On Thermal Transition in QCD

Abstract We describe how the general mechanism of partial deconfinement applies to large-N QCD and a partially deconfined phase inevitably appears between completely confined and completely deconfined phases. Furthermore, we propose how partial deconfinement can be observed in real-world QCD with th...

Full description

Saved in:
Bibliographic Details
Published inProgress of theoretical and experimental physics Vol. 2024; no. 4
Main Authors Hanada, Masanori, Watanabe, Hiromasa
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.04.2024
Subjects
Online AccessGet full text
ISSN2050-3911
2050-3911
DOI10.1093/ptep/ptae033

Cover

Abstract Abstract We describe how the general mechanism of partial deconfinement applies to large-N QCD and a partially deconfined phase inevitably appears between completely confined and completely deconfined phases. Furthermore, we propose how partial deconfinement can be observed in real-world QCD with the SU(3) gauge group. For this purpose, we employ lattice configurations obtained by the WHOT-QCD Collaboration and examine our proposal numerically. In the discussion, the Polyakov loop plays a crucial role in characterizing the phases, without relying on center symmetry, and hence we clarify the meaning of the Polyakov loop in QCD at large N and finite N. At both large N and finite N, the complete confinement is characterized by the Haar-random distribution of the Polyakov line phases. Haar-randomness, which is stronger than unbroken center symmetry, indicates that Polyakov loops in any nontrivial representations have vanishing expectation values, and deviation from the Haar-random distribution at higher temperatures is quantified with the loops. We discuss that the transitions separating the partially deconfined phase are characterized by the behaviors of Polyakov loops in various representations. The lattice QCD data provide us with the signals exhibiting two different characteristic temperatures: deconfinement of the fundamental representation and deconfinement of higher representations. As a nontrivial test for our proposal, we also investigate the relation between partial deconfinement and instanton condensation and confirm the consistency with the lattice data. To make the presentation more easily accessible, we provide a detailed review of the previously known aspects of partial deconfinement.
AbstractList We describe how the general mechanism of partial deconfinement applies to large-N QCD and a partially deconfined phase inevitably appears between completely confined and completely deconfined phases. Furthermore, we propose how partial deconfinement can be observed in real-world QCD with the SU(3) gauge group. For this purpose, we employ lattice configurations obtained by the WHOT-QCD Collaboration and examine our proposal numerically. In the discussion, the Polyakov loop plays a crucial role in characterizing the phases, without relying on center symmetry, and hence we clarify the meaning of the Polyakov loop in QCD at large N and finite N. At both large N and finite N, the complete confinement is characterized by the Haar-random distribution of the Polyakov line phases. Haar-randomness, which is stronger than unbroken center symmetry, indicates that Polyakov loops in any nontrivial representations have vanishing expectation values, and deviation from the Haar-random distribution at higher temperatures is quantified with the loops. We discuss that the transitions separating the partially deconfined phase are characterized by the behaviors of Polyakov loops in various representations. The lattice QCD data provide us with the signals exhibiting two different characteristic temperatures: deconfinement of the fundamental representation and deconfinement of higher representations. As a nontrivial test for our proposal, we also investigate the relation between partial deconfinement and instanton condensation and confirm the consistency with the lattice data. To make the presentation more easily accessible, we provide a detailed review of the previously known aspects of partial deconfinement.
Abstract We describe how the general mechanism of partial deconfinement applies to large-N QCD and a partially deconfined phase inevitably appears between completely confined and completely deconfined phases. Furthermore, we propose how partial deconfinement can be observed in real-world QCD with the SU(3) gauge group. For this purpose, we employ lattice configurations obtained by the WHOT-QCD Collaboration and examine our proposal numerically. In the discussion, the Polyakov loop plays a crucial role in characterizing the phases, without relying on center symmetry, and hence we clarify the meaning of the Polyakov loop in QCD at large N and finite N. At both large N and finite N, the complete confinement is characterized by the Haar-random distribution of the Polyakov line phases. Haar-randomness, which is stronger than unbroken center symmetry, indicates that Polyakov loops in any nontrivial representations have vanishing expectation values, and deviation from the Haar-random distribution at higher temperatures is quantified with the loops. We discuss that the transitions separating the partially deconfined phase are characterized by the behaviors of Polyakov loops in various representations. The lattice QCD data provide us with the signals exhibiting two different characteristic temperatures: deconfinement of the fundamental representation and deconfinement of higher representations. As a nontrivial test for our proposal, we also investigate the relation between partial deconfinement and instanton condensation and confirm the consistency with the lattice data. To make the presentation more easily accessible, we provide a detailed review of the previously known aspects of partial deconfinement.
Author Hanada, Masanori
Watanabe, Hiromasa
Author_xml – sequence: 1
  givenname: Masanori
  orcidid: 0000-0001-5174-2571
  surname: Hanada
  fullname: Hanada, Masanori
– sequence: 2
  givenname: Hiromasa
  orcidid: 0000-0003-1515-1277
  surname: Watanabe
  fullname: Watanabe, Hiromasa
  email: hiromasa.watanabe@yukawa.kyoto-u.ac.jp
BookMark eNp9kMtLw0AQxhepYK29efQQ8ODF6Ez20exRUl9QKEI8L9t0gintbtxNDv73prQHEfQyD_h98w3fORs574ixS4Q7BM3v247aoVgCzk_YOAMJKdeIox_zGZvGuAEAhNkMBI7Z1dIl5QeFnd0mZbAuNl3jXdK45K2YX7DT2m4jTY99wt6fHsviJV0sn1-Lh0VaCVBdKvPKWlXlw2YtaSmAy4yUqJFyhaLSCnJOmRZrylc1ZVxJkLlcKbtWGhXyCbs-3G2D_-wpdmbj--AGS8NxhkJLrfVAZQeqCj7GQLWpms7u3-2CbbYGweyDMPsgzDGIQXT7S9SGZmfD11_4zQH3ffs_-Q3JRG4Y
CitedBy_id crossref_primary_10_1007_JHEP01_2025_019
crossref_primary_10_1007_JHEP07_2024_203
Cites_doi 10.1007/JHEP09(2023)053
10.1016/S0370-1573(99)00083-6
10.1007/JHEP08(2010)071
10.1007/JHEP03(2019)145
10.1016/j.ppnp.2023.104049
10.1007/JHEP12(2019)167
10.1103/PhysRevD.92.094517
10.1103/PhysRevD.103.106007
10.1023/A:1026654312961
10.1016/S0550-3213(00)00044-4
10.1016/0550-3213(93)90403-C
10.1103/PhysRevD.102.096013
10.1007/JHEP02(2021)004
10.1038/nature05120
10.1007/JHEP02(2017)012
10.1007/JHEP01(2020)053
10.1007/JHEP05(2017)091
10.1007/JHEP03(2022)118
10.1103/PhysRevD.94.094502
10.1007/JHEP01(2023)003
10.1103/PhysRevD.106.123515
10.1103/PhysRevD.55.4488
10.1103/PRXQuantum.3.010324
10.1016/S0370-2693(98)00377-3
10.1103/PhysRevD.102.034020
10.1016/0370-2693(78)90737-2
10.1007/JHEP08(2021)039
10.1016/0550-3213(93)90042-N
10.4310/ATMP.2004.v8.n4.a1
10.1103/PhysRevD.20.2610
10.1016/j.nuclphysb.2004.06.057
10.1007/JHEP12(2023)030
10.1007/JHEP09(2018)054
10.1103/PhysRevD.77.034503
10.1016/0550-3213(84)90230-X
10.4310/ATMP.1998.v2.n2.a2
10.1007/JHEP03(2023)195
10.1103/PhysRevLett.116.132001
10.1007/978-981-19-2715-7
10.1103/PhysRevD.21.446
10.1016/0550-3213(85)90002-1
10.1088/1126-6708/2006/06/052
10.1103/PhysRevD.95.054502
10.1103/PhysRevD.11.395
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1093/ptep/ptae033
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2050-3911
ExternalDocumentID 10_1093_ptep_ptae033
10.1093/ptep/ptae033
GroupedDBID .I3
0R~
4.4
5VS
88I
AAFWJ
AAMVS
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABUWG
ABXVV
ACGFS
ADHZD
AENEX
AENZO
AFKRA
AFPKN
AIBLX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AZQEC
BAYMD
BENPR
CCPQU
CIDKT
DWQXO
D~K
EBS
EJD
ER.
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ISR
ITC
KQ8
KSI
M2P
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
PIMPY
ROL
RXO
TOX
~D7
AAYXX
CITATION
PHGZM
PHGZT
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c406t-58caa6c8c40aae9540352e64f1e8614c96083e294de8bfe23650585b6ad691613
IEDL.DBID BENPR
ISSN 2050-3911
IngestDate Mon Jun 30 12:24:52 EDT 2025
Tue Jul 01 02:09:16 EDT 2025
Thu Apr 24 23:02:24 EDT 2025
Wed Apr 02 07:04:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Funded by SCOAP3
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-58caa6c8c40aae9540352e64f1e8614c96083e294de8bfe23650585b6ad691613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5174-2571
0000-0003-1515-1277
OpenAccessLink https://www.proquest.com/docview/3171495999?pq-origsite=%requestingapplication%
PQID 3171495999
PQPubID 7121340
ParticipantIDs proquest_journals_3171495999
crossref_citationtrail_10_1093_ptep_ptae033
crossref_primary_10_1093_ptep_ptae033
oup_primary_10_1093_ptep_ptae033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress of theoretical and experimental physics
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Sheikholeslami (2024033015473065200_bib38) 1985; 259
Rinaldi (2024033015473065200_bib55) 2022; 3
Kawahara (2024033015473065200_bib25) 2006; 0606
Fasi (2024033015473065200_bib58)
Gross (2024033015473065200_bib47) 1993; 403
Gautam (2024033015473065200_bib23) 2023; 2301
Nishigaki (2024033015473065200_bib57)
Aharony (2024033015473065200_bib54) 2000; 323
Furuuchi (2024033015473065200_bib24) 2006; 0606
Watanabe (2024033015473065200_bib15) 2021; 2102
Berenstein (2024033015473065200_bib9) 2018; 1809
Taniguchi (2024033015473065200_bib40) 2017; 95
WHOT-QCD Collaboration (2024033015473065200_bib37) 2012; 85
Vafa (2024033015473065200_bib31) 1984; 234
Mykkanen (2024033015473065200_bib28) 2012; 1205
Hanada (2024033015473065200_bib7) 2019; LATTICE2019
Hanada (2024033015473065200_bib22)
Gupta (2024033015473065200_bib27) 2008; 77
Chen (2024033015473065200_bib34) 2020; 102
Fujikura (2024033015473065200_bib50) 2023; 2309
Witten (2024033015473065200_bib53) 1998; 2
Cohen (2024033015473065200_bib44)
Asakawa (2024033015473065200_bib42) 1997; 55
Akemann (2024033015473065200_bib56) 2011
Hanada (2024033015473065200_bib18) 2021; 103
Aharony (2024033015473065200_bib4) 2004; 8
Maldacena (2024033015473065200_bib51) 1999; 38
Gross (2024033015473065200_bib20) 1980; 21
Lüscher (2024033015473065200_bib41) 2010; 1008
Glozman (2024033015473065200_bib43) 2023; 131
Hanada (2024033015473065200_bib59) 2022
Bergner (2024033015473065200_bib45)
Kogut (2024033015473065200_bib26) 1975; 11
Yamada (2024033015473065200_bib49) 2022; 106
Sundborg (2024033015473065200_bib5) 2000; 573
Hanada (2024033015473065200_bib10) 2019; 1903
Petreczky (2024033015473065200_bib30) 2015; 92
Gubser (2024033015473065200_bib52) 1998; 428
Gautam (2024033015473065200_bib16) 2023; 2303
Iwasaki (2024033015473065200_bib39)
Hanada (2024033015473065200_bib17) 2021; 2108
Polyakov (2024033015473065200_bib1) 1978; 72
Buividovich (2024033015473065200_bib36) 2016; 116
Aoki (2024033015473065200_bib3) 2006; 443
Wadia (2024033015473065200_bib21) 2023; 2301
Choi (2024033015473065200_bib35)
Hanada (2024033015473065200_bib12) 2020; 102
Datta (2024033015473065200_bib29) 2016; 94
Gaiotto (2024033015473065200_bib33) 2017; 1705
Hanada (2024033015473065200_bib11) 2019; 1912
Hanada (2024033015473065200_bib13) 2022; 2203
Gross (2024033015473065200_bib46) 1993; 400
Hanada (2024033015473065200_bib8) 2017; 1702
Schnitzer (2024033015473065200_bib6) 2004; 695
Berenstein (2024033015473065200_bib48) 2023; 2312
Hanada (2024033015473065200_bib19) 2022; CORFU2021
t Hooft (2024033015473065200_bib32) 1980; 59
Susskind (2024033015473065200_bib2) 1979; 20
Bergner (2024033015473065200_bib14) 2020; 2001
References_xml – volume: 2309
  start-page: 053
  year: 2023
  ident: 2024033015473065200_bib50
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP09(2023)053
– volume: 323
  start-page: 183
  year: 2000
  ident: 2024033015473065200_bib54
  publication-title: Phys. Rept.
  doi: 10.1016/S0370-1573(99)00083-6
– volume: 1008
  start-page: 071
  year: 2010
  ident: 2024033015473065200_bib41
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP08(2010)071
– volume: 59
  start-page: 135
  year: 1980
  ident: 2024033015473065200_bib32
  publication-title: NATO Sci. Ser. B
– volume: 1903
  start-page: 145
  year: 2019
  ident: 2024033015473065200_bib10
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2019)145
– ident: 2024033015473065200_bib22
– ident: 2024033015473065200_bib58
– volume: 131
  start-page: 104049
  year: 2023
  ident: 2024033015473065200_bib43
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2023.104049
– volume: 1912
  start-page: 167
  year: 2019
  ident: 2024033015473065200_bib11
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP12(2019)167
– volume: 92
  start-page: 094517
  year: 2015
  ident: 2024033015473065200_bib30
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.094517
– volume: 103
  start-page: 106007
  year: 2021
  ident: 2024033015473065200_bib18
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.106007
– volume: 38
  start-page: 1113
  year: 1999
  ident: 2024033015473065200_bib51
  publication-title: Int. J. Theor. Phys.
  doi: 10.1023/A:1026654312961
– ident: 2024033015473065200_bib35
– volume: 573
  start-page: 349
  year: 2000
  ident: 2024033015473065200_bib5
  publication-title: Nucl. Phys. B
  doi: 10.1016/S0550-3213(00)00044-4
– volume: 1205
  start-page: 069
  year: 2012
  ident: 2024033015473065200_bib28
  publication-title: J. High Energy Phys.
– volume: 400
  start-page: 181
  year: 1993
  ident: 2024033015473065200_bib46
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(93)90403-C
– volume: 102
  start-page: 096013
  year: 2020
  ident: 2024033015473065200_bib12
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.096013
– volume: 0606
  start-page: 052
  year: 2006
  ident: 2024033015473065200_bib24
  publication-title: J. High Energy Phys.
– volume: 2102
  start-page: 004
  year: 2021
  ident: 2024033015473065200_bib15
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP02(2021)004
– volume: 443
  start-page: 675
  year: 2006
  ident: 2024033015473065200_bib3
  publication-title: Nature
  doi: 10.1038/nature05120
– volume: 1702
  start-page: 012
  year: 2017
  ident: 2024033015473065200_bib8
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP02(2017)012
– volume: 2001
  start-page: 053
  year: 2020
  ident: 2024033015473065200_bib14
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP01(2020)053
– volume: 1705
  start-page: 091
  year: 2017
  ident: 2024033015473065200_bib33
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP05(2017)091
– start-page: 021A02
  volume-title: Prog Theor Exp Phys.
  ident: 2024033015473065200_bib57
– volume: 2203
  start-page: 118
  year: 2022
  ident: 2024033015473065200_bib13
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2022)118
– volume: 85
  start-page: 094508
  year: 2012
  ident: 2024033015473065200_bib37
  publication-title: Phys. Rev. D
– volume: 94
  start-page: 094502
  year: 2016
  ident: 2024033015473065200_bib29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.094502
– volume: 2301
  start-page: 003
  year: 2023
  ident: 2024033015473065200_bib23
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP01(2023)003
– volume: 106
  start-page: 123515
  year: 2022
  ident: 2024033015473065200_bib49
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.123515
– volume: 55
  start-page: 4488
  year: 1997
  ident: 2024033015473065200_bib42
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.55.4488
– volume: 3
  start-page: 010324
  year: 2022
  ident: 2024033015473065200_bib55
  publication-title: PRX Quantum
  doi: 10.1103/PRXQuantum.3.010324
– volume: 428
  start-page: 105
  year: 1998
  ident: 2024033015473065200_bib52
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(98)00377-3
– volume: 102
  start-page: 034020
  year: 2020
  ident: 2024033015473065200_bib34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.034020
– volume: 72
  start-page: 477
  year: 1978
  ident: 2024033015473065200_bib1
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(78)90737-2
– volume: 2108
  start-page: 039
  year: 2021
  ident: 2024033015473065200_bib17
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP08(2021)039
– volume: 403
  start-page: 395
  year: 1993
  ident: 2024033015473065200_bib47
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(93)90042-N
– volume: 8
  start-page: 603
  year: 2004
  ident: 2024033015473065200_bib4
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.2004.v8.n4.a1
– volume: 20
  start-page: 2610
  year: 1979
  ident: 2024033015473065200_bib2
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.20.2610
– volume: 695
  start-page: 267
  year: 2004
  ident: 2024033015473065200_bib6
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2004.06.057
– volume: CORFU2021
  start-page: 260
  year: 2022
  ident: 2024033015473065200_bib19
  publication-title: PoS
– volume: 2312
  start-page: 030
  year: 2023
  ident: 2024033015473065200_bib48
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP12(2023)030
– volume: 1809
  start-page: 054
  year: 2018
  ident: 2024033015473065200_bib9
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP09(2018)054
– volume: 77
  start-page: 034503
  year: 2008
  ident: 2024033015473065200_bib27
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.034503
– volume: 234
  start-page: 173
  year: 1984
  ident: 2024033015473065200_bib31
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(84)90230-X
– volume: 2
  start-page: 253
  year: 1998
  ident: 2024033015473065200_bib53
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a2
– volume: 2303
  start-page: 195
  year: 2023
  ident: 2024033015473065200_bib16
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP03(2023)195
– volume: 116
  start-page: 132001
  year: 2016
  ident: 2024033015473065200_bib36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.132001
– ident: 2024033015473065200_bib45
– volume-title: MCMC from Scratch: A Practical Introduction to Markov Chain Monte Carlo
  year: 2022
  ident: 2024033015473065200_bib59
  doi: 10.1007/978-981-19-2715-7
– volume: 21
  start-page: 446
  year: 1980
  ident: 2024033015473065200_bib20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.21.446
– volume: 259
  start-page: 572
  year: 1985
  ident: 2024033015473065200_bib38
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(85)90002-1
– volume: LATTICE2019
  start-page: 055
  year: 2019
  ident: 2024033015473065200_bib7
  publication-title: PoS
– ident: 2024033015473065200_bib44
– start-page: 9
  volume-title: The Oxford Handbook of Random Matrix Theory
  year: 2011
  ident: 2024033015473065200_bib56
– volume: 0606
  start-page: 052
  year: 2006
  ident: 2024033015473065200_bib25
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2006/06/052
– volume: 95
  start-page: 054502
  year: 2017
  ident: 2024033015473065200_bib40
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.054502
– ident: 2024033015473065200_bib39
– volume: 2301
  start-page: 003
  year: 2023
  ident: 2024033015473065200_bib21
  publication-title: J. High Energy Phys.
– volume: 11
  start-page: 395
  year: 1975
  ident: 2024033015473065200_bib26
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.11.395
SSID ssj0001077041
Score 2.3171828
Snippet Abstract We describe how the general mechanism of partial deconfinement applies to large-N QCD and a partially deconfined phase inevitably appears between...
We describe how the general mechanism of partial deconfinement applies to large-N QCD and a partially deconfined phase inevitably appears between completely...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Phase transitions
Symmetry
Title On Thermal Transition in QCD
URI https://www.proquest.com/docview/3171495999
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELagXVh4Iwql8gATsprEjyQTgtKqYmgBtVK3yK9ISFWa0vD_uSQOVQdgsWT5ltzZd9-dv_gQuqVCG2UUJ5r7lMAOYSS2TJNI6NQTKQt5WhFkJ2I8Zy8LvnAFt42jVTY-sXLUZqXLGnmflp26Yw545iFfk7JrVHm76lpo7KM2uOAI9nn7aTh5fd9WWbww9JjvGO-QvffzwuYwSOtRuhOLdv5vaxxyFWVGx-jQwUP8WNvzBO3Z7BQdOaiI3UHcnKHuNMNgYfCqS1yFm4p5hT8y_DZ4Pkfz0XA2GBPX6IBoiKcF4ZGWUugIZlLaGEAUwCIrWOrbCMKnhiwjojaImbGRSm1AAVYBzFdCGgHwzqcXqJWtMnuJsGcE01LE0teQOnEmTRymLLAqVZ6yVHfQffPJiXavgJfNKJZJfRtNk1JBiVNQB939SOf16xe_yGHQ3j8i3Ua1iTsmm2Rr1Ku_l6_RQQBooqbMdFGr-PyyN4AGCtVzJu9V2TSMs-niG7XUt6k
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PS8MwFH7M7aAXf4vTqTnoScraJk3bg4g6x-Z0_mCCt5qmKQijVlcR_yn_Rl_b1OFBPe1SKH0E-vLlfV-SlzyAfcplFEahY0jHogYihBm-YtLwuIxNHjPXiYsE2SHv3bOLB-ehBp_VWZg8rbKKiUWgjp5lvkbepnmlbt9BPXOcvhh51ah8d7UqoVHCYqA-3nHKNjnqd7B_D2y7ez466xm6qoAhkbwyw_GkEFx6-CaE8lGxoAZRnMWW8pCrJEp6jyrbZ5HywljZFDUMauqQi4ijlrIotjsHDZafaK1D4_R8eHM3XdUxXddkls6wN33aTjOV4kMok9If3PfjPF1FAAWrdZdhUctRclLiZwVqKlmFJS1NiR74kzVoXScEEYVRfEwKeisyvchTQm7POutwPxMXbEA9eU7UJhAz4kwK7gtL4lTNYSLy3ZjZKoxDM1RUNuGw-uVA6lvH8-IX46Dc_aZB7qBAO6gJB9_WaXnbxi92BL33j0mrcm2gh-UkmIJo6-_PezDfG11dBpf94WAbFmxUMmW6Tgvq2eub2kElkoW7uvsJPM4acV_r9_E9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Thermal+Transition+in+QCD&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Hanada%2C+Masanori&rft.au=Watanabe%2C+Hiromasa&rft.date=2024-04-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2024&rft.issue=4&rft_id=info:doi/10.1093%2Fptep%2Fptae033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptae033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon