Neural networks for power flow: Graph neural solver
•Graph neural networks to solve AC power flow.•Our graph neural solver uses a novel graph neural network architecture.•Training is performed by minimizing the violation of physical laws.•It is robust to variations of injections, power grid topology, and line characteristics.•Experimental validation...
Saved in:
Published in | Electric power systems research Vol. 189; p. 106547 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.12.2020
Elsevier Science Ltd Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0378-7796 1873-2046 |
DOI | 10.1016/j.epsr.2020.106547 |
Cover
Abstract | •Graph neural networks to solve AC power flow.•Our graph neural solver uses a novel graph neural network architecture.•Training is performed by minimizing the violation of physical laws.•It is robust to variations of injections, power grid topology, and line characteristics.•Experimental validation on standard IEEE power grids (case9, case14, case30, case118).
Recent trends in power systems and those envisioned for the next few decades push Transmission System Operators to develop probabilistic approaches to risk estimation. However, current methods to solve AC power flows are too slow to fully attain this objective. Thus we propose a novel artificial neural network architecture that achieves a more suitable balance between computational speed and accuracy in this context. Improving on our previous work on Graph Neural Solver for Power System [1], our architecture is based on Graph Neural Networks and allows for fast and parallel computations. It learns to perform a power flow computation by directly minimizing the violation of Kirchhoff’s law at each bus during training. Unlike previous approaches, our graph neural solver learns by itself and does not try to imitate the output of a Newton-Raphson solver. It is robust to variations of injections, power grid topology, and line characteristics. We experimentally demonstrate the viability of our approach on standard IEEE power grids (case9, case14, case30 and case118) both in terms of accuracy and computational time. |
---|---|
AbstractList | •Graph neural networks to solve AC power flow.•Our graph neural solver uses a novel graph neural network architecture.•Training is performed by minimizing the violation of physical laws.•It is robust to variations of injections, power grid topology, and line characteristics.•Experimental validation on standard IEEE power grids (case9, case14, case30, case118).
Recent trends in power systems and those envisioned for the next few decades push Transmission System Operators to develop probabilistic approaches to risk estimation. However, current methods to solve AC power flows are too slow to fully attain this objective. Thus we propose a novel artificial neural network architecture that achieves a more suitable balance between computational speed and accuracy in this context. Improving on our previous work on Graph Neural Solver for Power System [1], our architecture is based on Graph Neural Networks and allows for fast and parallel computations. It learns to perform a power flow computation by directly minimizing the violation of Kirchhoff’s law at each bus during training. Unlike previous approaches, our graph neural solver learns by itself and does not try to imitate the output of a Newton-Raphson solver. It is robust to variations of injections, power grid topology, and line characteristics. We experimentally demonstrate the viability of our approach on standard IEEE power grids (case9, case14, case30 and case118) both in terms of accuracy and computational time. Recent trends in power systems and those envisioned for the next few decades push Transmission System Operators to develop probabilistic approaches to risk estimation. However, current methods to solve power flows are too slow to fully attain this objective. Thus we propose a novel artificial neural network architecture that achieves a more suitable balance between computational speed and accuracy in this context. Improving on our previous work on Graph Neural Solver for Power System [10], our architecture is based on Graph Neural Networks and allows for fast and parallel computations. It learns to perform a power flow computation by directly minimizing the violation of Kirchhoff's law at each bus during training. Unlike previous approaches, our graph neural solver learns by itself and does not try to imitate the output of a Newton-Raphson solver. It is robust to variations of injections, power grid topology, and line characteristics. We experimentally demonstrate the viability of our approach on standard IEEE power grids (case9, case14, case30 and case118) both in terms of accuracy and computational time. Recent trends in power systems and those envisioned for the next few decades push Transmission System Operators to develop probabilistic approaches to risk estimation. However, current methods to solve AC power flows are too slow to fully attain this objective. Thus we propose a novel artificial neural network architecture that achieves a more suitable balance between computational speed and accuracy in this context. Improving on our previous work on Graph Neural Solver for Power System [1], our architecture is based on Graph Neural Networks and allows for fast and parallel computations. It learns to perform a power flow computation by directly minimizing the violation of Kirchhoff's law at each bus during training. Unlike previous approaches, our graph neural solver learns by itself and does not try to imitate the output of a Newton-Raphson solver. It is robust to variations of injections, power grid topology, and line characteristics. We experimentally demonstrate the viability of our approach on standard IEEE power grids (case9, case14, case30 and case118) both in terms of accuracy and computational time. |
ArticleNumber | 106547 |
Author | Marot, Antoine Clément, Rémy Guyon, Isabelle Donon, Balthazar Schoenauer, Marc Donnot, Benjamin |
Author_xml | – sequence: 1 givenname: Balthazar orcidid: 0000-0003-1148-8067 surname: Donon fullname: Donon, Balthazar email: balthazar.donon@rte-france.com organization: Réseau de Transport d’Électricité, Paris, France – sequence: 2 givenname: Rémy surname: Clément fullname: Clément, Rémy email: remy.clement@rte-france.com organization: Réseau de Transport d’Électricité, Paris, France – sequence: 3 givenname: Benjamin orcidid: 0000-0002-1750-9001 surname: Donnot fullname: Donnot, Benjamin email: benjamin.donnot@rte-france.com organization: Réseau de Transport d’Électricité, Paris, France – sequence: 4 givenname: Antoine surname: Marot fullname: Marot, Antoine email: antoine.marot@rte-france.com organization: Réseau de Transport d’Électricité, Paris, France – sequence: 5 givenname: Isabelle surname: Guyon fullname: Guyon, Isabelle email: iguyon@lri.fr organization: TAU group of Lab. de Rec. en Informatique, UPSud/INRIA Université Paris-Saclay, Paris, France – sequence: 6 givenname: Marc surname: Schoenauer fullname: Schoenauer, Marc email: marc.schoenauer@inria.fr organization: TAU group of Lab. de Rec. en Informatique, UPSud/INRIA Université Paris-Saclay, Paris, France |
BackLink | https://hal.science/hal-02372741$$DView record in HAL |
BookMark | eNp9kD1PwzAQhi1UJNrCH2CKxMSQYjv-SBBLVUFBqmCB2XKci-oQ4mCnrfj3JAQWhk4n3T3v6dUzQ5PGNYDQJcELgom4qRbQBr-gmA4LwZk8QVOSyiSmmIkJmuJEprGUmThDsxAqjLHIJJ-i5Bl2XtdRA93B-fcQlc5HrTuAj8raHW6jtdfttj__UMHVe_Dn6LTUdYCL3zlHbw_3r6vHePOyflotN7FhWHQx11xyDRJMXydhgEWe54kUecFwlhMuClpSpkuqE4G1kTIvWWmyjBdpSqTmyRxdj3-3ulattx_afymnrXpcbtSwwzSRVDKyJz17NbKtd587CJ2q3M43fT1FWZpJIVOe9VQ6Usa7EDyUythOd9Y1nde2VgSrQaeq1KBTDTrVqLOP0n_Rv0ZHQ3djCHpNewteBWOhMVBYD6ZThbPH4t-G5Y6w |
CitedBy_id | crossref_primary_10_1109_OJCAS_2023_3234244 crossref_primary_10_1016_j_epsr_2024_110864 crossref_primary_10_1109_ACCESS_2024_3406471 crossref_primary_10_1109_TPWRS_2022_3195301 crossref_primary_10_1016_j_epsr_2022_108362 crossref_primary_10_1016_j_epsr_2022_108282 crossref_primary_10_3390_app13126937 crossref_primary_10_1007_s00502_024_01296_9 crossref_primary_10_1016_j_ijepes_2022_108655 crossref_primary_10_1016_j_eswa_2021_115029 crossref_primary_10_1016_j_watres_2024_121933 crossref_primary_10_1016_j_apenergy_2024_125034 crossref_primary_10_1016_j_epsr_2024_111014 crossref_primary_10_1615_JMachLearnModelComput_2024054885 crossref_primary_10_1016_j_segan_2023_101056 crossref_primary_10_3390_math10050786 crossref_primary_10_1109_TPWRS_2023_3262851 crossref_primary_10_1016_j_egyai_2023_100262 crossref_primary_10_1109_TIM_2025_3545981 crossref_primary_10_1016_j_energy_2025_134661 crossref_primary_10_1016_j_egyai_2024_100369 crossref_primary_10_1016_j_epsr_2022_109005 crossref_primary_10_1007_s00202_024_02837_3 crossref_primary_10_1016_j_epsr_2024_110677 crossref_primary_10_1016_j_engappai_2022_105567 crossref_primary_10_1109_TPWRS_2022_3162473 crossref_primary_10_1016_j_joule_2024_11_002 crossref_primary_10_1109_ACCESS_2024_3512993 crossref_primary_10_1109_OAJPE_2022_3223962 crossref_primary_10_1016_j_engappai_2024_109426 crossref_primary_10_1186_s42162_020_00127_3 crossref_primary_10_1061__ASCE_WR_1943_5452_0001550 crossref_primary_10_1016_j_apenergy_2024_124793 crossref_primary_10_1016_j_epsr_2024_110795 crossref_primary_10_1007_s10489_024_05772_9 crossref_primary_10_1016_j_egyr_2023_02_042 crossref_primary_10_1016_j_egyai_2025_100471 crossref_primary_10_1109_ACCESS_2021_3111898 crossref_primary_10_1063_5_0235301 crossref_primary_10_1016_j_ijepes_2024_110112 crossref_primary_10_1016_j_heliyon_2023_e14524 crossref_primary_10_1049_gtd2_12278 crossref_primary_10_1016_j_ijepes_2025_110513 crossref_primary_10_1038_s44287_024_00076_z crossref_primary_10_1109_TSG_2024_3458438 crossref_primary_10_1109_TII_2024_3398058 crossref_primary_10_1016_j_apenergy_2023_120837 |
Cites_doi | 10.1103/PhysRevA.96.042113 10.1109/TNN.2008.2005605 10.1109/TKDE.2009.191 10.1109/MSP.2017.2693418 10.1109/TPWRS.2010.2051168 10.1016/j.neunet.2014.09.003 10.1049/ip-gtd:19951484 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Dec 2020 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Dec 2020 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SP 8FD FR3 KR7 L7M 1XC VOOES |
DOI | 10.1016/j.epsr.2020.106547 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1873-2046 |
ExternalDocumentID | oai_HAL_hal_02372741v1 10_1016_j_epsr_2020_106547 S0378779620303515 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SP 8FD EFKBS FR3 KR7 L7M 1XC VOOES |
ID | FETCH-LOGICAL-c406t-5a575ae7ec54734e06bbb376bd409b156d2f24af2a360ac77bf4fc995d8817a53 |
IEDL.DBID | AIKHN |
ISSN | 0378-7796 |
IngestDate | Fri May 09 12:16:49 EDT 2025 Fri Jul 25 06:15:26 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Tue Jul 01 04:32:00 EDT 2025 Fri Feb 23 02:46:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Solver Graph neural solver Graph neural networks Power flow Artificial neural networks Power Flow Artificial Neural Networks Graph Neural Solver Graph Neural Networks |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-5a575ae7ec54734e06bbb376bd409b156d2f24af2a360ac77bf4fc995d8817a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1148-8067 0000-0002-1750-9001 0000-0003-1450-6830 |
OpenAccessLink | https://hal.science/hal-02372741 |
PQID | 2489767859 |
PQPubID | 2047565 |
ParticipantIDs | hal_primary_oai_HAL_hal_02372741v1 proquest_journals_2489767859 crossref_citationtrail_10_1016_j_epsr_2020_106547 crossref_primary_10_1016_j_epsr_2020_106547 elsevier_sciencedirect_doi_10_1016_j_epsr_2020_106547 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Electric power systems research |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd – name: Elsevier |
References | Donnot, Donon, Guyon, Zhengying, Marot, Panciatici, Schoenauer (bib0006) 2019 Schmidhuber (bib0009) 2015; 61 J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message passing for quantum chemistry, ArXiv Computing Research Repository (2017). Donon, Donnot, Guyon, Marot (bib0001) 2019 D2.2 - guidelines for implementing the new reliability assessment and optimization methodology, GARPUR Consortium (2016). Schütt, Kindermans, Sauceda Felix, Chmiela, Tkatchenko, Müller (bib0014) 2017 Bronstein, Bruna, LeCun, Szlam, Vandergheynst (bib0027) 2017; 34 Donnot, Guyon, Schoenauer, Marot, Panciatici (bib0005) 2018 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, Software available from tensorflow.org. J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, Accelerating Eulerian fluid simulation with convolutional networks, ArXiv Computing Research Repository (2016). T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, ArXiv Computing Research Repository (2016). Mills, Spanner, Tamblyn (bib0013) 2017; 96 Karangelos, Wehenkel (bib0003) 2016 Zimmerman, Murillo-Sanchez, Thomas (bib0030) 2011; 26 Goodfellow, Bengio, Courville (bib0008) 2016 Defferrard, Bresson, Vandergheynst (bib0022) 2016 M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. Salakhutdinov, A.J. Smola, Deep sets, ArXiv Computing Research Repository (2017). Nguyen (bib0004) 1995; 142 Pan, Yang (bib0028) 2010; 22 Cong, Choi, Lukin (bib0012) 2019; 15 P.W. Battaglia, et al. Relational inductive biases, deep learning, and graph networks, ArXiv Computing Research Repository (2018). Bruna, Zaremba, Szlam, Lecun (bib0021) 2014 Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (bib0016) 2009; 20 Kipf, Fetaya, Wang, Welling, Zemel (bib0010) 2018 W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, ArXiv Computing Research Repository (2017). A. Santoro, D. Raposo, D.G.T. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, T.P. Lillicrap, A simple neural network module for relational reasoning, ArXiv Computing Research Repository (2017). Y. Li, D. Tarlow, M. Brockschmidt, R.S. Zemel, Gated graph sequence neural networks, ArXiv Computing Research Repository (2015). Duchesne, Karangelos, Wehenkel (bib0007) 2018 D.K. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, R.P. Adams, Convolutional networks on graphs for learning molecular fingerprints, ArXiv Computing Research Repository (2015). Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0031) 2014 R. Herzig, M. Raboh, G. Chechik, J. Berant, A. Globerson, Mapping images to scene graphs with permutation-invariant structured prediction, ArXiv Computing Research Repository (2018). 10.1016/j.epsr.2020.106547_bib0020 Bronstein (10.1016/j.epsr.2020.106547_bib0027) 2017; 34 10.1016/j.epsr.2020.106547_bib0026 10.1016/j.epsr.2020.106547_bib0025 10.1016/j.epsr.2020.106547_bib0002 10.1016/j.epsr.2020.106547_bib0024 10.1016/j.epsr.2020.106547_bib0023 Goodfellow (10.1016/j.epsr.2020.106547_sbref0007) 2016 Donnot (10.1016/j.epsr.2020.106547_bib0006) 2019 Cong (10.1016/j.epsr.2020.106547_bib0012) 2019; 15 Mills (10.1016/j.epsr.2020.106547_bib0013) 2017; 96 Schütt (10.1016/j.epsr.2020.106547_bib0014) 2017 10.1016/j.epsr.2020.106547_bib0029 Defferrard (10.1016/j.epsr.2020.106547_bib0022) 2016 Pan (10.1016/j.epsr.2020.106547_bib0028) 2010; 22 Donon (10.1016/j.epsr.2020.106547_bib0001) 2019 10.1016/j.epsr.2020.106547_bib0011 10.1016/j.epsr.2020.106547_bib0015 Kipf (10.1016/j.epsr.2020.106547_bib0010) 2018 Goodfellow (10.1016/j.epsr.2020.106547_bib0031) 2014 Donnot (10.1016/j.epsr.2020.106547_bib0005) 2018 Bruna (10.1016/j.epsr.2020.106547_bib0021) 2014 Karangelos (10.1016/j.epsr.2020.106547_bib0003) 2016 Nguyen (10.1016/j.epsr.2020.106547_bib0004) 1995; 142 Scarselli (10.1016/j.epsr.2020.106547_bib0016) 2009; 20 Zimmerman (10.1016/j.epsr.2020.106547_bib0030) 2011; 26 Schmidhuber (10.1016/j.epsr.2020.106547_bib0009) 2015; 61 10.1016/j.epsr.2020.106547_bib0019 10.1016/j.epsr.2020.106547_bib0018 10.1016/j.epsr.2020.106547_bib0017 Duchesne (10.1016/j.epsr.2020.106547_bib0007) 2018 |
References_xml | – year: 2018 ident: bib0005 article-title: Fast Power system security analysis with Guided Dropout publication-title: European Symposium on Artificial Neural Networks – year: 2016 ident: bib0008 article-title: Deep Learning – reference: J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message passing for quantum chemistry, ArXiv Computing Research Repository (2017). – volume: 96 start-page: 1 year: 2017 end-page: 9 ident: bib0013 article-title: Deep learning and the Schrödinger equation publication-title: Phys. Rev. A – volume: 20 start-page: 61 year: 2009 end-page: 80 ident: bib0016 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: Y. Li, D. Tarlow, M. Brockschmidt, R.S. Zemel, Gated graph sequence neural networks, ArXiv Computing Research Repository (2015). – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: bib0028 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. – reference: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, Software available from tensorflow.org. – volume: 142 start-page: 51 year: 1995 end-page: 58 ident: bib0004 article-title: Neural network load-flow publication-title: IEE Proc. Gener. Transm Distrib. – year: 2019 ident: bib0006 article-title: Leap nets for power grid perturbations publication-title: European Symposium on Artificial Neural Networks – reference: R. Herzig, M. Raboh, G. Chechik, J. Berant, A. Globerson, Mapping images to scene graphs with permutation-invariant structured prediction, ArXiv Computing Research Repository (2018). – reference: D.K. Duvenaud, D. Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-Bombarelli, T. Hirzel, A. Aspuru-Guzik, R.P. Adams, Convolutional networks on graphs for learning molecular fingerprints, ArXiv Computing Research Repository (2015). – reference: A. Santoro, D. Raposo, D.G.T. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, T.P. Lillicrap, A simple neural network module for relational reasoning, ArXiv Computing Research Repository (2017). – reference: M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos, R. Salakhutdinov, A.J. Smola, Deep sets, ArXiv Computing Research Repository (2017). – year: 2018 ident: bib0007 article-title: Using machine learning to enable probabilistic reliability assessment in operation planning publication-title: Power Systems Computation Conference (PSCC) – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib0009 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. – year: 2014 ident: bib0021 article-title: Spectral networks and locally connected networks on graphs publication-title: International Conference on Learning Representations – year: 2019 ident: bib0001 article-title: Graph neural solver for power systems publication-title: International Joint Conference on Neural Networks – reference: P.W. Battaglia, et al. Relational inductive biases, deep learning, and graph networks, ArXiv Computing Research Repository (2018). – reference: W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on large graphs, ArXiv Computing Research Repository (2017). – reference: D2.2 - guidelines for implementing the new reliability assessment and optimization methodology, GARPUR Consortium (2016). – year: 2018 ident: bib0010 article-title: Neural relational inference for interacting systems publication-title: Proceedings of the 35th International Conference on Machine Learning, ICML – year: 2016 ident: bib0022 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Advances in Neural Information Processing Systems 29 – volume: 26 start-page: 12 year: 2011 end-page: 19 ident: bib0030 article-title: Matpower: steady-state operations, planning, and analysis tools for power systems research and education publication-title: IEEE Trans. Power Syst. – reference: J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, Accelerating Eulerian fluid simulation with convolutional networks, ArXiv Computing Research Repository (2016). – reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, ArXiv Computing Research Repository (2016). – year: 2014 ident: bib0031 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems 27 – year: 2017 ident: bib0014 article-title: Schnet: a continuous-filter convolutional neural network for modeling quantum interactions publication-title: Advances in Neural Information Processing Systems 30 – year: 2016 ident: bib0003 article-title: Probabilistic reliability management approach and criteria for power system real-time operation publication-title: Power Systems Computation Conference (PSCC) – volume: 15 start-page: 1273 year: 2019 end-page: 1278 ident: bib0012 article-title: Quantum convolutional neural networks publication-title: Nature Physics – volume: 34 start-page: 18 year: 2017 end-page: 42 ident: bib0027 article-title: Geometric deep learning: going beyond euclidean data publication-title: IEEE Signal Process. Mag. – volume: 15 start-page: 1273 year: 2019 ident: 10.1016/j.epsr.2020.106547_bib0012 article-title: Quantum convolutional neural networks – ident: 10.1016/j.epsr.2020.106547_bib0019 – ident: 10.1016/j.epsr.2020.106547_bib0023 – year: 2014 ident: 10.1016/j.epsr.2020.106547_bib0021 article-title: Spectral networks and locally connected networks on graphs – ident: 10.1016/j.epsr.2020.106547_bib0002 – year: 2018 ident: 10.1016/j.epsr.2020.106547_bib0010 article-title: Neural relational inference for interacting systems – ident: 10.1016/j.epsr.2020.106547_bib0015 – ident: 10.1016/j.epsr.2020.106547_bib0017 – volume: 96 start-page: 1 year: 2017 ident: 10.1016/j.epsr.2020.106547_bib0013 article-title: Deep learning and the Schrödinger equation publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.96.042113 – year: 2018 ident: 10.1016/j.epsr.2020.106547_bib0007 article-title: Using machine learning to enable probabilistic reliability assessment in operation planning – volume: 20 start-page: 61 issue: 1 year: 2009 ident: 10.1016/j.epsr.2020.106547_bib0016 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNN.2008.2005605 – year: 2018 ident: 10.1016/j.epsr.2020.106547_bib0005 article-title: Fast Power system security analysis with Guided Dropout – year: 2019 ident: 10.1016/j.epsr.2020.106547_bib0006 article-title: Leap nets for power grid perturbations – ident: 10.1016/j.epsr.2020.106547_bib0026 – year: 2016 ident: 10.1016/j.epsr.2020.106547_bib0003 article-title: Probabilistic reliability management approach and criteria for power system real-time operation – year: 2014 ident: 10.1016/j.epsr.2020.106547_bib0031 article-title: Generative adversarial nets – ident: 10.1016/j.epsr.2020.106547_bib0024 – year: 2016 ident: 10.1016/j.epsr.2020.106547_sbref0007 – year: 2017 ident: 10.1016/j.epsr.2020.106547_bib0014 article-title: Schnet: a continuous-filter convolutional neural network for modeling quantum interactions – year: 2016 ident: 10.1016/j.epsr.2020.106547_bib0022 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – ident: 10.1016/j.epsr.2020.106547_bib0020 – volume: 22 start-page: 1345 year: 2010 ident: 10.1016/j.epsr.2020.106547_bib0028 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – volume: 34 start-page: 18 year: 2017 ident: 10.1016/j.epsr.2020.106547_bib0027 article-title: Geometric deep learning: going beyond euclidean data publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2693418 – year: 2019 ident: 10.1016/j.epsr.2020.106547_bib0001 article-title: Graph neural solver for power systems – ident: 10.1016/j.epsr.2020.106547_bib0018 – volume: 26 start-page: 12 year: 2011 ident: 10.1016/j.epsr.2020.106547_bib0030 article-title: Matpower: steady-state operations, planning, and analysis tools for power systems research and education publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2010.2051168 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.epsr.2020.106547_bib0009 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.09.003 – ident: 10.1016/j.epsr.2020.106547_bib0011 – ident: 10.1016/j.epsr.2020.106547_bib0025 – volume: 142 start-page: 51 issue: 1 year: 1995 ident: 10.1016/j.epsr.2020.106547_bib0004 article-title: Neural network load-flow publication-title: IEE Proc. Gener. Transm Distrib. doi: 10.1049/ip-gtd:19951484 – ident: 10.1016/j.epsr.2020.106547_bib0029 |
SSID | ssj0006975 |
Score | 2.5993168 |
Snippet | •Graph neural networks to solve AC power flow.•Our graph neural solver uses a novel graph neural network architecture.•Training is performed by minimizing the... Recent trends in power systems and those envisioned for the next few decades push Transmission System Operators to develop probabilistic approaches to risk... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106547 |
SubjectTerms | Alternating current Artificial Intelligence Artificial neural networks Computer architecture Computer Science Computing time Electric power grids Graph neural networks Graph neural solver Graphs Neural networks Power flow Probability distribution Solver Solvers Topology |
Title | Neural networks for power flow: Graph neural solver |
URI | https://dx.doi.org/10.1016/j.epsr.2020.106547 https://www.proquest.com/docview/2489767859 https://hal.science/hal-02372741 |
Volume | 189 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe9GD-MRqlSDeJDaP3WzWWylqfdCLCt6WbLKLSkmLrXrztzvTbIoKevCYZZaEb2ZnJ_DNNwBHVotA64L5TFrjs0IKX4tQ-kkeF8xITe2NxLYYJoN7dvXAHxrQr3thiFbpcn-V0-fZ2q10HZrdydNT9zaIMdiETCKM05hTo3krimXCm9DqXV4PhouEnMi53i7Z-7TB9c5UNC8zmZIsaEQLNIj3t_tp6ZGIkj_y9fwSOl-DVVc9er3qA9ehYcoNWPmiKbgJMcltoE1Z8bunHlal3oRmoXl2NH4_9S5IotorKyuMPIzlLbg_P7vrD3w3GcHP8QKe-TzDKiszwuQ0OpiZINFaY6pA0AOp8ZesiGzEMhtlcRJkuRDaMptLyYs0DUXG421oluPS7ICX2JyFWYEHE_2imdY0-CHlVuZpyossaENY46FyJxtO0ytGquaHPSvCUBGGqsKwDceLPZNKNONPa17DrL65XmFW_3PfIfpk8QLSyR70bhStYSEiSJfnLWxDp3aZcqdzqiKWYhUmUi53__nuPVimp4rX0oHm7OXV7GN1MtMHsHTyER64GPwElhXhIw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAhFiQ6F52HHMVlWUAqULrdTNihNbFFVpRQts_Hbu8igPiQ6szlmJvjufL9J33xFybhR3lEqoTYXRNk0EtxV3hR3EfkK1UNjeiGyLXtAZ0LshG1ZIq-yFQVplkfvznJ5l62KlUaDZmI5GjUfHh2DjIvAgTn2GjearlPkceX2XH188j0BkartobaN50TmTk7z0dIaioB4u4Bjev26nlSekSf7K1tkV1N4im0XtaDXzz9smFZ3ukI1vioK7xEexDbBJc3b3zIKa1JriJDTLjCfvV9YNClRbaW4FcQeRvEcG7et-q2MXcxHsGK7fuc0iqLEizXWMg4OpdgKlFCQKgNwRCn7IEs94NDJe5AdOFHOuDDWxECwJQ5dHzN8n1XSS6gNiBSambpTAsQSvKKoUjn0ImRFxGLIkcmrELfGQcSEajrMrxrJkhz1LxFAihjLHsEYuFnumuWTGUmtWwix_OF5CTl-67wx8sngBqmR3ml2Ja1CGcFTleXNrpF66TBZncyY9GkINxkMmDv_57lOy1uk_dGX3tnd_RNbxSc5wqZPq_OVVH0OdMlcnWRx-AnXS4e4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+networks+for+power+flow%3A+Graph+neural+solver&rft.jtitle=Electric+power+systems+research&rft.au=Donon%2C+Balthazar&rft.au=Cl%C3%A9ment%2C+R%C3%A9my&rft.au=Donnot%2C+Benjamin&rft.au=Marot%2C+Antoine&rft.date=2020-12-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=189&rft.spage=1&rft_id=info:doi/10.1016%2Fj.epsr.2020.106547&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |