Neural networks for power flow: Graph neural solver

•Graph neural networks to solve AC power flow.•Our graph neural solver uses a novel graph neural network architecture.•Training is performed by minimizing the violation of physical laws.•It is robust to variations of injections, power grid topology, and line characteristics.•Experimental validation...

Full description

Saved in:
Bibliographic Details
Published inElectric power systems research Vol. 189; p. 106547
Main Authors Donon, Balthazar, Clément, Rémy, Donnot, Benjamin, Marot, Antoine, Guyon, Isabelle, Schoenauer, Marc
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.12.2020
Elsevier Science Ltd
Elsevier
Subjects
Online AccessGet full text
ISSN0378-7796
1873-2046
DOI10.1016/j.epsr.2020.106547

Cover

Abstract •Graph neural networks to solve AC power flow.•Our graph neural solver uses a novel graph neural network architecture.•Training is performed by minimizing the violation of physical laws.•It is robust to variations of injections, power grid topology, and line characteristics.•Experimental validation on standard IEEE power grids (case9, case14, case30, case118). Recent trends in power systems and those envisioned for the next few decades push Transmission System Operators to develop probabilistic approaches to risk estimation. However, current methods to solve AC power flows are too slow to fully attain this objective. Thus we propose a novel artificial neural network architecture that achieves a more suitable balance between computational speed and accuracy in this context. Improving on our previous work on Graph Neural Solver for Power System [1], our architecture is based on Graph Neural Networks and allows for fast and parallel computations. It learns to perform a power flow computation by directly minimizing the violation of Kirchhoff’s law at each bus during training. Unlike previous approaches, our graph neural solver learns by itself and does not try to imitate the output of a Newton-Raphson solver. It is robust to variations of injections, power grid topology, and line characteristics. We experimentally demonstrate the viability of our approach on standard IEEE power grids (case9, case14, case30 and case118) both in terms of accuracy and computational time.
AbstractList •Graph neural networks to solve AC power flow.•Our graph neural solver uses a novel graph neural network architecture.•Training is performed by minimizing the violation of physical laws.•It is robust to variations of injections, power grid topology, and line characteristics.•Experimental validation on standard IEEE power grids (case9, case14, case30, case118). Recent trends in power systems and those envisioned for the next few decades push Transmission System Operators to develop probabilistic approaches to risk estimation. However, current methods to solve AC power flows are too slow to fully attain this objective. Thus we propose a novel artificial neural network architecture that achieves a more suitable balance between computational speed and accuracy in this context. Improving on our previous work on Graph Neural Solver for Power System [1], our architecture is based on Graph Neural Networks and allows for fast and parallel computations. It learns to perform a power flow computation by directly minimizing the violation of Kirchhoff’s law at each bus during training. Unlike previous approaches, our graph neural solver learns by itself and does not try to imitate the output of a Newton-Raphson solver. It is robust to variations of injections, power grid topology, and line characteristics. We experimentally demonstrate the viability of our approach on standard IEEE power grids (case9, case14, case30 and case118) both in terms of accuracy and computational time.
Recent trends in power systems and those envisioned for the next few decades push Transmission System Operators to develop probabilistic approaches to risk estimation. However, current methods to solve power flows are too slow to fully attain this objective. Thus we propose a novel artificial neural network architecture that achieves a more suitable balance between computational speed and accuracy in this context. Improving on our previous work on Graph Neural Solver for Power System [10], our architecture is based on Graph Neural Networks and allows for fast and parallel computations. It learns to perform a power flow computation by directly minimizing the violation of Kirchhoff's law at each bus during training. Unlike previous approaches, our graph neural solver learns by itself and does not try to imitate the output of a Newton-Raphson solver. It is robust to variations of injections, power grid topology, and line characteristics. We experimentally demonstrate the viability of our approach on standard IEEE power grids (case9, case14, case30 and case118) both in terms of accuracy and computational time.
Recent trends in power systems and those envisioned for the next few decades push Transmission System Operators to develop probabilistic approaches to risk estimation. However, current methods to solve AC power flows are too slow to fully attain this objective. Thus we propose a novel artificial neural network architecture that achieves a more suitable balance between computational speed and accuracy in this context. Improving on our previous work on Graph Neural Solver for Power System [1], our architecture is based on Graph Neural Networks and allows for fast and parallel computations. It learns to perform a power flow computation by directly minimizing the violation of Kirchhoff's law at each bus during training. Unlike previous approaches, our graph neural solver learns by itself and does not try to imitate the output of a Newton-Raphson solver. It is robust to variations of injections, power grid topology, and line characteristics. We experimentally demonstrate the viability of our approach on standard IEEE power grids (case9, case14, case30 and case118) both in terms of accuracy and computational time.
ArticleNumber 106547
Author Marot, Antoine
Clément, Rémy
Guyon, Isabelle
Donon, Balthazar
Schoenauer, Marc
Donnot, Benjamin
Author_xml – sequence: 1
  givenname: Balthazar
  orcidid: 0000-0003-1148-8067
  surname: Donon
  fullname: Donon, Balthazar
  email: balthazar.donon@rte-france.com
  organization: Réseau de Transport d’Électricité, Paris, France
– sequence: 2
  givenname: Rémy
  surname: Clément
  fullname: Clément, Rémy
  email: remy.clement@rte-france.com
  organization: Réseau de Transport d’Électricité, Paris, France
– sequence: 3
  givenname: Benjamin
  orcidid: 0000-0002-1750-9001
  surname: Donnot
  fullname: Donnot, Benjamin
  email: benjamin.donnot@rte-france.com
  organization: Réseau de Transport d’Électricité, Paris, France
– sequence: 4
  givenname: Antoine
  surname: Marot
  fullname: Marot, Antoine
  email: antoine.marot@rte-france.com
  organization: Réseau de Transport d’Électricité, Paris, France
– sequence: 5
  givenname: Isabelle
  surname: Guyon
  fullname: Guyon, Isabelle
  email: iguyon@lri.fr
  organization: TAU group of Lab. de Rec. en Informatique, UPSud/INRIA Université Paris-Saclay, Paris, France
– sequence: 6
  givenname: Marc
  surname: Schoenauer
  fullname: Schoenauer, Marc
  email: marc.schoenauer@inria.fr
  organization: TAU group of Lab. de Rec. en Informatique, UPSud/INRIA Université Paris-Saclay, Paris, France
BackLink https://hal.science/hal-02372741$$DView record in HAL
BookMark eNp9kD1PwzAQhi1UJNrCH2CKxMSQYjv-SBBLVUFBqmCB2XKci-oQ4mCnrfj3JAQWhk4n3T3v6dUzQ5PGNYDQJcELgom4qRbQBr-gmA4LwZk8QVOSyiSmmIkJmuJEprGUmThDsxAqjLHIJJ-i5Bl2XtdRA93B-fcQlc5HrTuAj8raHW6jtdfttj__UMHVe_Dn6LTUdYCL3zlHbw_3r6vHePOyflotN7FhWHQx11xyDRJMXydhgEWe54kUecFwlhMuClpSpkuqE4G1kTIvWWmyjBdpSqTmyRxdj3-3ulattx_afymnrXpcbtSwwzSRVDKyJz17NbKtd587CJ2q3M43fT1FWZpJIVOe9VQ6Usa7EDyUythOd9Y1nde2VgSrQaeq1KBTDTrVqLOP0n_Rv0ZHQ3djCHpNewteBWOhMVBYD6ZThbPH4t-G5Y6w
CitedBy_id crossref_primary_10_1109_OJCAS_2023_3234244
crossref_primary_10_1016_j_epsr_2024_110864
crossref_primary_10_1109_ACCESS_2024_3406471
crossref_primary_10_1109_TPWRS_2022_3195301
crossref_primary_10_1016_j_epsr_2022_108362
crossref_primary_10_1016_j_epsr_2022_108282
crossref_primary_10_3390_app13126937
crossref_primary_10_1007_s00502_024_01296_9
crossref_primary_10_1016_j_ijepes_2022_108655
crossref_primary_10_1016_j_eswa_2021_115029
crossref_primary_10_1016_j_watres_2024_121933
crossref_primary_10_1016_j_apenergy_2024_125034
crossref_primary_10_1016_j_epsr_2024_111014
crossref_primary_10_1615_JMachLearnModelComput_2024054885
crossref_primary_10_1016_j_segan_2023_101056
crossref_primary_10_3390_math10050786
crossref_primary_10_1109_TPWRS_2023_3262851
crossref_primary_10_1016_j_egyai_2023_100262
crossref_primary_10_1109_TIM_2025_3545981
crossref_primary_10_1016_j_energy_2025_134661
crossref_primary_10_1016_j_egyai_2024_100369
crossref_primary_10_1016_j_epsr_2022_109005
crossref_primary_10_1007_s00202_024_02837_3
crossref_primary_10_1016_j_epsr_2024_110677
crossref_primary_10_1016_j_engappai_2022_105567
crossref_primary_10_1109_TPWRS_2022_3162473
crossref_primary_10_1016_j_joule_2024_11_002
crossref_primary_10_1109_ACCESS_2024_3512993
crossref_primary_10_1109_OAJPE_2022_3223962
crossref_primary_10_1016_j_engappai_2024_109426
crossref_primary_10_1186_s42162_020_00127_3
crossref_primary_10_1061__ASCE_WR_1943_5452_0001550
crossref_primary_10_1016_j_apenergy_2024_124793
crossref_primary_10_1016_j_epsr_2024_110795
crossref_primary_10_1007_s10489_024_05772_9
crossref_primary_10_1016_j_egyr_2023_02_042
crossref_primary_10_1016_j_egyai_2025_100471
crossref_primary_10_1109_ACCESS_2021_3111898
crossref_primary_10_1063_5_0235301
crossref_primary_10_1016_j_ijepes_2024_110112
crossref_primary_10_1016_j_heliyon_2023_e14524
crossref_primary_10_1049_gtd2_12278
crossref_primary_10_1016_j_ijepes_2025_110513
crossref_primary_10_1038_s44287_024_00076_z
crossref_primary_10_1109_TSG_2024_3458438
crossref_primary_10_1109_TII_2024_3398058
crossref_primary_10_1016_j_apenergy_2023_120837
Cites_doi 10.1103/PhysRevA.96.042113
10.1109/TNN.2008.2005605
10.1109/TKDE.2009.191
10.1109/MSP.2017.2693418
10.1109/TPWRS.2010.2051168
10.1016/j.neunet.2014.09.003
10.1049/ip-gtd:19951484
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Dec 2020
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Dec 2020
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
1XC
VOOES
DOI 10.1016/j.epsr.2020.106547
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-2046
ExternalDocumentID oai_HAL_hal_02372741v1
10_1016_j_epsr_2020_106547
S0378779620303515
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SP
8FD
EFKBS
FR3
KR7
L7M
1XC
VOOES
ID FETCH-LOGICAL-c406t-5a575ae7ec54734e06bbb376bd409b156d2f24af2a360ac77bf4fc995d8817a53
IEDL.DBID AIKHN
ISSN 0378-7796
IngestDate Fri May 09 12:16:49 EDT 2025
Fri Jul 25 06:15:26 EDT 2025
Thu Apr 24 23:10:46 EDT 2025
Tue Jul 01 04:32:00 EDT 2025
Fri Feb 23 02:46:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Solver
Graph neural solver
Graph neural networks
Power flow
Artificial neural networks
Power Flow
Artificial Neural Networks
Graph Neural Solver
Graph Neural Networks
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-5a575ae7ec54734e06bbb376bd409b156d2f24af2a360ac77bf4fc995d8817a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1148-8067
0000-0002-1750-9001
0000-0003-1450-6830
OpenAccessLink https://hal.science/hal-02372741
PQID 2489767859
PQPubID 2047565
ParticipantIDs hal_primary_oai_HAL_hal_02372741v1
proquest_journals_2489767859
crossref_citationtrail_10_1016_j_epsr_2020_106547
crossref_primary_10_1016_j_epsr_2020_106547
elsevier_sciencedirect_doi_10_1016_j_epsr_2020_106547
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
– name: Elsevier
References Donnot, Donon, Guyon, Zhengying, Marot, Panciatici, Schoenauer (bib0006) 2019
Schmidhuber (bib0009) 2015; 61
J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message passing for quantum chemistry, ArXiv Computing Research Repository (2017).
Donon, Donnot, Guyon, Marot (bib0001) 2019
D2.2 - guidelines for implementing the new reliability assessment and optimization methodology, GARPUR Consortium (2016).
Schütt, Kindermans, Sauceda Felix, Chmiela, Tkatchenko, Müller (bib0014) 2017
Bronstein, Bruna, LeCun, Szlam, Vandergheynst (bib0027) 2017; 34
Donnot, Guyon, Schoenauer, Marot, Panciatici (bib0005) 2018
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, Software available from tensorflow.org.
J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, Accelerating Eulerian fluid simulation with convolutional networks, ArXiv Computing Research Repository (2016).
T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, ArXiv Computing Research Repository (2016).
Mills, Spanner, Tamblyn (bib0013) 2017; 96
Karangelos, Wehenkel (bib0003) 2016
Zimmerman, Murillo-Sanchez, Thomas (bib0030) 2011; 26
Goodfellow, Bengio, Courville (bib0008) 2016
Defferrard, Bresson, Vandergheynst (bib0022) 2016
M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. Salakhutdinov, A.J. Smola, Deep sets, ArXiv Computing Research Repository (2017).
Nguyen (bib0004) 1995; 142
Pan, Yang (bib0028) 2010; 22
Cong, Choi, Lukin (bib0012) 2019; 15
P.W. Battaglia, et al. Relational inductive biases, deep learning, and graph networks, ArXiv Computing Research Repository (2018).
Bruna, Zaremba, Szlam, Lecun (bib0021) 2014
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (bib0016) 2009; 20
Kipf, Fetaya, Wang, Welling, Zemel (bib0010) 2018
W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, ArXiv Computing Research Repository (2017).
A. Santoro, D. Raposo, D.G.T. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, T.P. Lillicrap, A simple neural network module for relational reasoning, ArXiv Computing Research Repository (2017).
Y. Li, D. Tarlow, M. Brockschmidt, R.S. Zemel, Gated graph sequence neural networks, ArXiv Computing Research Repository (2015).
Duchesne, Karangelos, Wehenkel (bib0007) 2018
D.K. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, R.P. Adams, Convolutional networks on graphs for learning molecular fingerprints, ArXiv Computing Research Repository (2015).
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0031) 2014
R. Herzig, M. Raboh, G. Chechik, J. Berant, A. Globerson, Mapping images to scene graphs with permutation-invariant structured prediction, ArXiv Computing Research Repository (2018).
10.1016/j.epsr.2020.106547_bib0020
Bronstein (10.1016/j.epsr.2020.106547_bib0027) 2017; 34
10.1016/j.epsr.2020.106547_bib0026
10.1016/j.epsr.2020.106547_bib0025
10.1016/j.epsr.2020.106547_bib0002
10.1016/j.epsr.2020.106547_bib0024
10.1016/j.epsr.2020.106547_bib0023
Goodfellow (10.1016/j.epsr.2020.106547_sbref0007) 2016
Donnot (10.1016/j.epsr.2020.106547_bib0006) 2019
Cong (10.1016/j.epsr.2020.106547_bib0012) 2019; 15
Mills (10.1016/j.epsr.2020.106547_bib0013) 2017; 96
Schütt (10.1016/j.epsr.2020.106547_bib0014) 2017
10.1016/j.epsr.2020.106547_bib0029
Defferrard (10.1016/j.epsr.2020.106547_bib0022) 2016
Pan (10.1016/j.epsr.2020.106547_bib0028) 2010; 22
Donon (10.1016/j.epsr.2020.106547_bib0001) 2019
10.1016/j.epsr.2020.106547_bib0011
10.1016/j.epsr.2020.106547_bib0015
Kipf (10.1016/j.epsr.2020.106547_bib0010) 2018
Goodfellow (10.1016/j.epsr.2020.106547_bib0031) 2014
Donnot (10.1016/j.epsr.2020.106547_bib0005) 2018
Bruna (10.1016/j.epsr.2020.106547_bib0021) 2014
Karangelos (10.1016/j.epsr.2020.106547_bib0003) 2016
Nguyen (10.1016/j.epsr.2020.106547_bib0004) 1995; 142
Scarselli (10.1016/j.epsr.2020.106547_bib0016) 2009; 20
Zimmerman (10.1016/j.epsr.2020.106547_bib0030) 2011; 26
Schmidhuber (10.1016/j.epsr.2020.106547_bib0009) 2015; 61
10.1016/j.epsr.2020.106547_bib0019
10.1016/j.epsr.2020.106547_bib0018
10.1016/j.epsr.2020.106547_bib0017
Duchesne (10.1016/j.epsr.2020.106547_bib0007) 2018
References_xml – year: 2018
  ident: bib0005
  article-title: Fast Power system security analysis with Guided Dropout
  publication-title: European Symposium on Artificial Neural Networks
– year: 2016
  ident: bib0008
  article-title: Deep Learning
– reference: J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message passing for quantum chemistry, ArXiv Computing Research Repository (2017).
– volume: 96
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib0013
  article-title: Deep learning and the Schrödinger equation
  publication-title: Phys. Rev. A
– volume: 20
  start-page: 61
  year: 2009
  end-page: 80
  ident: bib0016
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: Y. Li, D. Tarlow, M. Brockschmidt, R.S. Zemel, Gated graph sequence neural networks, ArXiv Computing Research Repository (2015).
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: bib0028
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, Software available from tensorflow.org.
– volume: 142
  start-page: 51
  year: 1995
  end-page: 58
  ident: bib0004
  article-title: Neural network load-flow
  publication-title: IEE Proc. Gener. Transm Distrib.
– year: 2019
  ident: bib0006
  article-title: Leap nets for power grid perturbations
  publication-title: European Symposium on Artificial Neural Networks
– reference: R. Herzig, M. Raboh, G. Chechik, J. Berant, A. Globerson, Mapping images to scene graphs with permutation-invariant structured prediction, ArXiv Computing Research Repository (2018).
– reference: D.K. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, R.P. Adams, Convolutional networks on graphs for learning molecular fingerprints, ArXiv Computing Research Repository (2015).
– reference: A. Santoro, D. Raposo, D.G.T. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, T.P. Lillicrap, A simple neural network module for relational reasoning, ArXiv Computing Research Repository (2017).
– reference: M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. Salakhutdinov, A.J. Smola, Deep sets, ArXiv Computing Research Repository (2017).
– year: 2018
  ident: bib0007
  article-title: Using machine learning to enable probabilistic reliability assessment in operation planning
  publication-title: Power Systems Computation Conference (PSCC)
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: bib0009
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
– year: 2014
  ident: bib0021
  article-title: Spectral networks and locally connected networks on graphs
  publication-title: International Conference on Learning Representations
– year: 2019
  ident: bib0001
  article-title: Graph neural solver for power systems
  publication-title: International Joint Conference on Neural Networks
– reference: P.W. Battaglia, et al. Relational inductive biases, deep learning, and graph networks, ArXiv Computing Research Repository (2018).
– reference: W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, ArXiv Computing Research Repository (2017).
– reference: D2.2 - guidelines for implementing the new reliability assessment and optimization methodology, GARPUR Consortium (2016).
– year: 2018
  ident: bib0010
  article-title: Neural relational inference for interacting systems
  publication-title: Proceedings of the 35th International Conference on Machine Learning, ICML
– year: 2016
  ident: bib0022
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Advances in Neural Information Processing Systems 29
– volume: 26
  start-page: 12
  year: 2011
  end-page: 19
  ident: bib0030
  article-title: Matpower: steady-state operations, planning, and analysis tools for power systems research and education
  publication-title: IEEE Trans. Power Syst.
– reference: J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, Accelerating Eulerian fluid simulation with convolutional networks, ArXiv Computing Research Repository (2016).
– reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, ArXiv Computing Research Repository (2016).
– year: 2014
  ident: bib0031
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems 27
– year: 2017
  ident: bib0014
  article-title: Schnet: a continuous-filter convolutional neural network for modeling quantum interactions
  publication-title: Advances in Neural Information Processing Systems 30
– year: 2016
  ident: bib0003
  article-title: Probabilistic reliability management approach and criteria for power system real-time operation
  publication-title: Power Systems Computation Conference (PSCC)
– volume: 15
  start-page: 1273
  year: 2019
  end-page: 1278
  ident: bib0012
  article-title: Quantum convolutional neural networks
  publication-title: Nature Physics
– volume: 34
  start-page: 18
  year: 2017
  end-page: 42
  ident: bib0027
  article-title: Geometric deep learning: going beyond euclidean data
  publication-title: IEEE Signal Process. Mag.
– volume: 15
  start-page: 1273
  year: 2019
  ident: 10.1016/j.epsr.2020.106547_bib0012
  article-title: Quantum convolutional neural networks
– ident: 10.1016/j.epsr.2020.106547_bib0019
– ident: 10.1016/j.epsr.2020.106547_bib0023
– year: 2014
  ident: 10.1016/j.epsr.2020.106547_bib0021
  article-title: Spectral networks and locally connected networks on graphs
– ident: 10.1016/j.epsr.2020.106547_bib0002
– year: 2018
  ident: 10.1016/j.epsr.2020.106547_bib0010
  article-title: Neural relational inference for interacting systems
– ident: 10.1016/j.epsr.2020.106547_bib0015
– ident: 10.1016/j.epsr.2020.106547_bib0017
– volume: 96
  start-page: 1
  year: 2017
  ident: 10.1016/j.epsr.2020.106547_bib0013
  article-title: Deep learning and the Schrödinger equation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.96.042113
– year: 2018
  ident: 10.1016/j.epsr.2020.106547_bib0007
  article-title: Using machine learning to enable probabilistic reliability assessment in operation planning
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  ident: 10.1016/j.epsr.2020.106547_bib0016
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNN.2008.2005605
– year: 2018
  ident: 10.1016/j.epsr.2020.106547_bib0005
  article-title: Fast Power system security analysis with Guided Dropout
– year: 2019
  ident: 10.1016/j.epsr.2020.106547_bib0006
  article-title: Leap nets for power grid perturbations
– ident: 10.1016/j.epsr.2020.106547_bib0026
– year: 2016
  ident: 10.1016/j.epsr.2020.106547_bib0003
  article-title: Probabilistic reliability management approach and criteria for power system real-time operation
– year: 2014
  ident: 10.1016/j.epsr.2020.106547_bib0031
  article-title: Generative adversarial nets
– ident: 10.1016/j.epsr.2020.106547_bib0024
– year: 2016
  ident: 10.1016/j.epsr.2020.106547_sbref0007
– year: 2017
  ident: 10.1016/j.epsr.2020.106547_bib0014
  article-title: Schnet: a continuous-filter convolutional neural network for modeling quantum interactions
– year: 2016
  ident: 10.1016/j.epsr.2020.106547_bib0022
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– ident: 10.1016/j.epsr.2020.106547_bib0020
– volume: 22
  start-page: 1345
  year: 2010
  ident: 10.1016/j.epsr.2020.106547_bib0028
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 34
  start-page: 18
  year: 2017
  ident: 10.1016/j.epsr.2020.106547_bib0027
  article-title: Geometric deep learning: going beyond euclidean data
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2693418
– year: 2019
  ident: 10.1016/j.epsr.2020.106547_bib0001
  article-title: Graph neural solver for power systems
– ident: 10.1016/j.epsr.2020.106547_bib0018
– volume: 26
  start-page: 12
  year: 2011
  ident: 10.1016/j.epsr.2020.106547_bib0030
  article-title: Matpower: steady-state operations, planning, and analysis tools for power systems research and education
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2051168
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.epsr.2020.106547_bib0009
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– ident: 10.1016/j.epsr.2020.106547_bib0011
– ident: 10.1016/j.epsr.2020.106547_bib0025
– volume: 142
  start-page: 51
  issue: 1
  year: 1995
  ident: 10.1016/j.epsr.2020.106547_bib0004
  article-title: Neural network load-flow
  publication-title: IEE Proc. Gener. Transm Distrib.
  doi: 10.1049/ip-gtd:19951484
– ident: 10.1016/j.epsr.2020.106547_bib0029
SSID ssj0006975
Score 2.5993168
Snippet •Graph neural networks to solve AC power flow.•Our graph neural solver uses a novel graph neural network architecture.•Training is performed by minimizing the...
Recent trends in power systems and those envisioned for the next few decades push Transmission System Operators to develop probabilistic approaches to risk...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106547
SubjectTerms Alternating current
Artificial Intelligence
Artificial neural networks
Computer architecture
Computer Science
Computing time
Electric power grids
Graph neural networks
Graph neural solver
Graphs
Neural networks
Power flow
Probability distribution
Solver
Solvers
Topology
Title Neural networks for power flow: Graph neural solver
URI https://dx.doi.org/10.1016/j.epsr.2020.106547
https://www.proquest.com/docview/2489767859
https://hal.science/hal-02372741
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9GD-MRqlSDeJDaP3WzWWylqfdCLCt6WbLKLSkmLrXrztzvTbIoKevCYZZaEb2ZnJ_DNNwBHVotA64L5TFrjs0IKX4tQ-kkeF8xITe2NxLYYJoN7dvXAHxrQr3thiFbpcn-V0-fZ2q10HZrdydNT9zaIMdiETCKM05hTo3krimXCm9DqXV4PhouEnMi53i7Z-7TB9c5UNC8zmZIsaEQLNIj3t_tp6ZGIkj_y9fwSOl-DVVc9er3qA9ehYcoNWPmiKbgJMcltoE1Z8bunHlal3oRmoXl2NH4_9S5IotorKyuMPIzlLbg_P7vrD3w3GcHP8QKe-TzDKiszwuQ0OpiZINFaY6pA0AOp8ZesiGzEMhtlcRJkuRDaMptLyYs0DUXG421oluPS7ICX2JyFWYEHE_2imdY0-CHlVuZpyossaENY46FyJxtO0ytGquaHPSvCUBGGqsKwDceLPZNKNONPa17DrL65XmFW_3PfIfpk8QLSyR70bhStYSEiSJfnLWxDp3aZcqdzqiKWYhUmUi53__nuPVimp4rX0oHm7OXV7GN1MtMHsHTyER64GPwElhXhIw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAhFiQ6F52HHMVlWUAqULrdTNihNbFFVpRQts_Hbu8igPiQ6szlmJvjufL9J33xFybhR3lEqoTYXRNk0EtxV3hR3EfkK1UNjeiGyLXtAZ0LshG1ZIq-yFQVplkfvznJ5l62KlUaDZmI5GjUfHh2DjIvAgTn2GjearlPkceX2XH188j0BkartobaN50TmTk7z0dIaioB4u4Bjev26nlSekSf7K1tkV1N4im0XtaDXzz9smFZ3ukI1vioK7xEexDbBJc3b3zIKa1JriJDTLjCfvV9YNClRbaW4FcQeRvEcG7et-q2MXcxHsGK7fuc0iqLEizXWMg4OpdgKlFCQKgNwRCn7IEs94NDJe5AdOFHOuDDWxECwJQ5dHzN8n1XSS6gNiBSambpTAsQSvKKoUjn0ImRFxGLIkcmrELfGQcSEajrMrxrJkhz1LxFAihjLHsEYuFnumuWTGUmtWwix_OF5CTl-67wx8sngBqmR3ml2Ja1CGcFTleXNrpF66TBZncyY9GkINxkMmDv_57lOy1uk_dGX3tnd_RNbxSc5wqZPq_OVVH0OdMlcnWRx-AnXS4e4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+networks+for+power+flow%3A+Graph+neural+solver&rft.jtitle=Electric+power+systems+research&rft.au=Donon%2C+Balthazar&rft.au=Cl%C3%A9ment%2C+R%C3%A9my&rft.au=Donnot%2C+Benjamin&rft.au=Marot%2C+Antoine&rft.date=2020-12-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=189&rft.spage=1&rft_id=info:doi/10.1016%2Fj.epsr.2020.106547&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon