On Thermal Transition in QCD
Abstract We describe how the general mechanism of partial deconfinement applies to large-N QCD and a partially deconfined phase inevitably appears between completely confined and completely deconfined phases. Furthermore, we propose how partial deconfinement can be observed in real-world QCD with th...
Saved in:
Published in | Progress of theoretical and experimental physics Vol. 2024; no. 4 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-3911 2050-3911 |
DOI | 10.1093/ptep/ptae033 |
Cover
Abstract | Abstract
We describe how the general mechanism of partial deconfinement applies to large-N QCD and a partially deconfined phase inevitably appears between completely confined and completely deconfined phases. Furthermore, we propose how partial deconfinement can be observed in real-world QCD with the SU(3) gauge group. For this purpose, we employ lattice configurations obtained by the WHOT-QCD Collaboration and examine our proposal numerically. In the discussion, the Polyakov loop plays a crucial role in characterizing the phases, without relying on center symmetry, and hence we clarify the meaning of the Polyakov loop in QCD at large N and finite N. At both large N and finite N, the complete confinement is characterized by the Haar-random distribution of the Polyakov line phases. Haar-randomness, which is stronger than unbroken center symmetry, indicates that Polyakov loops in any nontrivial representations have vanishing expectation values, and deviation from the Haar-random distribution at higher temperatures is quantified with the loops. We discuss that the transitions separating the partially deconfined phase are characterized by the behaviors of Polyakov loops in various representations. The lattice QCD data provide us with the signals exhibiting two different characteristic temperatures: deconfinement of the fundamental representation and deconfinement of higher representations. As a nontrivial test for our proposal, we also investigate the relation between partial deconfinement and instanton condensation and confirm the consistency with the lattice data. To make the presentation more easily accessible, we provide a detailed review of the previously known aspects of partial deconfinement. |
---|---|
AbstractList | We describe how the general mechanism of partial deconfinement applies to large-N QCD and a partially deconfined phase inevitably appears between completely confined and completely deconfined phases. Furthermore, we propose how partial deconfinement can be observed in real-world QCD with the SU(3) gauge group. For this purpose, we employ lattice configurations obtained by the WHOT-QCD Collaboration and examine our proposal numerically. In the discussion, the Polyakov loop plays a crucial role in characterizing the phases, without relying on center symmetry, and hence we clarify the meaning of the Polyakov loop in QCD at large N and finite N. At both large N and finite N, the complete confinement is characterized by the Haar-random distribution of the Polyakov line phases. Haar-randomness, which is stronger than unbroken center symmetry, indicates that Polyakov loops in any nontrivial representations have vanishing expectation values, and deviation from the Haar-random distribution at higher temperatures is quantified with the loops. We discuss that the transitions separating the partially deconfined phase are characterized by the behaviors of Polyakov loops in various representations. The lattice QCD data provide us with the signals exhibiting two different characteristic temperatures: deconfinement of the fundamental representation and deconfinement of higher representations. As a nontrivial test for our proposal, we also investigate the relation between partial deconfinement and instanton condensation and confirm the consistency with the lattice data. To make the presentation more easily accessible, we provide a detailed review of the previously known aspects of partial deconfinement. Abstract We describe how the general mechanism of partial deconfinement applies to large-N QCD and a partially deconfined phase inevitably appears between completely confined and completely deconfined phases. Furthermore, we propose how partial deconfinement can be observed in real-world QCD with the SU(3) gauge group. For this purpose, we employ lattice configurations obtained by the WHOT-QCD Collaboration and examine our proposal numerically. In the discussion, the Polyakov loop plays a crucial role in characterizing the phases, without relying on center symmetry, and hence we clarify the meaning of the Polyakov loop in QCD at large N and finite N. At both large N and finite N, the complete confinement is characterized by the Haar-random distribution of the Polyakov line phases. Haar-randomness, which is stronger than unbroken center symmetry, indicates that Polyakov loops in any nontrivial representations have vanishing expectation values, and deviation from the Haar-random distribution at higher temperatures is quantified with the loops. We discuss that the transitions separating the partially deconfined phase are characterized by the behaviors of Polyakov loops in various representations. The lattice QCD data provide us with the signals exhibiting two different characteristic temperatures: deconfinement of the fundamental representation and deconfinement of higher representations. As a nontrivial test for our proposal, we also investigate the relation between partial deconfinement and instanton condensation and confirm the consistency with the lattice data. To make the presentation more easily accessible, we provide a detailed review of the previously known aspects of partial deconfinement. |
Author | Hanada, Masanori Watanabe, Hiromasa |
Author_xml | – sequence: 1 givenname: Masanori orcidid: 0000-0001-5174-2571 surname: Hanada fullname: Hanada, Masanori – sequence: 2 givenname: Hiromasa orcidid: 0000-0003-1515-1277 surname: Watanabe fullname: Watanabe, Hiromasa email: hiromasa.watanabe@yukawa.kyoto-u.ac.jp |
BookMark | eNp9kMtLw0AQxhepYK29efQQ8ODF6Ez20exRUl9QKEI8L9t0gintbtxNDv73prQHEfQyD_h98w3fORs574ixS4Q7BM3v247aoVgCzk_YOAMJKdeIox_zGZvGuAEAhNkMBI7Z1dIl5QeFnd0mZbAuNl3jXdK45K2YX7DT2m4jTY99wt6fHsviJV0sn1-Lh0VaCVBdKvPKWlXlw2YtaSmAy4yUqJFyhaLSCnJOmRZrylc1ZVxJkLlcKbtWGhXyCbs-3G2D_-wpdmbj--AGS8NxhkJLrfVAZQeqCj7GQLWpms7u3-2CbbYGweyDMPsgzDGIQXT7S9SGZmfD11_4zQH3ffs_-Q3JRG4Y |
CitedBy_id | crossref_primary_10_1007_JHEP01_2025_019 crossref_primary_10_1007_JHEP07_2024_203 |
Cites_doi | 10.1007/JHEP09(2023)053 10.1016/S0370-1573(99)00083-6 10.1007/JHEP08(2010)071 10.1007/JHEP03(2019)145 10.1016/j.ppnp.2023.104049 10.1007/JHEP12(2019)167 10.1103/PhysRevD.92.094517 10.1103/PhysRevD.103.106007 10.1023/A:1026654312961 10.1016/S0550-3213(00)00044-4 10.1016/0550-3213(93)90403-C 10.1103/PhysRevD.102.096013 10.1007/JHEP02(2021)004 10.1038/nature05120 10.1007/JHEP02(2017)012 10.1007/JHEP01(2020)053 10.1007/JHEP05(2017)091 10.1007/JHEP03(2022)118 10.1103/PhysRevD.94.094502 10.1007/JHEP01(2023)003 10.1103/PhysRevD.106.123515 10.1103/PhysRevD.55.4488 10.1103/PRXQuantum.3.010324 10.1016/S0370-2693(98)00377-3 10.1103/PhysRevD.102.034020 10.1016/0370-2693(78)90737-2 10.1007/JHEP08(2021)039 10.1016/0550-3213(93)90042-N 10.4310/ATMP.2004.v8.n4.a1 10.1103/PhysRevD.20.2610 10.1016/j.nuclphysb.2004.06.057 10.1007/JHEP12(2023)030 10.1007/JHEP09(2018)054 10.1103/PhysRevD.77.034503 10.1016/0550-3213(84)90230-X 10.4310/ATMP.1998.v2.n2.a2 10.1007/JHEP03(2023)195 10.1103/PhysRevLett.116.132001 10.1007/978-981-19-2715-7 10.1103/PhysRevD.21.446 10.1016/0550-3213(85)90002-1 10.1088/1126-6708/2006/06/052 10.1103/PhysRevD.95.054502 10.1103/PhysRevD.11.395 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1093/ptep/ptae033 |
DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2050-3911 |
ExternalDocumentID | 10_1093_ptep_ptae033 10.1093/ptep/ptae033 |
GroupedDBID | .I3 0R~ 4.4 5VS 88I AAFWJ AAMVS AAPXW AAVAP ABEJV ABGNP ABPTD ABUWG ABXVV ACGFS ADHZD AENEX AENZO AFKRA AFPKN AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AZQEC BAYMD BENPR CCPQU CIDKT DWQXO D~K EBS EJD ER. GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ISR ITC KQ8 KSI M2P M~E O9- OAWHX OJQWA OK1 PEELM PIMPY ROL RXO TOX ~D7 AAYXX CITATION PHGZM PHGZT 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c406t-58caa6c8c40aae9540352e64f1e8614c96083e294de8bfe23650585b6ad691613 |
IEDL.DBID | BENPR |
ISSN | 2050-3911 |
IngestDate | Mon Jun 30 12:24:52 EDT 2025 Tue Jul 01 02:09:16 EDT 2025 Thu Apr 24 23:02:24 EDT 2025 Wed Apr 02 07:04:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Funded by SCOAP3 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-58caa6c8c40aae9540352e64f1e8614c96083e294de8bfe23650585b6ad691613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5174-2571 0000-0003-1515-1277 |
OpenAccessLink | https://www.proquest.com/docview/3171495999?pq-origsite=%requestingapplication% |
PQID | 3171495999 |
PQPubID | 7121340 |
ParticipantIDs | proquest_journals_3171495999 crossref_citationtrail_10_1093_ptep_ptae033 crossref_primary_10_1093_ptep_ptae033 oup_primary_10_1093_ptep_ptae033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Progress of theoretical and experimental physics |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Sheikholeslami (2024033015473065200_bib38) 1985; 259 Rinaldi (2024033015473065200_bib55) 2022; 3 Kawahara (2024033015473065200_bib25) 2006; 0606 Fasi (2024033015473065200_bib58) Gross (2024033015473065200_bib47) 1993; 403 Gautam (2024033015473065200_bib23) 2023; 2301 Nishigaki (2024033015473065200_bib57) Aharony (2024033015473065200_bib54) 2000; 323 Furuuchi (2024033015473065200_bib24) 2006; 0606 Watanabe (2024033015473065200_bib15) 2021; 2102 Berenstein (2024033015473065200_bib9) 2018; 1809 Taniguchi (2024033015473065200_bib40) 2017; 95 WHOT-QCD Collaboration (2024033015473065200_bib37) 2012; 85 Vafa (2024033015473065200_bib31) 1984; 234 Mykkanen (2024033015473065200_bib28) 2012; 1205 Hanada (2024033015473065200_bib7) 2019; LATTICE2019 Hanada (2024033015473065200_bib22) Gupta (2024033015473065200_bib27) 2008; 77 Chen (2024033015473065200_bib34) 2020; 102 Fujikura (2024033015473065200_bib50) 2023; 2309 Witten (2024033015473065200_bib53) 1998; 2 Cohen (2024033015473065200_bib44) Asakawa (2024033015473065200_bib42) 1997; 55 Akemann (2024033015473065200_bib56) 2011 Hanada (2024033015473065200_bib18) 2021; 103 Aharony (2024033015473065200_bib4) 2004; 8 Maldacena (2024033015473065200_bib51) 1999; 38 Gross (2024033015473065200_bib20) 1980; 21 Lüscher (2024033015473065200_bib41) 2010; 1008 Glozman (2024033015473065200_bib43) 2023; 131 Hanada (2024033015473065200_bib59) 2022 Bergner (2024033015473065200_bib45) Kogut (2024033015473065200_bib26) 1975; 11 Yamada (2024033015473065200_bib49) 2022; 106 Sundborg (2024033015473065200_bib5) 2000; 573 Hanada (2024033015473065200_bib10) 2019; 1903 Petreczky (2024033015473065200_bib30) 2015; 92 Gubser (2024033015473065200_bib52) 1998; 428 Gautam (2024033015473065200_bib16) 2023; 2303 Iwasaki (2024033015473065200_bib39) Hanada (2024033015473065200_bib17) 2021; 2108 Polyakov (2024033015473065200_bib1) 1978; 72 Buividovich (2024033015473065200_bib36) 2016; 116 Aoki (2024033015473065200_bib3) 2006; 443 Wadia (2024033015473065200_bib21) 2023; 2301 Choi (2024033015473065200_bib35) Hanada (2024033015473065200_bib12) 2020; 102 Datta (2024033015473065200_bib29) 2016; 94 Gaiotto (2024033015473065200_bib33) 2017; 1705 Hanada (2024033015473065200_bib11) 2019; 1912 Hanada (2024033015473065200_bib13) 2022; 2203 Gross (2024033015473065200_bib46) 1993; 400 Hanada (2024033015473065200_bib8) 2017; 1702 Schnitzer (2024033015473065200_bib6) 2004; 695 Berenstein (2024033015473065200_bib48) 2023; 2312 Hanada (2024033015473065200_bib19) 2022; CORFU2021 t Hooft (2024033015473065200_bib32) 1980; 59 Susskind (2024033015473065200_bib2) 1979; 20 Bergner (2024033015473065200_bib14) 2020; 2001 |
References_xml | – volume: 2309 start-page: 053 year: 2023 ident: 2024033015473065200_bib50 publication-title: J. High Energy Phys. doi: 10.1007/JHEP09(2023)053 – volume: 323 start-page: 183 year: 2000 ident: 2024033015473065200_bib54 publication-title: Phys. Rept. doi: 10.1016/S0370-1573(99)00083-6 – volume: 1008 start-page: 071 year: 2010 ident: 2024033015473065200_bib41 publication-title: J. High Energy Phys. doi: 10.1007/JHEP08(2010)071 – volume: 59 start-page: 135 year: 1980 ident: 2024033015473065200_bib32 publication-title: NATO Sci. Ser. B – volume: 1903 start-page: 145 year: 2019 ident: 2024033015473065200_bib10 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2019)145 – ident: 2024033015473065200_bib22 – ident: 2024033015473065200_bib58 – volume: 131 start-page: 104049 year: 2023 ident: 2024033015473065200_bib43 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2023.104049 – volume: 1912 start-page: 167 year: 2019 ident: 2024033015473065200_bib11 publication-title: J. High Energy Phys. doi: 10.1007/JHEP12(2019)167 – volume: 92 start-page: 094517 year: 2015 ident: 2024033015473065200_bib30 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.094517 – volume: 103 start-page: 106007 year: 2021 ident: 2024033015473065200_bib18 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.106007 – volume: 38 start-page: 1113 year: 1999 ident: 2024033015473065200_bib51 publication-title: Int. J. Theor. Phys. doi: 10.1023/A:1026654312961 – ident: 2024033015473065200_bib35 – volume: 573 start-page: 349 year: 2000 ident: 2024033015473065200_bib5 publication-title: Nucl. Phys. B doi: 10.1016/S0550-3213(00)00044-4 – volume: 1205 start-page: 069 year: 2012 ident: 2024033015473065200_bib28 publication-title: J. High Energy Phys. – volume: 400 start-page: 181 year: 1993 ident: 2024033015473065200_bib46 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(93)90403-C – volume: 102 start-page: 096013 year: 2020 ident: 2024033015473065200_bib12 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.096013 – volume: 0606 start-page: 052 year: 2006 ident: 2024033015473065200_bib24 publication-title: J. High Energy Phys. – volume: 2102 start-page: 004 year: 2021 ident: 2024033015473065200_bib15 publication-title: J. High Energy Phys. doi: 10.1007/JHEP02(2021)004 – volume: 443 start-page: 675 year: 2006 ident: 2024033015473065200_bib3 publication-title: Nature doi: 10.1038/nature05120 – volume: 1702 start-page: 012 year: 2017 ident: 2024033015473065200_bib8 publication-title: J. High Energy Phys. doi: 10.1007/JHEP02(2017)012 – volume: 2001 start-page: 053 year: 2020 ident: 2024033015473065200_bib14 publication-title: J. High Energy Phys. doi: 10.1007/JHEP01(2020)053 – volume: 1705 start-page: 091 year: 2017 ident: 2024033015473065200_bib33 publication-title: J. High Energy Phys. doi: 10.1007/JHEP05(2017)091 – start-page: 021A02 volume-title: Prog Theor Exp Phys. ident: 2024033015473065200_bib57 – volume: 2203 start-page: 118 year: 2022 ident: 2024033015473065200_bib13 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2022)118 – volume: 85 start-page: 094508 year: 2012 ident: 2024033015473065200_bib37 publication-title: Phys. Rev. D – volume: 94 start-page: 094502 year: 2016 ident: 2024033015473065200_bib29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.094502 – volume: 2301 start-page: 003 year: 2023 ident: 2024033015473065200_bib23 publication-title: J. High Energy Phys. doi: 10.1007/JHEP01(2023)003 – volume: 106 start-page: 123515 year: 2022 ident: 2024033015473065200_bib49 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.106.123515 – volume: 55 start-page: 4488 year: 1997 ident: 2024033015473065200_bib42 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.55.4488 – volume: 3 start-page: 010324 year: 2022 ident: 2024033015473065200_bib55 publication-title: PRX Quantum doi: 10.1103/PRXQuantum.3.010324 – volume: 428 start-page: 105 year: 1998 ident: 2024033015473065200_bib52 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(98)00377-3 – volume: 102 start-page: 034020 year: 2020 ident: 2024033015473065200_bib34 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.034020 – volume: 72 start-page: 477 year: 1978 ident: 2024033015473065200_bib1 publication-title: Phys. Lett. B doi: 10.1016/0370-2693(78)90737-2 – volume: 2108 start-page: 039 year: 2021 ident: 2024033015473065200_bib17 publication-title: J. High Energy Phys. doi: 10.1007/JHEP08(2021)039 – volume: 403 start-page: 395 year: 1993 ident: 2024033015473065200_bib47 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(93)90042-N – volume: 8 start-page: 603 year: 2004 ident: 2024033015473065200_bib4 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.2004.v8.n4.a1 – volume: 20 start-page: 2610 year: 1979 ident: 2024033015473065200_bib2 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.20.2610 – volume: 695 start-page: 267 year: 2004 ident: 2024033015473065200_bib6 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2004.06.057 – volume: CORFU2021 start-page: 260 year: 2022 ident: 2024033015473065200_bib19 publication-title: PoS – volume: 2312 start-page: 030 year: 2023 ident: 2024033015473065200_bib48 publication-title: J. High Energy Phys. doi: 10.1007/JHEP12(2023)030 – volume: 1809 start-page: 054 year: 2018 ident: 2024033015473065200_bib9 publication-title: J. High Energy Phys. doi: 10.1007/JHEP09(2018)054 – volume: 77 start-page: 034503 year: 2008 ident: 2024033015473065200_bib27 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.034503 – volume: 234 start-page: 173 year: 1984 ident: 2024033015473065200_bib31 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(84)90230-X – volume: 2 start-page: 253 year: 1998 ident: 2024033015473065200_bib53 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a2 – volume: 2303 start-page: 195 year: 2023 ident: 2024033015473065200_bib16 publication-title: J. High Energy Phys. doi: 10.1007/JHEP03(2023)195 – volume: 116 start-page: 132001 year: 2016 ident: 2024033015473065200_bib36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.132001 – ident: 2024033015473065200_bib45 – volume-title: MCMC from Scratch: A Practical Introduction to Markov Chain Monte Carlo year: 2022 ident: 2024033015473065200_bib59 doi: 10.1007/978-981-19-2715-7 – volume: 21 start-page: 446 year: 1980 ident: 2024033015473065200_bib20 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.21.446 – volume: 259 start-page: 572 year: 1985 ident: 2024033015473065200_bib38 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(85)90002-1 – volume: LATTICE2019 start-page: 055 year: 2019 ident: 2024033015473065200_bib7 publication-title: PoS – ident: 2024033015473065200_bib44 – start-page: 9 volume-title: The Oxford Handbook of Random Matrix Theory year: 2011 ident: 2024033015473065200_bib56 – volume: 0606 start-page: 052 year: 2006 ident: 2024033015473065200_bib25 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2006/06/052 – volume: 95 start-page: 054502 year: 2017 ident: 2024033015473065200_bib40 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.054502 – ident: 2024033015473065200_bib39 – volume: 2301 start-page: 003 year: 2023 ident: 2024033015473065200_bib21 publication-title: J. High Energy Phys. – volume: 11 start-page: 395 year: 1975 ident: 2024033015473065200_bib26 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.11.395 |
SSID | ssj0001077041 |
Score | 2.3171828 |
Snippet | Abstract
We describe how the general mechanism of partial deconfinement applies to large-N QCD and a partially deconfined phase inevitably appears between... We describe how the general mechanism of partial deconfinement applies to large-N QCD and a partially deconfined phase inevitably appears between completely... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Phase transitions Symmetry |
Title | On Thermal Transition in QCD |
URI | https://www.proquest.com/docview/3171495999 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELagXVh4Iwql8gATsprEjyQTgtKqYmgBtVK3yK9ISFWa0vD_uSQOVQdgsWT5ltzZd9-dv_gQuqVCG2UUJ5r7lMAOYSS2TJNI6NQTKQt5WhFkJ2I8Zy8LvnAFt42jVTY-sXLUZqXLGnmflp26Yw545iFfk7JrVHm76lpo7KM2uOAI9nn7aTh5fd9WWbww9JjvGO-QvffzwuYwSOtRuhOLdv5vaxxyFWVGx-jQwUP8WNvzBO3Z7BQdOaiI3UHcnKHuNMNgYfCqS1yFm4p5hT8y_DZ4Pkfz0XA2GBPX6IBoiKcF4ZGWUugIZlLaGEAUwCIrWOrbCMKnhiwjojaImbGRSm1AAVYBzFdCGgHwzqcXqJWtMnuJsGcE01LE0teQOnEmTRymLLAqVZ6yVHfQffPJiXavgJfNKJZJfRtNk1JBiVNQB939SOf16xe_yGHQ3j8i3Ua1iTsmm2Rr1Ku_l6_RQQBooqbMdFGr-PyyN4AGCtVzJu9V2TSMs-niG7XUt6k |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PS8MwFH7M7aAXf4vTqTnoScraJk3bg4g6x-Z0_mCCt5qmKQijVlcR_yn_Rl_b1OFBPe1SKH0E-vLlfV-SlzyAfcplFEahY0jHogYihBm-YtLwuIxNHjPXiYsE2SHv3bOLB-ehBp_VWZg8rbKKiUWgjp5lvkbepnmlbt9BPXOcvhh51ah8d7UqoVHCYqA-3nHKNjnqd7B_D2y7ez466xm6qoAhkbwyw_GkEFx6-CaE8lGxoAZRnMWW8pCrJEp6jyrbZ5HywljZFDUMauqQi4ijlrIotjsHDZafaK1D4_R8eHM3XdUxXddkls6wN33aTjOV4kMok9If3PfjPF1FAAWrdZdhUctRclLiZwVqKlmFJS1NiR74kzVoXScEEYVRfEwKeisyvchTQm7POutwPxMXbEA9eU7UJhAz4kwK7gtL4lTNYSLy3ZjZKoxDM1RUNuGw-uVA6lvH8-IX46Dc_aZB7qBAO6gJB9_WaXnbxi92BL33j0mrcm2gh-UkmIJo6-_PezDfG11dBpf94WAbFmxUMmW6Tgvq2eub2kElkoW7uvsJPM4acV_r9_E9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Thermal+Transition+in+QCD&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Hanada%2C+Masanori&rft.au=Watanabe%2C+Hiromasa&rft.date=2024-04-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2024&rft.issue=4&rft_id=info:doi/10.1093%2Fptep%2Fptae033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptae033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |