Spatiotemporal prediction of air quality based on LSTM neural network

Accurate monitoring of air quality is of great importance to our daily life. By predicting the air quality in advance, we can make timely warnings and defenses to minimize the threat to life. With a large number of environmental data, the air quality prediction based on deep learning technology is s...

Full description

Saved in:
Bibliographic Details
Published inAlexandria engineering journal Vol. 60; no. 2; pp. 2021 - 2032
Main Authors Seng, Dewen, Zhang, Qiyan, Zhang, Xuefeng, Chen, Guangsen, Chen, Xiyuan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate monitoring of air quality is of great importance to our daily life. By predicting the air quality in advance, we can make timely warnings and defenses to minimize the threat to life. With a large number of environmental data, the air quality prediction based on deep learning technology is studied in depth. Based on long short-term memory (LSTM), a comprehensive prediction model with multi-output and multi-index of supervised learning (MMSL) was proposed. The particle concentration data (mainly PM2.5, means particles with aerodynamic diameter ≤ 2.5 mm) of the present monitoring station, as well as that of the nearest neighbor stations, the meteorological data, and the gaseous pollutant data in the air (mainly CO, NO2, O3, SO2) of the same period were integrated. All data were converted into the supervised learning format and normalized. The LSTM was used for training to obtain the predicted values of air quality pollution indicators (PM2.5, CO, NO2, O3, SO2). In the present study, the representative stations of the 35 monitoring stations in Beijing were selected, and input the air quality sequences of the representative stations with different data characteristics into the model to obtain the predicted concentration values of the air quality indicators of the representative stations, then calculated the average value as the overall air quality prediction result of Beijing. The air quality time series datasets collected from 35 air quality monitoring stations in Beijing from January 1, 2016, to December 31, 2017, were used to validate the performance of the model compared with other baseline models and the two most advanced models. Experimental results show that, overall, the performance of the present model is superior to other baseline models.
AbstractList Accurate monitoring of air quality is of great importance to our daily life. By predicting the air quality in advance, we can make timely warnings and defenses to minimize the threat to life. With a large number of environmental data, the air quality prediction based on deep learning technology is studied in depth. Based on long short-term memory (LSTM), a comprehensive prediction model with multi-output and multi-index of supervised learning (MMSL) was proposed. The particle concentration data (mainly PM2.5, means particles with aerodynamic diameter ≤ 2.5 mm) of the present monitoring station, as well as that of the nearest neighbor stations, the meteorological data, and the gaseous pollutant data in the air (mainly CO, NO2, O3, SO2) of the same period were integrated. All data were converted into the supervised learning format and normalized. The LSTM was used for training to obtain the predicted values of air quality pollution indicators (PM2.5, CO, NO2, O3, SO2). In the present study, the representative stations of the 35 monitoring stations in Beijing were selected, and input the air quality sequences of the representative stations with different data characteristics into the model to obtain the predicted concentration values of the air quality indicators of the representative stations, then calculated the average value as the overall air quality prediction result of Beijing. The air quality time series datasets collected from 35 air quality monitoring stations in Beijing from January 1, 2016, to December 31, 2017, were used to validate the performance of the model compared with other baseline models and the two most advanced models. Experimental results show that, overall, the performance of the present model is superior to other baseline models.
Author Chen, Guangsen
Chen, Xiyuan
Seng, Dewen
Zhang, Qiyan
Zhang, Xuefeng
Author_xml – sequence: 1
  givenname: Dewen
  surname: Seng
  fullname: Seng, Dewen
  email: dwenseng@163.com
  organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
– sequence: 2
  givenname: Qiyan
  surname: Zhang
  fullname: Zhang, Qiyan
  organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
– sequence: 3
  givenname: Xuefeng
  surname: Zhang
  fullname: Zhang, Xuefeng
  organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
– sequence: 4
  givenname: Guangsen
  surname: Chen
  fullname: Chen, Guangsen
  organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
– sequence: 5
  givenname: Xiyuan
  surname: Chen
  fullname: Chen, Xiyuan
  organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
BookMark eNp9kM1OAyEUhVnURK19AHfzAq3AMH9xZYw_TWpcqGtyBy6GcRwqQzV9e2-tceGi5CZwD_ccyHfKJkMYkLFzwReCi_KiWwB2C8kl9XLBeTNhJ0IIPqfL-pjNxrHjtIqqUU15wm6e1pB8SPi-DhH6bB3RekPKkAWXgY_ZxwZ6n7ZZCyPajPTV0_NDNuBmNz5g-grx7YwdOehHnP3uU_Zye_N8fT9fPd4tr69Wc6N4meaFqMFJV0rD27aFunA58lIqqjavFNimcIA1JzHnrZJtw22bKyVkbStLxylb7nNtgE6vo3-HuNUBvP4RQnzVEJM3PWqRqwZtISiEHkDRlM7mKJWqK3CiLClL7LNMDOMY0f3lCa53KHWnCaXeodRCakJJnuqfx_i04zekCL4_6LzcO5HwfHqMejQeB0O0I5pE__cH3N88q5EM
CitedBy_id crossref_primary_10_3233_IDA_230890
crossref_primary_10_1016_j_scitotenv_2023_168672
crossref_primary_10_1002_met_2115
crossref_primary_10_1016_j_samod_2021_100002
crossref_primary_10_1177_03611981221082589
crossref_primary_10_1007_s10661_023_12001_2
crossref_primary_10_3390_su14094889
crossref_primary_10_1007_s11356_023_25735_w
crossref_primary_10_1109_ACCESS_2023_3234214
crossref_primary_10_3390_su15021637
crossref_primary_10_3389_fenvs_2022_956020
crossref_primary_10_1007_s11869_023_01385_2
crossref_primary_10_3390_math12243982
crossref_primary_10_3390_s21041064
crossref_primary_10_3390_atmos13060989
crossref_primary_10_3934_era_2023025
crossref_primary_10_1021_acs_est_1c06157
crossref_primary_10_1680_jenes_23_00093
crossref_primary_10_1016_j_apr_2023_101765
crossref_primary_10_1016_j_jobe_2025_112448
crossref_primary_10_1007_s10489_023_05109_y
crossref_primary_10_1016_j_apr_2022_101352
crossref_primary_10_1109_ACCESS_2024_3494263
crossref_primary_10_1016_j_ecoinf_2024_102477
crossref_primary_10_1007_s10723_023_09671_0
crossref_primary_10_1109_ACCESS_2021_3093430
crossref_primary_10_3390_toxics12080554
crossref_primary_10_1016_j_eehl_2024_01_006
crossref_primary_10_3390_su15129713
crossref_primary_10_1007_s11042_021_11734_x
crossref_primary_10_1016_j_ifacsc_2025_100298
crossref_primary_10_1007_s00704_023_04624_9
crossref_primary_10_3390_pr10112312
crossref_primary_10_3390_su16166794
crossref_primary_10_3390_environments11060107
crossref_primary_10_1016_j_scs_2023_104445
crossref_primary_10_1038_s41598_025_91329_w
crossref_primary_10_1007_s10470_025_02299_y
crossref_primary_10_33793_acperpro_05_03_9238
crossref_primary_10_1080_17538947_2024_2391952
crossref_primary_10_1016_j_future_2022_05_020
crossref_primary_10_1016_j_scitotenv_2023_166989
crossref_primary_10_1007_s10462_023_10424_4
crossref_primary_10_1016_j_apr_2025_102439
crossref_primary_10_1051_itmconf_20246801012
crossref_primary_10_1016_j_buildenv_2024_112167
crossref_primary_10_1016_j_neucom_2025_129840
crossref_primary_10_1007_s12665_025_12090_x
crossref_primary_10_1016_j_buildenv_2021_108525
crossref_primary_10_1007_s10462_023_10570_9
crossref_primary_10_3389_fenvs_2022_924986
crossref_primary_10_1007_s11356_021_17442_1
crossref_primary_10_3389_fenvs_2022_882741
crossref_primary_10_1007_s00376_023_3060_3
crossref_primary_10_3390_math12101457
crossref_primary_10_1038_s41598_024_84342_y
crossref_primary_10_1016_j_atmosenv_2024_120921
crossref_primary_10_1007_s11869_024_01680_6
crossref_primary_10_1371_journal_pone_0254179
crossref_primary_10_1002_for_2962
crossref_primary_10_1515_jisys_2023_0310
crossref_primary_10_1016_j_dche_2023_100093
crossref_primary_10_1016_j_envpol_2025_125937
crossref_primary_10_1155_2022_3362617
crossref_primary_10_1016_j_inffus_2024_102324
crossref_primary_10_3390_app122211317
crossref_primary_10_3390_s23020640
crossref_primary_10_1038_s41598_025_87935_3
crossref_primary_10_1088_1742_6596_2010_1_012011
crossref_primary_10_3390_atmos15040418
crossref_primary_10_1109_TIM_2023_3341116
crossref_primary_10_1186_s40537_024_01043_z
crossref_primary_10_1515_cppm_2022_0052
crossref_primary_10_3390_s21124248
crossref_primary_10_1007_s11269_022_03270_6
crossref_primary_10_1007_s13762_022_04702_x
crossref_primary_10_1002_adsr_202300207
crossref_primary_10_1155_2021_1616806
crossref_primary_10_1016_j_mlwa_2025_100624
crossref_primary_10_1186_s40537_023_00754_z
crossref_primary_10_1016_j_energy_2023_127852
crossref_primary_10_1007_s10651_024_00637_3
crossref_primary_10_1016_j_jclepro_2022_134011
crossref_primary_10_3390_app12073597
crossref_primary_10_1016_j_jhydrol_2023_129105
crossref_primary_10_1177_00202940241263490
crossref_primary_10_1016_j_conengprac_2023_105587
crossref_primary_10_32604_csse_2022_023882
crossref_primary_10_1016_j_ecoinf_2024_102568
crossref_primary_10_3390_atmos14020308
crossref_primary_10_1016_j_aej_2023_05_059
crossref_primary_10_1016_j_measen_2022_100546
crossref_primary_10_1016_j_chemosphere_2022_137636
crossref_primary_10_1016_j_eswa_2023_123008
crossref_primary_10_1063_5_0207834
crossref_primary_10_1117_1_JRS_18_012005
crossref_primary_10_1016_j_apr_2021_101150
crossref_primary_10_1080_19392699_2024_2431286
Cites_doi 10.3115/v1/D14-1179
10.1016/j.envpol.2017.08.114
10.1109/ACCESS.2019.2897028
10.1098/rspl.1895.0041
10.1016/S0968-090X(02)00009-8
10.1080/15472450902858368
10.1111/j.1467-8306.2004.09402005.x
10.1016/j.chemosphere.2018.12.128
10.1360/N972017-01063
10.1162/neco.1997.9.8.1735
10.1007/s00521-015-1955-3
10.1016/j.scitotenv.2018.11.086
10.1016/j.neucom.2018.06.049
10.1016/j.neucom.2013.03.047
10.1161/CIR.0b013e3181dbece1
10.1016/j.scitotenv.2019.01.333
10.1016/j.rse.2015.02.005
10.1038/nature04092
10.1016/j.jclepro.2018.10.243
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.aej.2020.12.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 2032
ExternalDocumentID oai_doaj_org_article_1349ed512b9246e196fd3e24487af166
10_1016_j_aej_2020_12_009
S1110016820306438
GroupedDBID --K
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c406t-518af2f62c0bbba85f3e0624624b374ad95fae80e0630b42b90db344128d7ddb3
IEDL.DBID IXB
ISSN 1110-0168
IngestDate Wed Aug 27 01:22:13 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Tue Jul 01 04:24:49 EDT 2025
Wed May 17 00:06:50 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
Air quality prediction
LSTM
Supervised learning
Time series
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-518af2f62c0bbba85f3e0624624b374ad95fae80e0630b42b90db344128d7ddb3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1110016820306438
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_1349ed512b9246e196fd3e24487af166
crossref_primary_10_1016_j_aej_2020_12_009
crossref_citationtrail_10_1016_j_aej_2020_12_009
elsevier_sciencedirect_doi_10_1016_j_aej_2020_12_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationTitle Alexandria engineering journal
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Miller (b0110) 2004; 94
Zhang, Li (b0010) 2015; 160
Kuremoto, Kimura, Kobayashi, Obayashi (b0040) 2014; 137
K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014).
Pearson (b0115) 1895; 58
Li, Peng, Yao, Cui, Hu, You, Chi (b0105) 2017; 231
Chandra, Al-Deek (b0060) 2009; 13
Zhao, Deng, Cai, Chen (b0120) 2019; 220
Sutskever, Vinyals, Le (b0065) 2014
Brook, Rajagopalan, PopeIII, Brook, Bhatnagar, Diez-Roux, Holguin, Hong, Luepker, Mittleman, Peters, Siscovick, Smith, Whitsel, Kaufman (b0005) 2010; 121
Zheng, Yi, Li, Li, Shan, Chang, Li (b0015) 2015
Yang, He, Ma, Zhang, Yu (b0030) 2002; 22
Hochreiter, Schmidhuber (b0070) 1997; 9
Qin, Yu, Zou, Yong, Zhao, Zhang (b0080) 2019; 7
Richter, Burrows, Nüß, Granier, Niemeier (b0025) 2005; 437
Wen, Liu, Yao, Peng, Li, Hu, Chi (b0095) 2019; 654
Shen, Zhu, Niu (b0020) 2018; 63
Feng, Li, Ding (b0035) 2012
Zhou, Chang, Chang, Kao, Wang (b0090) 2019; 209
Ong, Sugiura, Zettsu (b0045) 2016; 27
Box, Jenkins, Reinsel, Ljung (b0050) 2015
Wang, Song (b0100) 2018; 314
Smith, Williams, Oswald (b0055) 2002; 10
Qi, Li, Karimian, Liu (b0085) 2019; 664
Hochreiter (10.1016/j.aej.2020.12.009_b0070) 1997; 9
Wen (10.1016/j.aej.2020.12.009_b0095) 2019; 654
Zhang (10.1016/j.aej.2020.12.009_b0010) 2015; 160
Ong (10.1016/j.aej.2020.12.009_b0045) 2016; 27
Qin (10.1016/j.aej.2020.12.009_b0080) 2019; 7
Zheng (10.1016/j.aej.2020.12.009_b0015) 2015
Pearson (10.1016/j.aej.2020.12.009_b0115) 1895; 58
Chandra (10.1016/j.aej.2020.12.009_b0060) 2009; 13
Shen (10.1016/j.aej.2020.12.009_b0020) 2018; 63
Miller (10.1016/j.aej.2020.12.009_b0110) 2004; 94
Zhao (10.1016/j.aej.2020.12.009_b0120) 2019; 220
10.1016/j.aej.2020.12.009_b0075
Wang (10.1016/j.aej.2020.12.009_b0100) 2018; 314
Box (10.1016/j.aej.2020.12.009_b0050) 2015
Yang (10.1016/j.aej.2020.12.009_b0030) 2002; 22
Richter (10.1016/j.aej.2020.12.009_b0025) 2005; 437
Smith (10.1016/j.aej.2020.12.009_b0055) 2002; 10
Kuremoto (10.1016/j.aej.2020.12.009_b0040) 2014; 137
Sutskever (10.1016/j.aej.2020.12.009_b0065) 2014
Qi (10.1016/j.aej.2020.12.009_b0085) 2019; 664
Zhou (10.1016/j.aej.2020.12.009_b0090) 2019; 209
Li (10.1016/j.aej.2020.12.009_b0105) 2017; 231
Brook (10.1016/j.aej.2020.12.009_b0005) 2010; 121
Feng (10.1016/j.aej.2020.12.009_b0035) 2012
References_xml – volume: 654
  start-page: 1091
  year: 2019
  end-page: 1099
  ident: b0095
  article-title: A novel spatiotemporal convolutional long short-term neural network for air pollution prediction
  publication-title: Science of the Total Environment
– volume: 209
  start-page: 134
  year: 2019
  end-page: 145
  ident: b0090
  article-title: Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts
  publication-title: Journal of Cleaner Production
– volume: 137
  start-page: 47
  year: 2014
  end-page: 56
  ident: b0040
  article-title: Time series forecasting using a deep belief network with restricted Boltzmann machines
  publication-title: Neurocomputing
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0070
  article-title: Long short-term memory
  publication-title: Neural computation
– volume: 437
  start-page: 129
  year: 2005
  end-page: 132
  ident: b0025
  article-title: Increase in tropospheric nitrogen dioxide over China observed from space
  publication-title: Nature
– volume: 314
  start-page: 198
  year: 2018
  end-page: 206
  ident: b0100
  article-title: A deep spatial-temporal ensemble model for air quality prediction
  publication-title: Neurocomputing
– year: 2015
  ident: b0050
  article-title: Time series analysis: forecasting and control
– volume: 94
  start-page: 284
  year: 2004
  end-page: 289
  ident: b0110
  article-title: Tobler's first law and spatial analysis
  publication-title: Annals of the Association of American Geographers
– volume: 63
  start-page: 968
  year: 2018
  end-page: 978
  ident: b0020
  article-title: Advances in research on proinflammatory effects of biochemical components of atmospheric particulate matter
  publication-title: Chinese Science Bulletin
– reference: K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014).
– volume: 220
  start-page: 486
  year: 2019
  end-page: 492
  ident: b0120
  article-title: Long short-term memory-Fully connected (LSTM-FC) neural network for PM2. 5 concentration prediction
  publication-title: Chemosphere
– volume: 7
  start-page: 20050
  year: 2019
  end-page: 20059
  ident: b0080
  article-title: A novel combined prediction scheme based on CNN and LSTM for urban PM 2.5 concentration. IEEE
  publication-title: Access
– volume: 160
  start-page: 252
  year: 2015
  end-page: 262
  ident: b0010
  article-title: Remote sensing of atmospheric fine particulate matter (PM2. 5) mass concentration near the ground from satellite observation
  publication-title: Remote Sensing of Environment
– volume: 664
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0085
  article-title: A hybrid model for spatiotemporal forecasting of PM2. 5 based on graph convolutional neural network and long short-term memory
  publication-title: Science of the Total Environment
– volume: 27
  start-page: 1553
  year: 2016
  end-page: 1566
  ident: b0045
  article-title: Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM 2.5
  publication-title: Neural Computing and Applications
– start-page: 2267
  year: 2015
  end-page: 2276
  ident: b0015
  article-title: Forecasting fine-grained air quality based on big data
  publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 121
  start-page: 2331
  year: 2010
  end-page: 2378
  ident: b0005
  article-title: Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association
  publication-title: Circulation
– start-page: 3104
  year: 2014
  end-page: 3112
  ident: b0065
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 58
  start-page: 240
  year: 1895
  end-page: 242
  ident: b0115
  article-title: Note on regression and inheritance in the case of two parents
  publication-title: Proceedings of the Royal Society of London
– year: 2012
  ident: b0035
  article-title: Comparison Analysis of Variation Characteristics of SO
  publication-title: Beijing. Annual meeting of Chinese Meteorological Society
– volume: 231
  start-page: 997
  year: 2017
  end-page: 1004
  ident: b0105
  article-title: Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation
  publication-title: Environmental Pollution
– volume: 13
  start-page: 53
  year: 2009
  end-page: 72
  ident: b0060
  article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models
  publication-title: Journal of Intelligent Transportation Systems
– volume: 22
  start-page: 506
  year: 2002
  end-page: 510
  ident: b0030
  article-title: Variation characteristics of PM
  publication-title: Science
– volume: 10
  start-page: 303
  year: 2002
  end-page: 321
  ident: b0055
  article-title: Comparison of parametric and nonparametric models for traffic flow forecasting
  publication-title: Transportation Research Part C: Emerging Technologies
– ident: 10.1016/j.aej.2020.12.009_b0075
  doi: 10.3115/v1/D14-1179
– volume: 231
  start-page: 997
  year: 2017
  ident: 10.1016/j.aej.2020.12.009_b0105
  article-title: Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2017.08.114
– start-page: 2267
  year: 2015
  ident: 10.1016/j.aej.2020.12.009_b0015
  article-title: Forecasting fine-grained air quality based on big data
– volume: 7
  start-page: 20050
  year: 2019
  ident: 10.1016/j.aej.2020.12.009_b0080
  article-title: A novel combined prediction scheme based on CNN and LSTM for urban PM 2.5 concentration. IEEE
  publication-title: Access
  doi: 10.1109/ACCESS.2019.2897028
– volume: 58
  start-page: 240
  year: 1895
  ident: 10.1016/j.aej.2020.12.009_b0115
  article-title: Note on regression and inheritance in the case of two parents
  publication-title: Proceedings of the Royal Society of London
  doi: 10.1098/rspl.1895.0041
– volume: 10
  start-page: 303
  issue: 4
  year: 2002
  ident: 10.1016/j.aej.2020.12.009_b0055
  article-title: Comparison of parametric and nonparametric models for traffic flow forecasting
  publication-title: Transportation Research Part C: Emerging Technologies
  doi: 10.1016/S0968-090X(02)00009-8
– year: 2012
  ident: 10.1016/j.aej.2020.12.009_b0035
  article-title: Comparison Analysis of Variation Characteristics of SO2, NOx, O3 and PM2.5 Between Rural and Urban Areas
  publication-title: Beijing. Annual meeting of Chinese Meteorological Society
– volume: 22
  start-page: 506
  issue: 6
  year: 2002
  ident: 10.1016/j.aej.2020.12.009_b0030
  article-title: Variation characteristics of PM2.5 concentration and its relationship with PM10 and TSP in Beijing. Chinese Environmental
  publication-title: Science
– volume: 13
  start-page: 53
  issue: 2
  year: 2009
  ident: 10.1016/j.aej.2020.12.009_b0060
  article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models
  publication-title: Journal of Intelligent Transportation Systems
  doi: 10.1080/15472450902858368
– volume: 94
  start-page: 284
  issue: 2
  year: 2004
  ident: 10.1016/j.aej.2020.12.009_b0110
  article-title: Tobler's first law and spatial analysis
  publication-title: Annals of the Association of American Geographers
  doi: 10.1111/j.1467-8306.2004.09402005.x
– volume: 220
  start-page: 486
  year: 2019
  ident: 10.1016/j.aej.2020.12.009_b0120
  article-title: Long short-term memory-Fully connected (LSTM-FC) neural network for PM2. 5 concentration prediction
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.12.128
– volume: 63
  start-page: 968
  year: 2018
  ident: 10.1016/j.aej.2020.12.009_b0020
  article-title: Advances in research on proinflammatory effects of biochemical components of atmospheric particulate matter
  publication-title: Chinese Science Bulletin
  doi: 10.1360/N972017-01063
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.aej.2020.12.009_b0070
  article-title: Long short-term memory
  publication-title: Neural computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 27
  start-page: 1553
  issue: 6
  year: 2016
  ident: 10.1016/j.aej.2020.12.009_b0045
  article-title: Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM 2.5
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-015-1955-3
– volume: 654
  start-page: 1091
  year: 2019
  ident: 10.1016/j.aej.2020.12.009_b0095
  article-title: A novel spatiotemporal convolutional long short-term neural network for air pollution prediction
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2018.11.086
– volume: 314
  start-page: 198
  year: 2018
  ident: 10.1016/j.aej.2020.12.009_b0100
  article-title: A deep spatial-temporal ensemble model for air quality prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.049
– volume: 137
  start-page: 47
  year: 2014
  ident: 10.1016/j.aej.2020.12.009_b0040
  article-title: Time series forecasting using a deep belief network with restricted Boltzmann machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.047
– volume: 121
  start-page: 2331
  issue: 21
  year: 2010
  ident: 10.1016/j.aej.2020.12.009_b0005
  article-title: Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0b013e3181dbece1
– volume: 664
  start-page: 1
  year: 2019
  ident: 10.1016/j.aej.2020.12.009_b0085
  article-title: A hybrid model for spatiotemporal forecasting of PM2. 5 based on graph convolutional neural network and long short-term memory
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2019.01.333
– volume: 160
  start-page: 252
  year: 2015
  ident: 10.1016/j.aej.2020.12.009_b0010
  article-title: Remote sensing of atmospheric fine particulate matter (PM2. 5) mass concentration near the ground from satellite observation
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2015.02.005
– volume: 437
  start-page: 129
  issue: 7055
  year: 2005
  ident: 10.1016/j.aej.2020.12.009_b0025
  article-title: Increase in tropospheric nitrogen dioxide over China observed from space
  publication-title: Nature
  doi: 10.1038/nature04092
– year: 2015
  ident: 10.1016/j.aej.2020.12.009_b0050
– start-page: 3104
  year: 2014
  ident: 10.1016/j.aej.2020.12.009_b0065
  article-title: Sequence to sequence learning with neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 209
  start-page: 134
  year: 2019
  ident: 10.1016/j.aej.2020.12.009_b0090
  article-title: Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.10.243
SSID ssj0000579496
Score 2.5329046
Snippet Accurate monitoring of air quality is of great importance to our daily life. By predicting the air quality in advance, we can make timely warnings and defenses...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 2021
SubjectTerms Air quality prediction
Deep learning
LSTM
Supervised learning
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09a8MwEBUlUzuUftL0Cw2dCqa25A95bEtCKE2XJJBNSJYECcEJIR3673sn2cFL26WbEbJlns68O-vpiZAHY4AIDDORKyyPUuaqqMxgQoBKRAkFiS4EbhQef-SjWfo2z-ado75QExbsgQNwT2ifZw3QkoZKIbcQMM5wC6QkCuWS3JttA-d1iqng6g1x5g_ngm8ZlVe5aJc0vbhL2SXUhiz2vwJRjNghJe_d3-GmDt8MT8hxkyjS5_CCp-TA1mfkqGMfeE4GEy-HbtylVnSzxVUXRJquHVWLLQ1bJr8ocpWh0P4-mY4pelhC9zoowC_IbDiYvo6i5liEqAL23UVZIpRjLmdVrLVWInPcxjmAw1LNi1SZMnPKitiinZZOAbjYaA5pDxOmMHB5SXr1urZXhGY6sWUO85gZlhZQ6mluy4prXVWlg8yvT-IWF1k1nuF4dMVKtuKwpQQoJUIpEyYByj553N-yCYYZv3V-QbD3HdHr2jdABMgmAuRfEdAnaTtVskkbQjoAj1r8PPb1f4x9Qw4Zily8lOeW9HbbT3sHWcpO3_uA_Abv5eAz
  priority: 102
  providerName: Directory of Open Access Journals
Title Spatiotemporal prediction of air quality based on LSTM neural network
URI https://dx.doi.org/10.1016/j.aej.2020.12.009
https://doaj.org/article/1349ed512b9246e196fd3e24487af166
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQXdqh6lOlD-ShU6WIYDuvERAIldKhgMpmxbFdgRAgRIf--945CUqHdqiUIbLOSXTn-Luz7z4T8qg1AIFm2rOR4Z5gNvOSAAwCUBInEJCoKMZC4fFrOJyJ53kwr5FeWQuDaZXF3J_P6W62LlpahTZb28WiBf8h8geFAGHoRXMs-OUidkV88-5hnQWLLYU7pgvlPexQbm66NK_ULCFKZL5bFMS0xAo8ORb_CkpVkGdwRk4Ll5F28q86JzWzviAnFSLBS9KfuMTogmdqRbc73H9BndONpeliR_PiyS-KqKUptL9MpmOKbJYgvs5zwa_IbNCf9oZecUCClwEO772gHaeW2ZBlvlIqjQPLjR8yAZfikUh1EtjUxL5BYi0lmEp8rTg4QCzWkYbba1Jfb9bmhtBAtU0SgkUDzUQEQZ_iJsm4UlmWWPABG8Qv9SKzgj0cD7FYyTJNbClBlRJVKdtMgiob5OnQZZtTZ_wl3EVlHwSR9do1bHYfsjC7RCpFo8FFURA1hgYmD6u5AQcljlLbDsMGEaWp5I9BBI9a_P7u2_91uyPHDBNcXBrPPanvd5_mATyUvWqSo87o7X3UdBF-0w3Ib5ox45Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9owEB7R7aHdQ7Xd7mrp04fupVJEcN6HHrpdEJTHBZC4uXFsr4IQIJaq4nf1D3bGcRA9tIdKSDlElu1Y48k87M-fAT4qhY5AceWZRAdeyE3hZRFOCLqSNMOERCYpHRQejePeLPw2j-YN-FWfhSFYpbP9lU231tqVtJw0W5uybOF_SPxBMbowiqKD1CErB3r_E_O2x8_9e5zkW867nenXnueuFvAK9GA7L2qnueEm5oUvpczTyATaj3mIjwySMFdZZHKd-pooqWTIZeYrGWDowFOVKHzFfp_AU4w-ErIG_fndYWGHTneG9l4wGqBHI6x3Uy2uLNcLTEu5b1chCQd55A_ttQFHbvHI1XUv4IWLUdmXSgwvoaFXl3B-xFz4CjoTi8R2xFZLttnShg9NMlsblpdbVp3W3DNyk4ph-XAyHTGiz8Tqqwp8fgWzk4jtGs5W65W-ARbJts5iVKFI8TDBLFMGOisCKYsiMxh0NsGv5SIKR1dOt2YsRY1LWwgUpSBRijYXKMomfDo02VRcHf-qfEfCPlQkmm1bsN4-CKdngrgbtcKYSGKaGmu0VkYFGiOiNMlNO46bENZTJf7QWuyq_Pu3X_9fsw_wrDcdDcWwPx68geec0DUWQ_QWznbbH_odhkc7-d6qI4Pvp9b_3wSBHi0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+prediction+of+air+quality+based+on+LSTM+neural+network&rft.jtitle=Alexandria+engineering+journal&rft.au=Seng%2C+Dewen&rft.au=Zhang%2C+Qiyan&rft.au=Zhang%2C+Xuefeng&rft.au=Chen%2C+Guangsen&rft.date=2021-04-01&rft.issn=1110-0168&rft.volume=60&rft.issue=2&rft.spage=2021&rft.epage=2032&rft_id=info:doi/10.1016%2Fj.aej.2020.12.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aej_2020_12_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon