage=3687&rft_id=info:doi/10.1016%2Fj.jma.2022.02.010&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_98467c6b5b4344b685a1d426524b7106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2213-9567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2213-9567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2213-9567&client=summon