Selective review of offline change point detection methods

•A structured and didactic review of more than 140 articles related to offline change point detection. Thanks to the methodological framework proposed in this survey, all methods are presented as the combination of three functional blocks, which facilitates comparison between the different approache...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 167; p. 107299
Main Authors Truong, Charles, Oudre, Laurent, Vayatis, Nicolas
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A structured and didactic review of more than 140 articles related to offline change point detection. Thanks to the methodological framework proposed in this survey, all methods are presented as the combination of three functional blocks, which facilitates comparison between the different approaches.•The survey provides details on mathematical as well as algorithmic aspects such as complexity, asymptotic consistency, estimation of the number of changes, calibration, etc.•The review is linked to a Python package that includes most of the pre- sented methods, and allows the user to perform experiments and bench- marks. This article presents a selective survey of algorithms for the offline detection of multiple change points in multivariate time series. A general yet structuring methodological strategy is adopted to organize this vast body of work. More precisely, detection algorithms considered in this review are characterized by three elements: a cost function, a search method and a constraint on the number of changes. Each of those elements is described, reviewed and discussed separately. Implementations of the main algorithms described in this article are provided within a Python package called ruptures.
AbstractList •A structured and didactic review of more than 140 articles related to offline change point detection. Thanks to the methodological framework proposed in this survey, all methods are presented as the combination of three functional blocks, which facilitates comparison between the different approaches.•The survey provides details on mathematical as well as algorithmic aspects such as complexity, asymptotic consistency, estimation of the number of changes, calibration, etc.•The review is linked to a Python package that includes most of the pre- sented methods, and allows the user to perform experiments and bench- marks. This article presents a selective survey of algorithms for the offline detection of multiple change points in multivariate time series. A general yet structuring methodological strategy is adopted to organize this vast body of work. More precisely, detection algorithms considered in this review are characterized by three elements: a cost function, a search method and a constraint on the number of changes. Each of those elements is described, reviewed and discussed separately. Implementations of the main algorithms described in this article are provided within a Python package called ruptures.
ArticleNumber 107299
Author Truong, Charles
Vayatis, Nicolas
Oudre, Laurent
Author_xml – sequence: 1
  givenname: Charles
  surname: Truong
  fullname: Truong, Charles
  organization: CMLA, CNRS, ENS Paris Saclay France
– sequence: 2
  givenname: Laurent
  surname: Oudre
  fullname: Oudre, Laurent
  email: laurent.oudre@univ-paris13.fr
  organization: L2TI, University Paris 13 France
– sequence: 3
  givenname: Nicolas
  surname: Vayatis
  fullname: Vayatis, Nicolas
  organization: CMLA, CNRS, ENS Paris Saclay France
BackLink https://hal.science/hal-02442692$$DView record in HAL
BookMark eNqFkE1LAzEQhoNUsK3-Aw979bA1yeaj24NQil9Q8KCeQ5pM2pTtpiRLxX9vlhUPHhQGBob3eWGeCRq1oQWErgmeEUzE7X6W_PYYw4xiUueTpHV9hsZkLmkpOZcjNM4xXhIxZxdoktIeY0wqgcdo8QoNmM6foIhw8vBRBJfHNb6Fwux0u4XiGHzbFRa6Phja4gDdLth0ic6dbhJcfe8pen-4f1s9leuXx-fVcl0ahkVX8ppYA7hyuAaqqRYGE8vYXBJwxFFg3G2MNFJw6xiuar0xWhIrBDcCGObVFN0MvTvdqGP0Bx0_VdBePS3Xqr9hyhgVNT2RnGVD1sSQUgT3AxCseldqrwZXqnelBlcZW_zCjO90_2wXtW_-g-8GGLKErDCqZDy0BqyP2Ziywf9d8AXeVIl1
CitedBy_id crossref_primary_10_1016_j_est_2022_105467
crossref_primary_10_1039_D4DD00048J
crossref_primary_10_1016_j_irfa_2024_103608
crossref_primary_10_1016_j_measurement_2024_114225
crossref_primary_10_1016_j_procir_2023_06_103
crossref_primary_10_1038_s41612_023_00450_y
crossref_primary_10_1029_2024PA005048
crossref_primary_10_3389_fnhum_2023_1144860
crossref_primary_10_1007_s42979_022_01186_x
crossref_primary_10_1142_S0218213020500189
crossref_primary_10_1016_j_oceano_2022_07_006
crossref_primary_10_1109_OJSP_2020_3035070
crossref_primary_10_1016_j_asoc_2023_111099
crossref_primary_10_3168_jds_2023_24427
crossref_primary_10_1016_j_jocs_2024_102429
crossref_primary_10_1016_j_jajp_2023_100149
crossref_primary_10_1038_s41467_023_37093_9
crossref_primary_10_1007_s11222_024_10542_1
crossref_primary_10_1029_2022GL102651
crossref_primary_10_1007_s00184_021_00821_6
crossref_primary_10_1007_s11045_021_00785_w
crossref_primary_10_1029_2023PA004687
crossref_primary_10_1080_10618600_2024_2402895
crossref_primary_10_1016_j_automatica_2024_111894
crossref_primary_10_1007_s42421_023_00084_9
crossref_primary_10_1016_j_scitotenv_2021_149366
crossref_primary_10_1063_5_0163849
crossref_primary_10_1016_j_dsp_2023_104338
crossref_primary_10_1109_LRA_2021_3104880
crossref_primary_10_1016_j_wneu_2022_01_097
crossref_primary_10_1016_j_compind_2023_103949
crossref_primary_10_1016_j_jii_2024_100667
crossref_primary_10_1038_s41598_023_33117_y
crossref_primary_10_2196_21499
crossref_primary_10_1002_pip_3523
crossref_primary_10_1117_1_JEI_31_3_033042
crossref_primary_10_3390_pr11082229
crossref_primary_10_1029_2023RS007834
crossref_primary_10_3390_math12050750
crossref_primary_10_5194_essd_14_3313_2022
crossref_primary_10_1016_j_engappai_2023_106466
crossref_primary_10_1080_00949655_2025_2480644
crossref_primary_10_1109_TMC_2023_3332963
crossref_primary_10_1021_acs_macromol_3c02539
crossref_primary_10_1063_5_0160312
crossref_primary_10_1016_j_chaos_2023_113916
crossref_primary_10_1016_j_ijar_2021_12_019
crossref_primary_10_1080_29932955_2025_2481732
crossref_primary_10_32604_cmc_2024_054061
crossref_primary_10_3390_app14219825
crossref_primary_10_1016_j_asoc_2022_109859
crossref_primary_10_1016_j_engappai_2023_107323
crossref_primary_10_1080_08874417_2024_2401049
crossref_primary_10_1016_j_agrformet_2024_110253
crossref_primary_10_3390_w15101926
crossref_primary_10_3390_en16104123
crossref_primary_10_1016_j_atmosenv_2020_118025
crossref_primary_10_1016_j_ifacol_2023_10_728
crossref_primary_10_1016_j_jtrangeo_2024_103923
crossref_primary_10_1016_j_apenergy_2020_115391
crossref_primary_10_1214_23_EJS2190
crossref_primary_10_1061__ASCE_SU_1943_5428_0000399
crossref_primary_10_1364_OE_522742
crossref_primary_10_1016_j_ijid_2021_07_042
crossref_primary_10_1016_j_aei_2025_103252
crossref_primary_10_1111_cgf_14498
crossref_primary_10_1121_10_0006534
crossref_primary_10_1109_JSEN_2025_3527471
crossref_primary_10_1109_TITS_2021_3054910
crossref_primary_10_1364_AO_532217
crossref_primary_10_14778_3659437_3659450
crossref_primary_10_1002_advs_202308806
crossref_primary_10_1016_j_ecoleng_2023_107107
crossref_primary_10_1007_s11222_020_09940_y
crossref_primary_10_1016_j_jclepro_2023_139802
crossref_primary_10_1016_j_geothermics_2022_102355
crossref_primary_10_1093_jrsssb_qkae004
crossref_primary_10_1109_ACCESS_2024_3436910
crossref_primary_10_1016_j_cnsns_2022_106318
crossref_primary_10_1016_j_patcog_2022_109116
crossref_primary_10_1111_tgis_12918
crossref_primary_10_1523_ENEURO_0157_24_2024
crossref_primary_10_1016_j_cell_2024_12_020
crossref_primary_10_1088_1742_6596_2042_1_012071
crossref_primary_10_1088_1742_6596_2767_3_032032
crossref_primary_10_1016_j_cirp_2024_03_009
crossref_primary_10_1061_JGGEFK_GTENG_10843
crossref_primary_10_1021_acs_jpcb_3c03791
crossref_primary_10_1016_j_physa_2022_128363
crossref_primary_10_3390_jmmp9010012
crossref_primary_10_1016_j_iswa_2025_200504
crossref_primary_10_1177_03611981221086643
crossref_primary_10_1016_j_compbiomed_2024_108364
crossref_primary_10_1063_5_0226455
crossref_primary_10_1109_TITS_2022_3222421
crossref_primary_10_1007_s11222_023_10261_z
crossref_primary_10_1007_s42979_024_02712_9
crossref_primary_10_1016_j_cherd_2022_09_005
crossref_primary_10_1038_s41598_023_30100_5
crossref_primary_10_1016_j_procs_2023_10_222
crossref_primary_10_1186_s12911_022_02010_5
crossref_primary_10_1073_pnas_2106140118
crossref_primary_10_1186_s40462_023_00444_8
crossref_primary_10_3390_electronics12244941
crossref_primary_10_1002_wics_1628
crossref_primary_10_1093_nar_gkaa679
crossref_primary_10_1109_TMC_2022_3199015
crossref_primary_10_1002_pip_3855
crossref_primary_10_1038_s41598_021_86827_6
crossref_primary_10_1080_23249935_2025_2467743
crossref_primary_10_1016_j_aei_2021_101359
crossref_primary_10_3390_histories3010003
crossref_primary_10_5194_wes_5_1375_2020
crossref_primary_10_1145_3556543
crossref_primary_10_1186_s13059_021_02566_x
crossref_primary_10_1109_TIM_2024_3446617
crossref_primary_10_2139_ssrn_4020159
crossref_primary_10_1038_s41598_020_77262_0
crossref_primary_10_3390_app10072298
crossref_primary_10_1016_j_patcog_2022_109022
crossref_primary_10_3390_rs14143379
crossref_primary_10_1063_5_0097973
crossref_primary_10_1109_ACCESS_2022_3182345
crossref_primary_10_1177_03611981211033857
crossref_primary_10_3390_su152014865
crossref_primary_10_1111_maec_12725
crossref_primary_10_1145_3512961
crossref_primary_10_1080_03610918_2021_1881116
crossref_primary_10_1080_08982112_2023_2223617
crossref_primary_10_1016_j_cie_2023_108986
crossref_primary_10_3390_smartcities4010001
crossref_primary_10_5194_amt_14_5153_2021
crossref_primary_10_1145_3512959
crossref_primary_10_3389_fmars_2023_1150488
crossref_primary_10_1002_lom3_10520
crossref_primary_10_1007_s11116_023_10419_8
crossref_primary_10_1093_gigascience_giad060
crossref_primary_10_23919_JSC_2024_0010
crossref_primary_10_3390_info12070274
crossref_primary_10_3389_fagro_2025_1536998
crossref_primary_10_1093_nar_gkac560
crossref_primary_10_3390_math10183380
crossref_primary_10_3934_math_20241674
crossref_primary_10_3390_jmmp4030088
crossref_primary_10_3390_su14031733
crossref_primary_10_1109_JIOT_2024_3372624
crossref_primary_10_32604_cmes_2022_019764
crossref_primary_10_1016_j_aap_2024_107685
crossref_primary_10_1016_j_ress_2020_107126
crossref_primary_10_1080_00949655_2024_2400519
crossref_primary_10_5194_cp_17_1533_2021
crossref_primary_10_3389_fevo_2022_1026175
crossref_primary_10_3390_atmos15121505
crossref_primary_10_1007_s00477_021_02083_0
crossref_primary_10_12677_ORF_2023_132084
crossref_primary_10_1016_j_apm_2023_12_005
crossref_primary_10_1109_TITS_2020_3037791
crossref_primary_10_3390_e25020355
crossref_primary_10_1007_s42524_025_4109_z
crossref_primary_10_1177_20563051251322254
crossref_primary_10_1109_TWC_2020_2987990
crossref_primary_10_1002_sta4_70012
crossref_primary_10_1109_JSAIT_2021_3072962
crossref_primary_10_3389_fmars_2020_00662
crossref_primary_10_3390_bios12121182
crossref_primary_10_1093_jamiaopen_ooac090
crossref_primary_10_1364_OE_446517
crossref_primary_10_1016_j_csda_2022_107648
crossref_primary_10_4236_ojs_2024_146036
crossref_primary_10_1007_s42952_023_00227_2
crossref_primary_10_1061__ASCE_CP_1943_5487_0000926
crossref_primary_10_1113_JP287243
crossref_primary_10_1109_JPHOTOV_2020_3043104
crossref_primary_10_1080_00224065_2021_1937409
crossref_primary_10_3390_w14142212
crossref_primary_10_1016_j_measurement_2023_113294
crossref_primary_10_1016_j_resp_2021_103735
crossref_primary_10_3390_e22040374
crossref_primary_10_3847_1538_4365_ad91a2
crossref_primary_10_2166_ws_2024_174
crossref_primary_10_2217_cer_2021_0307
crossref_primary_10_1007_s42488_022_00077_3
crossref_primary_10_1109_ACCESS_2024_3374334
crossref_primary_10_1038_s41467_024_50419_5
crossref_primary_10_1080_02664763_2022_2117288
crossref_primary_10_1016_j_ress_2024_110681
crossref_primary_10_1016_j_jmva_2021_104942
crossref_primary_10_3208_jgs_20_91
crossref_primary_10_1016_j_neucom_2023_126439
crossref_primary_10_1080_03610918_2025_2450704
crossref_primary_10_1021_acs_nanolett_4c04458
crossref_primary_10_1109_JIOT_2020_3033173
crossref_primary_10_1016_j_atech_2023_100260
crossref_primary_10_1080_01605682_2024_2395315
crossref_primary_10_3390_sym15111975
crossref_primary_10_1007_s11222_024_10428_2
crossref_primary_10_1214_21_AOS2098
crossref_primary_10_3390_w14162492
crossref_primary_10_1527_tjsai_35_5_E_JA10
crossref_primary_10_1109_ACCESS_2023_3247564
crossref_primary_10_1111_1365_2478_13054
crossref_primary_10_1017_jog_2024_39
crossref_primary_10_1007_s10618_021_00804_1
crossref_primary_10_1016_j_jmva_2021_104833
crossref_primary_10_1016_j_procs_2021_08_052
crossref_primary_10_1109_TKDE_2023_3320184
crossref_primary_10_1364_OE_530414
crossref_primary_10_1007_s00034_023_02319_0
crossref_primary_10_3390_info14050256
crossref_primary_10_5194_nhess_22_3679_2022
crossref_primary_10_2196_34315
crossref_primary_10_1145_3712702
crossref_primary_10_1109_ACCESS_2023_3318318
crossref_primary_10_1016_j_acags_2025_100234
crossref_primary_10_1109_TITS_2022_3161623
crossref_primary_10_1016_j_measurement_2024_115472
crossref_primary_10_1016_j_eswa_2023_120158
crossref_primary_10_1021_acs_jpcb_2c05423
crossref_primary_10_1177_20563051231196898
crossref_primary_10_1007_s11203_023_09295_x
crossref_primary_10_3389_fphys_2023_1151312
crossref_primary_10_3390_jmse13020213
crossref_primary_10_1111_jtsa_12809
crossref_primary_10_1007_s41981_023_00266_0
crossref_primary_10_11614_KSL_2024_57_4_250
crossref_primary_10_3150_24_BEJ1732
crossref_primary_10_1063_5_0176303
crossref_primary_10_1109_TIT_2024_3367182
crossref_primary_10_3390_gels11030197
crossref_primary_10_1016_j_spl_2024_110132
crossref_primary_10_1109_LGRS_2021_3066849
crossref_primary_10_1007_s00362_022_01307_x
crossref_primary_10_3390_fi14020045
crossref_primary_10_1016_j_ecosta_2021_10_008
crossref_primary_10_1109_TII_2023_3331766
crossref_primary_10_1016_j_buildenv_2024_111548
crossref_primary_10_3390_app11094280
crossref_primary_10_1111_dgd_12871
crossref_primary_10_1364_OE_525058
crossref_primary_10_1093_nargab_lqad098
crossref_primary_10_1109_TMC_2024_3381171
crossref_primary_10_1109_TVCG_2021_3050071
crossref_primary_10_1007_s00521_023_08662_2
crossref_primary_10_1063_5_0214733
crossref_primary_10_1088_1681_7575_ad6b30
crossref_primary_10_1080_03610918_2023_2245988
crossref_primary_10_1007_s00435_025_00710_w
crossref_primary_10_1111_ejn_16618
crossref_primary_10_1038_s41467_021_26320_w
crossref_primary_10_1002_env_2756
crossref_primary_10_3390_electronics10233045
crossref_primary_10_1371_journal_pone_0243503
crossref_primary_10_1016_j_chemgeo_2020_119973
crossref_primary_10_1080_17538947_2023_2271883
crossref_primary_10_1364_OE_460302
crossref_primary_10_1002_qre_3626
crossref_primary_10_1109_TSP_2021_3087031
crossref_primary_10_1007_s10994_020_05939_8
crossref_primary_10_32604_cmc_2023_044857
crossref_primary_10_1051_0004_6361_202245607
crossref_primary_10_3390_brainsci12050525
crossref_primary_10_1109_TIM_2024_3374301
crossref_primary_10_3390_s20247319
crossref_primary_10_1016_j_celrep_2024_114702
crossref_primary_10_1016_j_jhydrol_2021_127059
crossref_primary_10_1039_D2AY01778D
crossref_primary_10_1016_j_eswa_2024_123637
crossref_primary_10_1016_j_fub_2025_100034
crossref_primary_10_1016_j_aei_2024_102859
crossref_primary_10_1016_j_cnsns_2024_108500
crossref_primary_10_1109_TITS_2023_3276190
crossref_primary_10_1109_TSP_2019_2953670
crossref_primary_10_1038_s43247_024_01687_y
crossref_primary_10_1109_JSAC_2022_3180783
crossref_primary_10_1007_s00362_020_01198_w
crossref_primary_10_1016_j_jeconom_2020_07_039
crossref_primary_10_1109_TII_2023_3242772
crossref_primary_10_1177_03611981211072806
crossref_primary_10_3389_fevo_2022_793307
crossref_primary_10_3390_e23091191
crossref_primary_10_1109_TGRS_2023_3243900
crossref_primary_10_1007_s10618_023_00999_5
crossref_primary_10_1029_2020JD032977
crossref_primary_10_1080_00031305_2023_2191670
crossref_primary_10_1002_env_2762
crossref_primary_10_1080_15481603_2024_2365001
crossref_primary_10_1016_j_jjimei_2025_100323
crossref_primary_10_1093_nar_gkad593
crossref_primary_10_1109_LSP_2021_3068072
crossref_primary_10_1080_17459737_2021_1969599
crossref_primary_10_1016_j_jobe_2024_109860
crossref_primary_10_3390_s23239308
crossref_primary_10_1016_j_jmva_2022_105114
crossref_primary_10_1016_j_physa_2022_127929
crossref_primary_10_1109_TSG_2022_3191734
crossref_primary_10_1002_cta_3127
crossref_primary_10_1038_s41467_023_42241_2
crossref_primary_10_1016_j_watres_2022_119538
crossref_primary_10_1029_2024GL111497
crossref_primary_10_1109_TCSS_2023_3297233
crossref_primary_10_1002_env_2710
crossref_primary_10_2196_65448
crossref_primary_10_34133_research_0174
crossref_primary_10_1002_cite_202200231
crossref_primary_10_1016_j_crm_2022_100445
crossref_primary_10_1063_5_0062543
crossref_primary_10_1007_s42979_023_02536_z
crossref_primary_10_6339_24_JDS1137
crossref_primary_10_1016_j_engappai_2024_108220
crossref_primary_10_1021_acs_langmuir_4c04836
crossref_primary_10_3390_s21113880
crossref_primary_10_1007_s10463_023_00892_4
crossref_primary_10_1007_s12561_023_09377_7
crossref_primary_10_1016_j_autcon_2022_104232
crossref_primary_10_1016_j_eswa_2022_116660
crossref_primary_10_1093_bioinformatics_btae138
crossref_primary_10_1109_TIT_2021_3112680
crossref_primary_10_2196_57802
crossref_primary_10_1080_24725854_2023_2266001
crossref_primary_10_1016_j_tra_2024_104089
crossref_primary_10_3389_fmars_2023_1293823
crossref_primary_10_1093_bioinformatics_btad170
crossref_primary_10_1016_j_comnet_2024_110189
crossref_primary_10_1016_j_trc_2025_105015
crossref_primary_10_3390_s23135873
crossref_primary_10_1109_ACCESS_2024_3506155
crossref_primary_10_1111_rssb_12501
crossref_primary_10_1177_01423312221092527
crossref_primary_10_1016_j_rsase_2024_101210
crossref_primary_10_1016_j_ejpb_2022_09_010
crossref_primary_10_1109_TWC_2022_3192225
crossref_primary_10_1186_s40991_025_00106_5
crossref_primary_10_3390_geotechnics4020021
crossref_primary_10_1007_s10618_023_00974_0
crossref_primary_10_1109_TSP_2022_3183359
crossref_primary_10_11728_cjss2024_05_2023_0122
crossref_primary_10_2139_ssrn_3742790
crossref_primary_10_3390_make5040071
crossref_primary_10_1007_s42952_022_00194_0
crossref_primary_10_3390_rs13040634
crossref_primary_10_3389_fbioe_2021_782740
crossref_primary_10_1016_j_polymertesting_2023_108131
crossref_primary_10_1016_j_ijmecsci_2023_108769
crossref_primary_10_1007_s42952_020_00060_x
crossref_primary_10_1016_j_neucom_2024_127321
crossref_primary_10_1016_j_apenergy_2024_123523
crossref_primary_10_1016_j_ress_2024_110037
crossref_primary_10_1016_j_tra_2021_01_019
crossref_primary_10_1021_jasms_3c00219
crossref_primary_10_3390_pr12020251
crossref_primary_10_1016_j_ascom_2024_100860
crossref_primary_10_1002_esp_6003
crossref_primary_10_2196_38661
crossref_primary_10_3390_s23063326
crossref_primary_10_1016_j_dss_2021_113556
crossref_primary_10_1109_TKDE_2024_3523857
crossref_primary_10_1007_s00180_020_00992_2
crossref_primary_10_1016_j_jhydrol_2024_131096
crossref_primary_10_1109_TSG_2023_3245019
crossref_primary_10_1109_TSM_2021_3135434
crossref_primary_10_1016_j_ifacol_2020_11_054
crossref_primary_10_1002_sta4_291
crossref_primary_10_1007_s10712_024_09859_3
crossref_primary_10_1145_3472752
crossref_primary_10_1109_TVCG_2020_3030453
crossref_primary_10_1214_22_BA1344
crossref_primary_10_1002_sta4_284
crossref_primary_10_1038_s42256_024_00964_x
crossref_primary_10_1016_j_rse_2024_114285
crossref_primary_10_1007_s10489_021_02321_6
crossref_primary_10_2196_26302
crossref_primary_10_1002_sam_70000
crossref_primary_10_3390_math11244959
crossref_primary_10_1063_5_0126848
crossref_primary_10_1016_j_spl_2021_109258
crossref_primary_10_1109_TIM_2024_3413152
crossref_primary_10_2139_ssrn_4493344
crossref_primary_10_1371_journal_pone_0253610
crossref_primary_10_1016_j_techfore_2024_123966
crossref_primary_10_1038_s41567_024_02760_1
crossref_primary_10_1007_s11227_024_06264_w
crossref_primary_10_1016_j_eswa_2024_123342
crossref_primary_10_1109_TCOMM_2023_3341856
crossref_primary_10_3934_mmc_2024036
crossref_primary_10_3897_nucet_8_94106
crossref_primary_10_7554_eLife_74500
crossref_primary_10_3390_computers13100252
crossref_primary_10_1111_rssc_12429
crossref_primary_10_1007_s00521_024_09846_0
crossref_primary_10_14814_phy2_70034
crossref_primary_10_3390_s22135064
crossref_primary_10_1093_mnras_stad3603
crossref_primary_10_1016_j_enbuild_2023_113321
crossref_primary_10_1111_rssb_12552
crossref_primary_10_1038_s41598_024_79076_w
crossref_primary_10_1093_biomet_asad079
crossref_primary_10_1109_ACCESS_2023_3242684
crossref_primary_10_1093_molbev_msaa187
crossref_primary_10_3390_e26010050
crossref_primary_10_1098_rsif_2023_0383
crossref_primary_10_1186_s40537_023_00831_3
crossref_primary_10_3934_DSFE_2022012
crossref_primary_10_1038_s41597_022_01361_y
crossref_primary_10_1016_j_compbiomed_2025_109712
crossref_primary_10_1016_j_coastaleng_2024_104594
crossref_primary_10_1080_09332480_2023_2264728
crossref_primary_10_1214_23_AOS2297
crossref_primary_10_1007_s00354_023_00231_4
crossref_primary_10_1109_TIM_2021_3139688
crossref_primary_10_1109_TBME_2023_3346358
crossref_primary_10_1109_TIT_2021_3092753
crossref_primary_10_1016_j_trc_2024_104836
crossref_primary_10_1007_s11277_023_10816_3
crossref_primary_10_1016_j_rineng_2023_101747
crossref_primary_10_1109_TSE_2021_3128820
crossref_primary_10_1103_PhysRevLett_131_210804
crossref_primary_10_3390_technologies12070096
crossref_primary_10_1002_env_2664
crossref_primary_10_1109_TMI_2024_3381670
crossref_primary_10_3390_s23208408
crossref_primary_10_1109_TAES_2023_3341055
crossref_primary_10_1016_j_neuroimage_2021_118085
crossref_primary_10_3233_JHS_210651
crossref_primary_10_1016_j_automatica_2021_110075
crossref_primary_10_1016_j_cels_2023_10_011
crossref_primary_10_1051_0004_6361_202142941
crossref_primary_10_1016_j_jmsy_2023_02_017
crossref_primary_10_1140_epjds_s13688_022_00361_7
crossref_primary_10_1017_dce_2025_3
crossref_primary_10_1038_s41598_021_91392_z
crossref_primary_10_1038_s41467_023_42524_8
crossref_primary_10_1007_s00180_022_01238_z
crossref_primary_10_1016_j_csbj_2022_12_013
crossref_primary_10_1007_s10207_024_00921_0
crossref_primary_10_28925_2663_4023_2024_25_434448
crossref_primary_10_1109_TGRS_2024_3386564
crossref_primary_10_1109_TASLP_2021_3093817
crossref_primary_10_1515_em_2022_0125
crossref_primary_10_3390_en15031207
crossref_primary_10_1080_00207543_2022_2081629
crossref_primary_10_1038_s41598_024_60201_8
crossref_primary_10_1061__ASCE_CO_1943_7862_0002289
crossref_primary_10_1016_j_eswa_2024_123153
crossref_primary_10_1007_s10844_023_00801_4
crossref_primary_10_3390_math12203189
crossref_primary_10_1080_00401706_2024_2308202
crossref_primary_10_1080_10618600_2023_2262000
crossref_primary_10_1088_2515_7647_adbec8
crossref_primary_10_1016_j_compbiomed_2024_108653
crossref_primary_10_1038_s41598_021_00789_3
crossref_primary_10_1093_imaiai_iaaf002
crossref_primary_10_1051_itmconf_20213601005
crossref_primary_10_1016_j_jmaa_2020_124883
crossref_primary_10_1186_s40561_024_00317_6
crossref_primary_10_1117_1_JRS_18_024506
crossref_primary_10_1109_TKDE_2024_3492339
crossref_primary_10_1109_TSIPN_2022_3149098
crossref_primary_10_1214_21_EJS1871
crossref_primary_10_3390_pr13030684
crossref_primary_10_1080_00207721_2020_1797228
crossref_primary_10_5194_bg_21_2189_2024
crossref_primary_10_1093_nsr_nwab228
crossref_primary_10_1088_1538_3873_ad8781
crossref_primary_10_1214_23_EJS2126
crossref_primary_10_1016_j_ijfatigue_2022_107284
crossref_primary_10_1021_acsphotonics_3c01739
crossref_primary_10_3758_s13428_022_01917_1
Cites_doi 10.1016/j.sigpro.2004.11.012
10.1093/bioinformatics/bti611
10.1016/j.neucli.2015.10.015
10.1214/14-AOS1245
10.1214/12-AOAS539
10.2307/2171863
10.1214/18-EJS1513
10.1214/09-SS054
10.1007/BFb0052847
10.1007/s10115-016-0987-z
10.1016/j.csda.2018.07.002
10.1093/biomet/41.1-2.100
10.1162/003465305775098134
10.1371/journal.pone.0164975
10.1111/j.1541-0420.2006.00662.x
10.1111/rssb.12243
10.1016/j.neucom.2009.11.022
10.1093/bioinformatics/btl646
10.1080/10618600.2015.1116445
10.1080/01621459.2012.737745
10.1016/j.neucli.2016.09.019
10.3390/s18114033
10.1090/qam/102435
10.1017/S0266466600005831
10.1007/s00180-013-0422-9
10.1111/obes.12153
10.1007/s00440-006-0011-8
10.1214/aos/1176344722
10.1214/14-BA878
10.1016/j.jeconom.2018.05.003
10.3150/09-BEJ232
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TSP.2005.851098
10.1214/aos/1176348521
10.1186/1471-2105-6-27
10.1002/jae.659
10.1175/JAM2493.1
10.1111/rssb.12047
10.1080/01621459.1997.10474026
10.1007/s11222-016-9636-3
10.1111/j.1467-9892.2012.00819.x
10.1016/S0304-4076(97)00115-2
10.1016/j.jhydrol.2016.04.043
10.1017/S026646660000935X
10.1214/09-AOS716
10.1198/004017005000000328
10.1111/j.1467-9892.1994.tb00204.x
10.1214/08-AOAS232
10.1111/1467-9892.00172
10.1016/j.jeconom.2009.10.020
10.1214/aos/1176344136
10.1214/16-STS587
10.1016/j.ins.2018.03.010
10.1016/S0304-4149(99)00023-X
10.1111/j.1468-0262.2006.00754.x
10.1093/biostatistics/kxh008
10.2307/3001968
10.1214/14-BA910
10.1007/s11222-006-8450-8
10.1007/s11222-011-9240-5
10.1111/jtsa.12035
10.1007/s100970100031
10.1016/j.jeconom.2005.06.030
10.1080/01621459.1998.10473808
10.1162/003465397557132
10.1109/81.904882
10.1016/j.neucli.2015.10.038
10.1016/j.rse.2009.08.014
10.1016/S0378-3758(98)00082-2
10.1214/aoms/1177700517
10.1198/jasa.2010.tm09181
10.1214/14-AOS1210
10.1016/j.jeconom.2018.06.019
10.1080/10255842.2015.1072414
10.1111/rssb.12079
10.1016/S0169-7161(88)07021-X
10.1016/j.jspi.2017.09.003
10.1109/5.18626
10.1016/j.jmva.2012.05.007
10.1214/aoms/1177693055
10.1109/78.668798
10.1111/1368-423X.00102
10.1016/S0304-4076(98)00079-7
10.1016/S0169-2607(98)00079-0
10.1111/rssb.12202
10.1016/0167-7152(88)90118-6
10.1111/1467-937X.00051
10.1016/j.neunet.2013.01.012
10.1016/j.sigpro.2005.01.012
10.1214/aos/1176343001
10.3150/bj/1068128978
10.1093/biomet/42.3-4.523
10.1093/bioinformatics/bti677
10.1080/01621459.1993.10594323
10.2307/2998540
10.1186/1471-2105-14-164
10.1093/biomet/77.3.563
10.1016/j.artmed.2018.06.003
10.1214/15-AOS1347
10.1111/j.1467-9892.2011.00777.x
10.1214/07-AOS558
10.1007/s11222-016-9687-5
ContentType Journal Article
Copyright 2019
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2019
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.sigpro.2019.107299
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
EISSN 1872-7557
ExternalDocumentID oai_HAL_hal_02442692v1
10_1016_j_sigpro_2019_107299
S0165168419303494
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
VOOES
ID FETCH-LOGICAL-c406t-591dce03f09e2a2a6c01d44871ef1f2e45fbc7c765df4039abca71d665c6e4053
IEDL.DBID .~1
ISSN 0165-1684
IngestDate Fri May 09 12:24:42 EDT 2025
Thu Apr 24 22:57:38 EDT 2025
Tue Jul 01 02:07:27 EDT 2025
Fri Feb 23 02:33:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Segmentation
Statistical signal processing
Change point detection
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-591dce03f09e2a2a6c01d44871ef1f2e45fbc7c765df4039abca71d665c6e4053
ORCID 0000-0002-8527-8161
0009-0002-1406-9116
0000-0003-4308-4681
0000-0002-4750-2265
OpenAccessLink https://hal.science/hal-02442692
ParticipantIDs hal_primary_oai_HAL_hal_02442692v1
crossref_primary_10_1016_j_sigpro_2019_107299
crossref_citationtrail_10_1016_j_sigpro_2019_107299
elsevier_sciencedirect_doi_10_1016_j_sigpro_2019_107299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
2020-02
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2020
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Górecki, Horváth, Kokoszka (bib0057) 2018; 7
Yao, Au (bib0136) 1989; 51
Niu, Hao, Zhang (bib0044) 2016; 31
Bai (bib0068) 1996; 64
Truong, Oudre, Vayatis (bib0107) 2019
Jandhyala, Fotopoulos, Macneill, Liu (bib0008) 2013; 34
Fearnhead (bib0056) 2006; 16
Hébrail, Hugueney, Lechevallier, Rossi (bib0063) 2010; 73
Bai, Perron (bib0072) 2003; 18
Lévy-Leduc, Roueff (bib0028) 2009; 3
Zhang (bib0090) 2006; 48
Bai, Saranadasa (bib0147) 1996; 6
Maidstone, Hocking, Rigaill, Fearnhead (bib0017) 2017; 27
Chen, Gupta (bib0006) 2011
Bai (bib0074) 1999; 91
Lavielle (bib0049) 1999; 83
Pein, Sieling, Munk (bib0050) 2017; 79
Nam, Aston, Johansen (bib0082) 2012; 33
Lai, Johnson, Kucherlapati, Park (bib0131) 2005; 21
Wilcoxon (bib0094) 1945; 1
Celisse, Marot, Pierre-Jean, Rigaill (bib0100) 2018; 128
Fu, Curnow (bib0058) 1990; 77
Barigozzi, Cho, Fryzlewicz (bib0154) 2018; 206
Hocking, Rigaill, Bourque (bib0031) 2015
Esteller, Vachtsevanos, Echauz, Litt (bib0117) 2001; 48
Frick, Munk, Sieling (bib0015) 2014; 76
Harchaoui, Lévy-Leduc (bib0048) 2010; 105
Lajugie, Bach, Arlot (bib0030) 2014
Perron (bib0076) 2006; 1
Audiffren, Barrois-Müller, Provost, Chiarovano, Oudre, Moreau, Truong, Yelnik, Vayatis, Vidal, De Waele, Buffat, Ricard (bib0023) 2015; 45
Hastie, Tibshirani, Friedman (bib0084) 2009
Shawe-Taylor, Cristianini (bib0102) 2004
.
Jeon, Hyun Sung, Chung (bib0143) 2016; 538
Chernoff, Zacks (bib0060) 1964; 35
Chakar, Lebarbier, Levy-Leduc, Robin (bib0021) 2017; 23
Bai, Lumsdaine, Stock (bib0078) 1998; 65
C. Truong, ruptures: change point detection in python, 2018, [Online].
Aminikhanghahi, Cook (bib0043) 2017; 51
Lung-Yut-Fong, Lévy-Leduc, Cappé (bib0093) 2015; 156
Sriperumbudur, Gretton, Fukumizu, Lanckriet, Schölkopf (bib0101) 2008
Aue, Horvàth (bib0055) 2012; 34
Chen, Gupta (bib0114) 1997; 92
Birgé, Massart (bib0157) 2001; 3
Arlot, Celisse (bib0137) 2010; 4
Enikeeva, Harchaoui (bib0149) 2014
Kay, Oppenheim (bib0108) 1993
Page (bib0002) 1955; 42
Haynes, Fearnhead, Eckley (bib0089) 2017; 27
Killick, Fearnhead, Eckley (bib0113) 2012; 107
Lung-Yut-Fong, Lévy-Leduc, Cappé (bib0029) 2012; 22
Tibshirani (bib0142) 1996; 58
Hocking, Rigaill, Vert, Bach (bib0139) 2013
Lavielle, Moulines (bib0052) 2000; 21
Bellman (bib0109) 1955; 16
Boysen, Kempe, Liebscher, Munk, Wittich (bib0047) 2009; 37
Lavielle (bib0065) 2005; 85
Harchaoui, Cappé (bib0097) 2007
Bai (bib0069) 2000; 1
Jirak (bib0150) 2015; 43
Basseville, Nikiforov (bib0003) 1993; 104
Jirak (bib0152) 2012; 111
Oudre, Barrois-Müller, Moreau, Truong, Dadashi, Grégory, Ricard, Vayatis, De Waele, Yelnik, Vidal (bib0022) 2015; 45
Schölkopf, Smola (bib0098) 2002
Bai, Perron (bib0075) 2003; 6
Barrois-Müller, Ricard, Oudre, Tlili, Provost, Vienne, Vidal, Buffat, Yelnik (bib0032) 2016; 46
Karagiannaki, Panousopoulou, Tsakalides (bib0118) 2017
Keogh, Chu, Hart, Pazzani (bib0121) 2004; 57
Prescott Adams, MacKay (bib0125) 2007
Doyle, Faust (bib0081) 2005; 87
Harchaoui, Bach, Moulines (bib0122) 2008
Picard, Robin, Lavielle, Vaisse, Daudin (bib0019) 2005; 6
Bai (bib0070) 1997; 79
Sen, Srivastava (bib0053) 1975; 3
Venkatraman, Olshen (bib0133) 2007; 23
Chen, Gopalakrishnan (bib0120) 1998
Csörgö, Horváth (bib0005) 1997
Lavielle, Teyssière (bib0007) 2007
Bai, Perron (bib0045) 2003; 18
S. Chakar, É. Lebarbier, C. Levy-Leduc, S. Robin, AR1seg: segmentation of an autoregressive Gaussian process of order 1, 2014. URL
Lebarbier, Lebarbier (bib0145) 2005; 85
Truong, Oudre, Vayatis (bib0140) 2017
Seichepine, Essid, Fevotte, Cappé (bib0013) 2014
Ko, Chong, Ghosh (bib0039) 2015; 10
Gretton, Borgwardt, Rasch, Schölkopf, Smola (bib0099) 2012; 13
Reeves, Chen, Wang, Lund, Lu (bib0027) 2007; 46
Kifer, Ben-David, Gehrke (bib0124) 2004
Page (bib0001) 1954; 41
Barrois-Müller, Oudre, Moreau, Truong, Vayatis, Buffat, Yelnik, de Waele, Gregory, Laporte, Vidal, Ricard (bib0036) 2015; 18 Suppl 1
Lehman, Romano (bib0095) 2006; 101
Chib (bib0064) 1998; 86
Davis, Kulis, Jain, Sra, Dhillon (bib0086) 2007
Perron, Qu (bib0079) 2006; 134
Adak (bib0119) 1998; 93
Jain, Kulis, Davis, Dhillon (bib0106) 2012; 13
Einmahl, McKeague (bib0087) 2003; 9
Rigaill (bib0111) 2015; 156
Schwarz (bib0141) 1978; 6
Brodsky, Darkhovsky, Kaplan, Shishkin (bib0116) 1999; 60
Willenbrock, Fridlyand (bib0132) 2005; 21
Himberg, Korpiaho, Mannila, Tikanmaki, Toivonen (bib0129) 2001
Angelosante, Giannakis (bib0012) 2012; 70
Bai, Shi (bib0146) 2011; 12
Olshen, Venkatraman, Lucito, Wigler (bib0126) 2004; 5
Oudre, Barrois-Müller, Moreau, Truong, Vienne-Jumeau, Ricard, Vayatis, Vidal (bib0034) 2018; 18
Hugueney, Hébrail, Lechevallier, Rossi (bib0112) 2009
Zhang, Siegmund (bib0144) 2007; 63
Maidstone (bib0025) 2016
Chen, Qin (bib0148) 2010; 38
Ma, Su (bib0155) 2018; 207
Liu, Wright, Hauskrecht (bib0024) 2018; 91
Bai (bib0066) 1994; 15
Cabrieto, Tuerlinckx, Kuppens, Wilhelm, Liedlgruber, Ceulemans (bib0105) 2018; 447
Bai (bib0127) 1997; 13
Hocking, Schleiermacher, Janoueix-Lerosey, Boeva, Cappo, Delattre, Bach, Vert (bib0016) 2013; 14
Martínez, Mena (bib0040) 2014; 9
Qu, Perron (bib0071) 2007; 75
Kendall (bib0096) 1970
Niu, Zhang (bib0130) 2012; 6
Mallows (bib0062) 1973; 15
Vert, Bleakley (bib0018) 2010; 1
Verbesselt, Hyndman, Newnham, Culvenor (bib0026) 2010
Liu, Yamada, Collier, Sugiyama (bib0123) 2013; 43
Birgé, Massart (bib0138) 2007; 138
Vullings, Verhaegen, Verbruggen (bib0115) 1997
He, Severini (bib0059) 2010; 16
Fryzlewicz (bib0128) 2014; 42
Keshavarz, Scott, Nguyen (bib0051) 2018; 193
Lavielle (bib0110) 1998; 46
Haynes, Eckley, Fearnhead (bib0009) 2017; 26
Rabiner (bib0038) 1989; 77
Bai (bib0073) 1998; 74
Keogh, Chu, Hart, Pazzani (bib0134) 2001
Mahalanobis (bib0083) 1936; 2
Bai, Perron (bib0014) 1998; 66
Brodsky, Darkhovsky (bib0004) 1993
Barry, Hartigan (bib0041) 1992; 20
Guédon (bib0020) 2013; 28
Desobry, Davy, Doncarli (bib0010) 2005; 53
Han, Taamouti (bib0080) 2017; 79
Arlot, Celisse, Harchaoui (bib0104) 2012
Wang, Samworth (bib0151) 2018; 80
Barrois-Müller, Gregory, Oudre, Moreau, Truong, Aram Pulini, Vienne, Labourdette, Vayatis, Buffat, Yelnik, de Waele, Laporte, Vidal, Ricard (bib0033) 2016; 11
Lorden (bib0061) 1971; 42
Harchaoui, Vallet, Lung-Yut-Fong, Cappé (bib0011) 2009
Zou, Yin, Long, Wang (bib0088) 2014; 42
Garreau, Arlot (bib0103) 2018; 12
Vostrikova (bib0156) 1981; 24
Bai (bib0077) 2010; 157
Xing, Jordan, Russell (bib0085) 2003
Bai (bib0067) 1995; 11
Cho, Fryzlewicz (bib0153) 2014; 77
Clemencon, Depecker, Vayatis (bib0091) 2009
Friedman, Rafsky (bib0092) 1979; 7
Barry, Hartigan (bib0042) 1993; 88
Yao (bib0135) 1988; 6
Truong, Oudre, Vayatis (bib0035) 2015
Krishnaiah (bib0054) 1988; 7
Sriperumbudur (10.1016/j.sigpro.2019.107299_sbref0099) 2008
Killick (10.1016/j.sigpro.2019.107299_bib0113) 2012; 107
Bai (10.1016/j.sigpro.2019.107299_bib0066) 1994; 15
Lavielle (10.1016/j.sigpro.2019.107299_bib0052) 2000; 21
Willenbrock (10.1016/j.sigpro.2019.107299_bib0132) 2005; 21
Bai (10.1016/j.sigpro.2019.107299_bib0147) 1996; 6
Lebarbier (10.1016/j.sigpro.2019.107299_bib0145) 2005; 85
Barry (10.1016/j.sigpro.2019.107299_bib0042) 1993; 88
Audiffren (10.1016/j.sigpro.2019.107299_bib0023) 2015; 45
Chernoff (10.1016/j.sigpro.2019.107299_bib0060) 1964; 35
Vert (10.1016/j.sigpro.2019.107299_sbref0018) 2010; 1
Barry (10.1016/j.sigpro.2019.107299_bib0041) 1992; 20
Friedman (10.1016/j.sigpro.2019.107299_bib0092) 1979; 7
Jirak (10.1016/j.sigpro.2019.107299_bib0150) 2015; 43
Boysen (10.1016/j.sigpro.2019.107299_bib0047) 2009; 37
Bai (10.1016/j.sigpro.2019.107299_bib0045) 2003; 18
Zou (10.1016/j.sigpro.2019.107299_bib0088) 2014; 42
Jirak (10.1016/j.sigpro.2019.107299_bib0152) 2012; 111
Kifer (10.1016/j.sigpro.2019.107299_sbref0122) 2004
Nam (10.1016/j.sigpro.2019.107299_bib0082) 2012; 33
Lai (10.1016/j.sigpro.2019.107299_bib0131) 2005; 21
Frick (10.1016/j.sigpro.2019.107299_bib0015) 2014; 76
Lavielle (10.1016/j.sigpro.2019.107299_bib0110) 1998; 46
Vostrikova (10.1016/j.sigpro.2019.107299_bib0156) 1981; 24
Harchaoui (10.1016/j.sigpro.2019.107299_sbref0095) 2007
Tibshirani (10.1016/j.sigpro.2019.107299_bib0142) 1996; 58
Prescott Adams (10.1016/j.sigpro.2019.107299_bib0125) 2007
Bai (10.1016/j.sigpro.2019.107299_bib0078) 1998; 65
Lajugie (10.1016/j.sigpro.2019.107299_sbref0030) 2014
Fearnhead (10.1016/j.sigpro.2019.107299_bib0056) 2006; 16
Martínez (10.1016/j.sigpro.2019.107299_bib0040) 2014; 9
Page (10.1016/j.sigpro.2019.107299_bib0002) 1955; 42
Hocking (10.1016/j.sigpro.2019.107299_bib0016) 2013; 14
Lavielle (10.1016/j.sigpro.2019.107299_bib0065) 2005; 85
Oudre (10.1016/j.sigpro.2019.107299_bib0034) 2018; 18
Bai (10.1016/j.sigpro.2019.107299_bib0146) 2011; 12
Fryzlewicz (10.1016/j.sigpro.2019.107299_bib0128) 2014; 42
Karagiannaki (10.1016/j.sigpro.2019.107299_sbref0116) 2017
Seichepine (10.1016/j.sigpro.2019.107299_sbref0013) 2014
Aminikhanghahi (10.1016/j.sigpro.2019.107299_bib0043) 2017; 51
Bai (10.1016/j.sigpro.2019.107299_bib0067) 1995; 11
Zhang (10.1016/j.sigpro.2019.107299_bib0144) 2007; 63
Esteller (10.1016/j.sigpro.2019.107299_bib0117) 2001; 48
Shawe-Taylor (10.1016/j.sigpro.2019.107299_bib0102) 2004
Lévy-Leduc (10.1016/j.sigpro.2019.107299_bib0028) 2009; 3
Birgé (10.1016/j.sigpro.2019.107299_bib0157) 2001; 3
Adak (10.1016/j.sigpro.2019.107299_bib0119) 1998; 93
Barigozzi (10.1016/j.sigpro.2019.107299_bib0154) 2018; 206
Davis (10.1016/j.sigpro.2019.107299_sbref0084) 2007
Liu (10.1016/j.sigpro.2019.107299_bib0024) 2018; 91
Haynes (10.1016/j.sigpro.2019.107299_bib0089) 2017; 27
Schwarz (10.1016/j.sigpro.2019.107299_bib0141) 1978; 6
Barrois-Müller (10.1016/j.sigpro.2019.107299_bib0032) 2016; 46
Maidstone (10.1016/j.sigpro.2019.107299_bib0025) 2016
Truong (10.1016/j.sigpro.2019.107299_sbref0105) 2019
Basseville (10.1016/j.sigpro.2019.107299_bib0003) 1993; 104
He (10.1016/j.sigpro.2019.107299_bib0059) 2010; 16
Han (10.1016/j.sigpro.2019.107299_bib0080) 2017; 79
Keshavarz (10.1016/j.sigpro.2019.107299_bib0051) 2018; 193
Guédon (10.1016/j.sigpro.2019.107299_bib0020) 2013; 28
Truong (10.1016/j.sigpro.2019.107299_sbref0035) 2015
Bai (10.1016/j.sigpro.2019.107299_bib0073) 1998; 74
Schölkopf (10.1016/j.sigpro.2019.107299_bib0098) 2002
10.1016/j.sigpro.2019.107299_bib0037
Venkatraman (10.1016/j.sigpro.2019.107299_bib0133) 2007; 23
Niu (10.1016/j.sigpro.2019.107299_bib0044) 2016; 31
Brodsky (10.1016/j.sigpro.2019.107299_bib0004) 1993
Lehman (10.1016/j.sigpro.2019.107299_bib0095) 2006; 101
Bai (10.1016/j.sigpro.2019.107299_bib0075) 2003; 6
Bellman (10.1016/j.sigpro.2019.107299_bib0109) 1955; 16
Gretton (10.1016/j.sigpro.2019.107299_bib0099) 2012; 13
Bai (10.1016/j.sigpro.2019.107299_bib0068) 1996; 64
Pein (10.1016/j.sigpro.2019.107299_bib0050) 2017; 79
Ma (10.1016/j.sigpro.2019.107299_bib0155) 2018; 207
Qu (10.1016/j.sigpro.2019.107299_bib0071) 2007; 75
Garreau (10.1016/j.sigpro.2019.107299_bib0103) 2018; 12
Kendall (10.1016/j.sigpro.2019.107299_bib0096) 1970
Chib (10.1016/j.sigpro.2019.107299_bib0064) 1998; 86
Harchaoui (10.1016/j.sigpro.2019.107299_sbref0011) 2009
Chen (10.1016/j.sigpro.2019.107299_bib0006) 2011
Kay (10.1016/j.sigpro.2019.107299_bib0108) 1993
Bai (10.1016/j.sigpro.2019.107299_bib0127) 1997; 13
Jeon (10.1016/j.sigpro.2019.107299_bib0143) 2016; 538
Wilcoxon (10.1016/j.sigpro.2019.107299_bib0094) 1945; 1
Niu (10.1016/j.sigpro.2019.107299_bib0130) 2012; 6
Desobry (10.1016/j.sigpro.2019.107299_bib0010) 2005; 53
Barrois-Müller (10.1016/j.sigpro.2019.107299_bib0036) 2015; 18 Suppl 1
Górecki (10.1016/j.sigpro.2019.107299_bib0057) 2018; 7
10.1016/j.sigpro.2019.107299_bib0046
Keogh (10.1016/j.sigpro.2019.107299_bib0121) 2004; 57
Hocking (10.1016/j.sigpro.2019.107299_sbref0137) 2013
Yao (10.1016/j.sigpro.2019.107299_bib0136) 1989; 51
Bai (10.1016/j.sigpro.2019.107299_bib0070) 1997; 79
Liu (10.1016/j.sigpro.2019.107299_bib0123) 2013; 43
Zhang (10.1016/j.sigpro.2019.107299_bib0090) 2006; 48
Lung-Yut-Fong (10.1016/j.sigpro.2019.107299_bib0093) 2015; 156
Arlot (10.1016/j.sigpro.2019.107299_bib0104) 2012
Aue (10.1016/j.sigpro.2019.107299_bib0055) 2012; 34
Bai (10.1016/j.sigpro.2019.107299_bib0069) 2000; 1
Einmahl (10.1016/j.sigpro.2019.107299_bib0087) 2003; 9
Angelosante (10.1016/j.sigpro.2019.107299_bib0012) 2012; 70
Bai (10.1016/j.sigpro.2019.107299_bib0072) 2003; 18
Csörgö (10.1016/j.sigpro.2019.107299_sbref0005) 1997
Chen (10.1016/j.sigpro.2019.107299_bib0148) 2010; 38
Sen (10.1016/j.sigpro.2019.107299_bib0053) 1975; 3
Truong (10.1016/j.sigpro.2019.107299_sbref0138) 2017
Barrois-Müller (10.1016/j.sigpro.2019.107299_bib0033) 2016; 11
Maidstone (10.1016/j.sigpro.2019.107299_bib0017) 2017; 27
Brodsky (10.1016/j.sigpro.2019.107299_bib0116) 1999; 60
Lavielle (10.1016/j.sigpro.2019.107299_bib0049) 1999; 83
Lung-Yut-Fong (10.1016/j.sigpro.2019.107299_bib0029) 2012; 22
Bai (10.1016/j.sigpro.2019.107299_bib0014) 1998; 66
Hébrail (10.1016/j.sigpro.2019.107299_bib0063) 2010; 73
Enikeeva (10.1016/j.sigpro.2019.107299_bib0149) 2014
Cabrieto (10.1016/j.sigpro.2019.107299_bib0105) 2018; 447
Chen (10.1016/j.sigpro.2019.107299_bib0114) 1997; 92
Wang (10.1016/j.sigpro.2019.107299_bib0151) 2018; 80
Xing (10.1016/j.sigpro.2019.107299_bib0085) 2003
Hugueney (10.1016/j.sigpro.2019.107299_sbref0110) 2009
Chakar (10.1016/j.sigpro.2019.107299_bib0021) 2017; 23
Lorden (10.1016/j.sigpro.2019.107299_bib0061) 1971; 42
Vullings (10.1016/j.sigpro.2019.107299_bib0115) 1997
Bai (10.1016/j.sigpro.2019.107299_bib0077) 2010; 157
Hastie (10.1016/j.sigpro.2019.107299_bib0084) 2009
Reeves (10.1016/j.sigpro.2019.107299_bib0027) 2007; 46
Arlot (10.1016/j.sigpro.2019.107299_bib0137) 2010; 4
Rabiner (10.1016/j.sigpro.2019.107299_bib0038) 1989; 77
Celisse (10.1016/j.sigpro.2019.107299_bib0100) 2018; 128
Ko (10.1016/j.sigpro.2019.107299_bib0039) 2015; 10
Page (10.1016/j.sigpro.2019.107299_bib0001) 1954; 41
Harchaoui (10.1016/j.sigpro.2019.107299_bib0048) 2010; 105
Picard (10.1016/j.sigpro.2019.107299_bib0019) 2005; 6
Yao (10.1016/j.sigpro.2019.107299_bib0135) 1988; 6
Himberg (10.1016/j.sigpro.2019.107299_bib0129) 2001
Keogh (10.1016/j.sigpro.2019.107299_sbref0132) 2001
Chen (10.1016/j.sigpro.2019.107299_sbref0118) 1998
Verbesselt (10.1016/j.sigpro.2019.107299_bib0026) 2010
Mallows (10.1016/j.sigpro.2019.107299_bib0062) 1973; 15
Harchaoui (10.1016/j.sigpro.2019.107299_sbref0120) 2008
Doyle (10.1016/j.sigpro.2019.107299_bib0081) 2005; 87
Lavielle (10.1016/j.sigpro.2019.107299_bib0007) 2007
Haynes (10.1016/j.sigpro.2019.107299_bib0009) 2017; 26
Jain (10.1016/j.sigpro.2019.107299_bib0106) 2012; 13
Birgé (10.1016/j.sigpro.2019.107299_bib0138) 2007; 138
Clemencon (10.1016/j.sigpro.2019.107299_sbref0089) 2009
Hocking (10.1016/j.sigpro.2019.107299_sbref0031) 2015
Jandhyala (10.1016/j.sigpro.2019.107299_bib0008) 2013; 34
Oudre (10.1016/j.sigpro.2019.107299_bib0022) 2015; 45
Rigaill (10.1016/j.sigpro.2019.107299_bib0111) 2015; 156
Fu (10.1016/j.sigpro.2019.107299_bib0058) 1990; 77
Olshen (10.1016/j.sigpro.2019.107299_bib0126) 2004; 5
Cho (10.1016/j.sigpro.2019.107299_bib0153) 2014; 77
Krishnaiah (10.1016/j.sigpro.2019.107299_bib0054) 1988; 7
Perron (10.1016/j.sigpro.2019.107299_bib0076) 2006; 1
Bai (10.1016/j.sigpro.2019.107299_bib0074) 1999; 91
Mahalanobis (10.1016/j.sigpro.2019.107299_bib0083) 1936; 2
Perron (10.1016/j.sigpro.2019.107299_bib0079) 2006; 134
References_xml – start-page: 521
  year: 2003
  end-page: 528
  ident: bib0085
  article-title: Distance metric learning, with application to clustering with side-Information
  publication-title: Advances in Neural Information Processing Systems (NIPS)
– volume: 48
  start-page: 95
  year: 2006
  end-page: 103
  ident: bib0090
  article-title: Powerful two-sample tests based on the likelihood ratio
  publication-title: Technometrics
– volume: 93
  start-page: 1488
  year: 1998
  end-page: 1501
  ident: bib0119
  article-title: Time-dependent spectral analysis of nonstationary time series
  publication-title: J. Am. Stat. Assoc.
– volume: 11
  start-page: 403
  year: 1995
  end-page: 436
  ident: bib0067
  article-title: Least absolute deviation of a shift
  publication-title: Econom. Theory
– start-page: 172
  year: 2013
  end-page: 180
  ident: bib0139
  article-title: Learning sparse penalties for change-point detection using max margin interval regression
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 86
  start-page: 221
  year: 1998
  end-page: 241
  ident: bib0064
  article-title: Estimation and comparison of multiple change-point models
  publication-title: J. Econ.
– volume: 70
  year: 2012
  ident: bib0012
  article-title: Group lassoing change-points piece-constant AR processes
  publication-title: EURASIP J. Adv. Signal Process.
– start-page: 768
  year: 2007
  end-page: 772
  ident: bib0097
  article-title: Retrospective multiple change-point estimation with kernels
  publication-title: Proceedings of the IEEE/SP Workshop on Statistical Signal Processing
– volume: 9
  start-page: 823
  year: 2014
  end-page: 858
  ident: bib0040
  article-title: On a nonparametric change point detection model in markovian regimes
  publication-title: Bayesian Anal.
– volume: 12
  start-page: 4440
  year: 2018
  end-page: 4486
  ident: bib0103
  article-title: Consistent change-point detection with kernels
  publication-title: Electron. J. Stat.
– volume: 34
  start-page: 423
  year: 2013
  end-page: 446
  ident: bib0008
  article-title: Inference for single and multiple change-points in time series
  publication-title: J. Time Ser. Anal.
– volume: 91
  start-page: 49
  year: 2018
  end-page: 56
  ident: bib0024
  article-title: Change-point detection method for clinical decision support system rule monitoring
  publication-title: Artif. Intell. Med.
– start-page: 6721
  year: 2014
  end-page: 6725
  ident: bib0013
  article-title: Piecewise constant nonnegative matrix factorization
  publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 46
  start-page: 244
  year: 2016
  ident: bib0032
  article-title: Étude observationnelle du demi-tour à l’aide de capteurs inertiels chez les sujets victimes d’AVC et relation avec le risque de chute
  publication-title: Neurophysiologie Clinique/Clin. Neurophysiol.
– volume: 38
  start-page: 808
  year: 2010
  end-page: 835
  ident: bib0148
  article-title: A two-sample test for high-dimensional data with applications to gene-set testing
  publication-title: Ann. Stat.
– volume: 15
  start-page: 661
  year: 1973
  end-page: 675
  ident: bib0062
  article-title: Some comments on Cp
  publication-title: Technometrics
– volume: 13
  start-page: 519
  year: 2012
  end-page: 547
  ident: bib0106
  article-title: Metric and kernel learning using a linear transformation
  publication-title: J. Mach. Learn. Res. (JMLR)
– volume: 28
  start-page: 2641
  year: 2013
  end-page: 2678
  ident: bib0020
  article-title: Exploring the latent segmentation space for the assessment of multiple change-point models
  publication-title: Comput. Stat.
– volume: 41
  start-page: 100
  year: 1954
  end-page: 105
  ident: bib0001
  article-title: Continuous inspection schemes
  publication-title: Biometrika
– volume: 207
  start-page: 1
  year: 2018
  end-page: 29
  ident: bib0155
  article-title: Estimation of large dimensional factor models with an unknown number of breaks
  publication-title: J. Econ.
– start-page: 180
  year: 2004
  end-page: 191
  ident: bib0124
  article-title: Detecting change in data streams
  publication-title: Proceedings of the Thirtieth International Conference on Very Large Data Bases (VLDB) - Volume 30
– volume: 12
  start-page: 199
  year: 2011
  end-page: 215
  ident: bib0146
  article-title: Estimating high dimensional covariance matrices and its applications
  publication-title: Ann. Econom. Finance
– volume: 27
  start-page: 1293
  year: 2017
  end-page: 1305
  ident: bib0089
  article-title: A computationally efficient nonparametric approach for changepoint detection
  publication-title: Stat. Comput.
– volume: 42
  start-page: 1897
  year: 1971
  end-page: 1908
  ident: bib0061
  article-title: Procedures for reacting to a change in distribution
  publication-title: Ann. Math. Stat.
– volume: 11
  start-page: e0164975
  year: 2016
  ident: bib0033
  article-title: An automated recording method in clinical consultation to rate the limp in lower limb osteoarthritis
  publication-title: PLoS One
– volume: 156
  start-page: 180
  year: 2015
  end-page: 205
  ident: bib0111
  article-title: A pruned dynamic programming algorithm to recover the best segmentations with 1 to k_max change-points.
  publication-title: J. de la Société Française de Statistique
– volume: 77
  start-page: 257
  year: 1989
  end-page: 286
  ident: bib0038
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
– volume: 1
  start-page: 80
  year: 1945
  end-page: 83
  ident: bib0094
  article-title: Individual comparisons by ranking methods
  publication-title: Biometr. Bull.
– volume: 48
  start-page: 177
  year: 2001
  end-page: 183
  ident: bib0117
  article-title: A comparison of waveform fractal dimension algorithms
  publication-title: IEEE Trans. Circuit. Syst. I: Fundamental Theory and Applications
– volume: 91
  start-page: 299
  year: 1999
  end-page: 323
  ident: bib0074
  article-title: Likelihood ratio tests for multiple structural changes
  publication-title: J. Econom.
– volume: 88
  start-page: 309
  year: 1993
  end-page: 319
  ident: bib0042
  article-title: A bayesian analysis for change point problems
  publication-title: J. Am. Stat. Assoc.
– volume: 18
  year: 2018
  ident: bib0034
  article-title: Template-based step detection with inertial measurement units
  publication-title: Sensors
– year: 1970
  ident: bib0096
  article-title: Rank Correlation Methods
– volume: 157
  start-page: 78
  year: 2010
  end-page: 92
  ident: bib0077
  article-title: Common breaks in means and variances for panel data
  publication-title: J. Econom.
– start-page: 1665
  year: 2009
  end-page: 1668
  ident: bib0011
  article-title: A regularized kernel-based approach to unsupervised audio segmentation
  publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 3
  start-page: 98
  year: 1975
  end-page: 108
  ident: bib0053
  article-title: On tests for detecting change in mean
  publication-title: Ann. Stat.
– volume: 57
  start-page: 1
  year: 2004
  end-page: 22
  ident: bib0121
  article-title: Segmenting time series: a survey and novel approach
  publication-title: Data Min. Time Ser. Databases
– start-page: 289
  year: 2001
  end-page: 296
  ident: bib0134
  article-title: An online algorithm for segmenting time series
  publication-title: Proceedings of the IEEE International Conference on Data Mining (ICDM)
– year: 1993
  ident: bib0004
  article-title: Nonparametric methods in change point problems
– volume: 34
  start-page: 1
  year: 2012
  end-page: 16
  ident: bib0055
  article-title: Structural breaks in time series
  publication-title: J. Time Ser. Anal.
– volume: 13
  start-page: 315
  year: 1997
  end-page: 352
  ident: bib0127
  article-title: Estimating multiple breaks one at a time
  publication-title: Econom. Theory
– volume: 42
  start-page: 2243
  year: 2014
  end-page: 2281
  ident: bib0128
  article-title: Wild binary segmentation for multiple change-point detection
  publication-title: Ann. Statistics
– volume: 77
  start-page: 475
  year: 2014
  end-page: 507
  ident: bib0153
  article-title: Multiple change-point detection for high dimensional time series via Szparsified binary segmentation
  publication-title: J. R. Stat. Soc
– volume: 79
  start-page: 551
  year: 1997
  end-page: 563
  ident: bib0070
  article-title: Estimation of a change-point in multiple regression models
  publication-title: Rev. Econ. Stat.
– volume: 1
  start-page: 278
  year: 2006
  end-page: 352
  ident: bib0076
  article-title: Dealing with structural breaks
  publication-title: Palgrave HandbookEconom.
– start-page: 1
  year: 2019
  end-page: 5
  ident: bib0107
  article-title: Supervised kernel change point detection with partial annotations
  publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 3
  start-page: 203
  year: 2001
  end-page: 268
  ident: bib0157
  article-title: Gaussian model selection
  publication-title: J. Eur. Math. Soc.
– volume: 85
  start-page: 717
  year: 2005
  end-page: 736
  ident: bib0145
  article-title: Detecting multiple change-points in the mean of gaussian process by model selection
  publication-title: Signal Process.
– volume: 51
  start-page: 339
  year: 2017
  end-page: 367
  ident: bib0043
  article-title: A survey of methods for time series change point detection
  publication-title: Know. Inf. Syst.
– volume: 3
  start-page: 637
  year: 2009
  end-page: 662
  ident: bib0028
  article-title: Detection and localization of change-points in high-dimensional network traffic data
  publication-title: Ann. Appl. Stat.
– reference: S. Chakar, É. Lebarbier, C. Levy-Leduc, S. Robin, AR1seg: segmentation of an autoregressive Gaussian process of order 1, 2014. URL
– volume: 43
  start-page: 72
  year: 2013
  end-page: 83
  ident: bib0123
  article-title: Change-point detection in time-series data by relative density-ratio estimation
  publication-title: Neural Networks
– volume: 21
  start-page: 4084
  year: 2005
  end-page: 4091
  ident: bib0132
  article-title: A comparison study: applying segmentation to array CGH data for downstream analyses
  publication-title: Bioinformatics
– volume: 538
  start-page: 831
  year: 2016
  end-page: 841
  ident: bib0143
  article-title: Abrupt change point detection of annual maximum precipitation using fused lasso
  publication-title: J. Hydrol.
– volume: 16
  start-page: 203
  year: 2006
  end-page: 213
  ident: bib0056
  article-title: Exact and efficient bayesian inference for multiple changepoint problems
  publication-title: Stat. Comput.
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: bib0141
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
– volume: 105
  start-page: 1480
  year: 2010
  end-page: 1493
  ident: bib0048
  article-title: Multiple change-point estimation with a total variation penalty
  publication-title: J. Am. Stat. Assoc.
– volume: 6
  start-page: 1306
  year: 2012
  end-page: 1326
  ident: bib0130
  article-title: The screening and ranking algorithm to detect DNA copy number variations
  publication-title: Ann. Appl. Stat.
– volume: 64
  start-page: 597
  year: 1996
  end-page: 622
  ident: bib0068
  article-title: Testing for parameter constancy in linear regressions: an empirical distribution function approach
  publication-title: Econometrica
– volume: 87
  start-page: 721
  year: 2005
  end-page: 740
  ident: bib0081
  article-title: Breaks in the variability and comovement of G-7 economic growth
  publication-title: Rev. Econ. Stat.
– volume: 134
  start-page: 373
  year: 2006
  end-page: 399
  ident: bib0079
  article-title: Estimating restricted structural change models
  publication-title: J. Econom.
– volume: 16
  start-page: 87
  year: 1955
  end-page: 90
  ident: bib0109
  article-title: On a routing problem
  publication-title: Q. Appl. Math.
– volume: 43
  start-page: 2451
  year: 2015
  end-page: 2483
  ident: bib0150
  article-title: Uniform change point tests in high dimension
  publication-title: Ann. Stat.
– volume: 5
  start-page: 557
  year: 2004
  end-page: 572
  ident: bib0126
  article-title: Circular binary segmentation for the analysis of array-based DNA copy number data
  publication-title: Biostatistics
– volume: 24
  start-page: 55
  year: 1981
  end-page: 59
  ident: bib0156
  article-title: Detecting disorder in multidimensional random processes
  publication-title: Soviet Math. Dokl.
– volume: 4
  start-page: 40
  year: 2010
  end-page: 79
  ident: bib0137
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
– volume: 111
  start-page: 136
  year: 2012
  end-page: 159
  ident: bib0152
  article-title: Change-point analysis in increasing dimension
  publication-title: J. Multivar. Anal.
– volume: 156
  start-page: 133
  year: 2015
  end-page: 162
  ident: bib0093
  article-title: Homogeneity and change-point detection tests for multivariate data using rank statistics
  publication-title: J. de la Société Française de Statistique
– year: 2011
  ident: bib0006
  article-title: Parametric Statistical Change Point Analysis: With Applications to Genetics, Medicine, and Finance
– volume: 128
  start-page: 200
  year: 2018
  end-page: 220
  ident: bib0100
  article-title: New efficient algorithms for multiple change-point detection with reproducing kernels
  publication-title: Comput. Stat. Data Analysis
– volume: 85
  start-page: 1501
  year: 2005
  end-page: 1510
  ident: bib0065
  article-title: Using penalized contrasts for the change-point problem
  publication-title: Signal Process.
– volume: 45
  start-page: 394
  year: 2015
  ident: bib0022
  article-title: Détection automatique des pas à partir de capteurs inertiels pour la quantification de la marche en consultation
  publication-title: Neurophysiologie Clinique/Clin. Neurophysiol.
– volume: 73
  start-page: 1125
  year: 2010
  end-page: 1141
  ident: bib0063
  article-title: Exploratory analysis of functional data via clustering and optimal segmentation
  publication-title: Neurocomputing
– volume: 65
  start-page: 395
  year: 1998
  end-page: 432
  ident: bib0078
  article-title: Testing for and dating common breaks in multivariate time series
  publication-title: Rev. Econ. Stud.
– volume: 18
  start-page: 1
  year: 2003
  end-page: 22
  ident: bib0045
  article-title: Multiple structural change models: a simulation analysis
  publication-title: J. Appl. Econom.
– volume: 193
  start-page: 151
  year: 2018
  end-page: 178
  ident: bib0051
  article-title: Optimal change point detection in gaussian processes
  publication-title: J. Stat. Plann. Inference
– volume: 107
  start-page: 1590
  year: 2012
  end-page: 1598
  ident: bib0113
  article-title: Optimal detection of changepoints with a linear computational cost
  publication-title: J. Amer. Stat. Assoc.
– volume: 76
  start-page: 495
  year: 2014
  end-page: 580
  ident: bib0015
  article-title: Multiscale change point inference
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 60
  start-page: 93
  year: 1999
  end-page: 106
  ident: bib0116
  article-title: A nonparametric method for the segmentation of the EEG
  publication-title: Comput. Method. Program. Biomed.
– start-page: 297
  year: 2014
  end-page: 395
  ident: bib0030
  article-title: Large-margin metric learning for constrained partitioning problems
  publication-title: Proceedings of the 31st International Conference on Machine Learning (ICML)
– volume: 104
  year: 1993
  ident: bib0003
  article-title: Detection of abrupt changes: theory and application
– start-page: 129
  year: 2007
  end-page: 156
  ident: bib0007
  article-title: Adaptive detection of multiple change-points in asset price volatility
  publication-title: Long-Memory in Economics
– volume: 21
  start-page: 33
  year: 2000
  end-page: 59
  ident: bib0052
  article-title: Least-squares estimation of an unknown number of shifts in a time series
  publication-title: J. Time Ser. Anal.
– volume: 10
  start-page: 275
  year: 2015
  end-page: 296
  ident: bib0039
  article-title: Dirichlet process hidden markov multiple change-point model
  publication-title: Bayesian Anal.
– volume: 6
  start-page: 311
  year: 1996
  end-page: 329
  ident: bib0147
  article-title: Effect of high dimension: by an example of a two sample problem
  publication-title: Stat. Sinica
– year: 2015
  ident: bib0035
  article-title: Segmentation de signaux physiologiques par optimisation globale
  publication-title: Proceedings of the Groupe de Recherche et d’Etudes en Traitement du Signal et des Images (GRETSI)
– volume: 18 Suppl 1
  start-page: 1880
  year: 2015
  end-page: 1881
  ident: bib0036
  article-title: Quantify osteoarthritis gait at the doctor’s office: a simple pelvis accelerometer based method independent from footwear and aging
  publication-title: Comput. Method. Biomech. Biomed. Eng.
– volume: 45
  start-page: 403
  year: 2015
  ident: bib0023
  article-title: Évaluation de l’équilibre et prédiction des risques de chutes en utilisant une wii board balance
  publication-title: Neurophysiologie Clinique/Clin. Neurophysiol.
– start-page: 2522
  year: 2017
  end-page: 2526
  ident: bib0118
  article-title: An online feature selection architecture for Human Activity Recognition
  publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 1
  start-page: 301
  year: 2000
  end-page: 336
  ident: bib0069
  article-title: Vector autoregressive models with structural changes in regression coefficients and in variancecovariance matrices
  publication-title: Ann. Econ. Finance
– volume: 42
  start-page: 970
  year: 2014
  end-page: 1002
  ident: bib0088
  article-title: Nonparametric maximum likelihood approach to multiple change-point problems
  publication-title: Ann. Stat.
– volume: 23
  start-page: 657
  year: 2007
  end-page: 663
  ident: bib0133
  article-title: A faster circular binary segmentation algorithm for the analysis of array CGH data
  publication-title: Bioinformatics
– volume: 22
  start-page: 485
  year: 2012
  end-page: 496
  ident: bib0029
  article-title: Distributed detection/localization of change-points in high-dimensional network traffic data
  publication-title: Stat. Comput.
– volume: 66
  start-page: 47
  year: 1998
  end-page: 78
  ident: bib0014
  article-title: Estimating and testing linear models with multiple structural changes
  publication-title: Econometrica
– volume: 26
  start-page: 134
  year: 2017
  end-page: 143
  ident: bib0009
  article-title: Computationally efficient changepoint detection for a range of penalties
  publication-title: J. Comput. Graph. Stat.
– volume: 14
  start-page: 164
  year: 2013
  ident: bib0016
  article-title: Learning smoothing models of copy number profiles using breakpoint annotations
  publication-title: BMC Bioinformat.
– volume: 6
  start-page: 72
  year: 2003
  end-page: 78
  ident: bib0075
  article-title: Critical values for multiple structural change tests
  publication-title: Econom. J.
– start-page: 275
  year: 1997
  end-page: 286
  ident: bib0115
  article-title: ECG segmentation using time-warping
  publication-title: Lecture Notes in Computer Science
– volume: 23
  start-page: 1408
  year: 2017
  end-page: 1447
  ident: bib0021
  article-title: A robust approach for estimating change-points in the mean of an AR(1) process
  publication-title: Bernouilli Soc. Math. Stat.Probab.
– year: 1993
  ident: bib0108
  article-title: Fundamentals of Statistical Signal Processing, Volume II: Detection Theory
– volume: 2
  start-page: 49
  year: 1936
  end-page: 55
  ident: bib0083
  article-title: On the generalised distance in statistics
  publication-title: Proc. Natl. Inst. Sci. India
– volume: 31
  start-page: 611
  year: 2016
  end-page: 623
  ident: bib0044
  article-title: Multiple change-point detection: a selective overview
  publication-title: Statistica Sci.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib0142
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat. Soc. Ser B (Methodological)
– volume: 63
  start-page: 22
  year: 2007
  end-page: 32
  ident: bib0144
  article-title: A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data.
  publication-title: Biometrics
– volume: 42
  start-page: 523
  year: 1955
  end-page: 527
  ident: bib0002
  article-title: A test for a change in a parameter occurring at an unknown point
  publication-title: Biometrika
– volume: 20
  start-page: 260
  year: 1992
  end-page: 279
  ident: bib0041
  article-title: Product partition models for change point problems
  publication-title: Ann. Stat.
– volume: 447
  start-page: 117
  year: 2018
  end-page: 139
  ident: bib0105
  article-title: Capturing correlation changes by applying kernel change point detection on the running correlations
  publication-title: Inf. Sci.
– volume: 6
  start-page: 181
  year: 1988
  end-page: 189
  ident: bib0135
  article-title: Estimating the number of change-points via Schwarz’ criterion
  publication-title: Stat. Probab. Lett.
– start-page: 106
  year: 2010
  end-page: 115
  ident: bib0026
  article-title: Detecting trend and seasonal changes in satellite images time series
  publication-title: Remote Sens. Environ.
– volume: 80
  start-page: 57
  year: 2018
  end-page: 83
  ident: bib0151
  article-title: High dimensional change point estimation via sparse projection
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
– volume: 37
  start-page: 157
  year: 2009
  end-page: 183
  ident: bib0047
  article-title: Consistencies and rates of convergence of jump-penalized least squares estimators
  publication-title: Ann. Stat.
– volume: 74
  start-page: 103
  year: 1998
  end-page: 134
  ident: bib0073
  article-title: Estimation of multiple-regime regressions with least absolutes deviation
  publication-title: J. Stat. Plan. Inference
– start-page: 8
  year: 1998
  ident: bib0120
  article-title: Speaker, environment and channel change detection and clustering via the Bayesian information criterion
  publication-title: Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop
– volume: 18
  start-page: 1
  year: 2003
  end-page: 22
  ident: bib0072
  article-title: Computation and analysis of multiple structural change models
  publication-title: J. Appl. Econom.
– start-page: 1
  year: 2014
  end-page: 33
  ident: bib0149
  article-title: High-dimensional change-point detection with sparse alternatives
  publication-title: arXiv preprint arXiv:1312.1900
– year: 2004
  ident: bib0102
  article-title: Kernel Methods for Pattern Analysis
– start-page: 324
  year: 2015
  end-page: 332
  ident: bib0031
  article-title: PeakSeg: constrained optimal segmentation and supervised penalty learning for peak detection in count data
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– volume: 92
  start-page: 739
  year: 1997
  end-page: 747
  ident: bib0114
  article-title: Testing and locating variance changepoints with application to stock prices
  publication-title: J. Amer. Stat. Assoc.
– volume: 206
  start-page: 187
  year: 2018
  end-page: 225
  ident: bib0154
  article-title: Simultaneous multiple change-point and factor analysis for high-dimensional time series
  publication-title: J. Econ.
– start-page: 1
  year: 2012
  end-page: 26
  ident: bib0104
  article-title: Kernel change-point detection
  publication-title: arXiv preprint arXiv:1202.3878
– volume: 16
  start-page: 759
  year: 2010
  end-page: 779
  ident: bib0059
  article-title: Asymptotic properties of maximum likelihood estimators in models with multiple change points
  publication-title: Bernoulli
– volume: 46
  start-page: 1365
  year: 1998
  end-page: 1373
  ident: bib0110
  article-title: Optimal segmentation of random processes
  publication-title: IEEE Trans. Signal Process.
– volume: 15
  start-page: 453
  year: 1994
  end-page: 472
  ident: bib0066
  article-title: Least squares estimation of a shift in linear processes
  publication-title: J. Time Ser. Anal.
– volume: 13
  start-page: 723
  year: 2012
  end-page: 773
  ident: bib0099
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res. (JMLR)
– start-page: 360
  year: 2009
  end-page: 368
  ident: bib0091
  article-title: AUC optimization and the two-sample problem
  publication-title: Advances in Neural Information Processing Systems (NIPS)
– year: 2016
  ident: bib0025
  publication-title: Efficient analysis of complex changepoint problems
– reference: C. Truong, ruptures: change point detection in python, 2018, [Online].
– start-page: 1569
  year: 2017
  end-page: 1573
  ident: bib0140
  article-title: Penalty learning for changepoint detection
  publication-title: Proceedings of the European Signal Processing Conference (EUSIPCO)
– volume: 7
  start-page: 63
  year: 2018
  end-page: 88
  ident: bib0057
  article-title: Change point detection in heteroscedastic time series
  publication-title: Econ. Stat.
– volume: 79
  start-page: 1207
  year: 2017
  end-page: 1227
  ident: bib0050
  article-title: Heterogeneous change point inference
  publication-title: J. R. Stat. Soc. Ser B (Stat. Methodol.)
– volume: 46
  start-page: 900
  year: 2007
  end-page: 915
  ident: bib0027
  article-title: A review and comparison of changepoint detection techniques for climate data
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 35
  start-page: 999
  year: 1964
  end-page: 1018
  ident: bib0060
  article-title: Estimating the current mean of a normal distribution which is subjected to changes in time
  publication-title: Ann. Math. Stat.
– year: 1997
  ident: bib0005
  article-title: Limit theorems in change-point analysis
– volume: 7
  start-page: 697
  year: 1979
  end-page: 717
  ident: bib0092
  article-title: Multivariate generalizations of Wald-Wolfowitz and Smirnov two-sample tests
  publication-title: The Annals of Statistics
– volume: 7
  start-page: 375
  year: 1988
  end-page: 402
  ident: bib0054
  article-title: Review about estimation of change points
  publication-title: Handbook Stat.
– volume: 6
  start-page: 27
  year: 2005
  ident: bib0019
  article-title: A statistical approach for array CGH data analysis
  publication-title: BMC Bioinformat.
– start-page: 9
  year: 2008
  end-page: 12
  ident: bib0101
  article-title: Injective Hilbert space embeddings of probability measures
  publication-title: Proceedings of the 21st Conference on Learning Theory (COLT)
– start-page: 209
  year: 2007
  end-page: 216
  ident: bib0086
  article-title: Information-theoretic metric learning
  publication-title: Proceedings of the 24th International Conference on Machine Learning (ICML)
– volume: 138
  start-page: 33
  year: 2007
  end-page: 73
  ident: bib0138
  article-title: Minimal penalties for gaussian model selection
  publication-title: Probability Theory and Related Fields
– volume: 75
  start-page: 459
  year: 2007
  end-page: 502
  ident: bib0071
  article-title: Estimating and testing structural changes in multivariate regressions
  publication-title: Econometrica
– start-page: 281
  year: 2009
  end-page: 286
  ident: bib0112
  article-title: Simultaneous clustering and segmentation for functional data
  publication-title: Proceedings of 16th European Symposium on Artificial Neural Networks (ESANN)
– volume: 51
  start-page: 370
  year: 1989
  end-page: 381
  ident: bib0136
  article-title: Least-squares estimation of a step function
  publication-title: Sankhy
– volume: 79
  start-page: 145
  year: 2017
  end-page: 164
  ident: bib0080
  article-title: Partial structural break identification
  publication-title: Oxford Bull. Econ. Stat.
– year: 2007
  ident: bib0125
  article-title: Bayesian Online Changepoint Detection
  publication-title: Technical Report
– volume: 21
  start-page: 3763
  year: 2005
  end-page: 3770
  ident: bib0131
  article-title: Comparative analysis of algorithms for identifying amplifications and deletions in array CGh data
  publication-title: Bioinformatics
– reference: .
– year: 2009
  ident: bib0084
  article-title: The Elements of Statistical Learning
– volume: 53
  start-page: 2961
  year: 2005
  end-page: 2974
  ident: bib0010
  article-title: An online kernel change detection algorithm
  publication-title: IEEE Tran. Signal Process.
– volume: 27
  start-page: 519
  year: 2017
  end-page: 533
  ident: bib0017
  article-title: On optimal multiple changepoint algorithms for large data
  publication-title: Stat. Comput.
– volume: 1
  start-page: 2343
  year: 2010
  end-page: 2351
  ident: bib0018
  article-title: Fast detection of multiple change-points shared by many signals using group LARS
  publication-title: Advances in Neural Information Processing Systems (NIPS)
– start-page: 203
  year: 2001
  end-page: 210
  ident: bib0129
  article-title: Time series segmentation for context recognition in mobile devices
  publication-title: Proceedings of the IEEE International Conference on Data Mining (ICDM)
– volume: 83
  start-page: 79
  year: 1999
  end-page: 102
  ident: bib0049
  article-title: Detection of multiples changes in a sequence of dependant variables
  publication-title: Stochast. ProcessesAppl.
– volume: 101
  year: 2006
  ident: bib0095
  article-title: Testing Statistical Hypotheses
– volume: 9
  start-page: 267
  year: 2003
  end-page: 290
  ident: bib0087
  article-title: Empirical likelihood based hypothesis testing
  publication-title: Bernoulli
– start-page: 609
  year: 2008
  end-page: 616
  ident: bib0122
  article-title: Kernel change-point analysis
  publication-title: Advances in Neural Information Processing Systems (NIPS)
– volume: 33
  start-page: 807
  year: 2012
  end-page: 823
  ident: bib0082
  article-title: Quantifying the uncertainty in change points
  publication-title: J. Time Ser. Anal.
– year: 2002
  ident: bib0098
  article-title: Learning with kernels
– volume: 77
  start-page: 563
  year: 1990
  end-page: 573
  ident: bib0058
  article-title: Maximum likelihood estimation of multiple change points
  publication-title: Biometrika
– volume: 85
  start-page: 717
  issue: 4
  year: 2005
  ident: 10.1016/j.sigpro.2019.107299_bib0145
  article-title: Detecting multiple change-points in the mean of gaussian process by model selection
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2004.11.012
– start-page: 180
  year: 2004
  ident: 10.1016/j.sigpro.2019.107299_sbref0122
  article-title: Detecting change in data streams
– start-page: 2522
  year: 2017
  ident: 10.1016/j.sigpro.2019.107299_sbref0116
  article-title: An online feature selection architecture for Human Activity Recognition
– volume: 21
  start-page: 3763
  issue: 19
  year: 2005
  ident: 10.1016/j.sigpro.2019.107299_bib0131
  article-title: Comparative analysis of algorithms for identifying amplifications and deletions in array CGh data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti611
– volume: 45
  start-page: 394
  issue: 4–5
  year: 2015
  ident: 10.1016/j.sigpro.2019.107299_bib0022
  article-title: Détection automatique des pas à partir de capteurs inertiels pour la quantification de la marche en consultation
  publication-title: Neurophysiologie Clinique/Clin. Neurophysiol.
  doi: 10.1016/j.neucli.2015.10.015
– volume: 42
  start-page: 2243
  issue: 6
  year: 2014
  ident: 10.1016/j.sigpro.2019.107299_bib0128
  article-title: Wild binary segmentation for multiple change-point detection
  publication-title: Ann. Statistics
  doi: 10.1214/14-AOS1245
– volume: 6
  start-page: 1306
  issue: 3
  year: 2012
  ident: 10.1016/j.sigpro.2019.107299_bib0130
  article-title: The screening and ranking algorithm to detect DNA copy number variations
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/12-AOAS539
– volume: 64
  start-page: 597
  issue: 3
  year: 1996
  ident: 10.1016/j.sigpro.2019.107299_bib0068
  article-title: Testing for parameter constancy in linear regressions: an empirical distribution function approach
  publication-title: Econometrica
  doi: 10.2307/2171863
– start-page: 768
  year: 2007
  ident: 10.1016/j.sigpro.2019.107299_sbref0095
  article-title: Retrospective multiple change-point estimation with kernels
– volume: 24
  start-page: 55
  year: 1981
  ident: 10.1016/j.sigpro.2019.107299_bib0156
  article-title: Detecting disorder in multidimensional random processes
  publication-title: Soviet Math. Dokl.
– volume: 12
  start-page: 4440
  issue: 2
  year: 2018
  ident: 10.1016/j.sigpro.2019.107299_bib0103
  article-title: Consistent change-point detection with kernels
  publication-title: Electron. J. Stat.
  doi: 10.1214/18-EJS1513
– volume: 4
  start-page: 40
  year: 2010
  ident: 10.1016/j.sigpro.2019.107299_bib0137
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Stat. Surv.
  doi: 10.1214/09-SS054
– start-page: 275
  year: 1997
  ident: 10.1016/j.sigpro.2019.107299_bib0115
  article-title: ECG segmentation using time-warping
  doi: 10.1007/BFb0052847
– volume: 51
  start-page: 339
  issue: 2
  year: 2017
  ident: 10.1016/j.sigpro.2019.107299_bib0043
  article-title: A survey of methods for time series change point detection
  publication-title: Know. Inf. Syst.
  doi: 10.1007/s10115-016-0987-z
– year: 2011
  ident: 10.1016/j.sigpro.2019.107299_bib0006
– volume: 128
  start-page: 200
  year: 2018
  ident: 10.1016/j.sigpro.2019.107299_bib0100
  article-title: New efficient algorithms for multiple change-point detection with reproducing kernels
  publication-title: Comput. Stat. Data Analysis
  doi: 10.1016/j.csda.2018.07.002
– volume: 41
  start-page: 100
  year: 1954
  ident: 10.1016/j.sigpro.2019.107299_bib0001
  article-title: Continuous inspection schemes
  publication-title: Biometrika
  doi: 10.1093/biomet/41.1-2.100
– volume: 87
  start-page: 721
  issue: 4
  year: 2005
  ident: 10.1016/j.sigpro.2019.107299_bib0081
  article-title: Breaks in the variability and comovement of G-7 economic growth
  publication-title: Rev. Econ. Stat.
  doi: 10.1162/003465305775098134
– year: 1993
  ident: 10.1016/j.sigpro.2019.107299_bib0108
– start-page: 297
  year: 2014
  ident: 10.1016/j.sigpro.2019.107299_sbref0030
  article-title: Large-margin metric learning for constrained partitioning problems
– volume: 11
  start-page: e0164975
  issue: 10
  year: 2016
  ident: 10.1016/j.sigpro.2019.107299_bib0033
  article-title: An automated recording method in clinical consultation to rate the limp in lower limb osteoarthritis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0164975
– volume: 63
  start-page: 22
  issue: 1
  year: 2007
  ident: 10.1016/j.sigpro.2019.107299_bib0144
  article-title: A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data.
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00662.x
– volume: 80
  start-page: 57
  issue: 1
  year: 2018
  ident: 10.1016/j.sigpro.2019.107299_bib0151
  article-title: High dimensional change point estimation via sparse projection
  publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.)
  doi: 10.1111/rssb.12243
– volume: 73
  start-page: 1125
  issue: 7–9
  year: 2010
  ident: 10.1016/j.sigpro.2019.107299_bib0063
  article-title: Exploratory analysis of functional data via clustering and optimal segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.11.022
– volume: 23
  start-page: 657
  issue: 6
  year: 2007
  ident: 10.1016/j.sigpro.2019.107299_bib0133
  article-title: A faster circular binary segmentation algorithm for the analysis of array CGH data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl646
– volume: 26
  start-page: 134
  issue: 1
  year: 2017
  ident: 10.1016/j.sigpro.2019.107299_bib0009
  article-title: Computationally efficient changepoint detection for a range of penalties
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1080/10618600.2015.1116445
– volume: 13
  start-page: 519
  year: 2012
  ident: 10.1016/j.sigpro.2019.107299_bib0106
  article-title: Metric and kernel learning using a linear transformation
  publication-title: J. Mach. Learn. Res. (JMLR)
– volume: 107
  start-page: 1590
  issue: 500
  year: 2012
  ident: 10.1016/j.sigpro.2019.107299_bib0113
  article-title: Optimal detection of changepoints with a linear computational cost
  publication-title: J. Amer. Stat. Assoc.
  doi: 10.1080/01621459.2012.737745
– volume: 46
  start-page: 244
  issue: 4
  year: 2016
  ident: 10.1016/j.sigpro.2019.107299_bib0032
  article-title: Étude observationnelle du demi-tour à l’aide de capteurs inertiels chez les sujets victimes d’AVC et relation avec le risque de chute
  publication-title: Neurophysiologie Clinique/Clin. Neurophysiol.
  doi: 10.1016/j.neucli.2016.09.019
– volume: 18
  issue: 11
  year: 2018
  ident: 10.1016/j.sigpro.2019.107299_bib0034
  article-title: Template-based step detection with inertial measurement units
  publication-title: Sensors
  doi: 10.3390/s18114033
– volume: 16
  start-page: 87
  issue: 1
  year: 1955
  ident: 10.1016/j.sigpro.2019.107299_bib0109
  article-title: On a routing problem
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/102435
– volume: 13
  start-page: 315
  issue: 3
  year: 1997
  ident: 10.1016/j.sigpro.2019.107299_bib0127
  article-title: Estimating multiple breaks one at a time
  publication-title: Econom. Theory
  doi: 10.1017/S0266466600005831
– volume: 28
  start-page: 2641
  issue: 6
  year: 2013
  ident: 10.1016/j.sigpro.2019.107299_bib0020
  article-title: Exploring the latent segmentation space for the assessment of multiple change-point models
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-013-0422-9
– volume: 79
  start-page: 145
  issue: 2
  year: 2017
  ident: 10.1016/j.sigpro.2019.107299_bib0080
  article-title: Partial structural break identification
  publication-title: Oxford Bull. Econ. Stat.
  doi: 10.1111/obes.12153
– volume: 138
  start-page: 33
  issue: 1
  year: 2007
  ident: 10.1016/j.sigpro.2019.107299_bib0138
  article-title: Minimal penalties for gaussian model selection
  publication-title: Probability Theory and Related Fields
  doi: 10.1007/s00440-006-0011-8
– volume: 7
  start-page: 697
  issue: 4
  year: 1979
  ident: 10.1016/j.sigpro.2019.107299_bib0092
  article-title: Multivariate generalizations of Wald-Wolfowitz and Smirnov two-sample tests
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1176344722
– volume: 9
  start-page: 823
  issue: 4
  year: 2014
  ident: 10.1016/j.sigpro.2019.107299_bib0040
  article-title: On a nonparametric change point detection model in markovian regimes
  publication-title: Bayesian Anal.
  doi: 10.1214/14-BA878
– volume: 206
  start-page: 187
  issue: 1
  year: 2018
  ident: 10.1016/j.sigpro.2019.107299_bib0154
  article-title: Simultaneous multiple change-point and factor analysis for high-dimensional time series
  publication-title: J. Econ.
  doi: 10.1016/j.jeconom.2018.05.003
– start-page: 129
  year: 2007
  ident: 10.1016/j.sigpro.2019.107299_bib0007
  article-title: Adaptive detection of multiple change-points in asset price volatility
– volume: 16
  start-page: 759
  issue: 3
  year: 2010
  ident: 10.1016/j.sigpro.2019.107299_bib0059
  article-title: Asymptotic properties of maximum likelihood estimators in models with multiple change points
  publication-title: Bernoulli
  doi: 10.3150/09-BEJ232
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.sigpro.2019.107299_bib0142
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Stat. Soc. Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 53
  start-page: 2961
  issue: 8
  year: 2005
  ident: 10.1016/j.sigpro.2019.107299_bib0010
  article-title: An online kernel change detection algorithm
  publication-title: IEEE Tran. Signal Process.
  doi: 10.1109/TSP.2005.851098
– volume: 20
  start-page: 260
  issue: 1
  year: 1992
  ident: 10.1016/j.sigpro.2019.107299_bib0041
  article-title: Product partition models for change point problems
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176348521
– volume: 101
  year: 2006
  ident: 10.1016/j.sigpro.2019.107299_bib0095
– volume: 6
  start-page: 27
  issue: 1
  year: 2005
  ident: 10.1016/j.sigpro.2019.107299_bib0019
  article-title: A statistical approach for array CGH data analysis
  publication-title: BMC Bioinformat.
  doi: 10.1186/1471-2105-6-27
– volume: 18
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.sigpro.2019.107299_bib0072
  article-title: Computation and analysis of multiple structural change models
  publication-title: J. Appl. Econom.
  doi: 10.1002/jae.659
– volume: 46
  start-page: 900
  issue: 6
  year: 2007
  ident: 10.1016/j.sigpro.2019.107299_bib0027
  article-title: A review and comparison of changepoint detection techniques for climate data
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAM2493.1
– year: 2015
  ident: 10.1016/j.sigpro.2019.107299_sbref0035
  article-title: Segmentation de signaux physiologiques par optimisation globale
– volume: 156
  start-page: 180
  issue: 4
  year: 2015
  ident: 10.1016/j.sigpro.2019.107299_bib0111
  article-title: A pruned dynamic programming algorithm to recover the best segmentations with 1 to k_max change-points.
  publication-title: J. de la Société Française de Statistique
– volume: 76
  start-page: 495
  issue: 3
  year: 2014
  ident: 10.1016/j.sigpro.2019.107299_bib0015
  article-title: Multiscale change point inference
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/rssb.12047
– volume: 92
  start-page: 739
  issue: 438
  year: 1997
  ident: 10.1016/j.sigpro.2019.107299_bib0114
  article-title: Testing and locating variance changepoints with application to stock prices
  publication-title: J. Amer. Stat. Assoc.
  doi: 10.1080/01621459.1997.10474026
– volume: 27
  start-page: 519
  issue: 2
  year: 2017
  ident: 10.1016/j.sigpro.2019.107299_bib0017
  article-title: On optimal multiple changepoint algorithms for large data
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-016-9636-3
– volume: 34
  start-page: 1
  year: 2012
  ident: 10.1016/j.sigpro.2019.107299_bib0055
  article-title: Structural breaks in time series
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.2012.00819.x
– volume: 86
  start-page: 221
  issue: 2
  year: 1998
  ident: 10.1016/j.sigpro.2019.107299_bib0064
  article-title: Estimation and comparison of multiple change-point models
  publication-title: J. Econ.
  doi: 10.1016/S0304-4076(97)00115-2
– start-page: 172
  year: 2013
  ident: 10.1016/j.sigpro.2019.107299_sbref0137
  article-title: Learning sparse penalties for change-point detection using max margin interval regression
– volume: 538
  start-page: 831
  year: 2016
  ident: 10.1016/j.sigpro.2019.107299_bib0143
  article-title: Abrupt change point detection of annual maximum precipitation using fused lasso
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.04.043
– volume: 11
  start-page: 403
  issue: 3
  year: 1995
  ident: 10.1016/j.sigpro.2019.107299_bib0067
  article-title: Least absolute deviation of a shift
  publication-title: Econom. Theory
  doi: 10.1017/S026646660000935X
– volume: 38
  start-page: 808
  issue: 2
  year: 2010
  ident: 10.1016/j.sigpro.2019.107299_bib0148
  article-title: A two-sample test for high-dimensional data with applications to gene-set testing
  publication-title: Ann. Stat.
  doi: 10.1214/09-AOS716
– volume: 48
  start-page: 95
  issue: 1
  year: 2006
  ident: 10.1016/j.sigpro.2019.107299_bib0090
  article-title: Powerful two-sample tests based on the likelihood ratio
  publication-title: Technometrics
  doi: 10.1198/004017005000000328
– volume: 15
  start-page: 453
  issue: 5
  year: 1994
  ident: 10.1016/j.sigpro.2019.107299_bib0066
  article-title: Least squares estimation of a shift in linear processes
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.1994.tb00204.x
– volume: 7
  start-page: 63
  year: 2018
  ident: 10.1016/j.sigpro.2019.107299_bib0057
  article-title: Change point detection in heteroscedastic time series
  publication-title: Econ. Stat.
– volume: 3
  start-page: 637
  issue: 2
  year: 2009
  ident: 10.1016/j.sigpro.2019.107299_bib0028
  article-title: Detection and localization of change-points in high-dimensional network traffic data
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/08-AOAS232
– volume: 21
  start-page: 33
  issue: 1
  year: 2000
  ident: 10.1016/j.sigpro.2019.107299_bib0052
  article-title: Least-squares estimation of an unknown number of shifts in a time series
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/1467-9892.00172
– volume: 157
  start-page: 78
  year: 2010
  ident: 10.1016/j.sigpro.2019.107299_bib0077
  article-title: Common breaks in means and variances for panel data
  publication-title: J. Econom.
  doi: 10.1016/j.jeconom.2009.10.020
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 10.1016/j.sigpro.2019.107299_bib0141
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
– volume: 31
  start-page: 611
  issue: 4
  year: 2016
  ident: 10.1016/j.sigpro.2019.107299_bib0044
  article-title: Multiple change-point detection: a selective overview
  publication-title: Statistica Sci.
  doi: 10.1214/16-STS587
– volume: 447
  start-page: 117
  year: 2018
  ident: 10.1016/j.sigpro.2019.107299_bib0105
  article-title: Capturing correlation changes by applying kernel change point detection on the running correlations
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.03.010
– volume: 2
  start-page: 49
  issue: 1
  year: 1936
  ident: 10.1016/j.sigpro.2019.107299_bib0083
  article-title: On the generalised distance in statistics
  publication-title: Proc. Natl. Inst. Sci. India
– volume: 70
  year: 2012
  ident: 10.1016/j.sigpro.2019.107299_bib0012
  article-title: Group lassoing change-points piece-constant AR processes
  publication-title: EURASIP J. Adv. Signal Process.
– year: 2016
  ident: 10.1016/j.sigpro.2019.107299_bib0025
– volume: 156
  start-page: 133
  issue: 4
  year: 2015
  ident: 10.1016/j.sigpro.2019.107299_bib0093
  article-title: Homogeneity and change-point detection tests for multivariate data using rank statistics
  publication-title: J. de la Société Française de Statistique
– volume: 83
  start-page: 79
  issue: 1
  year: 1999
  ident: 10.1016/j.sigpro.2019.107299_bib0049
  article-title: Detection of multiples changes in a sequence of dependant variables
  publication-title: Stochast. ProcessesAppl.
  doi: 10.1016/S0304-4149(99)00023-X
– start-page: 1569
  year: 2017
  ident: 10.1016/j.sigpro.2019.107299_sbref0138
  article-title: Penalty learning for changepoint detection
– volume: 75
  start-page: 459
  issue: 2
  year: 2007
  ident: 10.1016/j.sigpro.2019.107299_bib0071
  article-title: Estimating and testing structural changes in multivariate regressions
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2006.00754.x
– start-page: 209
  year: 2007
  ident: 10.1016/j.sigpro.2019.107299_sbref0084
  article-title: Information-theoretic metric learning
– volume: 1
  start-page: 301
  issue: 2
  year: 2000
  ident: 10.1016/j.sigpro.2019.107299_bib0069
  article-title: Vector autoregressive models with structural changes in regression coefficients and in variancecovariance matrices
  publication-title: Ann. Econ. Finance
– volume: 5
  start-page: 557
  issue: 4
  year: 2004
  ident: 10.1016/j.sigpro.2019.107299_bib0126
  article-title: Circular binary segmentation for the analysis of array-based DNA copy number data
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxh008
– volume: 1
  start-page: 80
  issue: 6
  year: 1945
  ident: 10.1016/j.sigpro.2019.107299_bib0094
  article-title: Individual comparisons by ranking methods
  publication-title: Biometr. Bull.
  doi: 10.2307/3001968
– volume: 10
  start-page: 275
  issue: 2
  year: 2015
  ident: 10.1016/j.sigpro.2019.107299_bib0039
  article-title: Dirichlet process hidden markov multiple change-point model
  publication-title: Bayesian Anal.
  doi: 10.1214/14-BA910
– volume: 16
  start-page: 203
  issue: 2
  year: 2006
  ident: 10.1016/j.sigpro.2019.107299_bib0056
  article-title: Exact and efficient bayesian inference for multiple changepoint problems
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-006-8450-8
– volume: 22
  start-page: 485
  issue: 2
  year: 2012
  ident: 10.1016/j.sigpro.2019.107299_bib0029
  article-title: Distributed detection/localization of change-points in high-dimensional network traffic data
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-011-9240-5
– volume: 34
  start-page: 423
  issue: 4
  year: 2013
  ident: 10.1016/j.sigpro.2019.107299_bib0008
  article-title: Inference for single and multiple change-points in time series
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/jtsa.12035
– volume: 3
  start-page: 203
  issue: 3
  year: 2001
  ident: 10.1016/j.sigpro.2019.107299_bib0157
  article-title: Gaussian model selection
  publication-title: J. Eur. Math. Soc.
  doi: 10.1007/s100970100031
– volume: 134
  start-page: 373
  issue: 2
  year: 2006
  ident: 10.1016/j.sigpro.2019.107299_bib0079
  article-title: Estimating restricted structural change models
  publication-title: J. Econom.
  doi: 10.1016/j.jeconom.2005.06.030
– volume: 93
  start-page: 1488
  issue: 444
  year: 1998
  ident: 10.1016/j.sigpro.2019.107299_bib0119
  article-title: Time-dependent spectral analysis of nonstationary time series
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1998.10473808
– ident: 10.1016/j.sigpro.2019.107299_bib0037
– volume: 23
  start-page: 1408
  issue: 2
  year: 2017
  ident: 10.1016/j.sigpro.2019.107299_bib0021
  article-title: A robust approach for estimating change-points in the mean of an AR(1) process
  publication-title: Bernouilli Soc. Math. Stat.Probab.
– volume: 79
  start-page: 551
  issue: 4
  year: 1997
  ident: 10.1016/j.sigpro.2019.107299_bib0070
  article-title: Estimation of a change-point in multiple regression models
  publication-title: Rev. Econ. Stat.
  doi: 10.1162/003465397557132
– volume: 48
  start-page: 177
  issue: 2
  year: 2001
  ident: 10.1016/j.sigpro.2019.107299_bib0117
  article-title: A comparison of waveform fractal dimension algorithms
  publication-title: IEEE Trans. Circuit. Syst. I: Fundamental Theory and Applications
  doi: 10.1109/81.904882
– volume: 45
  start-page: 403
  issue: 4–5
  year: 2015
  ident: 10.1016/j.sigpro.2019.107299_bib0023
  article-title: Évaluation de l’équilibre et prédiction des risques de chutes en utilisant une wii board balance
  publication-title: Neurophysiologie Clinique/Clin. Neurophysiol.
  doi: 10.1016/j.neucli.2015.10.038
– start-page: 6721
  year: 2014
  ident: 10.1016/j.sigpro.2019.107299_sbref0013
  article-title: Piecewise constant nonnegative matrix factorization
– start-page: 106
  issue: 114
  year: 2010
  ident: 10.1016/j.sigpro.2019.107299_bib0026
  article-title: Detecting trend and seasonal changes in satellite images time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.08.014
– start-page: 1665
  year: 2009
  ident: 10.1016/j.sigpro.2019.107299_sbref0011
  article-title: A regularized kernel-based approach to unsupervised audio segmentation
– year: 1993
  ident: 10.1016/j.sigpro.2019.107299_bib0004
– ident: 10.1016/j.sigpro.2019.107299_bib0046
– year: 1997
  ident: 10.1016/j.sigpro.2019.107299_sbref0005
– volume: 74
  start-page: 103
  year: 1998
  ident: 10.1016/j.sigpro.2019.107299_bib0073
  article-title: Estimation of multiple-regime regressions with least absolutes deviation
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/S0378-3758(98)00082-2
– volume: 35
  start-page: 999
  issue: 3
  year: 1964
  ident: 10.1016/j.sigpro.2019.107299_bib0060
  article-title: Estimating the current mean of a normal distribution which is subjected to changes in time
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177700517
– volume: 105
  start-page: 1480
  issue: 492
  year: 2010
  ident: 10.1016/j.sigpro.2019.107299_bib0048
  article-title: Multiple change-point estimation with a total variation penalty
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2010.tm09181
– volume: 42
  start-page: 970
  issue: 3
  year: 2014
  ident: 10.1016/j.sigpro.2019.107299_bib0088
  article-title: Nonparametric maximum likelihood approach to multiple change-point problems
  publication-title: Ann. Stat.
  doi: 10.1214/14-AOS1210
– start-page: 8
  year: 1998
  ident: 10.1016/j.sigpro.2019.107299_sbref0118
  article-title: Speaker, environment and channel change detection and clustering via the Bayesian information criterion
– volume: 13
  start-page: 723
  year: 2012
  ident: 10.1016/j.sigpro.2019.107299_bib0099
  article-title: A kernel two-sample test
  publication-title: J. Mach. Learn. Res. (JMLR)
– volume: 207
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.sigpro.2019.107299_bib0155
  article-title: Estimation of large dimensional factor models with an unknown number of breaks
  publication-title: J. Econ.
  doi: 10.1016/j.jeconom.2018.06.019
– start-page: 324
  year: 2015
  ident: 10.1016/j.sigpro.2019.107299_sbref0031
  article-title: PeakSeg: constrained optimal segmentation and supervised penalty learning for peak detection in count data
– volume: 18 Suppl 1
  start-page: 1880
  year: 2015
  ident: 10.1016/j.sigpro.2019.107299_bib0036
  article-title: Quantify osteoarthritis gait at the doctor’s office: a simple pelvis accelerometer based method independent from footwear and aging
  publication-title: Comput. Method. Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2015.1072414
– start-page: 360
  year: 2009
  ident: 10.1016/j.sigpro.2019.107299_sbref0089
  article-title: AUC optimization and the two-sample problem
– start-page: 521
  year: 2003
  ident: 10.1016/j.sigpro.2019.107299_bib0085
  article-title: Distance metric learning, with application to clustering with side-Information
– year: 2004
  ident: 10.1016/j.sigpro.2019.107299_bib0102
– volume: 77
  start-page: 475
  issue: 2
  year: 2014
  ident: 10.1016/j.sigpro.2019.107299_bib0153
  article-title: Multiple change-point detection for high dimensional time series via Szparsified binary segmentation
  publication-title: J. R. Stat. Soc
  doi: 10.1111/rssb.12079
– year: 1970
  ident: 10.1016/j.sigpro.2019.107299_bib0096
– volume: 6
  start-page: 311
  issue: 2
  year: 1996
  ident: 10.1016/j.sigpro.2019.107299_bib0147
  article-title: Effect of high dimension: by an example of a two sample problem
  publication-title: Stat. Sinica
– volume: 1
  start-page: 2343
  year: 2010
  ident: 10.1016/j.sigpro.2019.107299_sbref0018
  article-title: Fast detection of multiple change-points shared by many signals using group LARS
– volume: 7
  start-page: 375
  year: 1988
  ident: 10.1016/j.sigpro.2019.107299_bib0054
  article-title: Review about estimation of change points
  publication-title: Handbook Stat.
  doi: 10.1016/S0169-7161(88)07021-X
– volume: 193
  start-page: 151
  year: 2018
  ident: 10.1016/j.sigpro.2019.107299_bib0051
  article-title: Optimal change point detection in gaussian processes
  publication-title: J. Stat. Plann. Inference
  doi: 10.1016/j.jspi.2017.09.003
– year: 2007
  ident: 10.1016/j.sigpro.2019.107299_bib0125
  article-title: Bayesian Online Changepoint Detection
– volume: 77
  start-page: 257
  issue: 2
  year: 1989
  ident: 10.1016/j.sigpro.2019.107299_bib0038
  article-title: A tutorial on hidden Markov models and selected applications in speech recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.18626
– volume: 111
  start-page: 136
  year: 2012
  ident: 10.1016/j.sigpro.2019.107299_bib0152
  article-title: Change-point analysis in increasing dimension
  publication-title: J. Multivar. Anal.
  doi: 10.1016/j.jmva.2012.05.007
– volume: 42
  start-page: 1897
  issue: 6
  year: 1971
  ident: 10.1016/j.sigpro.2019.107299_bib0061
  article-title: Procedures for reacting to a change in distribution
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177693055
– volume: 46
  start-page: 1365
  issue: 5
  year: 1998
  ident: 10.1016/j.sigpro.2019.107299_bib0110
  article-title: Optimal segmentation of random processes
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.668798
– volume: 6
  start-page: 72
  issue: 1
  year: 2003
  ident: 10.1016/j.sigpro.2019.107299_bib0075
  article-title: Critical values for multiple structural change tests
  publication-title: Econom. J.
  doi: 10.1111/1368-423X.00102
– volume: 104
  year: 1993
  ident: 10.1016/j.sigpro.2019.107299_bib0003
– volume: 91
  start-page: 299
  issue: 2
  year: 1999
  ident: 10.1016/j.sigpro.2019.107299_bib0074
  article-title: Likelihood ratio tests for multiple structural changes
  publication-title: J. Econom.
  doi: 10.1016/S0304-4076(98)00079-7
– volume: 60
  start-page: 93
  issue: 2
  year: 1999
  ident: 10.1016/j.sigpro.2019.107299_bib0116
  article-title: A nonparametric method for the segmentation of the EEG
  publication-title: Comput. Method. Program. Biomed.
  doi: 10.1016/S0169-2607(98)00079-0
– start-page: 289
  year: 2001
  ident: 10.1016/j.sigpro.2019.107299_sbref0132
  article-title: An online algorithm for segmenting time series
– volume: 79
  start-page: 1207
  issue: 4
  year: 2017
  ident: 10.1016/j.sigpro.2019.107299_bib0050
  article-title: Heterogeneous change point inference
  publication-title: J. R. Stat. Soc. Ser B (Stat. Methodol.)
  doi: 10.1111/rssb.12202
– start-page: 9
  year: 2008
  ident: 10.1016/j.sigpro.2019.107299_sbref0099
  article-title: Injective Hilbert space embeddings of probability measures
– start-page: 1
  year: 2019
  ident: 10.1016/j.sigpro.2019.107299_sbref0105
  article-title: Supervised kernel change point detection with partial annotations
– volume: 6
  start-page: 181
  issue: 3
  year: 1988
  ident: 10.1016/j.sigpro.2019.107299_bib0135
  article-title: Estimating the number of change-points via Schwarz’ criterion
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/0167-7152(88)90118-6
– start-page: 1
  year: 2014
  ident: 10.1016/j.sigpro.2019.107299_bib0149
  article-title: High-dimensional change-point detection with sparse alternatives
  publication-title: arXiv preprint arXiv:1312.1900
– volume: 65
  start-page: 395
  issue: 3
  year: 1998
  ident: 10.1016/j.sigpro.2019.107299_bib0078
  article-title: Testing for and dating common breaks in multivariate time series
  publication-title: Rev. Econ. Stud.
  doi: 10.1111/1467-937X.00051
– volume: 43
  start-page: 72
  year: 2013
  ident: 10.1016/j.sigpro.2019.107299_bib0123
  article-title: Change-point detection in time-series data by relative density-ratio estimation
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2013.01.012
– start-page: 203
  year: 2001
  ident: 10.1016/j.sigpro.2019.107299_bib0129
  article-title: Time series segmentation for context recognition in mobile devices
– volume: 85
  start-page: 1501
  issue: 8
  year: 2005
  ident: 10.1016/j.sigpro.2019.107299_bib0065
  article-title: Using penalized contrasts for the change-point problem
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2005.01.012
– volume: 1
  start-page: 278
  issue: 2
  year: 2006
  ident: 10.1016/j.sigpro.2019.107299_bib0076
  article-title: Dealing with structural breaks
  publication-title: Palgrave HandbookEconom.
– volume: 12
  start-page: 199
  issue: 2
  year: 2011
  ident: 10.1016/j.sigpro.2019.107299_bib0146
  article-title: Estimating high dimensional covariance matrices and its applications
  publication-title: Ann. Econom. Finance
– volume: 3
  start-page: 98
  issue: 1
  year: 1975
  ident: 10.1016/j.sigpro.2019.107299_bib0053
  article-title: On tests for detecting change in mean
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176343001
– volume: 9
  start-page: 267
  issue: 2
  year: 2003
  ident: 10.1016/j.sigpro.2019.107299_bib0087
  article-title: Empirical likelihood based hypothesis testing
  publication-title: Bernoulli
  doi: 10.3150/bj/1068128978
– volume: 42
  start-page: 523
  year: 1955
  ident: 10.1016/j.sigpro.2019.107299_bib0002
  article-title: A test for a change in a parameter occurring at an unknown point
  publication-title: Biometrika
  doi: 10.1093/biomet/42.3-4.523
– volume: 21
  start-page: 4084
  issue: 22
  year: 2005
  ident: 10.1016/j.sigpro.2019.107299_bib0132
  article-title: A comparison study: applying segmentation to array CGH data for downstream analyses
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti677
– volume: 88
  start-page: 309
  issue: 421
  year: 1993
  ident: 10.1016/j.sigpro.2019.107299_bib0042
  article-title: A bayesian analysis for change point problems
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10594323
– start-page: 609
  year: 2008
  ident: 10.1016/j.sigpro.2019.107299_sbref0120
  article-title: Kernel change-point analysis
– volume: 66
  start-page: 47
  issue: 1
  year: 1998
  ident: 10.1016/j.sigpro.2019.107299_bib0014
  article-title: Estimating and testing linear models with multiple structural changes
  publication-title: Econometrica
  doi: 10.2307/2998540
– volume: 14
  start-page: 164
  issue: 1
  year: 2013
  ident: 10.1016/j.sigpro.2019.107299_bib0016
  article-title: Learning smoothing models of copy number profiles using breakpoint annotations
  publication-title: BMC Bioinformat.
  doi: 10.1186/1471-2105-14-164
– volume: 15
  start-page: 661
  issue: 4
  year: 1973
  ident: 10.1016/j.sigpro.2019.107299_bib0062
  article-title: Some comments on Cp
  publication-title: Technometrics
– year: 2002
  ident: 10.1016/j.sigpro.2019.107299_bib0098
– start-page: 281
  year: 2009
  ident: 10.1016/j.sigpro.2019.107299_sbref0110
  article-title: Simultaneous clustering and segmentation for functional data
– volume: 77
  start-page: 563
  issue: 3
  year: 1990
  ident: 10.1016/j.sigpro.2019.107299_bib0058
  article-title: Maximum likelihood estimation of multiple change points
  publication-title: Biometrika
  doi: 10.1093/biomet/77.3.563
– volume: 91
  start-page: 49
  year: 2018
  ident: 10.1016/j.sigpro.2019.107299_bib0024
  article-title: Change-point detection method for clinical decision support system rule monitoring
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2018.06.003
– volume: 43
  start-page: 2451
  issue: 6
  year: 2015
  ident: 10.1016/j.sigpro.2019.107299_bib0150
  article-title: Uniform change point tests in high dimension
  publication-title: Ann. Stat.
  doi: 10.1214/15-AOS1347
– start-page: 1
  year: 2012
  ident: 10.1016/j.sigpro.2019.107299_bib0104
  article-title: Kernel change-point detection
  publication-title: arXiv preprint arXiv:1202.3878
– volume: 18
  start-page: 1
  year: 2003
  ident: 10.1016/j.sigpro.2019.107299_bib0045
  article-title: Multiple structural change models: a simulation analysis
  publication-title: J. Appl. Econom.
  doi: 10.1002/jae.659
– volume: 33
  start-page: 807
  year: 2012
  ident: 10.1016/j.sigpro.2019.107299_bib0082
  article-title: Quantifying the uncertainty in change points
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.2011.00777.x
– volume: 37
  start-page: 157
  issue: 1
  year: 2009
  ident: 10.1016/j.sigpro.2019.107299_bib0047
  article-title: Consistencies and rates of convergence of jump-penalized least squares estimators
  publication-title: Ann. Stat.
  doi: 10.1214/07-AOS558
– year: 2009
  ident: 10.1016/j.sigpro.2019.107299_bib0084
– volume: 57
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.sigpro.2019.107299_bib0121
  article-title: Segmenting time series: a survey and novel approach
  publication-title: Data Min. Time Ser. Databases
– volume: 51
  start-page: 370
  issue: 3
  year: 1989
  ident: 10.1016/j.sigpro.2019.107299_bib0136
  article-title: Least-squares estimation of a step function
  publication-title: Sankhy
– volume: 27
  start-page: 1293
  year: 2017
  ident: 10.1016/j.sigpro.2019.107299_bib0089
  article-title: A computationally efficient nonparametric approach for changepoint detection
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-016-9687-5
SSID ssj0001360
Score 2.6966658
SecondaryResourceType review_article
Snippet •A structured and didactic review of more than 140 articles related to offline change point detection. Thanks to the methodological framework proposed in this...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 107299
SubjectTerms Change point detection
Segmentation
Statistical signal processing
Statistics
Statistics Theory
Title Selective review of offline change point detection methods
URI https://dx.doi.org/10.1016/j.sigpro.2019.107299
https://hal.science/hal-02442692
Volume 167
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zvuiDeMV5GUV8rWvaXBrfxnDU217mYG-hTROdSDdc9dHf7knaTn0QQehTSNrypXw5p3zfOQids5wYqqPQx9xEkKBQ5cck1j4xQUYzEaY0s-bk-xFLJuRmSqctNGi8MFZWWXN_xemOreuRXo1mbzGb9cbWiINZTCAEcUVWrIOdcPuVX3x8yTxw5JzCdrJvZzf2OafxWs4egaeswEvAEMSZ4rfjae2p-dHqDp7hNtqqI0avX73UDmrpYhdtfqsjuIcux66bDRCXV1lRvLmBy9gQ0qusvd5iPitKL9el014VXtU6ermPJsOrh0Hi100RfAVnb-lTgXPb48sEQodpmDIV4BxyLI61wSbUhJpMccUZzQ0JIpFmKuU4Z4wqpmEvogPULuaFPkQeoMfDmGaQmArCcp6qVBiTxsIADZoo76CowUKqumK4bVzxIhtp2LOsEJQWQVkh2EH-atWiqpjxx3zewCx_7LwEUv9j5RnsyuohtlB20r-TdgwiD-vRDd_x0b9vf4w2QptcO4n2CWqXr2_6FCKQMuu6T6yL1vvXt8noE0CJ2dU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76OKgH8Yn1GcRraDfJbrLeSrGk9nFpC70tyWZXK5IWG_39zuZR9CAFIadhNwnfhm9mwnwzAA8s8TRVrmMTX7uYoFBpB16gbE93YhpzJ6KxESePJyyce88LuqhBr9LCmLLKkvsLTs_ZurS0SzTb6-WyPTVCHMICD0OQvMlKHZqmOxVtQLM7GIaTLSETNxcLm_W22VAp6PIyr83yBanK1HhxNGGoyf_yUPXX6l9r7nv6R3BYBo1Wt3ivY6ip9AQOfrQSPIXHaT7QBrnLKtQo1krjpU0UaRXqXmu9WqaZlagsL79KrWJ69OYM5v2nWS-0y7kItkT3m9mUk8SM-dIdrpzIiZjskATTLJ8oTbSjPKpj6Uuf0UR7HZdHsYx8kjBGJVN4HO45NNJVqi7AQgB9J6Ax5qbcY4kfyYhrHQVcIxNqN2mBW2EhZNk03MyueBdVddibKBAUBkFRINgCe7trXTTN2LHer2AWvw5fIK_v2HmPp7J9iOmVHXZHwtgw-DAyXeeLXP779newF87GIzEaTIZXsO-YXDuv2L6GRvbxqW4wIMni2_KD-wbGpNyG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+review+of+offline+change+point+detection+methods&rft.jtitle=Signal+processing&rft.au=Truong%2C+Charles&rft.au=Oudre%2C+Laurent&rft.au=Vayatis%2C+Nicolas&rft.date=2020-02-01&rft.pub=Elsevier&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=167&rft_id=info:doi/10.1016%2Fj.sigpro.2019.107299&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02442692v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon