Selective review of offline change point detection methods
•A structured and didactic review of more than 140 articles related to offline change point detection. Thanks to the methodological framework proposed in this survey, all methods are presented as the combination of three functional blocks, which facilitates comparison between the different approache...
Saved in:
Published in | Signal processing Vol. 167; p. 107299 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A structured and didactic review of more than 140 articles related to offline change point detection. Thanks to the methodological framework proposed in this survey, all methods are presented as the combination of three functional blocks, which facilitates comparison between the different approaches.•The survey provides details on mathematical as well as algorithmic aspects such as complexity, asymptotic consistency, estimation of the number of changes, calibration, etc.•The review is linked to a Python package that includes most of the pre- sented methods, and allows the user to perform experiments and bench- marks.
This article presents a selective survey of algorithms for the offline detection of multiple change points in multivariate time series. A general yet structuring methodological strategy is adopted to organize this vast body of work. More precisely, detection algorithms considered in this review are characterized by three elements: a cost function, a search method and a constraint on the number of changes. Each of those elements is described, reviewed and discussed separately. Implementations of the main algorithms described in this article are provided within a Python package called ruptures. |
---|---|
AbstractList | •A structured and didactic review of more than 140 articles related to offline change point detection. Thanks to the methodological framework proposed in this survey, all methods are presented as the combination of three functional blocks, which facilitates comparison between the different approaches.•The survey provides details on mathematical as well as algorithmic aspects such as complexity, asymptotic consistency, estimation of the number of changes, calibration, etc.•The review is linked to a Python package that includes most of the pre- sented methods, and allows the user to perform experiments and bench- marks.
This article presents a selective survey of algorithms for the offline detection of multiple change points in multivariate time series. A general yet structuring methodological strategy is adopted to organize this vast body of work. More precisely, detection algorithms considered in this review are characterized by three elements: a cost function, a search method and a constraint on the number of changes. Each of those elements is described, reviewed and discussed separately. Implementations of the main algorithms described in this article are provided within a Python package called ruptures. |
ArticleNumber | 107299 |
Author | Truong, Charles Vayatis, Nicolas Oudre, Laurent |
Author_xml | – sequence: 1 givenname: Charles surname: Truong fullname: Truong, Charles organization: CMLA, CNRS, ENS Paris Saclay France – sequence: 2 givenname: Laurent surname: Oudre fullname: Oudre, Laurent email: laurent.oudre@univ-paris13.fr organization: L2TI, University Paris 13 France – sequence: 3 givenname: Nicolas surname: Vayatis fullname: Vayatis, Nicolas organization: CMLA, CNRS, ENS Paris Saclay France |
BackLink | https://hal.science/hal-02442692$$DView record in HAL |
BookMark | eNqFkE1LAzEQhoNUsK3-Aw979bA1yeaj24NQil9Q8KCeQ5pM2pTtpiRLxX9vlhUPHhQGBob3eWGeCRq1oQWErgmeEUzE7X6W_PYYw4xiUueTpHV9hsZkLmkpOZcjNM4xXhIxZxdoktIeY0wqgcdo8QoNmM6foIhw8vBRBJfHNb6Fwux0u4XiGHzbFRa6Phja4gDdLth0ic6dbhJcfe8pen-4f1s9leuXx-fVcl0ahkVX8ppYA7hyuAaqqRYGE8vYXBJwxFFg3G2MNFJw6xiuar0xWhIrBDcCGObVFN0MvTvdqGP0Bx0_VdBePS3Xqr9hyhgVNT2RnGVD1sSQUgT3AxCseldqrwZXqnelBlcZW_zCjO90_2wXtW_-g-8GGLKErDCqZDy0BqyP2Ziywf9d8AXeVIl1 |
CitedBy_id | crossref_primary_10_1016_j_est_2022_105467 crossref_primary_10_1039_D4DD00048J crossref_primary_10_1016_j_irfa_2024_103608 crossref_primary_10_1016_j_measurement_2024_114225 crossref_primary_10_1016_j_procir_2023_06_103 crossref_primary_10_1038_s41612_023_00450_y crossref_primary_10_1029_2024PA005048 crossref_primary_10_3389_fnhum_2023_1144860 crossref_primary_10_1007_s42979_022_01186_x crossref_primary_10_1142_S0218213020500189 crossref_primary_10_1016_j_oceano_2022_07_006 crossref_primary_10_1109_OJSP_2020_3035070 crossref_primary_10_1016_j_asoc_2023_111099 crossref_primary_10_3168_jds_2023_24427 crossref_primary_10_1016_j_jocs_2024_102429 crossref_primary_10_1016_j_jajp_2023_100149 crossref_primary_10_1038_s41467_023_37093_9 crossref_primary_10_1007_s11222_024_10542_1 crossref_primary_10_1029_2022GL102651 crossref_primary_10_1007_s00184_021_00821_6 crossref_primary_10_1007_s11045_021_00785_w crossref_primary_10_1029_2023PA004687 crossref_primary_10_1080_10618600_2024_2402895 crossref_primary_10_1016_j_automatica_2024_111894 crossref_primary_10_1007_s42421_023_00084_9 crossref_primary_10_1016_j_scitotenv_2021_149366 crossref_primary_10_1063_5_0163849 crossref_primary_10_1016_j_dsp_2023_104338 crossref_primary_10_1109_LRA_2021_3104880 crossref_primary_10_1016_j_wneu_2022_01_097 crossref_primary_10_1016_j_compind_2023_103949 crossref_primary_10_1016_j_jii_2024_100667 crossref_primary_10_1038_s41598_023_33117_y crossref_primary_10_2196_21499 crossref_primary_10_1002_pip_3523 crossref_primary_10_1117_1_JEI_31_3_033042 crossref_primary_10_3390_pr11082229 crossref_primary_10_1029_2023RS007834 crossref_primary_10_3390_math12050750 crossref_primary_10_5194_essd_14_3313_2022 crossref_primary_10_1016_j_engappai_2023_106466 crossref_primary_10_1080_00949655_2025_2480644 crossref_primary_10_1109_TMC_2023_3332963 crossref_primary_10_1021_acs_macromol_3c02539 crossref_primary_10_1063_5_0160312 crossref_primary_10_1016_j_chaos_2023_113916 crossref_primary_10_1016_j_ijar_2021_12_019 crossref_primary_10_1080_29932955_2025_2481732 crossref_primary_10_32604_cmc_2024_054061 crossref_primary_10_3390_app14219825 crossref_primary_10_1016_j_asoc_2022_109859 crossref_primary_10_1016_j_engappai_2023_107323 crossref_primary_10_1080_08874417_2024_2401049 crossref_primary_10_1016_j_agrformet_2024_110253 crossref_primary_10_3390_w15101926 crossref_primary_10_3390_en16104123 crossref_primary_10_1016_j_atmosenv_2020_118025 crossref_primary_10_1016_j_ifacol_2023_10_728 crossref_primary_10_1016_j_jtrangeo_2024_103923 crossref_primary_10_1016_j_apenergy_2020_115391 crossref_primary_10_1214_23_EJS2190 crossref_primary_10_1061__ASCE_SU_1943_5428_0000399 crossref_primary_10_1364_OE_522742 crossref_primary_10_1016_j_ijid_2021_07_042 crossref_primary_10_1016_j_aei_2025_103252 crossref_primary_10_1111_cgf_14498 crossref_primary_10_1121_10_0006534 crossref_primary_10_1109_JSEN_2025_3527471 crossref_primary_10_1109_TITS_2021_3054910 crossref_primary_10_1364_AO_532217 crossref_primary_10_14778_3659437_3659450 crossref_primary_10_1002_advs_202308806 crossref_primary_10_1016_j_ecoleng_2023_107107 crossref_primary_10_1007_s11222_020_09940_y crossref_primary_10_1016_j_jclepro_2023_139802 crossref_primary_10_1016_j_geothermics_2022_102355 crossref_primary_10_1093_jrsssb_qkae004 crossref_primary_10_1109_ACCESS_2024_3436910 crossref_primary_10_1016_j_cnsns_2022_106318 crossref_primary_10_1016_j_patcog_2022_109116 crossref_primary_10_1111_tgis_12918 crossref_primary_10_1523_ENEURO_0157_24_2024 crossref_primary_10_1016_j_cell_2024_12_020 crossref_primary_10_1088_1742_6596_2042_1_012071 crossref_primary_10_1088_1742_6596_2767_3_032032 crossref_primary_10_1016_j_cirp_2024_03_009 crossref_primary_10_1061_JGGEFK_GTENG_10843 crossref_primary_10_1021_acs_jpcb_3c03791 crossref_primary_10_1016_j_physa_2022_128363 crossref_primary_10_3390_jmmp9010012 crossref_primary_10_1016_j_iswa_2025_200504 crossref_primary_10_1177_03611981221086643 crossref_primary_10_1016_j_compbiomed_2024_108364 crossref_primary_10_1063_5_0226455 crossref_primary_10_1109_TITS_2022_3222421 crossref_primary_10_1007_s11222_023_10261_z crossref_primary_10_1007_s42979_024_02712_9 crossref_primary_10_1016_j_cherd_2022_09_005 crossref_primary_10_1038_s41598_023_30100_5 crossref_primary_10_1016_j_procs_2023_10_222 crossref_primary_10_1186_s12911_022_02010_5 crossref_primary_10_1073_pnas_2106140118 crossref_primary_10_1186_s40462_023_00444_8 crossref_primary_10_3390_electronics12244941 crossref_primary_10_1002_wics_1628 crossref_primary_10_1093_nar_gkaa679 crossref_primary_10_1109_TMC_2022_3199015 crossref_primary_10_1002_pip_3855 crossref_primary_10_1038_s41598_021_86827_6 crossref_primary_10_1080_23249935_2025_2467743 crossref_primary_10_1016_j_aei_2021_101359 crossref_primary_10_3390_histories3010003 crossref_primary_10_5194_wes_5_1375_2020 crossref_primary_10_1145_3556543 crossref_primary_10_1186_s13059_021_02566_x crossref_primary_10_1109_TIM_2024_3446617 crossref_primary_10_2139_ssrn_4020159 crossref_primary_10_1038_s41598_020_77262_0 crossref_primary_10_3390_app10072298 crossref_primary_10_1016_j_patcog_2022_109022 crossref_primary_10_3390_rs14143379 crossref_primary_10_1063_5_0097973 crossref_primary_10_1109_ACCESS_2022_3182345 crossref_primary_10_1177_03611981211033857 crossref_primary_10_3390_su152014865 crossref_primary_10_1111_maec_12725 crossref_primary_10_1145_3512961 crossref_primary_10_1080_03610918_2021_1881116 crossref_primary_10_1080_08982112_2023_2223617 crossref_primary_10_1016_j_cie_2023_108986 crossref_primary_10_3390_smartcities4010001 crossref_primary_10_5194_amt_14_5153_2021 crossref_primary_10_1145_3512959 crossref_primary_10_3389_fmars_2023_1150488 crossref_primary_10_1002_lom3_10520 crossref_primary_10_1007_s11116_023_10419_8 crossref_primary_10_1093_gigascience_giad060 crossref_primary_10_23919_JSC_2024_0010 crossref_primary_10_3390_info12070274 crossref_primary_10_3389_fagro_2025_1536998 crossref_primary_10_1093_nar_gkac560 crossref_primary_10_3390_math10183380 crossref_primary_10_3934_math_20241674 crossref_primary_10_3390_jmmp4030088 crossref_primary_10_3390_su14031733 crossref_primary_10_1109_JIOT_2024_3372624 crossref_primary_10_32604_cmes_2022_019764 crossref_primary_10_1016_j_aap_2024_107685 crossref_primary_10_1016_j_ress_2020_107126 crossref_primary_10_1080_00949655_2024_2400519 crossref_primary_10_5194_cp_17_1533_2021 crossref_primary_10_3389_fevo_2022_1026175 crossref_primary_10_3390_atmos15121505 crossref_primary_10_1007_s00477_021_02083_0 crossref_primary_10_12677_ORF_2023_132084 crossref_primary_10_1016_j_apm_2023_12_005 crossref_primary_10_1109_TITS_2020_3037791 crossref_primary_10_3390_e25020355 crossref_primary_10_1007_s42524_025_4109_z crossref_primary_10_1177_20563051251322254 crossref_primary_10_1109_TWC_2020_2987990 crossref_primary_10_1002_sta4_70012 crossref_primary_10_1109_JSAIT_2021_3072962 crossref_primary_10_3389_fmars_2020_00662 crossref_primary_10_3390_bios12121182 crossref_primary_10_1093_jamiaopen_ooac090 crossref_primary_10_1364_OE_446517 crossref_primary_10_1016_j_csda_2022_107648 crossref_primary_10_4236_ojs_2024_146036 crossref_primary_10_1007_s42952_023_00227_2 crossref_primary_10_1061__ASCE_CP_1943_5487_0000926 crossref_primary_10_1113_JP287243 crossref_primary_10_1109_JPHOTOV_2020_3043104 crossref_primary_10_1080_00224065_2021_1937409 crossref_primary_10_3390_w14142212 crossref_primary_10_1016_j_measurement_2023_113294 crossref_primary_10_1016_j_resp_2021_103735 crossref_primary_10_3390_e22040374 crossref_primary_10_3847_1538_4365_ad91a2 crossref_primary_10_2166_ws_2024_174 crossref_primary_10_2217_cer_2021_0307 crossref_primary_10_1007_s42488_022_00077_3 crossref_primary_10_1109_ACCESS_2024_3374334 crossref_primary_10_1038_s41467_024_50419_5 crossref_primary_10_1080_02664763_2022_2117288 crossref_primary_10_1016_j_ress_2024_110681 crossref_primary_10_1016_j_jmva_2021_104942 crossref_primary_10_3208_jgs_20_91 crossref_primary_10_1016_j_neucom_2023_126439 crossref_primary_10_1080_03610918_2025_2450704 crossref_primary_10_1021_acs_nanolett_4c04458 crossref_primary_10_1109_JIOT_2020_3033173 crossref_primary_10_1016_j_atech_2023_100260 crossref_primary_10_1080_01605682_2024_2395315 crossref_primary_10_3390_sym15111975 crossref_primary_10_1007_s11222_024_10428_2 crossref_primary_10_1214_21_AOS2098 crossref_primary_10_3390_w14162492 crossref_primary_10_1527_tjsai_35_5_E_JA10 crossref_primary_10_1109_ACCESS_2023_3247564 crossref_primary_10_1111_1365_2478_13054 crossref_primary_10_1017_jog_2024_39 crossref_primary_10_1007_s10618_021_00804_1 crossref_primary_10_1016_j_jmva_2021_104833 crossref_primary_10_1016_j_procs_2021_08_052 crossref_primary_10_1109_TKDE_2023_3320184 crossref_primary_10_1364_OE_530414 crossref_primary_10_1007_s00034_023_02319_0 crossref_primary_10_3390_info14050256 crossref_primary_10_5194_nhess_22_3679_2022 crossref_primary_10_2196_34315 crossref_primary_10_1145_3712702 crossref_primary_10_1109_ACCESS_2023_3318318 crossref_primary_10_1016_j_acags_2025_100234 crossref_primary_10_1109_TITS_2022_3161623 crossref_primary_10_1016_j_measurement_2024_115472 crossref_primary_10_1016_j_eswa_2023_120158 crossref_primary_10_1021_acs_jpcb_2c05423 crossref_primary_10_1177_20563051231196898 crossref_primary_10_1007_s11203_023_09295_x crossref_primary_10_3389_fphys_2023_1151312 crossref_primary_10_3390_jmse13020213 crossref_primary_10_1111_jtsa_12809 crossref_primary_10_1007_s41981_023_00266_0 crossref_primary_10_11614_KSL_2024_57_4_250 crossref_primary_10_3150_24_BEJ1732 crossref_primary_10_1063_5_0176303 crossref_primary_10_1109_TIT_2024_3367182 crossref_primary_10_3390_gels11030197 crossref_primary_10_1016_j_spl_2024_110132 crossref_primary_10_1109_LGRS_2021_3066849 crossref_primary_10_1007_s00362_022_01307_x crossref_primary_10_3390_fi14020045 crossref_primary_10_1016_j_ecosta_2021_10_008 crossref_primary_10_1109_TII_2023_3331766 crossref_primary_10_1016_j_buildenv_2024_111548 crossref_primary_10_3390_app11094280 crossref_primary_10_1111_dgd_12871 crossref_primary_10_1364_OE_525058 crossref_primary_10_1093_nargab_lqad098 crossref_primary_10_1109_TMC_2024_3381171 crossref_primary_10_1109_TVCG_2021_3050071 crossref_primary_10_1007_s00521_023_08662_2 crossref_primary_10_1063_5_0214733 crossref_primary_10_1088_1681_7575_ad6b30 crossref_primary_10_1080_03610918_2023_2245988 crossref_primary_10_1007_s00435_025_00710_w crossref_primary_10_1111_ejn_16618 crossref_primary_10_1038_s41467_021_26320_w crossref_primary_10_1002_env_2756 crossref_primary_10_3390_electronics10233045 crossref_primary_10_1371_journal_pone_0243503 crossref_primary_10_1016_j_chemgeo_2020_119973 crossref_primary_10_1080_17538947_2023_2271883 crossref_primary_10_1364_OE_460302 crossref_primary_10_1002_qre_3626 crossref_primary_10_1109_TSP_2021_3087031 crossref_primary_10_1007_s10994_020_05939_8 crossref_primary_10_32604_cmc_2023_044857 crossref_primary_10_1051_0004_6361_202245607 crossref_primary_10_3390_brainsci12050525 crossref_primary_10_1109_TIM_2024_3374301 crossref_primary_10_3390_s20247319 crossref_primary_10_1016_j_celrep_2024_114702 crossref_primary_10_1016_j_jhydrol_2021_127059 crossref_primary_10_1039_D2AY01778D crossref_primary_10_1016_j_eswa_2024_123637 crossref_primary_10_1016_j_fub_2025_100034 crossref_primary_10_1016_j_aei_2024_102859 crossref_primary_10_1016_j_cnsns_2024_108500 crossref_primary_10_1109_TITS_2023_3276190 crossref_primary_10_1109_TSP_2019_2953670 crossref_primary_10_1038_s43247_024_01687_y crossref_primary_10_1109_JSAC_2022_3180783 crossref_primary_10_1007_s00362_020_01198_w crossref_primary_10_1016_j_jeconom_2020_07_039 crossref_primary_10_1109_TII_2023_3242772 crossref_primary_10_1177_03611981211072806 crossref_primary_10_3389_fevo_2022_793307 crossref_primary_10_3390_e23091191 crossref_primary_10_1109_TGRS_2023_3243900 crossref_primary_10_1007_s10618_023_00999_5 crossref_primary_10_1029_2020JD032977 crossref_primary_10_1080_00031305_2023_2191670 crossref_primary_10_1002_env_2762 crossref_primary_10_1080_15481603_2024_2365001 crossref_primary_10_1016_j_jjimei_2025_100323 crossref_primary_10_1093_nar_gkad593 crossref_primary_10_1109_LSP_2021_3068072 crossref_primary_10_1080_17459737_2021_1969599 crossref_primary_10_1016_j_jobe_2024_109860 crossref_primary_10_3390_s23239308 crossref_primary_10_1016_j_jmva_2022_105114 crossref_primary_10_1016_j_physa_2022_127929 crossref_primary_10_1109_TSG_2022_3191734 crossref_primary_10_1002_cta_3127 crossref_primary_10_1038_s41467_023_42241_2 crossref_primary_10_1016_j_watres_2022_119538 crossref_primary_10_1029_2024GL111497 crossref_primary_10_1109_TCSS_2023_3297233 crossref_primary_10_1002_env_2710 crossref_primary_10_2196_65448 crossref_primary_10_34133_research_0174 crossref_primary_10_1002_cite_202200231 crossref_primary_10_1016_j_crm_2022_100445 crossref_primary_10_1063_5_0062543 crossref_primary_10_1007_s42979_023_02536_z crossref_primary_10_6339_24_JDS1137 crossref_primary_10_1016_j_engappai_2024_108220 crossref_primary_10_1021_acs_langmuir_4c04836 crossref_primary_10_3390_s21113880 crossref_primary_10_1007_s10463_023_00892_4 crossref_primary_10_1007_s12561_023_09377_7 crossref_primary_10_1016_j_autcon_2022_104232 crossref_primary_10_1016_j_eswa_2022_116660 crossref_primary_10_1093_bioinformatics_btae138 crossref_primary_10_1109_TIT_2021_3112680 crossref_primary_10_2196_57802 crossref_primary_10_1080_24725854_2023_2266001 crossref_primary_10_1016_j_tra_2024_104089 crossref_primary_10_3389_fmars_2023_1293823 crossref_primary_10_1093_bioinformatics_btad170 crossref_primary_10_1016_j_comnet_2024_110189 crossref_primary_10_1016_j_trc_2025_105015 crossref_primary_10_3390_s23135873 crossref_primary_10_1109_ACCESS_2024_3506155 crossref_primary_10_1111_rssb_12501 crossref_primary_10_1177_01423312221092527 crossref_primary_10_1016_j_rsase_2024_101210 crossref_primary_10_1016_j_ejpb_2022_09_010 crossref_primary_10_1109_TWC_2022_3192225 crossref_primary_10_1186_s40991_025_00106_5 crossref_primary_10_3390_geotechnics4020021 crossref_primary_10_1007_s10618_023_00974_0 crossref_primary_10_1109_TSP_2022_3183359 crossref_primary_10_11728_cjss2024_05_2023_0122 crossref_primary_10_2139_ssrn_3742790 crossref_primary_10_3390_make5040071 crossref_primary_10_1007_s42952_022_00194_0 crossref_primary_10_3390_rs13040634 crossref_primary_10_3389_fbioe_2021_782740 crossref_primary_10_1016_j_polymertesting_2023_108131 crossref_primary_10_1016_j_ijmecsci_2023_108769 crossref_primary_10_1007_s42952_020_00060_x crossref_primary_10_1016_j_neucom_2024_127321 crossref_primary_10_1016_j_apenergy_2024_123523 crossref_primary_10_1016_j_ress_2024_110037 crossref_primary_10_1016_j_tra_2021_01_019 crossref_primary_10_1021_jasms_3c00219 crossref_primary_10_3390_pr12020251 crossref_primary_10_1016_j_ascom_2024_100860 crossref_primary_10_1002_esp_6003 crossref_primary_10_2196_38661 crossref_primary_10_3390_s23063326 crossref_primary_10_1016_j_dss_2021_113556 crossref_primary_10_1109_TKDE_2024_3523857 crossref_primary_10_1007_s00180_020_00992_2 crossref_primary_10_1016_j_jhydrol_2024_131096 crossref_primary_10_1109_TSG_2023_3245019 crossref_primary_10_1109_TSM_2021_3135434 crossref_primary_10_1016_j_ifacol_2020_11_054 crossref_primary_10_1002_sta4_291 crossref_primary_10_1007_s10712_024_09859_3 crossref_primary_10_1145_3472752 crossref_primary_10_1109_TVCG_2020_3030453 crossref_primary_10_1214_22_BA1344 crossref_primary_10_1002_sta4_284 crossref_primary_10_1038_s42256_024_00964_x crossref_primary_10_1016_j_rse_2024_114285 crossref_primary_10_1007_s10489_021_02321_6 crossref_primary_10_2196_26302 crossref_primary_10_1002_sam_70000 crossref_primary_10_3390_math11244959 crossref_primary_10_1063_5_0126848 crossref_primary_10_1016_j_spl_2021_109258 crossref_primary_10_1109_TIM_2024_3413152 crossref_primary_10_2139_ssrn_4493344 crossref_primary_10_1371_journal_pone_0253610 crossref_primary_10_1016_j_techfore_2024_123966 crossref_primary_10_1038_s41567_024_02760_1 crossref_primary_10_1007_s11227_024_06264_w crossref_primary_10_1016_j_eswa_2024_123342 crossref_primary_10_1109_TCOMM_2023_3341856 crossref_primary_10_3934_mmc_2024036 crossref_primary_10_3897_nucet_8_94106 crossref_primary_10_7554_eLife_74500 crossref_primary_10_3390_computers13100252 crossref_primary_10_1111_rssc_12429 crossref_primary_10_1007_s00521_024_09846_0 crossref_primary_10_14814_phy2_70034 crossref_primary_10_3390_s22135064 crossref_primary_10_1093_mnras_stad3603 crossref_primary_10_1016_j_enbuild_2023_113321 crossref_primary_10_1111_rssb_12552 crossref_primary_10_1038_s41598_024_79076_w crossref_primary_10_1093_biomet_asad079 crossref_primary_10_1109_ACCESS_2023_3242684 crossref_primary_10_1093_molbev_msaa187 crossref_primary_10_3390_e26010050 crossref_primary_10_1098_rsif_2023_0383 crossref_primary_10_1186_s40537_023_00831_3 crossref_primary_10_3934_DSFE_2022012 crossref_primary_10_1038_s41597_022_01361_y crossref_primary_10_1016_j_compbiomed_2025_109712 crossref_primary_10_1016_j_coastaleng_2024_104594 crossref_primary_10_1080_09332480_2023_2264728 crossref_primary_10_1214_23_AOS2297 crossref_primary_10_1007_s00354_023_00231_4 crossref_primary_10_1109_TIM_2021_3139688 crossref_primary_10_1109_TBME_2023_3346358 crossref_primary_10_1109_TIT_2021_3092753 crossref_primary_10_1016_j_trc_2024_104836 crossref_primary_10_1007_s11277_023_10816_3 crossref_primary_10_1016_j_rineng_2023_101747 crossref_primary_10_1109_TSE_2021_3128820 crossref_primary_10_1103_PhysRevLett_131_210804 crossref_primary_10_3390_technologies12070096 crossref_primary_10_1002_env_2664 crossref_primary_10_1109_TMI_2024_3381670 crossref_primary_10_3390_s23208408 crossref_primary_10_1109_TAES_2023_3341055 crossref_primary_10_1016_j_neuroimage_2021_118085 crossref_primary_10_3233_JHS_210651 crossref_primary_10_1016_j_automatica_2021_110075 crossref_primary_10_1016_j_cels_2023_10_011 crossref_primary_10_1051_0004_6361_202142941 crossref_primary_10_1016_j_jmsy_2023_02_017 crossref_primary_10_1140_epjds_s13688_022_00361_7 crossref_primary_10_1017_dce_2025_3 crossref_primary_10_1038_s41598_021_91392_z crossref_primary_10_1038_s41467_023_42524_8 crossref_primary_10_1007_s00180_022_01238_z crossref_primary_10_1016_j_csbj_2022_12_013 crossref_primary_10_1007_s10207_024_00921_0 crossref_primary_10_28925_2663_4023_2024_25_434448 crossref_primary_10_1109_TGRS_2024_3386564 crossref_primary_10_1109_TASLP_2021_3093817 crossref_primary_10_1515_em_2022_0125 crossref_primary_10_3390_en15031207 crossref_primary_10_1080_00207543_2022_2081629 crossref_primary_10_1038_s41598_024_60201_8 crossref_primary_10_1061__ASCE_CO_1943_7862_0002289 crossref_primary_10_1016_j_eswa_2024_123153 crossref_primary_10_1007_s10844_023_00801_4 crossref_primary_10_3390_math12203189 crossref_primary_10_1080_00401706_2024_2308202 crossref_primary_10_1080_10618600_2023_2262000 crossref_primary_10_1088_2515_7647_adbec8 crossref_primary_10_1016_j_compbiomed_2024_108653 crossref_primary_10_1038_s41598_021_00789_3 crossref_primary_10_1093_imaiai_iaaf002 crossref_primary_10_1051_itmconf_20213601005 crossref_primary_10_1016_j_jmaa_2020_124883 crossref_primary_10_1186_s40561_024_00317_6 crossref_primary_10_1117_1_JRS_18_024506 crossref_primary_10_1109_TKDE_2024_3492339 crossref_primary_10_1109_TSIPN_2022_3149098 crossref_primary_10_1214_21_EJS1871 crossref_primary_10_3390_pr13030684 crossref_primary_10_1080_00207721_2020_1797228 crossref_primary_10_5194_bg_21_2189_2024 crossref_primary_10_1093_nsr_nwab228 crossref_primary_10_1088_1538_3873_ad8781 crossref_primary_10_1214_23_EJS2126 crossref_primary_10_1016_j_ijfatigue_2022_107284 crossref_primary_10_1021_acsphotonics_3c01739 crossref_primary_10_3758_s13428_022_01917_1 |
Cites_doi | 10.1016/j.sigpro.2004.11.012 10.1093/bioinformatics/bti611 10.1016/j.neucli.2015.10.015 10.1214/14-AOS1245 10.1214/12-AOAS539 10.2307/2171863 10.1214/18-EJS1513 10.1214/09-SS054 10.1007/BFb0052847 10.1007/s10115-016-0987-z 10.1016/j.csda.2018.07.002 10.1093/biomet/41.1-2.100 10.1162/003465305775098134 10.1371/journal.pone.0164975 10.1111/j.1541-0420.2006.00662.x 10.1111/rssb.12243 10.1016/j.neucom.2009.11.022 10.1093/bioinformatics/btl646 10.1080/10618600.2015.1116445 10.1080/01621459.2012.737745 10.1016/j.neucli.2016.09.019 10.3390/s18114033 10.1090/qam/102435 10.1017/S0266466600005831 10.1007/s00180-013-0422-9 10.1111/obes.12153 10.1007/s00440-006-0011-8 10.1214/aos/1176344722 10.1214/14-BA878 10.1016/j.jeconom.2018.05.003 10.3150/09-BEJ232 10.1111/j.2517-6161.1996.tb02080.x 10.1109/TSP.2005.851098 10.1214/aos/1176348521 10.1186/1471-2105-6-27 10.1002/jae.659 10.1175/JAM2493.1 10.1111/rssb.12047 10.1080/01621459.1997.10474026 10.1007/s11222-016-9636-3 10.1111/j.1467-9892.2012.00819.x 10.1016/S0304-4076(97)00115-2 10.1016/j.jhydrol.2016.04.043 10.1017/S026646660000935X 10.1214/09-AOS716 10.1198/004017005000000328 10.1111/j.1467-9892.1994.tb00204.x 10.1214/08-AOAS232 10.1111/1467-9892.00172 10.1016/j.jeconom.2009.10.020 10.1214/aos/1176344136 10.1214/16-STS587 10.1016/j.ins.2018.03.010 10.1016/S0304-4149(99)00023-X 10.1111/j.1468-0262.2006.00754.x 10.1093/biostatistics/kxh008 10.2307/3001968 10.1214/14-BA910 10.1007/s11222-006-8450-8 10.1007/s11222-011-9240-5 10.1111/jtsa.12035 10.1007/s100970100031 10.1016/j.jeconom.2005.06.030 10.1080/01621459.1998.10473808 10.1162/003465397557132 10.1109/81.904882 10.1016/j.neucli.2015.10.038 10.1016/j.rse.2009.08.014 10.1016/S0378-3758(98)00082-2 10.1214/aoms/1177700517 10.1198/jasa.2010.tm09181 10.1214/14-AOS1210 10.1016/j.jeconom.2018.06.019 10.1080/10255842.2015.1072414 10.1111/rssb.12079 10.1016/S0169-7161(88)07021-X 10.1016/j.jspi.2017.09.003 10.1109/5.18626 10.1016/j.jmva.2012.05.007 10.1214/aoms/1177693055 10.1109/78.668798 10.1111/1368-423X.00102 10.1016/S0304-4076(98)00079-7 10.1016/S0169-2607(98)00079-0 10.1111/rssb.12202 10.1016/0167-7152(88)90118-6 10.1111/1467-937X.00051 10.1016/j.neunet.2013.01.012 10.1016/j.sigpro.2005.01.012 10.1214/aos/1176343001 10.3150/bj/1068128978 10.1093/biomet/42.3-4.523 10.1093/bioinformatics/bti677 10.1080/01621459.1993.10594323 10.2307/2998540 10.1186/1471-2105-14-164 10.1093/biomet/77.3.563 10.1016/j.artmed.2018.06.003 10.1214/15-AOS1347 10.1111/j.1467-9892.2011.00777.x 10.1214/07-AOS558 10.1007/s11222-016-9687-5 |
ContentType | Journal Article |
Copyright | 2019 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2019 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.sigpro.2019.107299 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics |
EISSN | 1872-7557 |
ExternalDocumentID | oai_HAL_hal_02442692v1 10_1016_j_sigpro_2019_107299 S0165168419303494 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC VOOES |
ID | FETCH-LOGICAL-c406t-591dce03f09e2a2a6c01d44871ef1f2e45fbc7c765df4039abca71d665c6e4053 |
IEDL.DBID | .~1 |
ISSN | 0165-1684 |
IngestDate | Fri May 09 12:24:42 EDT 2025 Thu Apr 24 22:57:38 EDT 2025 Tue Jul 01 02:07:27 EDT 2025 Fri Feb 23 02:33:58 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Segmentation Statistical signal processing Change point detection |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-591dce03f09e2a2a6c01d44871ef1f2e45fbc7c765df4039abca71d665c6e4053 |
ORCID | 0000-0002-8527-8161 0009-0002-1406-9116 0000-0003-4308-4681 0000-0002-4750-2265 |
OpenAccessLink | https://hal.science/hal-02442692 |
ParticipantIDs | hal_primary_oai_HAL_hal_02442692v1 crossref_primary_10_1016_j_sigpro_2019_107299 crossref_citationtrail_10_1016_j_sigpro_2019_107299 elsevier_sciencedirect_doi_10_1016_j_sigpro_2019_107299 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2020 2020-02-00 2020-02 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
PublicationDecade | 2020 |
PublicationTitle | Signal processing |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Górecki, Horváth, Kokoszka (bib0057) 2018; 7 Yao, Au (bib0136) 1989; 51 Niu, Hao, Zhang (bib0044) 2016; 31 Bai (bib0068) 1996; 64 Truong, Oudre, Vayatis (bib0107) 2019 Jandhyala, Fotopoulos, Macneill, Liu (bib0008) 2013; 34 Fearnhead (bib0056) 2006; 16 Hébrail, Hugueney, Lechevallier, Rossi (bib0063) 2010; 73 Bai, Perron (bib0072) 2003; 18 Lévy-Leduc, Roueff (bib0028) 2009; 3 Zhang (bib0090) 2006; 48 Bai, Saranadasa (bib0147) 1996; 6 Maidstone, Hocking, Rigaill, Fearnhead (bib0017) 2017; 27 Chen, Gupta (bib0006) 2011 Bai (bib0074) 1999; 91 Lavielle (bib0049) 1999; 83 Pein, Sieling, Munk (bib0050) 2017; 79 Nam, Aston, Johansen (bib0082) 2012; 33 Lai, Johnson, Kucherlapati, Park (bib0131) 2005; 21 Wilcoxon (bib0094) 1945; 1 Celisse, Marot, Pierre-Jean, Rigaill (bib0100) 2018; 128 Fu, Curnow (bib0058) 1990; 77 Barigozzi, Cho, Fryzlewicz (bib0154) 2018; 206 Hocking, Rigaill, Bourque (bib0031) 2015 Esteller, Vachtsevanos, Echauz, Litt (bib0117) 2001; 48 Frick, Munk, Sieling (bib0015) 2014; 76 Harchaoui, Lévy-Leduc (bib0048) 2010; 105 Lajugie, Bach, Arlot (bib0030) 2014 Perron (bib0076) 2006; 1 Audiffren, Barrois-Müller, Provost, Chiarovano, Oudre, Moreau, Truong, Yelnik, Vayatis, Vidal, De Waele, Buffat, Ricard (bib0023) 2015; 45 Hastie, Tibshirani, Friedman (bib0084) 2009 Shawe-Taylor, Cristianini (bib0102) 2004 . Jeon, Hyun Sung, Chung (bib0143) 2016; 538 Chernoff, Zacks (bib0060) 1964; 35 Chakar, Lebarbier, Levy-Leduc, Robin (bib0021) 2017; 23 Bai, Lumsdaine, Stock (bib0078) 1998; 65 C. Truong, ruptures: change point detection in python, 2018, [Online]. Aminikhanghahi, Cook (bib0043) 2017; 51 Lung-Yut-Fong, Lévy-Leduc, Cappé (bib0093) 2015; 156 Sriperumbudur, Gretton, Fukumizu, Lanckriet, Schölkopf (bib0101) 2008 Aue, Horvàth (bib0055) 2012; 34 Chen, Gupta (bib0114) 1997; 92 Birgé, Massart (bib0157) 2001; 3 Arlot, Celisse (bib0137) 2010; 4 Enikeeva, Harchaoui (bib0149) 2014 Kay, Oppenheim (bib0108) 1993 Page (bib0002) 1955; 42 Haynes, Fearnhead, Eckley (bib0089) 2017; 27 Killick, Fearnhead, Eckley (bib0113) 2012; 107 Lung-Yut-Fong, Lévy-Leduc, Cappé (bib0029) 2012; 22 Tibshirani (bib0142) 1996; 58 Hocking, Rigaill, Vert, Bach (bib0139) 2013 Lavielle, Moulines (bib0052) 2000; 21 Bellman (bib0109) 1955; 16 Boysen, Kempe, Liebscher, Munk, Wittich (bib0047) 2009; 37 Lavielle (bib0065) 2005; 85 Harchaoui, Cappé (bib0097) 2007 Bai (bib0069) 2000; 1 Jirak (bib0150) 2015; 43 Basseville, Nikiforov (bib0003) 1993; 104 Jirak (bib0152) 2012; 111 Oudre, Barrois-Müller, Moreau, Truong, Dadashi, Grégory, Ricard, Vayatis, De Waele, Yelnik, Vidal (bib0022) 2015; 45 Schölkopf, Smola (bib0098) 2002 Bai, Perron (bib0075) 2003; 6 Barrois-Müller, Ricard, Oudre, Tlili, Provost, Vienne, Vidal, Buffat, Yelnik (bib0032) 2016; 46 Karagiannaki, Panousopoulou, Tsakalides (bib0118) 2017 Keogh, Chu, Hart, Pazzani (bib0121) 2004; 57 Prescott Adams, MacKay (bib0125) 2007 Doyle, Faust (bib0081) 2005; 87 Harchaoui, Bach, Moulines (bib0122) 2008 Picard, Robin, Lavielle, Vaisse, Daudin (bib0019) 2005; 6 Bai (bib0070) 1997; 79 Sen, Srivastava (bib0053) 1975; 3 Venkatraman, Olshen (bib0133) 2007; 23 Chen, Gopalakrishnan (bib0120) 1998 Csörgö, Horváth (bib0005) 1997 Lavielle, Teyssière (bib0007) 2007 Bai, Perron (bib0045) 2003; 18 S. Chakar, É. Lebarbier, C. Levy-Leduc, S. Robin, AR1seg: segmentation of an autoregressive Gaussian process of order 1, 2014. URL Lebarbier, Lebarbier (bib0145) 2005; 85 Truong, Oudre, Vayatis (bib0140) 2017 Seichepine, Essid, Fevotte, Cappé (bib0013) 2014 Ko, Chong, Ghosh (bib0039) 2015; 10 Gretton, Borgwardt, Rasch, Schölkopf, Smola (bib0099) 2012; 13 Reeves, Chen, Wang, Lund, Lu (bib0027) 2007; 46 Kifer, Ben-David, Gehrke (bib0124) 2004 Page (bib0001) 1954; 41 Barrois-Müller, Oudre, Moreau, Truong, Vayatis, Buffat, Yelnik, de Waele, Gregory, Laporte, Vidal, Ricard (bib0036) 2015; 18 Suppl 1 Lehman, Romano (bib0095) 2006; 101 Chib (bib0064) 1998; 86 Davis, Kulis, Jain, Sra, Dhillon (bib0086) 2007 Perron, Qu (bib0079) 2006; 134 Adak (bib0119) 1998; 93 Jain, Kulis, Davis, Dhillon (bib0106) 2012; 13 Einmahl, McKeague (bib0087) 2003; 9 Rigaill (bib0111) 2015; 156 Schwarz (bib0141) 1978; 6 Brodsky, Darkhovsky, Kaplan, Shishkin (bib0116) 1999; 60 Willenbrock, Fridlyand (bib0132) 2005; 21 Himberg, Korpiaho, Mannila, Tikanmaki, Toivonen (bib0129) 2001 Angelosante, Giannakis (bib0012) 2012; 70 Bai, Shi (bib0146) 2011; 12 Olshen, Venkatraman, Lucito, Wigler (bib0126) 2004; 5 Oudre, Barrois-Müller, Moreau, Truong, Vienne-Jumeau, Ricard, Vayatis, Vidal (bib0034) 2018; 18 Hugueney, Hébrail, Lechevallier, Rossi (bib0112) 2009 Zhang, Siegmund (bib0144) 2007; 63 Maidstone (bib0025) 2016 Chen, Qin (bib0148) 2010; 38 Ma, Su (bib0155) 2018; 207 Liu, Wright, Hauskrecht (bib0024) 2018; 91 Bai (bib0066) 1994; 15 Cabrieto, Tuerlinckx, Kuppens, Wilhelm, Liedlgruber, Ceulemans (bib0105) 2018; 447 Bai (bib0127) 1997; 13 Hocking, Schleiermacher, Janoueix-Lerosey, Boeva, Cappo, Delattre, Bach, Vert (bib0016) 2013; 14 Martínez, Mena (bib0040) 2014; 9 Qu, Perron (bib0071) 2007; 75 Kendall (bib0096) 1970 Niu, Zhang (bib0130) 2012; 6 Mallows (bib0062) 1973; 15 Vert, Bleakley (bib0018) 2010; 1 Verbesselt, Hyndman, Newnham, Culvenor (bib0026) 2010 Liu, Yamada, Collier, Sugiyama (bib0123) 2013; 43 Birgé, Massart (bib0138) 2007; 138 Vullings, Verhaegen, Verbruggen (bib0115) 1997 He, Severini (bib0059) 2010; 16 Fryzlewicz (bib0128) 2014; 42 Keshavarz, Scott, Nguyen (bib0051) 2018; 193 Lavielle (bib0110) 1998; 46 Haynes, Eckley, Fearnhead (bib0009) 2017; 26 Rabiner (bib0038) 1989; 77 Bai (bib0073) 1998; 74 Keogh, Chu, Hart, Pazzani (bib0134) 2001 Mahalanobis (bib0083) 1936; 2 Bai, Perron (bib0014) 1998; 66 Brodsky, Darkhovsky (bib0004) 1993 Barry, Hartigan (bib0041) 1992; 20 Guédon (bib0020) 2013; 28 Desobry, Davy, Doncarli (bib0010) 2005; 53 Han, Taamouti (bib0080) 2017; 79 Arlot, Celisse, Harchaoui (bib0104) 2012 Wang, Samworth (bib0151) 2018; 80 Barrois-Müller, Gregory, Oudre, Moreau, Truong, Aram Pulini, Vienne, Labourdette, Vayatis, Buffat, Yelnik, de Waele, Laporte, Vidal, Ricard (bib0033) 2016; 11 Lorden (bib0061) 1971; 42 Harchaoui, Vallet, Lung-Yut-Fong, Cappé (bib0011) 2009 Zou, Yin, Long, Wang (bib0088) 2014; 42 Garreau, Arlot (bib0103) 2018; 12 Vostrikova (bib0156) 1981; 24 Bai (bib0077) 2010; 157 Xing, Jordan, Russell (bib0085) 2003 Bai (bib0067) 1995; 11 Cho, Fryzlewicz (bib0153) 2014; 77 Clemencon, Depecker, Vayatis (bib0091) 2009 Friedman, Rafsky (bib0092) 1979; 7 Barry, Hartigan (bib0042) 1993; 88 Yao (bib0135) 1988; 6 Truong, Oudre, Vayatis (bib0035) 2015 Krishnaiah (bib0054) 1988; 7 Sriperumbudur (10.1016/j.sigpro.2019.107299_sbref0099) 2008 Killick (10.1016/j.sigpro.2019.107299_bib0113) 2012; 107 Bai (10.1016/j.sigpro.2019.107299_bib0066) 1994; 15 Lavielle (10.1016/j.sigpro.2019.107299_bib0052) 2000; 21 Willenbrock (10.1016/j.sigpro.2019.107299_bib0132) 2005; 21 Bai (10.1016/j.sigpro.2019.107299_bib0147) 1996; 6 Lebarbier (10.1016/j.sigpro.2019.107299_bib0145) 2005; 85 Barry (10.1016/j.sigpro.2019.107299_bib0042) 1993; 88 Audiffren (10.1016/j.sigpro.2019.107299_bib0023) 2015; 45 Chernoff (10.1016/j.sigpro.2019.107299_bib0060) 1964; 35 Vert (10.1016/j.sigpro.2019.107299_sbref0018) 2010; 1 Barry (10.1016/j.sigpro.2019.107299_bib0041) 1992; 20 Friedman (10.1016/j.sigpro.2019.107299_bib0092) 1979; 7 Jirak (10.1016/j.sigpro.2019.107299_bib0150) 2015; 43 Boysen (10.1016/j.sigpro.2019.107299_bib0047) 2009; 37 Bai (10.1016/j.sigpro.2019.107299_bib0045) 2003; 18 Zou (10.1016/j.sigpro.2019.107299_bib0088) 2014; 42 Jirak (10.1016/j.sigpro.2019.107299_bib0152) 2012; 111 Kifer (10.1016/j.sigpro.2019.107299_sbref0122) 2004 Nam (10.1016/j.sigpro.2019.107299_bib0082) 2012; 33 Lai (10.1016/j.sigpro.2019.107299_bib0131) 2005; 21 Frick (10.1016/j.sigpro.2019.107299_bib0015) 2014; 76 Lavielle (10.1016/j.sigpro.2019.107299_bib0110) 1998; 46 Vostrikova (10.1016/j.sigpro.2019.107299_bib0156) 1981; 24 Harchaoui (10.1016/j.sigpro.2019.107299_sbref0095) 2007 Tibshirani (10.1016/j.sigpro.2019.107299_bib0142) 1996; 58 Prescott Adams (10.1016/j.sigpro.2019.107299_bib0125) 2007 Bai (10.1016/j.sigpro.2019.107299_bib0078) 1998; 65 Lajugie (10.1016/j.sigpro.2019.107299_sbref0030) 2014 Fearnhead (10.1016/j.sigpro.2019.107299_bib0056) 2006; 16 Martínez (10.1016/j.sigpro.2019.107299_bib0040) 2014; 9 Page (10.1016/j.sigpro.2019.107299_bib0002) 1955; 42 Hocking (10.1016/j.sigpro.2019.107299_bib0016) 2013; 14 Lavielle (10.1016/j.sigpro.2019.107299_bib0065) 2005; 85 Oudre (10.1016/j.sigpro.2019.107299_bib0034) 2018; 18 Bai (10.1016/j.sigpro.2019.107299_bib0146) 2011; 12 Fryzlewicz (10.1016/j.sigpro.2019.107299_bib0128) 2014; 42 Karagiannaki (10.1016/j.sigpro.2019.107299_sbref0116) 2017 Seichepine (10.1016/j.sigpro.2019.107299_sbref0013) 2014 Aminikhanghahi (10.1016/j.sigpro.2019.107299_bib0043) 2017; 51 Bai (10.1016/j.sigpro.2019.107299_bib0067) 1995; 11 Zhang (10.1016/j.sigpro.2019.107299_bib0144) 2007; 63 Esteller (10.1016/j.sigpro.2019.107299_bib0117) 2001; 48 Shawe-Taylor (10.1016/j.sigpro.2019.107299_bib0102) 2004 Lévy-Leduc (10.1016/j.sigpro.2019.107299_bib0028) 2009; 3 Birgé (10.1016/j.sigpro.2019.107299_bib0157) 2001; 3 Adak (10.1016/j.sigpro.2019.107299_bib0119) 1998; 93 Barigozzi (10.1016/j.sigpro.2019.107299_bib0154) 2018; 206 Davis (10.1016/j.sigpro.2019.107299_sbref0084) 2007 Liu (10.1016/j.sigpro.2019.107299_bib0024) 2018; 91 Haynes (10.1016/j.sigpro.2019.107299_bib0089) 2017; 27 Schwarz (10.1016/j.sigpro.2019.107299_bib0141) 1978; 6 Barrois-Müller (10.1016/j.sigpro.2019.107299_bib0032) 2016; 46 Maidstone (10.1016/j.sigpro.2019.107299_bib0025) 2016 Truong (10.1016/j.sigpro.2019.107299_sbref0105) 2019 Basseville (10.1016/j.sigpro.2019.107299_bib0003) 1993; 104 He (10.1016/j.sigpro.2019.107299_bib0059) 2010; 16 Han (10.1016/j.sigpro.2019.107299_bib0080) 2017; 79 Keshavarz (10.1016/j.sigpro.2019.107299_bib0051) 2018; 193 Guédon (10.1016/j.sigpro.2019.107299_bib0020) 2013; 28 Truong (10.1016/j.sigpro.2019.107299_sbref0035) 2015 Bai (10.1016/j.sigpro.2019.107299_bib0073) 1998; 74 Schölkopf (10.1016/j.sigpro.2019.107299_bib0098) 2002 10.1016/j.sigpro.2019.107299_bib0037 Venkatraman (10.1016/j.sigpro.2019.107299_bib0133) 2007; 23 Niu (10.1016/j.sigpro.2019.107299_bib0044) 2016; 31 Brodsky (10.1016/j.sigpro.2019.107299_bib0004) 1993 Lehman (10.1016/j.sigpro.2019.107299_bib0095) 2006; 101 Bai (10.1016/j.sigpro.2019.107299_bib0075) 2003; 6 Bellman (10.1016/j.sigpro.2019.107299_bib0109) 1955; 16 Gretton (10.1016/j.sigpro.2019.107299_bib0099) 2012; 13 Bai (10.1016/j.sigpro.2019.107299_bib0068) 1996; 64 Pein (10.1016/j.sigpro.2019.107299_bib0050) 2017; 79 Ma (10.1016/j.sigpro.2019.107299_bib0155) 2018; 207 Qu (10.1016/j.sigpro.2019.107299_bib0071) 2007; 75 Garreau (10.1016/j.sigpro.2019.107299_bib0103) 2018; 12 Kendall (10.1016/j.sigpro.2019.107299_bib0096) 1970 Chib (10.1016/j.sigpro.2019.107299_bib0064) 1998; 86 Harchaoui (10.1016/j.sigpro.2019.107299_sbref0011) 2009 Chen (10.1016/j.sigpro.2019.107299_bib0006) 2011 Kay (10.1016/j.sigpro.2019.107299_bib0108) 1993 Bai (10.1016/j.sigpro.2019.107299_bib0127) 1997; 13 Jeon (10.1016/j.sigpro.2019.107299_bib0143) 2016; 538 Wilcoxon (10.1016/j.sigpro.2019.107299_bib0094) 1945; 1 Niu (10.1016/j.sigpro.2019.107299_bib0130) 2012; 6 Desobry (10.1016/j.sigpro.2019.107299_bib0010) 2005; 53 Barrois-Müller (10.1016/j.sigpro.2019.107299_bib0036) 2015; 18 Suppl 1 Górecki (10.1016/j.sigpro.2019.107299_bib0057) 2018; 7 10.1016/j.sigpro.2019.107299_bib0046 Keogh (10.1016/j.sigpro.2019.107299_bib0121) 2004; 57 Hocking (10.1016/j.sigpro.2019.107299_sbref0137) 2013 Yao (10.1016/j.sigpro.2019.107299_bib0136) 1989; 51 Bai (10.1016/j.sigpro.2019.107299_bib0070) 1997; 79 Liu (10.1016/j.sigpro.2019.107299_bib0123) 2013; 43 Zhang (10.1016/j.sigpro.2019.107299_bib0090) 2006; 48 Lung-Yut-Fong (10.1016/j.sigpro.2019.107299_bib0093) 2015; 156 Arlot (10.1016/j.sigpro.2019.107299_bib0104) 2012 Aue (10.1016/j.sigpro.2019.107299_bib0055) 2012; 34 Bai (10.1016/j.sigpro.2019.107299_bib0069) 2000; 1 Einmahl (10.1016/j.sigpro.2019.107299_bib0087) 2003; 9 Angelosante (10.1016/j.sigpro.2019.107299_bib0012) 2012; 70 Bai (10.1016/j.sigpro.2019.107299_bib0072) 2003; 18 Csörgö (10.1016/j.sigpro.2019.107299_sbref0005) 1997 Chen (10.1016/j.sigpro.2019.107299_bib0148) 2010; 38 Sen (10.1016/j.sigpro.2019.107299_bib0053) 1975; 3 Truong (10.1016/j.sigpro.2019.107299_sbref0138) 2017 Barrois-Müller (10.1016/j.sigpro.2019.107299_bib0033) 2016; 11 Maidstone (10.1016/j.sigpro.2019.107299_bib0017) 2017; 27 Brodsky (10.1016/j.sigpro.2019.107299_bib0116) 1999; 60 Lavielle (10.1016/j.sigpro.2019.107299_bib0049) 1999; 83 Lung-Yut-Fong (10.1016/j.sigpro.2019.107299_bib0029) 2012; 22 Bai (10.1016/j.sigpro.2019.107299_bib0014) 1998; 66 Hébrail (10.1016/j.sigpro.2019.107299_bib0063) 2010; 73 Enikeeva (10.1016/j.sigpro.2019.107299_bib0149) 2014 Cabrieto (10.1016/j.sigpro.2019.107299_bib0105) 2018; 447 Chen (10.1016/j.sigpro.2019.107299_bib0114) 1997; 92 Wang (10.1016/j.sigpro.2019.107299_bib0151) 2018; 80 Xing (10.1016/j.sigpro.2019.107299_bib0085) 2003 Hugueney (10.1016/j.sigpro.2019.107299_sbref0110) 2009 Chakar (10.1016/j.sigpro.2019.107299_bib0021) 2017; 23 Lorden (10.1016/j.sigpro.2019.107299_bib0061) 1971; 42 Vullings (10.1016/j.sigpro.2019.107299_bib0115) 1997 Bai (10.1016/j.sigpro.2019.107299_bib0077) 2010; 157 Hastie (10.1016/j.sigpro.2019.107299_bib0084) 2009 Reeves (10.1016/j.sigpro.2019.107299_bib0027) 2007; 46 Arlot (10.1016/j.sigpro.2019.107299_bib0137) 2010; 4 Rabiner (10.1016/j.sigpro.2019.107299_bib0038) 1989; 77 Celisse (10.1016/j.sigpro.2019.107299_bib0100) 2018; 128 Ko (10.1016/j.sigpro.2019.107299_bib0039) 2015; 10 Page (10.1016/j.sigpro.2019.107299_bib0001) 1954; 41 Harchaoui (10.1016/j.sigpro.2019.107299_bib0048) 2010; 105 Picard (10.1016/j.sigpro.2019.107299_bib0019) 2005; 6 Yao (10.1016/j.sigpro.2019.107299_bib0135) 1988; 6 Himberg (10.1016/j.sigpro.2019.107299_bib0129) 2001 Keogh (10.1016/j.sigpro.2019.107299_sbref0132) 2001 Chen (10.1016/j.sigpro.2019.107299_sbref0118) 1998 Verbesselt (10.1016/j.sigpro.2019.107299_bib0026) 2010 Mallows (10.1016/j.sigpro.2019.107299_bib0062) 1973; 15 Harchaoui (10.1016/j.sigpro.2019.107299_sbref0120) 2008 Doyle (10.1016/j.sigpro.2019.107299_bib0081) 2005; 87 Lavielle (10.1016/j.sigpro.2019.107299_bib0007) 2007 Haynes (10.1016/j.sigpro.2019.107299_bib0009) 2017; 26 Jain (10.1016/j.sigpro.2019.107299_bib0106) 2012; 13 Birgé (10.1016/j.sigpro.2019.107299_bib0138) 2007; 138 Clemencon (10.1016/j.sigpro.2019.107299_sbref0089) 2009 Hocking (10.1016/j.sigpro.2019.107299_sbref0031) 2015 Jandhyala (10.1016/j.sigpro.2019.107299_bib0008) 2013; 34 Oudre (10.1016/j.sigpro.2019.107299_bib0022) 2015; 45 Rigaill (10.1016/j.sigpro.2019.107299_bib0111) 2015; 156 Fu (10.1016/j.sigpro.2019.107299_bib0058) 1990; 77 Olshen (10.1016/j.sigpro.2019.107299_bib0126) 2004; 5 Cho (10.1016/j.sigpro.2019.107299_bib0153) 2014; 77 Krishnaiah (10.1016/j.sigpro.2019.107299_bib0054) 1988; 7 Perron (10.1016/j.sigpro.2019.107299_bib0076) 2006; 1 Bai (10.1016/j.sigpro.2019.107299_bib0074) 1999; 91 Mahalanobis (10.1016/j.sigpro.2019.107299_bib0083) 1936; 2 Perron (10.1016/j.sigpro.2019.107299_bib0079) 2006; 134 |
References_xml | – start-page: 521 year: 2003 end-page: 528 ident: bib0085 article-title: Distance metric learning, with application to clustering with side-Information publication-title: Advances in Neural Information Processing Systems (NIPS) – volume: 48 start-page: 95 year: 2006 end-page: 103 ident: bib0090 article-title: Powerful two-sample tests based on the likelihood ratio publication-title: Technometrics – volume: 93 start-page: 1488 year: 1998 end-page: 1501 ident: bib0119 article-title: Time-dependent spectral analysis of nonstationary time series publication-title: J. Am. Stat. Assoc. – volume: 11 start-page: 403 year: 1995 end-page: 436 ident: bib0067 article-title: Least absolute deviation of a shift publication-title: Econom. Theory – start-page: 172 year: 2013 end-page: 180 ident: bib0139 article-title: Learning sparse penalties for change-point detection using max margin interval regression publication-title: Proceedings of the International Conference on Machine Learning (ICML) – volume: 86 start-page: 221 year: 1998 end-page: 241 ident: bib0064 article-title: Estimation and comparison of multiple change-point models publication-title: J. Econ. – volume: 70 year: 2012 ident: bib0012 article-title: Group lassoing change-points piece-constant AR processes publication-title: EURASIP J. Adv. Signal Process. – start-page: 768 year: 2007 end-page: 772 ident: bib0097 article-title: Retrospective multiple change-point estimation with kernels publication-title: Proceedings of the IEEE/SP Workshop on Statistical Signal Processing – volume: 9 start-page: 823 year: 2014 end-page: 858 ident: bib0040 article-title: On a nonparametric change point detection model in markovian regimes publication-title: Bayesian Anal. – volume: 12 start-page: 4440 year: 2018 end-page: 4486 ident: bib0103 article-title: Consistent change-point detection with kernels publication-title: Electron. J. Stat. – volume: 34 start-page: 423 year: 2013 end-page: 446 ident: bib0008 article-title: Inference for single and multiple change-points in time series publication-title: J. Time Ser. Anal. – volume: 91 start-page: 49 year: 2018 end-page: 56 ident: bib0024 article-title: Change-point detection method for clinical decision support system rule monitoring publication-title: Artif. Intell. Med. – start-page: 6721 year: 2014 end-page: 6725 ident: bib0013 article-title: Piecewise constant nonnegative matrix factorization publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 46 start-page: 244 year: 2016 ident: bib0032 article-title: Étude observationnelle du demi-tour à l’aide de capteurs inertiels chez les sujets victimes d’AVC et relation avec le risque de chute publication-title: Neurophysiologie Clinique/Clin. Neurophysiol. – volume: 38 start-page: 808 year: 2010 end-page: 835 ident: bib0148 article-title: A two-sample test for high-dimensional data with applications to gene-set testing publication-title: Ann. Stat. – volume: 15 start-page: 661 year: 1973 end-page: 675 ident: bib0062 article-title: Some comments on Cp publication-title: Technometrics – volume: 13 start-page: 519 year: 2012 end-page: 547 ident: bib0106 article-title: Metric and kernel learning using a linear transformation publication-title: J. Mach. Learn. Res. (JMLR) – volume: 28 start-page: 2641 year: 2013 end-page: 2678 ident: bib0020 article-title: Exploring the latent segmentation space for the assessment of multiple change-point models publication-title: Comput. Stat. – volume: 41 start-page: 100 year: 1954 end-page: 105 ident: bib0001 article-title: Continuous inspection schemes publication-title: Biometrika – volume: 207 start-page: 1 year: 2018 end-page: 29 ident: bib0155 article-title: Estimation of large dimensional factor models with an unknown number of breaks publication-title: J. Econ. – start-page: 180 year: 2004 end-page: 191 ident: bib0124 article-title: Detecting change in data streams publication-title: Proceedings of the Thirtieth International Conference on Very Large Data Bases (VLDB) - Volume 30 – volume: 12 start-page: 199 year: 2011 end-page: 215 ident: bib0146 article-title: Estimating high dimensional covariance matrices and its applications publication-title: Ann. Econom. Finance – volume: 27 start-page: 1293 year: 2017 end-page: 1305 ident: bib0089 article-title: A computationally efficient nonparametric approach for changepoint detection publication-title: Stat. Comput. – volume: 42 start-page: 1897 year: 1971 end-page: 1908 ident: bib0061 article-title: Procedures for reacting to a change in distribution publication-title: Ann. Math. Stat. – volume: 11 start-page: e0164975 year: 2016 ident: bib0033 article-title: An automated recording method in clinical consultation to rate the limp in lower limb osteoarthritis publication-title: PLoS One – volume: 156 start-page: 180 year: 2015 end-page: 205 ident: bib0111 article-title: A pruned dynamic programming algorithm to recover the best segmentations with 1 to k_max change-points. publication-title: J. de la Société Française de Statistique – volume: 77 start-page: 257 year: 1989 end-page: 286 ident: bib0038 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proc. IEEE – volume: 1 start-page: 80 year: 1945 end-page: 83 ident: bib0094 article-title: Individual comparisons by ranking methods publication-title: Biometr. Bull. – volume: 48 start-page: 177 year: 2001 end-page: 183 ident: bib0117 article-title: A comparison of waveform fractal dimension algorithms publication-title: IEEE Trans. Circuit. Syst. I: Fundamental Theory and Applications – volume: 91 start-page: 299 year: 1999 end-page: 323 ident: bib0074 article-title: Likelihood ratio tests for multiple structural changes publication-title: J. Econom. – volume: 88 start-page: 309 year: 1993 end-page: 319 ident: bib0042 article-title: A bayesian analysis for change point problems publication-title: J. Am. Stat. Assoc. – volume: 18 year: 2018 ident: bib0034 article-title: Template-based step detection with inertial measurement units publication-title: Sensors – year: 1970 ident: bib0096 article-title: Rank Correlation Methods – volume: 157 start-page: 78 year: 2010 end-page: 92 ident: bib0077 article-title: Common breaks in means and variances for panel data publication-title: J. Econom. – start-page: 1665 year: 2009 end-page: 1668 ident: bib0011 article-title: A regularized kernel-based approach to unsupervised audio segmentation publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 3 start-page: 98 year: 1975 end-page: 108 ident: bib0053 article-title: On tests for detecting change in mean publication-title: Ann. Stat. – volume: 57 start-page: 1 year: 2004 end-page: 22 ident: bib0121 article-title: Segmenting time series: a survey and novel approach publication-title: Data Min. Time Ser. Databases – start-page: 289 year: 2001 end-page: 296 ident: bib0134 article-title: An online algorithm for segmenting time series publication-title: Proceedings of the IEEE International Conference on Data Mining (ICDM) – year: 1993 ident: bib0004 article-title: Nonparametric methods in change point problems – volume: 34 start-page: 1 year: 2012 end-page: 16 ident: bib0055 article-title: Structural breaks in time series publication-title: J. Time Ser. Anal. – volume: 13 start-page: 315 year: 1997 end-page: 352 ident: bib0127 article-title: Estimating multiple breaks one at a time publication-title: Econom. Theory – volume: 42 start-page: 2243 year: 2014 end-page: 2281 ident: bib0128 article-title: Wild binary segmentation for multiple change-point detection publication-title: Ann. Statistics – volume: 77 start-page: 475 year: 2014 end-page: 507 ident: bib0153 article-title: Multiple change-point detection for high dimensional time series via Szparsified binary segmentation publication-title: J. R. Stat. Soc – volume: 79 start-page: 551 year: 1997 end-page: 563 ident: bib0070 article-title: Estimation of a change-point in multiple regression models publication-title: Rev. Econ. Stat. – volume: 1 start-page: 278 year: 2006 end-page: 352 ident: bib0076 article-title: Dealing with structural breaks publication-title: Palgrave HandbookEconom. – start-page: 1 year: 2019 end-page: 5 ident: bib0107 article-title: Supervised kernel change point detection with partial annotations publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 3 start-page: 203 year: 2001 end-page: 268 ident: bib0157 article-title: Gaussian model selection publication-title: J. Eur. Math. Soc. – volume: 85 start-page: 717 year: 2005 end-page: 736 ident: bib0145 article-title: Detecting multiple change-points in the mean of gaussian process by model selection publication-title: Signal Process. – volume: 51 start-page: 339 year: 2017 end-page: 367 ident: bib0043 article-title: A survey of methods for time series change point detection publication-title: Know. Inf. Syst. – volume: 3 start-page: 637 year: 2009 end-page: 662 ident: bib0028 article-title: Detection and localization of change-points in high-dimensional network traffic data publication-title: Ann. Appl. Stat. – reference: S. Chakar, É. Lebarbier, C. Levy-Leduc, S. Robin, AR1seg: segmentation of an autoregressive Gaussian process of order 1, 2014. URL – volume: 43 start-page: 72 year: 2013 end-page: 83 ident: bib0123 article-title: Change-point detection in time-series data by relative density-ratio estimation publication-title: Neural Networks – volume: 21 start-page: 4084 year: 2005 end-page: 4091 ident: bib0132 article-title: A comparison study: applying segmentation to array CGH data for downstream analyses publication-title: Bioinformatics – volume: 538 start-page: 831 year: 2016 end-page: 841 ident: bib0143 article-title: Abrupt change point detection of annual maximum precipitation using fused lasso publication-title: J. Hydrol. – volume: 16 start-page: 203 year: 2006 end-page: 213 ident: bib0056 article-title: Exact and efficient bayesian inference for multiple changepoint problems publication-title: Stat. Comput. – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: bib0141 article-title: Estimating the dimension of a model publication-title: Ann Stat – volume: 105 start-page: 1480 year: 2010 end-page: 1493 ident: bib0048 article-title: Multiple change-point estimation with a total variation penalty publication-title: J. Am. Stat. Assoc. – volume: 6 start-page: 1306 year: 2012 end-page: 1326 ident: bib0130 article-title: The screening and ranking algorithm to detect DNA copy number variations publication-title: Ann. Appl. Stat. – volume: 64 start-page: 597 year: 1996 end-page: 622 ident: bib0068 article-title: Testing for parameter constancy in linear regressions: an empirical distribution function approach publication-title: Econometrica – volume: 87 start-page: 721 year: 2005 end-page: 740 ident: bib0081 article-title: Breaks in the variability and comovement of G-7 economic growth publication-title: Rev. Econ. Stat. – volume: 134 start-page: 373 year: 2006 end-page: 399 ident: bib0079 article-title: Estimating restricted structural change models publication-title: J. Econom. – volume: 16 start-page: 87 year: 1955 end-page: 90 ident: bib0109 article-title: On a routing problem publication-title: Q. Appl. Math. – volume: 43 start-page: 2451 year: 2015 end-page: 2483 ident: bib0150 article-title: Uniform change point tests in high dimension publication-title: Ann. Stat. – volume: 5 start-page: 557 year: 2004 end-page: 572 ident: bib0126 article-title: Circular binary segmentation for the analysis of array-based DNA copy number data publication-title: Biostatistics – volume: 24 start-page: 55 year: 1981 end-page: 59 ident: bib0156 article-title: Detecting disorder in multidimensional random processes publication-title: Soviet Math. Dokl. – volume: 4 start-page: 40 year: 2010 end-page: 79 ident: bib0137 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. – volume: 111 start-page: 136 year: 2012 end-page: 159 ident: bib0152 article-title: Change-point analysis in increasing dimension publication-title: J. Multivar. Anal. – volume: 156 start-page: 133 year: 2015 end-page: 162 ident: bib0093 article-title: Homogeneity and change-point detection tests for multivariate data using rank statistics publication-title: J. de la Société Française de Statistique – year: 2011 ident: bib0006 article-title: Parametric Statistical Change Point Analysis: With Applications to Genetics, Medicine, and Finance – volume: 128 start-page: 200 year: 2018 end-page: 220 ident: bib0100 article-title: New efficient algorithms for multiple change-point detection with reproducing kernels publication-title: Comput. Stat. Data Analysis – volume: 85 start-page: 1501 year: 2005 end-page: 1510 ident: bib0065 article-title: Using penalized contrasts for the change-point problem publication-title: Signal Process. – volume: 45 start-page: 394 year: 2015 ident: bib0022 article-title: Détection automatique des pas à partir de capteurs inertiels pour la quantification de la marche en consultation publication-title: Neurophysiologie Clinique/Clin. Neurophysiol. – volume: 73 start-page: 1125 year: 2010 end-page: 1141 ident: bib0063 article-title: Exploratory analysis of functional data via clustering and optimal segmentation publication-title: Neurocomputing – volume: 65 start-page: 395 year: 1998 end-page: 432 ident: bib0078 article-title: Testing for and dating common breaks in multivariate time series publication-title: Rev. Econ. Stud. – volume: 18 start-page: 1 year: 2003 end-page: 22 ident: bib0045 article-title: Multiple structural change models: a simulation analysis publication-title: J. Appl. Econom. – volume: 193 start-page: 151 year: 2018 end-page: 178 ident: bib0051 article-title: Optimal change point detection in gaussian processes publication-title: J. Stat. Plann. Inference – volume: 107 start-page: 1590 year: 2012 end-page: 1598 ident: bib0113 article-title: Optimal detection of changepoints with a linear computational cost publication-title: J. Amer. Stat. Assoc. – volume: 76 start-page: 495 year: 2014 end-page: 580 ident: bib0015 article-title: Multiscale change point inference publication-title: J. R. Stat. Soc. Ser. B – volume: 60 start-page: 93 year: 1999 end-page: 106 ident: bib0116 article-title: A nonparametric method for the segmentation of the EEG publication-title: Comput. Method. Program. Biomed. – start-page: 297 year: 2014 end-page: 395 ident: bib0030 article-title: Large-margin metric learning for constrained partitioning problems publication-title: Proceedings of the 31st International Conference on Machine Learning (ICML) – volume: 104 year: 1993 ident: bib0003 article-title: Detection of abrupt changes: theory and application – start-page: 129 year: 2007 end-page: 156 ident: bib0007 article-title: Adaptive detection of multiple change-points in asset price volatility publication-title: Long-Memory in Economics – volume: 21 start-page: 33 year: 2000 end-page: 59 ident: bib0052 article-title: Least-squares estimation of an unknown number of shifts in a time series publication-title: J. Time Ser. Anal. – volume: 10 start-page: 275 year: 2015 end-page: 296 ident: bib0039 article-title: Dirichlet process hidden markov multiple change-point model publication-title: Bayesian Anal. – volume: 6 start-page: 311 year: 1996 end-page: 329 ident: bib0147 article-title: Effect of high dimension: by an example of a two sample problem publication-title: Stat. Sinica – year: 2015 ident: bib0035 article-title: Segmentation de signaux physiologiques par optimisation globale publication-title: Proceedings of the Groupe de Recherche et d’Etudes en Traitement du Signal et des Images (GRETSI) – volume: 18 Suppl 1 start-page: 1880 year: 2015 end-page: 1881 ident: bib0036 article-title: Quantify osteoarthritis gait at the doctor’s office: a simple pelvis accelerometer based method independent from footwear and aging publication-title: Comput. Method. Biomech. Biomed. Eng. – volume: 45 start-page: 403 year: 2015 ident: bib0023 article-title: Évaluation de l’équilibre et prédiction des risques de chutes en utilisant une wii board balance publication-title: Neurophysiologie Clinique/Clin. Neurophysiol. – start-page: 2522 year: 2017 end-page: 2526 ident: bib0118 article-title: An online feature selection architecture for Human Activity Recognition publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 1 start-page: 301 year: 2000 end-page: 336 ident: bib0069 article-title: Vector autoregressive models with structural changes in regression coefficients and in variancecovariance matrices publication-title: Ann. Econ. Finance – volume: 42 start-page: 970 year: 2014 end-page: 1002 ident: bib0088 article-title: Nonparametric maximum likelihood approach to multiple change-point problems publication-title: Ann. Stat. – volume: 23 start-page: 657 year: 2007 end-page: 663 ident: bib0133 article-title: A faster circular binary segmentation algorithm for the analysis of array CGH data publication-title: Bioinformatics – volume: 22 start-page: 485 year: 2012 end-page: 496 ident: bib0029 article-title: Distributed detection/localization of change-points in high-dimensional network traffic data publication-title: Stat. Comput. – volume: 66 start-page: 47 year: 1998 end-page: 78 ident: bib0014 article-title: Estimating and testing linear models with multiple structural changes publication-title: Econometrica – volume: 26 start-page: 134 year: 2017 end-page: 143 ident: bib0009 article-title: Computationally efficient changepoint detection for a range of penalties publication-title: J. Comput. Graph. Stat. – volume: 14 start-page: 164 year: 2013 ident: bib0016 article-title: Learning smoothing models of copy number profiles using breakpoint annotations publication-title: BMC Bioinformat. – volume: 6 start-page: 72 year: 2003 end-page: 78 ident: bib0075 article-title: Critical values for multiple structural change tests publication-title: Econom. J. – start-page: 275 year: 1997 end-page: 286 ident: bib0115 article-title: ECG segmentation using time-warping publication-title: Lecture Notes in Computer Science – volume: 23 start-page: 1408 year: 2017 end-page: 1447 ident: bib0021 article-title: A robust approach for estimating change-points in the mean of an AR(1) process publication-title: Bernouilli Soc. Math. Stat.Probab. – year: 1993 ident: bib0108 article-title: Fundamentals of Statistical Signal Processing, Volume II: Detection Theory – volume: 2 start-page: 49 year: 1936 end-page: 55 ident: bib0083 article-title: On the generalised distance in statistics publication-title: Proc. Natl. Inst. Sci. India – volume: 31 start-page: 611 year: 2016 end-page: 623 ident: bib0044 article-title: Multiple change-point detection: a selective overview publication-title: Statistica Sci. – volume: 58 start-page: 267 year: 1996 end-page: 288 ident: bib0142 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat. Soc. Ser B (Methodological) – volume: 63 start-page: 22 year: 2007 end-page: 32 ident: bib0144 article-title: A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. publication-title: Biometrics – volume: 42 start-page: 523 year: 1955 end-page: 527 ident: bib0002 article-title: A test for a change in a parameter occurring at an unknown point publication-title: Biometrika – volume: 20 start-page: 260 year: 1992 end-page: 279 ident: bib0041 article-title: Product partition models for change point problems publication-title: Ann. Stat. – volume: 447 start-page: 117 year: 2018 end-page: 139 ident: bib0105 article-title: Capturing correlation changes by applying kernel change point detection on the running correlations publication-title: Inf. Sci. – volume: 6 start-page: 181 year: 1988 end-page: 189 ident: bib0135 article-title: Estimating the number of change-points via Schwarz’ criterion publication-title: Stat. Probab. Lett. – start-page: 106 year: 2010 end-page: 115 ident: bib0026 article-title: Detecting trend and seasonal changes in satellite images time series publication-title: Remote Sens. Environ. – volume: 80 start-page: 57 year: 2018 end-page: 83 ident: bib0151 article-title: High dimensional change point estimation via sparse projection publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) – volume: 37 start-page: 157 year: 2009 end-page: 183 ident: bib0047 article-title: Consistencies and rates of convergence of jump-penalized least squares estimators publication-title: Ann. Stat. – volume: 74 start-page: 103 year: 1998 end-page: 134 ident: bib0073 article-title: Estimation of multiple-regime regressions with least absolutes deviation publication-title: J. Stat. Plan. Inference – start-page: 8 year: 1998 ident: bib0120 article-title: Speaker, environment and channel change detection and clustering via the Bayesian information criterion publication-title: Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop – volume: 18 start-page: 1 year: 2003 end-page: 22 ident: bib0072 article-title: Computation and analysis of multiple structural change models publication-title: J. Appl. Econom. – start-page: 1 year: 2014 end-page: 33 ident: bib0149 article-title: High-dimensional change-point detection with sparse alternatives publication-title: arXiv preprint arXiv:1312.1900 – year: 2004 ident: bib0102 article-title: Kernel Methods for Pattern Analysis – start-page: 324 year: 2015 end-page: 332 ident: bib0031 article-title: PeakSeg: constrained optimal segmentation and supervised penalty learning for peak detection in count data publication-title: Proceedings of the International Conference on Machine Learning (ICML) – volume: 92 start-page: 739 year: 1997 end-page: 747 ident: bib0114 article-title: Testing and locating variance changepoints with application to stock prices publication-title: J. Amer. Stat. Assoc. – volume: 206 start-page: 187 year: 2018 end-page: 225 ident: bib0154 article-title: Simultaneous multiple change-point and factor analysis for high-dimensional time series publication-title: J. Econ. – start-page: 1 year: 2012 end-page: 26 ident: bib0104 article-title: Kernel change-point detection publication-title: arXiv preprint arXiv:1202.3878 – volume: 16 start-page: 759 year: 2010 end-page: 779 ident: bib0059 article-title: Asymptotic properties of maximum likelihood estimators in models with multiple change points publication-title: Bernoulli – volume: 46 start-page: 1365 year: 1998 end-page: 1373 ident: bib0110 article-title: Optimal segmentation of random processes publication-title: IEEE Trans. Signal Process. – volume: 15 start-page: 453 year: 1994 end-page: 472 ident: bib0066 article-title: Least squares estimation of a shift in linear processes publication-title: J. Time Ser. Anal. – volume: 13 start-page: 723 year: 2012 end-page: 773 ident: bib0099 article-title: A kernel two-sample test publication-title: J. Mach. Learn. Res. (JMLR) – start-page: 360 year: 2009 end-page: 368 ident: bib0091 article-title: AUC optimization and the two-sample problem publication-title: Advances in Neural Information Processing Systems (NIPS) – year: 2016 ident: bib0025 publication-title: Efficient analysis of complex changepoint problems – reference: C. Truong, ruptures: change point detection in python, 2018, [Online]. – start-page: 1569 year: 2017 end-page: 1573 ident: bib0140 article-title: Penalty learning for changepoint detection publication-title: Proceedings of the European Signal Processing Conference (EUSIPCO) – volume: 7 start-page: 63 year: 2018 end-page: 88 ident: bib0057 article-title: Change point detection in heteroscedastic time series publication-title: Econ. Stat. – volume: 79 start-page: 1207 year: 2017 end-page: 1227 ident: bib0050 article-title: Heterogeneous change point inference publication-title: J. R. Stat. Soc. Ser B (Stat. Methodol.) – volume: 46 start-page: 900 year: 2007 end-page: 915 ident: bib0027 article-title: A review and comparison of changepoint detection techniques for climate data publication-title: J. Appl. Meteorol. Climatol. – volume: 35 start-page: 999 year: 1964 end-page: 1018 ident: bib0060 article-title: Estimating the current mean of a normal distribution which is subjected to changes in time publication-title: Ann. Math. Stat. – year: 1997 ident: bib0005 article-title: Limit theorems in change-point analysis – volume: 7 start-page: 697 year: 1979 end-page: 717 ident: bib0092 article-title: Multivariate generalizations of Wald-Wolfowitz and Smirnov two-sample tests publication-title: The Annals of Statistics – volume: 7 start-page: 375 year: 1988 end-page: 402 ident: bib0054 article-title: Review about estimation of change points publication-title: Handbook Stat. – volume: 6 start-page: 27 year: 2005 ident: bib0019 article-title: A statistical approach for array CGH data analysis publication-title: BMC Bioinformat. – start-page: 9 year: 2008 end-page: 12 ident: bib0101 article-title: Injective Hilbert space embeddings of probability measures publication-title: Proceedings of the 21st Conference on Learning Theory (COLT) – start-page: 209 year: 2007 end-page: 216 ident: bib0086 article-title: Information-theoretic metric learning publication-title: Proceedings of the 24th International Conference on Machine Learning (ICML) – volume: 138 start-page: 33 year: 2007 end-page: 73 ident: bib0138 article-title: Minimal penalties for gaussian model selection publication-title: Probability Theory and Related Fields – volume: 75 start-page: 459 year: 2007 end-page: 502 ident: bib0071 article-title: Estimating and testing structural changes in multivariate regressions publication-title: Econometrica – start-page: 281 year: 2009 end-page: 286 ident: bib0112 article-title: Simultaneous clustering and segmentation for functional data publication-title: Proceedings of 16th European Symposium on Artificial Neural Networks (ESANN) – volume: 51 start-page: 370 year: 1989 end-page: 381 ident: bib0136 article-title: Least-squares estimation of a step function publication-title: Sankhy – volume: 79 start-page: 145 year: 2017 end-page: 164 ident: bib0080 article-title: Partial structural break identification publication-title: Oxford Bull. Econ. Stat. – year: 2007 ident: bib0125 article-title: Bayesian Online Changepoint Detection publication-title: Technical Report – volume: 21 start-page: 3763 year: 2005 end-page: 3770 ident: bib0131 article-title: Comparative analysis of algorithms for identifying amplifications and deletions in array CGh data publication-title: Bioinformatics – reference: . – year: 2009 ident: bib0084 article-title: The Elements of Statistical Learning – volume: 53 start-page: 2961 year: 2005 end-page: 2974 ident: bib0010 article-title: An online kernel change detection algorithm publication-title: IEEE Tran. Signal Process. – volume: 27 start-page: 519 year: 2017 end-page: 533 ident: bib0017 article-title: On optimal multiple changepoint algorithms for large data publication-title: Stat. Comput. – volume: 1 start-page: 2343 year: 2010 end-page: 2351 ident: bib0018 article-title: Fast detection of multiple change-points shared by many signals using group LARS publication-title: Advances in Neural Information Processing Systems (NIPS) – start-page: 203 year: 2001 end-page: 210 ident: bib0129 article-title: Time series segmentation for context recognition in mobile devices publication-title: Proceedings of the IEEE International Conference on Data Mining (ICDM) – volume: 83 start-page: 79 year: 1999 end-page: 102 ident: bib0049 article-title: Detection of multiples changes in a sequence of dependant variables publication-title: Stochast. ProcessesAppl. – volume: 101 year: 2006 ident: bib0095 article-title: Testing Statistical Hypotheses – volume: 9 start-page: 267 year: 2003 end-page: 290 ident: bib0087 article-title: Empirical likelihood based hypothesis testing publication-title: Bernoulli – start-page: 609 year: 2008 end-page: 616 ident: bib0122 article-title: Kernel change-point analysis publication-title: Advances in Neural Information Processing Systems (NIPS) – volume: 33 start-page: 807 year: 2012 end-page: 823 ident: bib0082 article-title: Quantifying the uncertainty in change points publication-title: J. Time Ser. Anal. – year: 2002 ident: bib0098 article-title: Learning with kernels – volume: 77 start-page: 563 year: 1990 end-page: 573 ident: bib0058 article-title: Maximum likelihood estimation of multiple change points publication-title: Biometrika – volume: 85 start-page: 717 issue: 4 year: 2005 ident: 10.1016/j.sigpro.2019.107299_bib0145 article-title: Detecting multiple change-points in the mean of gaussian process by model selection publication-title: Signal Process. doi: 10.1016/j.sigpro.2004.11.012 – start-page: 180 year: 2004 ident: 10.1016/j.sigpro.2019.107299_sbref0122 article-title: Detecting change in data streams – start-page: 2522 year: 2017 ident: 10.1016/j.sigpro.2019.107299_sbref0116 article-title: An online feature selection architecture for Human Activity Recognition – volume: 21 start-page: 3763 issue: 19 year: 2005 ident: 10.1016/j.sigpro.2019.107299_bib0131 article-title: Comparative analysis of algorithms for identifying amplifications and deletions in array CGh data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti611 – volume: 45 start-page: 394 issue: 4–5 year: 2015 ident: 10.1016/j.sigpro.2019.107299_bib0022 article-title: Détection automatique des pas à partir de capteurs inertiels pour la quantification de la marche en consultation publication-title: Neurophysiologie Clinique/Clin. Neurophysiol. doi: 10.1016/j.neucli.2015.10.015 – volume: 42 start-page: 2243 issue: 6 year: 2014 ident: 10.1016/j.sigpro.2019.107299_bib0128 article-title: Wild binary segmentation for multiple change-point detection publication-title: Ann. Statistics doi: 10.1214/14-AOS1245 – volume: 6 start-page: 1306 issue: 3 year: 2012 ident: 10.1016/j.sigpro.2019.107299_bib0130 article-title: The screening and ranking algorithm to detect DNA copy number variations publication-title: Ann. Appl. Stat. doi: 10.1214/12-AOAS539 – volume: 64 start-page: 597 issue: 3 year: 1996 ident: 10.1016/j.sigpro.2019.107299_bib0068 article-title: Testing for parameter constancy in linear regressions: an empirical distribution function approach publication-title: Econometrica doi: 10.2307/2171863 – start-page: 768 year: 2007 ident: 10.1016/j.sigpro.2019.107299_sbref0095 article-title: Retrospective multiple change-point estimation with kernels – volume: 24 start-page: 55 year: 1981 ident: 10.1016/j.sigpro.2019.107299_bib0156 article-title: Detecting disorder in multidimensional random processes publication-title: Soviet Math. Dokl. – volume: 12 start-page: 4440 issue: 2 year: 2018 ident: 10.1016/j.sigpro.2019.107299_bib0103 article-title: Consistent change-point detection with kernels publication-title: Electron. J. Stat. doi: 10.1214/18-EJS1513 – volume: 4 start-page: 40 year: 2010 ident: 10.1016/j.sigpro.2019.107299_bib0137 article-title: A survey of cross-validation procedures for model selection publication-title: Stat. Surv. doi: 10.1214/09-SS054 – start-page: 275 year: 1997 ident: 10.1016/j.sigpro.2019.107299_bib0115 article-title: ECG segmentation using time-warping doi: 10.1007/BFb0052847 – volume: 51 start-page: 339 issue: 2 year: 2017 ident: 10.1016/j.sigpro.2019.107299_bib0043 article-title: A survey of methods for time series change point detection publication-title: Know. Inf. Syst. doi: 10.1007/s10115-016-0987-z – year: 2011 ident: 10.1016/j.sigpro.2019.107299_bib0006 – volume: 128 start-page: 200 year: 2018 ident: 10.1016/j.sigpro.2019.107299_bib0100 article-title: New efficient algorithms for multiple change-point detection with reproducing kernels publication-title: Comput. Stat. Data Analysis doi: 10.1016/j.csda.2018.07.002 – volume: 41 start-page: 100 year: 1954 ident: 10.1016/j.sigpro.2019.107299_bib0001 article-title: Continuous inspection schemes publication-title: Biometrika doi: 10.1093/biomet/41.1-2.100 – volume: 87 start-page: 721 issue: 4 year: 2005 ident: 10.1016/j.sigpro.2019.107299_bib0081 article-title: Breaks in the variability and comovement of G-7 economic growth publication-title: Rev. Econ. Stat. doi: 10.1162/003465305775098134 – year: 1993 ident: 10.1016/j.sigpro.2019.107299_bib0108 – start-page: 297 year: 2014 ident: 10.1016/j.sigpro.2019.107299_sbref0030 article-title: Large-margin metric learning for constrained partitioning problems – volume: 11 start-page: e0164975 issue: 10 year: 2016 ident: 10.1016/j.sigpro.2019.107299_bib0033 article-title: An automated recording method in clinical consultation to rate the limp in lower limb osteoarthritis publication-title: PLoS One doi: 10.1371/journal.pone.0164975 – volume: 63 start-page: 22 issue: 1 year: 2007 ident: 10.1016/j.sigpro.2019.107299_bib0144 article-title: A modified Bayes information criterion with applications to the analysis of comparative genomic hybridization data. publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00662.x – volume: 80 start-page: 57 issue: 1 year: 2018 ident: 10.1016/j.sigpro.2019.107299_bib0151 article-title: High dimensional change point estimation via sparse projection publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) doi: 10.1111/rssb.12243 – volume: 73 start-page: 1125 issue: 7–9 year: 2010 ident: 10.1016/j.sigpro.2019.107299_bib0063 article-title: Exploratory analysis of functional data via clustering and optimal segmentation publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.11.022 – volume: 23 start-page: 657 issue: 6 year: 2007 ident: 10.1016/j.sigpro.2019.107299_bib0133 article-title: A faster circular binary segmentation algorithm for the analysis of array CGH data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl646 – volume: 26 start-page: 134 issue: 1 year: 2017 ident: 10.1016/j.sigpro.2019.107299_bib0009 article-title: Computationally efficient changepoint detection for a range of penalties publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2015.1116445 – volume: 13 start-page: 519 year: 2012 ident: 10.1016/j.sigpro.2019.107299_bib0106 article-title: Metric and kernel learning using a linear transformation publication-title: J. Mach. Learn. Res. (JMLR) – volume: 107 start-page: 1590 issue: 500 year: 2012 ident: 10.1016/j.sigpro.2019.107299_bib0113 article-title: Optimal detection of changepoints with a linear computational cost publication-title: J. Amer. Stat. Assoc. doi: 10.1080/01621459.2012.737745 – volume: 46 start-page: 244 issue: 4 year: 2016 ident: 10.1016/j.sigpro.2019.107299_bib0032 article-title: Étude observationnelle du demi-tour à l’aide de capteurs inertiels chez les sujets victimes d’AVC et relation avec le risque de chute publication-title: Neurophysiologie Clinique/Clin. Neurophysiol. doi: 10.1016/j.neucli.2016.09.019 – volume: 18 issue: 11 year: 2018 ident: 10.1016/j.sigpro.2019.107299_bib0034 article-title: Template-based step detection with inertial measurement units publication-title: Sensors doi: 10.3390/s18114033 – volume: 16 start-page: 87 issue: 1 year: 1955 ident: 10.1016/j.sigpro.2019.107299_bib0109 article-title: On a routing problem publication-title: Q. Appl. Math. doi: 10.1090/qam/102435 – volume: 13 start-page: 315 issue: 3 year: 1997 ident: 10.1016/j.sigpro.2019.107299_bib0127 article-title: Estimating multiple breaks one at a time publication-title: Econom. Theory doi: 10.1017/S0266466600005831 – volume: 28 start-page: 2641 issue: 6 year: 2013 ident: 10.1016/j.sigpro.2019.107299_bib0020 article-title: Exploring the latent segmentation space for the assessment of multiple change-point models publication-title: Comput. Stat. doi: 10.1007/s00180-013-0422-9 – volume: 79 start-page: 145 issue: 2 year: 2017 ident: 10.1016/j.sigpro.2019.107299_bib0080 article-title: Partial structural break identification publication-title: Oxford Bull. Econ. Stat. doi: 10.1111/obes.12153 – volume: 138 start-page: 33 issue: 1 year: 2007 ident: 10.1016/j.sigpro.2019.107299_bib0138 article-title: Minimal penalties for gaussian model selection publication-title: Probability Theory and Related Fields doi: 10.1007/s00440-006-0011-8 – volume: 7 start-page: 697 issue: 4 year: 1979 ident: 10.1016/j.sigpro.2019.107299_bib0092 article-title: Multivariate generalizations of Wald-Wolfowitz and Smirnov two-sample tests publication-title: The Annals of Statistics doi: 10.1214/aos/1176344722 – volume: 9 start-page: 823 issue: 4 year: 2014 ident: 10.1016/j.sigpro.2019.107299_bib0040 article-title: On a nonparametric change point detection model in markovian regimes publication-title: Bayesian Anal. doi: 10.1214/14-BA878 – volume: 206 start-page: 187 issue: 1 year: 2018 ident: 10.1016/j.sigpro.2019.107299_bib0154 article-title: Simultaneous multiple change-point and factor analysis for high-dimensional time series publication-title: J. Econ. doi: 10.1016/j.jeconom.2018.05.003 – start-page: 129 year: 2007 ident: 10.1016/j.sigpro.2019.107299_bib0007 article-title: Adaptive detection of multiple change-points in asset price volatility – volume: 16 start-page: 759 issue: 3 year: 2010 ident: 10.1016/j.sigpro.2019.107299_bib0059 article-title: Asymptotic properties of maximum likelihood estimators in models with multiple change points publication-title: Bernoulli doi: 10.3150/09-BEJ232 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 10.1016/j.sigpro.2019.107299_bib0142 article-title: Regression shrinkage and selection via the lasso publication-title: J R Stat. Soc. Ser B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 53 start-page: 2961 issue: 8 year: 2005 ident: 10.1016/j.sigpro.2019.107299_bib0010 article-title: An online kernel change detection algorithm publication-title: IEEE Tran. Signal Process. doi: 10.1109/TSP.2005.851098 – volume: 20 start-page: 260 issue: 1 year: 1992 ident: 10.1016/j.sigpro.2019.107299_bib0041 article-title: Product partition models for change point problems publication-title: Ann. Stat. doi: 10.1214/aos/1176348521 – volume: 101 year: 2006 ident: 10.1016/j.sigpro.2019.107299_bib0095 – volume: 6 start-page: 27 issue: 1 year: 2005 ident: 10.1016/j.sigpro.2019.107299_bib0019 article-title: A statistical approach for array CGH data analysis publication-title: BMC Bioinformat. doi: 10.1186/1471-2105-6-27 – volume: 18 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.sigpro.2019.107299_bib0072 article-title: Computation and analysis of multiple structural change models publication-title: J. Appl. Econom. doi: 10.1002/jae.659 – volume: 46 start-page: 900 issue: 6 year: 2007 ident: 10.1016/j.sigpro.2019.107299_bib0027 article-title: A review and comparison of changepoint detection techniques for climate data publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAM2493.1 – year: 2015 ident: 10.1016/j.sigpro.2019.107299_sbref0035 article-title: Segmentation de signaux physiologiques par optimisation globale – volume: 156 start-page: 180 issue: 4 year: 2015 ident: 10.1016/j.sigpro.2019.107299_bib0111 article-title: A pruned dynamic programming algorithm to recover the best segmentations with 1 to k_max change-points. publication-title: J. de la Société Française de Statistique – volume: 76 start-page: 495 issue: 3 year: 2014 ident: 10.1016/j.sigpro.2019.107299_bib0015 article-title: Multiscale change point inference publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/rssb.12047 – volume: 92 start-page: 739 issue: 438 year: 1997 ident: 10.1016/j.sigpro.2019.107299_bib0114 article-title: Testing and locating variance changepoints with application to stock prices publication-title: J. Amer. Stat. Assoc. doi: 10.1080/01621459.1997.10474026 – volume: 27 start-page: 519 issue: 2 year: 2017 ident: 10.1016/j.sigpro.2019.107299_bib0017 article-title: On optimal multiple changepoint algorithms for large data publication-title: Stat. Comput. doi: 10.1007/s11222-016-9636-3 – volume: 34 start-page: 1 year: 2012 ident: 10.1016/j.sigpro.2019.107299_bib0055 article-title: Structural breaks in time series publication-title: J. Time Ser. Anal. doi: 10.1111/j.1467-9892.2012.00819.x – volume: 86 start-page: 221 issue: 2 year: 1998 ident: 10.1016/j.sigpro.2019.107299_bib0064 article-title: Estimation and comparison of multiple change-point models publication-title: J. Econ. doi: 10.1016/S0304-4076(97)00115-2 – start-page: 172 year: 2013 ident: 10.1016/j.sigpro.2019.107299_sbref0137 article-title: Learning sparse penalties for change-point detection using max margin interval regression – volume: 538 start-page: 831 year: 2016 ident: 10.1016/j.sigpro.2019.107299_bib0143 article-title: Abrupt change point detection of annual maximum precipitation using fused lasso publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.04.043 – volume: 11 start-page: 403 issue: 3 year: 1995 ident: 10.1016/j.sigpro.2019.107299_bib0067 article-title: Least absolute deviation of a shift publication-title: Econom. Theory doi: 10.1017/S026646660000935X – volume: 38 start-page: 808 issue: 2 year: 2010 ident: 10.1016/j.sigpro.2019.107299_bib0148 article-title: A two-sample test for high-dimensional data with applications to gene-set testing publication-title: Ann. Stat. doi: 10.1214/09-AOS716 – volume: 48 start-page: 95 issue: 1 year: 2006 ident: 10.1016/j.sigpro.2019.107299_bib0090 article-title: Powerful two-sample tests based on the likelihood ratio publication-title: Technometrics doi: 10.1198/004017005000000328 – volume: 15 start-page: 453 issue: 5 year: 1994 ident: 10.1016/j.sigpro.2019.107299_bib0066 article-title: Least squares estimation of a shift in linear processes publication-title: J. Time Ser. Anal. doi: 10.1111/j.1467-9892.1994.tb00204.x – volume: 7 start-page: 63 year: 2018 ident: 10.1016/j.sigpro.2019.107299_bib0057 article-title: Change point detection in heteroscedastic time series publication-title: Econ. Stat. – volume: 3 start-page: 637 issue: 2 year: 2009 ident: 10.1016/j.sigpro.2019.107299_bib0028 article-title: Detection and localization of change-points in high-dimensional network traffic data publication-title: Ann. Appl. Stat. doi: 10.1214/08-AOAS232 – volume: 21 start-page: 33 issue: 1 year: 2000 ident: 10.1016/j.sigpro.2019.107299_bib0052 article-title: Least-squares estimation of an unknown number of shifts in a time series publication-title: J. Time Ser. Anal. doi: 10.1111/1467-9892.00172 – volume: 157 start-page: 78 year: 2010 ident: 10.1016/j.sigpro.2019.107299_bib0077 article-title: Common breaks in means and variances for panel data publication-title: J. Econom. doi: 10.1016/j.jeconom.2009.10.020 – volume: 6 start-page: 461 issue: 2 year: 1978 ident: 10.1016/j.sigpro.2019.107299_bib0141 article-title: Estimating the dimension of a model publication-title: Ann Stat doi: 10.1214/aos/1176344136 – volume: 31 start-page: 611 issue: 4 year: 2016 ident: 10.1016/j.sigpro.2019.107299_bib0044 article-title: Multiple change-point detection: a selective overview publication-title: Statistica Sci. doi: 10.1214/16-STS587 – volume: 447 start-page: 117 year: 2018 ident: 10.1016/j.sigpro.2019.107299_bib0105 article-title: Capturing correlation changes by applying kernel change point detection on the running correlations publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.03.010 – volume: 2 start-page: 49 issue: 1 year: 1936 ident: 10.1016/j.sigpro.2019.107299_bib0083 article-title: On the generalised distance in statistics publication-title: Proc. Natl. Inst. Sci. India – volume: 70 year: 2012 ident: 10.1016/j.sigpro.2019.107299_bib0012 article-title: Group lassoing change-points piece-constant AR processes publication-title: EURASIP J. Adv. Signal Process. – year: 2016 ident: 10.1016/j.sigpro.2019.107299_bib0025 – volume: 156 start-page: 133 issue: 4 year: 2015 ident: 10.1016/j.sigpro.2019.107299_bib0093 article-title: Homogeneity and change-point detection tests for multivariate data using rank statistics publication-title: J. de la Société Française de Statistique – volume: 83 start-page: 79 issue: 1 year: 1999 ident: 10.1016/j.sigpro.2019.107299_bib0049 article-title: Detection of multiples changes in a sequence of dependant variables publication-title: Stochast. ProcessesAppl. doi: 10.1016/S0304-4149(99)00023-X – start-page: 1569 year: 2017 ident: 10.1016/j.sigpro.2019.107299_sbref0138 article-title: Penalty learning for changepoint detection – volume: 75 start-page: 459 issue: 2 year: 2007 ident: 10.1016/j.sigpro.2019.107299_bib0071 article-title: Estimating and testing structural changes in multivariate regressions publication-title: Econometrica doi: 10.1111/j.1468-0262.2006.00754.x – start-page: 209 year: 2007 ident: 10.1016/j.sigpro.2019.107299_sbref0084 article-title: Information-theoretic metric learning – volume: 1 start-page: 301 issue: 2 year: 2000 ident: 10.1016/j.sigpro.2019.107299_bib0069 article-title: Vector autoregressive models with structural changes in regression coefficients and in variancecovariance matrices publication-title: Ann. Econ. Finance – volume: 5 start-page: 557 issue: 4 year: 2004 ident: 10.1016/j.sigpro.2019.107299_bib0126 article-title: Circular binary segmentation for the analysis of array-based DNA copy number data publication-title: Biostatistics doi: 10.1093/biostatistics/kxh008 – volume: 1 start-page: 80 issue: 6 year: 1945 ident: 10.1016/j.sigpro.2019.107299_bib0094 article-title: Individual comparisons by ranking methods publication-title: Biometr. Bull. doi: 10.2307/3001968 – volume: 10 start-page: 275 issue: 2 year: 2015 ident: 10.1016/j.sigpro.2019.107299_bib0039 article-title: Dirichlet process hidden markov multiple change-point model publication-title: Bayesian Anal. doi: 10.1214/14-BA910 – volume: 16 start-page: 203 issue: 2 year: 2006 ident: 10.1016/j.sigpro.2019.107299_bib0056 article-title: Exact and efficient bayesian inference for multiple changepoint problems publication-title: Stat. Comput. doi: 10.1007/s11222-006-8450-8 – volume: 22 start-page: 485 issue: 2 year: 2012 ident: 10.1016/j.sigpro.2019.107299_bib0029 article-title: Distributed detection/localization of change-points in high-dimensional network traffic data publication-title: Stat. Comput. doi: 10.1007/s11222-011-9240-5 – volume: 34 start-page: 423 issue: 4 year: 2013 ident: 10.1016/j.sigpro.2019.107299_bib0008 article-title: Inference for single and multiple change-points in time series publication-title: J. Time Ser. Anal. doi: 10.1111/jtsa.12035 – volume: 3 start-page: 203 issue: 3 year: 2001 ident: 10.1016/j.sigpro.2019.107299_bib0157 article-title: Gaussian model selection publication-title: J. Eur. Math. Soc. doi: 10.1007/s100970100031 – volume: 134 start-page: 373 issue: 2 year: 2006 ident: 10.1016/j.sigpro.2019.107299_bib0079 article-title: Estimating restricted structural change models publication-title: J. Econom. doi: 10.1016/j.jeconom.2005.06.030 – volume: 93 start-page: 1488 issue: 444 year: 1998 ident: 10.1016/j.sigpro.2019.107299_bib0119 article-title: Time-dependent spectral analysis of nonstationary time series publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1998.10473808 – ident: 10.1016/j.sigpro.2019.107299_bib0037 – volume: 23 start-page: 1408 issue: 2 year: 2017 ident: 10.1016/j.sigpro.2019.107299_bib0021 article-title: A robust approach for estimating change-points in the mean of an AR(1) process publication-title: Bernouilli Soc. Math. Stat.Probab. – volume: 79 start-page: 551 issue: 4 year: 1997 ident: 10.1016/j.sigpro.2019.107299_bib0070 article-title: Estimation of a change-point in multiple regression models publication-title: Rev. Econ. Stat. doi: 10.1162/003465397557132 – volume: 48 start-page: 177 issue: 2 year: 2001 ident: 10.1016/j.sigpro.2019.107299_bib0117 article-title: A comparison of waveform fractal dimension algorithms publication-title: IEEE Trans. Circuit. Syst. I: Fundamental Theory and Applications doi: 10.1109/81.904882 – volume: 45 start-page: 403 issue: 4–5 year: 2015 ident: 10.1016/j.sigpro.2019.107299_bib0023 article-title: Évaluation de l’équilibre et prédiction des risques de chutes en utilisant une wii board balance publication-title: Neurophysiologie Clinique/Clin. Neurophysiol. doi: 10.1016/j.neucli.2015.10.038 – start-page: 6721 year: 2014 ident: 10.1016/j.sigpro.2019.107299_sbref0013 article-title: Piecewise constant nonnegative matrix factorization – start-page: 106 issue: 114 year: 2010 ident: 10.1016/j.sigpro.2019.107299_bib0026 article-title: Detecting trend and seasonal changes in satellite images time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.014 – start-page: 1665 year: 2009 ident: 10.1016/j.sigpro.2019.107299_sbref0011 article-title: A regularized kernel-based approach to unsupervised audio segmentation – year: 1993 ident: 10.1016/j.sigpro.2019.107299_bib0004 – ident: 10.1016/j.sigpro.2019.107299_bib0046 – year: 1997 ident: 10.1016/j.sigpro.2019.107299_sbref0005 – volume: 74 start-page: 103 year: 1998 ident: 10.1016/j.sigpro.2019.107299_bib0073 article-title: Estimation of multiple-regime regressions with least absolutes deviation publication-title: J. Stat. Plan. Inference doi: 10.1016/S0378-3758(98)00082-2 – volume: 35 start-page: 999 issue: 3 year: 1964 ident: 10.1016/j.sigpro.2019.107299_bib0060 article-title: Estimating the current mean of a normal distribution which is subjected to changes in time publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177700517 – volume: 105 start-page: 1480 issue: 492 year: 2010 ident: 10.1016/j.sigpro.2019.107299_bib0048 article-title: Multiple change-point estimation with a total variation penalty publication-title: J. Am. Stat. Assoc. doi: 10.1198/jasa.2010.tm09181 – volume: 42 start-page: 970 issue: 3 year: 2014 ident: 10.1016/j.sigpro.2019.107299_bib0088 article-title: Nonparametric maximum likelihood approach to multiple change-point problems publication-title: Ann. Stat. doi: 10.1214/14-AOS1210 – start-page: 8 year: 1998 ident: 10.1016/j.sigpro.2019.107299_sbref0118 article-title: Speaker, environment and channel change detection and clustering via the Bayesian information criterion – volume: 13 start-page: 723 year: 2012 ident: 10.1016/j.sigpro.2019.107299_bib0099 article-title: A kernel two-sample test publication-title: J. Mach. Learn. Res. (JMLR) – volume: 207 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.sigpro.2019.107299_bib0155 article-title: Estimation of large dimensional factor models with an unknown number of breaks publication-title: J. Econ. doi: 10.1016/j.jeconom.2018.06.019 – start-page: 324 year: 2015 ident: 10.1016/j.sigpro.2019.107299_sbref0031 article-title: PeakSeg: constrained optimal segmentation and supervised penalty learning for peak detection in count data – volume: 18 Suppl 1 start-page: 1880 year: 2015 ident: 10.1016/j.sigpro.2019.107299_bib0036 article-title: Quantify osteoarthritis gait at the doctor’s office: a simple pelvis accelerometer based method independent from footwear and aging publication-title: Comput. Method. Biomech. Biomed. Eng. doi: 10.1080/10255842.2015.1072414 – start-page: 360 year: 2009 ident: 10.1016/j.sigpro.2019.107299_sbref0089 article-title: AUC optimization and the two-sample problem – start-page: 521 year: 2003 ident: 10.1016/j.sigpro.2019.107299_bib0085 article-title: Distance metric learning, with application to clustering with side-Information – year: 2004 ident: 10.1016/j.sigpro.2019.107299_bib0102 – volume: 77 start-page: 475 issue: 2 year: 2014 ident: 10.1016/j.sigpro.2019.107299_bib0153 article-title: Multiple change-point detection for high dimensional time series via Szparsified binary segmentation publication-title: J. R. Stat. Soc doi: 10.1111/rssb.12079 – year: 1970 ident: 10.1016/j.sigpro.2019.107299_bib0096 – volume: 6 start-page: 311 issue: 2 year: 1996 ident: 10.1016/j.sigpro.2019.107299_bib0147 article-title: Effect of high dimension: by an example of a two sample problem publication-title: Stat. Sinica – volume: 1 start-page: 2343 year: 2010 ident: 10.1016/j.sigpro.2019.107299_sbref0018 article-title: Fast detection of multiple change-points shared by many signals using group LARS – volume: 7 start-page: 375 year: 1988 ident: 10.1016/j.sigpro.2019.107299_bib0054 article-title: Review about estimation of change points publication-title: Handbook Stat. doi: 10.1016/S0169-7161(88)07021-X – volume: 193 start-page: 151 year: 2018 ident: 10.1016/j.sigpro.2019.107299_bib0051 article-title: Optimal change point detection in gaussian processes publication-title: J. Stat. Plann. Inference doi: 10.1016/j.jspi.2017.09.003 – year: 2007 ident: 10.1016/j.sigpro.2019.107299_bib0125 article-title: Bayesian Online Changepoint Detection – volume: 77 start-page: 257 issue: 2 year: 1989 ident: 10.1016/j.sigpro.2019.107299_bib0038 article-title: A tutorial on hidden Markov models and selected applications in speech recognition publication-title: Proc. IEEE doi: 10.1109/5.18626 – volume: 111 start-page: 136 year: 2012 ident: 10.1016/j.sigpro.2019.107299_bib0152 article-title: Change-point analysis in increasing dimension publication-title: J. Multivar. Anal. doi: 10.1016/j.jmva.2012.05.007 – volume: 42 start-page: 1897 issue: 6 year: 1971 ident: 10.1016/j.sigpro.2019.107299_bib0061 article-title: Procedures for reacting to a change in distribution publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177693055 – volume: 46 start-page: 1365 issue: 5 year: 1998 ident: 10.1016/j.sigpro.2019.107299_bib0110 article-title: Optimal segmentation of random processes publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.668798 – volume: 6 start-page: 72 issue: 1 year: 2003 ident: 10.1016/j.sigpro.2019.107299_bib0075 article-title: Critical values for multiple structural change tests publication-title: Econom. J. doi: 10.1111/1368-423X.00102 – volume: 104 year: 1993 ident: 10.1016/j.sigpro.2019.107299_bib0003 – volume: 91 start-page: 299 issue: 2 year: 1999 ident: 10.1016/j.sigpro.2019.107299_bib0074 article-title: Likelihood ratio tests for multiple structural changes publication-title: J. Econom. doi: 10.1016/S0304-4076(98)00079-7 – volume: 60 start-page: 93 issue: 2 year: 1999 ident: 10.1016/j.sigpro.2019.107299_bib0116 article-title: A nonparametric method for the segmentation of the EEG publication-title: Comput. Method. Program. Biomed. doi: 10.1016/S0169-2607(98)00079-0 – start-page: 289 year: 2001 ident: 10.1016/j.sigpro.2019.107299_sbref0132 article-title: An online algorithm for segmenting time series – volume: 79 start-page: 1207 issue: 4 year: 2017 ident: 10.1016/j.sigpro.2019.107299_bib0050 article-title: Heterogeneous change point inference publication-title: J. R. Stat. Soc. Ser B (Stat. Methodol.) doi: 10.1111/rssb.12202 – start-page: 9 year: 2008 ident: 10.1016/j.sigpro.2019.107299_sbref0099 article-title: Injective Hilbert space embeddings of probability measures – start-page: 1 year: 2019 ident: 10.1016/j.sigpro.2019.107299_sbref0105 article-title: Supervised kernel change point detection with partial annotations – volume: 6 start-page: 181 issue: 3 year: 1988 ident: 10.1016/j.sigpro.2019.107299_bib0135 article-title: Estimating the number of change-points via Schwarz’ criterion publication-title: Stat. Probab. Lett. doi: 10.1016/0167-7152(88)90118-6 – start-page: 1 year: 2014 ident: 10.1016/j.sigpro.2019.107299_bib0149 article-title: High-dimensional change-point detection with sparse alternatives publication-title: arXiv preprint arXiv:1312.1900 – volume: 65 start-page: 395 issue: 3 year: 1998 ident: 10.1016/j.sigpro.2019.107299_bib0078 article-title: Testing for and dating common breaks in multivariate time series publication-title: Rev. Econ. Stud. doi: 10.1111/1467-937X.00051 – volume: 43 start-page: 72 year: 2013 ident: 10.1016/j.sigpro.2019.107299_bib0123 article-title: Change-point detection in time-series data by relative density-ratio estimation publication-title: Neural Networks doi: 10.1016/j.neunet.2013.01.012 – start-page: 203 year: 2001 ident: 10.1016/j.sigpro.2019.107299_bib0129 article-title: Time series segmentation for context recognition in mobile devices – volume: 85 start-page: 1501 issue: 8 year: 2005 ident: 10.1016/j.sigpro.2019.107299_bib0065 article-title: Using penalized contrasts for the change-point problem publication-title: Signal Process. doi: 10.1016/j.sigpro.2005.01.012 – volume: 1 start-page: 278 issue: 2 year: 2006 ident: 10.1016/j.sigpro.2019.107299_bib0076 article-title: Dealing with structural breaks publication-title: Palgrave HandbookEconom. – volume: 12 start-page: 199 issue: 2 year: 2011 ident: 10.1016/j.sigpro.2019.107299_bib0146 article-title: Estimating high dimensional covariance matrices and its applications publication-title: Ann. Econom. Finance – volume: 3 start-page: 98 issue: 1 year: 1975 ident: 10.1016/j.sigpro.2019.107299_bib0053 article-title: On tests for detecting change in mean publication-title: Ann. Stat. doi: 10.1214/aos/1176343001 – volume: 9 start-page: 267 issue: 2 year: 2003 ident: 10.1016/j.sigpro.2019.107299_bib0087 article-title: Empirical likelihood based hypothesis testing publication-title: Bernoulli doi: 10.3150/bj/1068128978 – volume: 42 start-page: 523 year: 1955 ident: 10.1016/j.sigpro.2019.107299_bib0002 article-title: A test for a change in a parameter occurring at an unknown point publication-title: Biometrika doi: 10.1093/biomet/42.3-4.523 – volume: 21 start-page: 4084 issue: 22 year: 2005 ident: 10.1016/j.sigpro.2019.107299_bib0132 article-title: A comparison study: applying segmentation to array CGH data for downstream analyses publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti677 – volume: 88 start-page: 309 issue: 421 year: 1993 ident: 10.1016/j.sigpro.2019.107299_bib0042 article-title: A bayesian analysis for change point problems publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10594323 – start-page: 609 year: 2008 ident: 10.1016/j.sigpro.2019.107299_sbref0120 article-title: Kernel change-point analysis – volume: 66 start-page: 47 issue: 1 year: 1998 ident: 10.1016/j.sigpro.2019.107299_bib0014 article-title: Estimating and testing linear models with multiple structural changes publication-title: Econometrica doi: 10.2307/2998540 – volume: 14 start-page: 164 issue: 1 year: 2013 ident: 10.1016/j.sigpro.2019.107299_bib0016 article-title: Learning smoothing models of copy number profiles using breakpoint annotations publication-title: BMC Bioinformat. doi: 10.1186/1471-2105-14-164 – volume: 15 start-page: 661 issue: 4 year: 1973 ident: 10.1016/j.sigpro.2019.107299_bib0062 article-title: Some comments on Cp publication-title: Technometrics – year: 2002 ident: 10.1016/j.sigpro.2019.107299_bib0098 – start-page: 281 year: 2009 ident: 10.1016/j.sigpro.2019.107299_sbref0110 article-title: Simultaneous clustering and segmentation for functional data – volume: 77 start-page: 563 issue: 3 year: 1990 ident: 10.1016/j.sigpro.2019.107299_bib0058 article-title: Maximum likelihood estimation of multiple change points publication-title: Biometrika doi: 10.1093/biomet/77.3.563 – volume: 91 start-page: 49 year: 2018 ident: 10.1016/j.sigpro.2019.107299_bib0024 article-title: Change-point detection method for clinical decision support system rule monitoring publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2018.06.003 – volume: 43 start-page: 2451 issue: 6 year: 2015 ident: 10.1016/j.sigpro.2019.107299_bib0150 article-title: Uniform change point tests in high dimension publication-title: Ann. Stat. doi: 10.1214/15-AOS1347 – start-page: 1 year: 2012 ident: 10.1016/j.sigpro.2019.107299_bib0104 article-title: Kernel change-point detection publication-title: arXiv preprint arXiv:1202.3878 – volume: 18 start-page: 1 year: 2003 ident: 10.1016/j.sigpro.2019.107299_bib0045 article-title: Multiple structural change models: a simulation analysis publication-title: J. Appl. Econom. doi: 10.1002/jae.659 – volume: 33 start-page: 807 year: 2012 ident: 10.1016/j.sigpro.2019.107299_bib0082 article-title: Quantifying the uncertainty in change points publication-title: J. Time Ser. Anal. doi: 10.1111/j.1467-9892.2011.00777.x – volume: 37 start-page: 157 issue: 1 year: 2009 ident: 10.1016/j.sigpro.2019.107299_bib0047 article-title: Consistencies and rates of convergence of jump-penalized least squares estimators publication-title: Ann. Stat. doi: 10.1214/07-AOS558 – year: 2009 ident: 10.1016/j.sigpro.2019.107299_bib0084 – volume: 57 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.sigpro.2019.107299_bib0121 article-title: Segmenting time series: a survey and novel approach publication-title: Data Min. Time Ser. Databases – volume: 51 start-page: 370 issue: 3 year: 1989 ident: 10.1016/j.sigpro.2019.107299_bib0136 article-title: Least-squares estimation of a step function publication-title: Sankhy – volume: 27 start-page: 1293 year: 2017 ident: 10.1016/j.sigpro.2019.107299_bib0089 article-title: A computationally efficient nonparametric approach for changepoint detection publication-title: Stat. Comput. doi: 10.1007/s11222-016-9687-5 |
SSID | ssj0001360 |
Score | 2.6966658 |
SecondaryResourceType | review_article |
Snippet | •A structured and didactic review of more than 140 articles related to offline change point detection. Thanks to the methodological framework proposed in this... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 107299 |
SubjectTerms | Change point detection Segmentation Statistical signal processing Statistics Statistics Theory |
Title | Selective review of offline change point detection methods |
URI | https://dx.doi.org/10.1016/j.sigpro.2019.107299 https://hal.science/hal-02442692 |
Volume | 167 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zvuiDeMV5GUV8rWvaXBrfxnDU217mYG-hTROdSDdc9dHf7knaTn0QQehTSNrypXw5p3zfOQids5wYqqPQx9xEkKBQ5cck1j4xQUYzEaY0s-bk-xFLJuRmSqctNGi8MFZWWXN_xemOreuRXo1mbzGb9cbWiINZTCAEcUVWrIOdcPuVX3x8yTxw5JzCdrJvZzf2OafxWs4egaeswEvAEMSZ4rfjae2p-dHqDp7hNtqqI0avX73UDmrpYhdtfqsjuIcux66bDRCXV1lRvLmBy9gQ0qusvd5iPitKL9el014VXtU6ermPJsOrh0Hi100RfAVnb-lTgXPb48sEQodpmDIV4BxyLI61wSbUhJpMccUZzQ0JIpFmKuU4Z4wqpmEvogPULuaFPkQeoMfDmGaQmArCcp6qVBiTxsIADZoo76CowUKqumK4bVzxIhtp2LOsEJQWQVkh2EH-atWiqpjxx3zewCx_7LwEUv9j5RnsyuohtlB20r-TdgwiD-vRDd_x0b9vf4w2QptcO4n2CWqXr2_6FCKQMuu6T6yL1vvXt8noE0CJ2dU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB76OKgH8Yn1GcRraDfJbrLeSrGk9nFpC70tyWZXK5IWG_39zuZR9CAFIadhNwnfhm9mwnwzAA8s8TRVrmMTX7uYoFBpB16gbE93YhpzJ6KxESePJyyce88LuqhBr9LCmLLKkvsLTs_ZurS0SzTb6-WyPTVCHMICD0OQvMlKHZqmOxVtQLM7GIaTLSETNxcLm_W22VAp6PIyr83yBanK1HhxNGGoyf_yUPXX6l9r7nv6R3BYBo1Wt3ivY6ip9AQOfrQSPIXHaT7QBrnLKtQo1krjpU0UaRXqXmu9WqaZlagsL79KrWJ69OYM5v2nWS-0y7kItkT3m9mUk8SM-dIdrpzIiZjskATTLJ8oTbSjPKpj6Uuf0UR7HZdHsYx8kjBGJVN4HO45NNJVqi7AQgB9J6Ax5qbcY4kfyYhrHQVcIxNqN2mBW2EhZNk03MyueBdVddibKBAUBkFRINgCe7trXTTN2LHer2AWvw5fIK_v2HmPp7J9iOmVHXZHwtgw-DAyXeeLXP779newF87GIzEaTIZXsO-YXDuv2L6GRvbxqW4wIMni2_KD-wbGpNyG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selective+review+of+offline+change+point+detection+methods&rft.jtitle=Signal+processing&rft.au=Truong%2C+Charles&rft.au=Oudre%2C+Laurent&rft.au=Vayatis%2C+Nicolas&rft.date=2020-02-01&rft.pub=Elsevier&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=167&rft_id=info:doi/10.1016%2Fj.sigpro.2019.107299&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_02442692v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |