Spatiotemporal prediction of air quality based on LSTM neural network
Accurate monitoring of air quality is of great importance to our daily life. By predicting the air quality in advance, we can make timely warnings and defenses to minimize the threat to life. With a large number of environmental data, the air quality prediction based on deep learning technology is s...
Saved in:
Published in | Alexandria engineering journal Vol. 60; no. 2; pp. 2021 - 2032 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate monitoring of air quality is of great importance to our daily life. By predicting the air quality in advance, we can make timely warnings and defenses to minimize the threat to life. With a large number of environmental data, the air quality prediction based on deep learning technology is studied in depth. Based on long short-term memory (LSTM), a comprehensive prediction model with multi-output and multi-index of supervised learning (MMSL) was proposed. The particle concentration data (mainly PM2.5, means particles with aerodynamic diameter ≤ 2.5 mm) of the present monitoring station, as well as that of the nearest neighbor stations, the meteorological data, and the gaseous pollutant data in the air (mainly CO, NO2, O3, SO2) of the same period were integrated. All data were converted into the supervised learning format and normalized. The LSTM was used for training to obtain the predicted values of air quality pollution indicators (PM2.5, CO, NO2, O3, SO2). In the present study, the representative stations of the 35 monitoring stations in Beijing were selected, and input the air quality sequences of the representative stations with different data characteristics into the model to obtain the predicted concentration values of the air quality indicators of the representative stations, then calculated the average value as the overall air quality prediction result of Beijing. The air quality time series datasets collected from 35 air quality monitoring stations in Beijing from January 1, 2016, to December 31, 2017, were used to validate the performance of the model compared with other baseline models and the two most advanced models. Experimental results show that, overall, the performance of the present model is superior to other baseline models. |
---|---|
AbstractList | Accurate monitoring of air quality is of great importance to our daily life. By predicting the air quality in advance, we can make timely warnings and defenses to minimize the threat to life. With a large number of environmental data, the air quality prediction based on deep learning technology is studied in depth. Based on long short-term memory (LSTM), a comprehensive prediction model with multi-output and multi-index of supervised learning (MMSL) was proposed. The particle concentration data (mainly PM2.5, means particles with aerodynamic diameter ≤ 2.5 mm) of the present monitoring station, as well as that of the nearest neighbor stations, the meteorological data, and the gaseous pollutant data in the air (mainly CO, NO2, O3, SO2) of the same period were integrated. All data were converted into the supervised learning format and normalized. The LSTM was used for training to obtain the predicted values of air quality pollution indicators (PM2.5, CO, NO2, O3, SO2). In the present study, the representative stations of the 35 monitoring stations in Beijing were selected, and input the air quality sequences of the representative stations with different data characteristics into the model to obtain the predicted concentration values of the air quality indicators of the representative stations, then calculated the average value as the overall air quality prediction result of Beijing. The air quality time series datasets collected from 35 air quality monitoring stations in Beijing from January 1, 2016, to December 31, 2017, were used to validate the performance of the model compared with other baseline models and the two most advanced models. Experimental results show that, overall, the performance of the present model is superior to other baseline models. |
Author | Chen, Guangsen Chen, Xiyuan Seng, Dewen Zhang, Qiyan Zhang, Xuefeng |
Author_xml | – sequence: 1 givenname: Dewen surname: Seng fullname: Seng, Dewen email: dwenseng@163.com organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China – sequence: 2 givenname: Qiyan surname: Zhang fullname: Zhang, Qiyan organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China – sequence: 3 givenname: Xuefeng surname: Zhang fullname: Zhang, Xuefeng organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China – sequence: 4 givenname: Guangsen surname: Chen fullname: Chen, Guangsen organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China – sequence: 5 givenname: Xiyuan surname: Chen fullname: Chen, Xiyuan organization: School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China |
BookMark | eNp9kM1OAyEUhVnURK19AHfzAq3AMH9xZYw_TWpcqGtyBy6GcRwqQzV9e2-tceGi5CZwD_ccyHfKJkMYkLFzwReCi_KiWwB2C8kl9XLBeTNhJ0IIPqfL-pjNxrHjtIqqUU15wm6e1pB8SPi-DhH6bB3RekPKkAWXgY_ZxwZ6n7ZZCyPajPTV0_NDNuBmNz5g-grx7YwdOehHnP3uU_Zye_N8fT9fPd4tr69Wc6N4meaFqMFJV0rD27aFunA58lIqqjavFNimcIA1JzHnrZJtw22bKyVkbStLxylb7nNtgE6vo3-HuNUBvP4RQnzVEJM3PWqRqwZtISiEHkDRlM7mKJWqK3CiLClL7LNMDOMY0f3lCa53KHWnCaXeodRCakJJnuqfx_i04zekCL4_6LzcO5HwfHqMejQeB0O0I5pE__cH3N88q5EM |
CitedBy_id | crossref_primary_10_3233_IDA_230890 crossref_primary_10_1016_j_scitotenv_2023_168672 crossref_primary_10_1002_met_2115 crossref_primary_10_1016_j_samod_2021_100002 crossref_primary_10_1177_03611981221082589 crossref_primary_10_1007_s10661_023_12001_2 crossref_primary_10_3390_su14094889 crossref_primary_10_1007_s11356_023_25735_w crossref_primary_10_1109_ACCESS_2023_3234214 crossref_primary_10_3390_su15021637 crossref_primary_10_3389_fenvs_2022_956020 crossref_primary_10_1007_s11869_023_01385_2 crossref_primary_10_3390_math12243982 crossref_primary_10_3390_s21041064 crossref_primary_10_3390_atmos13060989 crossref_primary_10_3934_era_2023025 crossref_primary_10_1021_acs_est_1c06157 crossref_primary_10_1680_jenes_23_00093 crossref_primary_10_1016_j_apr_2023_101765 crossref_primary_10_1016_j_jobe_2025_112448 crossref_primary_10_1007_s10489_023_05109_y crossref_primary_10_1016_j_apr_2022_101352 crossref_primary_10_1109_ACCESS_2024_3494263 crossref_primary_10_1016_j_ecoinf_2024_102477 crossref_primary_10_1007_s10723_023_09671_0 crossref_primary_10_1109_ACCESS_2021_3093430 crossref_primary_10_3390_toxics12080554 crossref_primary_10_1016_j_eehl_2024_01_006 crossref_primary_10_3390_su15129713 crossref_primary_10_1007_s11042_021_11734_x crossref_primary_10_1016_j_ifacsc_2025_100298 crossref_primary_10_1007_s00704_023_04624_9 crossref_primary_10_3390_pr10112312 crossref_primary_10_3390_su16166794 crossref_primary_10_3390_environments11060107 crossref_primary_10_1016_j_scs_2023_104445 crossref_primary_10_1038_s41598_025_91329_w crossref_primary_10_1007_s10470_025_02299_y crossref_primary_10_33793_acperpro_05_03_9238 crossref_primary_10_1080_17538947_2024_2391952 crossref_primary_10_1016_j_future_2022_05_020 crossref_primary_10_1016_j_scitotenv_2023_166989 crossref_primary_10_1007_s10462_023_10424_4 crossref_primary_10_1016_j_apr_2025_102439 crossref_primary_10_1051_itmconf_20246801012 crossref_primary_10_1016_j_buildenv_2024_112167 crossref_primary_10_1016_j_neucom_2025_129840 crossref_primary_10_1007_s12665_025_12090_x crossref_primary_10_1016_j_buildenv_2021_108525 crossref_primary_10_1007_s10462_023_10570_9 crossref_primary_10_3389_fenvs_2022_924986 crossref_primary_10_1007_s11356_021_17442_1 crossref_primary_10_3389_fenvs_2022_882741 crossref_primary_10_1007_s00376_023_3060_3 crossref_primary_10_3390_math12101457 crossref_primary_10_1038_s41598_024_84342_y crossref_primary_10_1016_j_atmosenv_2024_120921 crossref_primary_10_1007_s11869_024_01680_6 crossref_primary_10_1371_journal_pone_0254179 crossref_primary_10_1002_for_2962 crossref_primary_10_1515_jisys_2023_0310 crossref_primary_10_1016_j_dche_2023_100093 crossref_primary_10_1016_j_envpol_2025_125937 crossref_primary_10_1155_2022_3362617 crossref_primary_10_1016_j_inffus_2024_102324 crossref_primary_10_3390_app122211317 crossref_primary_10_3390_s23020640 crossref_primary_10_1038_s41598_025_87935_3 crossref_primary_10_1088_1742_6596_2010_1_012011 crossref_primary_10_3390_atmos15040418 crossref_primary_10_1109_TIM_2023_3341116 crossref_primary_10_1186_s40537_024_01043_z crossref_primary_10_1515_cppm_2022_0052 crossref_primary_10_3390_s21124248 crossref_primary_10_1007_s11269_022_03270_6 crossref_primary_10_1007_s13762_022_04702_x crossref_primary_10_1002_adsr_202300207 crossref_primary_10_1155_2021_1616806 crossref_primary_10_1016_j_mlwa_2025_100624 crossref_primary_10_1186_s40537_023_00754_z crossref_primary_10_1016_j_energy_2023_127852 crossref_primary_10_1007_s10651_024_00637_3 crossref_primary_10_1016_j_jclepro_2022_134011 crossref_primary_10_3390_app12073597 crossref_primary_10_1016_j_jhydrol_2023_129105 crossref_primary_10_1177_00202940241263490 crossref_primary_10_1016_j_conengprac_2023_105587 crossref_primary_10_32604_csse_2022_023882 crossref_primary_10_1016_j_ecoinf_2024_102568 crossref_primary_10_3390_atmos14020308 crossref_primary_10_1016_j_aej_2023_05_059 crossref_primary_10_1016_j_measen_2022_100546 crossref_primary_10_1016_j_chemosphere_2022_137636 crossref_primary_10_1016_j_eswa_2023_123008 crossref_primary_10_1063_5_0207834 crossref_primary_10_1117_1_JRS_18_012005 crossref_primary_10_1016_j_apr_2021_101150 crossref_primary_10_1080_19392699_2024_2431286 |
Cites_doi | 10.3115/v1/D14-1179 10.1016/j.envpol.2017.08.114 10.1109/ACCESS.2019.2897028 10.1098/rspl.1895.0041 10.1016/S0968-090X(02)00009-8 10.1080/15472450902858368 10.1111/j.1467-8306.2004.09402005.x 10.1016/j.chemosphere.2018.12.128 10.1360/N972017-01063 10.1162/neco.1997.9.8.1735 10.1007/s00521-015-1955-3 10.1016/j.scitotenv.2018.11.086 10.1016/j.neucom.2018.06.049 10.1016/j.neucom.2013.03.047 10.1161/CIR.0b013e3181dbece1 10.1016/j.scitotenv.2019.01.333 10.1016/j.rse.2015.02.005 10.1038/nature04092 10.1016/j.jclepro.2018.10.243 |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.aej.2020.12.009 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 2032 |
ExternalDocumentID | oai_doaj_org_article_1349ed512b9246e196fd3e24487af166 10_1016_j_aej_2020_12_009 S1110016820306438 |
GroupedDBID | --K 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c406t-518af2f62c0bbba85f3e0624624b374ad95fae80e0630b42b90db344128d7ddb3 |
IEDL.DBID | IXB |
ISSN | 1110-0168 |
IngestDate | Wed Aug 27 01:22:13 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Tue Jul 01 04:24:49 EDT 2025 Wed May 17 00:06:50 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Deep learning Air quality prediction LSTM Supervised learning Time series |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-518af2f62c0bbba85f3e0624624b374ad95fae80e0630b42b90db344128d7ddb3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1110016820306438 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1349ed512b9246e196fd3e24487af166 crossref_primary_10_1016_j_aej_2020_12_009 crossref_citationtrail_10_1016_j_aej_2020_12_009 elsevier_sciencedirect_doi_10_1016_j_aej_2020_12_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2021 2021-04-00 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
PublicationDecade | 2020 |
PublicationTitle | Alexandria engineering journal |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Miller (b0110) 2004; 94 Zhang, Li (b0010) 2015; 160 Kuremoto, Kimura, Kobayashi, Obayashi (b0040) 2014; 137 K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014). Pearson (b0115) 1895; 58 Li, Peng, Yao, Cui, Hu, You, Chi (b0105) 2017; 231 Chandra, Al-Deek (b0060) 2009; 13 Zhao, Deng, Cai, Chen (b0120) 2019; 220 Sutskever, Vinyals, Le (b0065) 2014 Brook, Rajagopalan, PopeIII, Brook, Bhatnagar, Diez-Roux, Holguin, Hong, Luepker, Mittleman, Peters, Siscovick, Smith, Whitsel, Kaufman (b0005) 2010; 121 Zheng, Yi, Li, Li, Shan, Chang, Li (b0015) 2015 Yang, He, Ma, Zhang, Yu (b0030) 2002; 22 Hochreiter, Schmidhuber (b0070) 1997; 9 Qin, Yu, Zou, Yong, Zhao, Zhang (b0080) 2019; 7 Richter, Burrows, Nüß, Granier, Niemeier (b0025) 2005; 437 Wen, Liu, Yao, Peng, Li, Hu, Chi (b0095) 2019; 654 Shen, Zhu, Niu (b0020) 2018; 63 Feng, Li, Ding (b0035) 2012 Zhou, Chang, Chang, Kao, Wang (b0090) 2019; 209 Ong, Sugiura, Zettsu (b0045) 2016; 27 Box, Jenkins, Reinsel, Ljung (b0050) 2015 Wang, Song (b0100) 2018; 314 Smith, Williams, Oswald (b0055) 2002; 10 Qi, Li, Karimian, Liu (b0085) 2019; 664 Hochreiter (10.1016/j.aej.2020.12.009_b0070) 1997; 9 Wen (10.1016/j.aej.2020.12.009_b0095) 2019; 654 Zhang (10.1016/j.aej.2020.12.009_b0010) 2015; 160 Ong (10.1016/j.aej.2020.12.009_b0045) 2016; 27 Qin (10.1016/j.aej.2020.12.009_b0080) 2019; 7 Zheng (10.1016/j.aej.2020.12.009_b0015) 2015 Pearson (10.1016/j.aej.2020.12.009_b0115) 1895; 58 Chandra (10.1016/j.aej.2020.12.009_b0060) 2009; 13 Shen (10.1016/j.aej.2020.12.009_b0020) 2018; 63 Miller (10.1016/j.aej.2020.12.009_b0110) 2004; 94 Zhao (10.1016/j.aej.2020.12.009_b0120) 2019; 220 10.1016/j.aej.2020.12.009_b0075 Wang (10.1016/j.aej.2020.12.009_b0100) 2018; 314 Box (10.1016/j.aej.2020.12.009_b0050) 2015 Yang (10.1016/j.aej.2020.12.009_b0030) 2002; 22 Richter (10.1016/j.aej.2020.12.009_b0025) 2005; 437 Smith (10.1016/j.aej.2020.12.009_b0055) 2002; 10 Kuremoto (10.1016/j.aej.2020.12.009_b0040) 2014; 137 Sutskever (10.1016/j.aej.2020.12.009_b0065) 2014 Qi (10.1016/j.aej.2020.12.009_b0085) 2019; 664 Zhou (10.1016/j.aej.2020.12.009_b0090) 2019; 209 Li (10.1016/j.aej.2020.12.009_b0105) 2017; 231 Brook (10.1016/j.aej.2020.12.009_b0005) 2010; 121 Feng (10.1016/j.aej.2020.12.009_b0035) 2012 |
References_xml | – volume: 654 start-page: 1091 year: 2019 end-page: 1099 ident: b0095 article-title: A novel spatiotemporal convolutional long short-term neural network for air pollution prediction publication-title: Science of the Total Environment – volume: 209 start-page: 134 year: 2019 end-page: 145 ident: b0090 article-title: Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts publication-title: Journal of Cleaner Production – volume: 137 start-page: 47 year: 2014 end-page: 56 ident: b0040 article-title: Time series forecasting using a deep belief network with restricted Boltzmann machines publication-title: Neurocomputing – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0070 article-title: Long short-term memory publication-title: Neural computation – volume: 437 start-page: 129 year: 2005 end-page: 132 ident: b0025 article-title: Increase in tropospheric nitrogen dioxide over China observed from space publication-title: Nature – volume: 314 start-page: 198 year: 2018 end-page: 206 ident: b0100 article-title: A deep spatial-temporal ensemble model for air quality prediction publication-title: Neurocomputing – year: 2015 ident: b0050 article-title: Time series analysis: forecasting and control – volume: 94 start-page: 284 year: 2004 end-page: 289 ident: b0110 article-title: Tobler's first law and spatial analysis publication-title: Annals of the Association of American Geographers – volume: 63 start-page: 968 year: 2018 end-page: 978 ident: b0020 article-title: Advances in research on proinflammatory effects of biochemical components of atmospheric particulate matter publication-title: Chinese Science Bulletin – reference: K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014). – volume: 220 start-page: 486 year: 2019 end-page: 492 ident: b0120 article-title: Long short-term memory-Fully connected (LSTM-FC) neural network for PM2. 5 concentration prediction publication-title: Chemosphere – volume: 7 start-page: 20050 year: 2019 end-page: 20059 ident: b0080 article-title: A novel combined prediction scheme based on CNN and LSTM for urban PM 2.5 concentration. IEEE publication-title: Access – volume: 160 start-page: 252 year: 2015 end-page: 262 ident: b0010 article-title: Remote sensing of atmospheric fine particulate matter (PM2. 5) mass concentration near the ground from satellite observation publication-title: Remote Sensing of Environment – volume: 664 start-page: 1 year: 2019 end-page: 10 ident: b0085 article-title: A hybrid model for spatiotemporal forecasting of PM2. 5 based on graph convolutional neural network and long short-term memory publication-title: Science of the Total Environment – volume: 27 start-page: 1553 year: 2016 end-page: 1566 ident: b0045 article-title: Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM 2.5 publication-title: Neural Computing and Applications – start-page: 2267 year: 2015 end-page: 2276 ident: b0015 article-title: Forecasting fine-grained air quality based on big data publication-title: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 121 start-page: 2331 year: 2010 end-page: 2378 ident: b0005 article-title: Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association publication-title: Circulation – start-page: 3104 year: 2014 end-page: 3112 ident: b0065 article-title: Sequence to sequence learning with neural networks publication-title: Advances in Neural Information Processing Systems – volume: 58 start-page: 240 year: 1895 end-page: 242 ident: b0115 article-title: Note on regression and inheritance in the case of two parents publication-title: Proceedings of the Royal Society of London – year: 2012 ident: b0035 article-title: Comparison Analysis of Variation Characteristics of SO publication-title: Beijing. Annual meeting of Chinese Meteorological Society – volume: 231 start-page: 997 year: 2017 end-page: 1004 ident: b0105 article-title: Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation publication-title: Environmental Pollution – volume: 13 start-page: 53 year: 2009 end-page: 72 ident: b0060 article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models publication-title: Journal of Intelligent Transportation Systems – volume: 22 start-page: 506 year: 2002 end-page: 510 ident: b0030 article-title: Variation characteristics of PM publication-title: Science – volume: 10 start-page: 303 year: 2002 end-page: 321 ident: b0055 article-title: Comparison of parametric and nonparametric models for traffic flow forecasting publication-title: Transportation Research Part C: Emerging Technologies – ident: 10.1016/j.aej.2020.12.009_b0075 doi: 10.3115/v1/D14-1179 – volume: 231 start-page: 997 year: 2017 ident: 10.1016/j.aej.2020.12.009_b0105 article-title: Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation publication-title: Environmental Pollution doi: 10.1016/j.envpol.2017.08.114 – start-page: 2267 year: 2015 ident: 10.1016/j.aej.2020.12.009_b0015 article-title: Forecasting fine-grained air quality based on big data – volume: 7 start-page: 20050 year: 2019 ident: 10.1016/j.aej.2020.12.009_b0080 article-title: A novel combined prediction scheme based on CNN and LSTM for urban PM 2.5 concentration. IEEE publication-title: Access doi: 10.1109/ACCESS.2019.2897028 – volume: 58 start-page: 240 year: 1895 ident: 10.1016/j.aej.2020.12.009_b0115 article-title: Note on regression and inheritance in the case of two parents publication-title: Proceedings of the Royal Society of London doi: 10.1098/rspl.1895.0041 – volume: 10 start-page: 303 issue: 4 year: 2002 ident: 10.1016/j.aej.2020.12.009_b0055 article-title: Comparison of parametric and nonparametric models for traffic flow forecasting publication-title: Transportation Research Part C: Emerging Technologies doi: 10.1016/S0968-090X(02)00009-8 – year: 2012 ident: 10.1016/j.aej.2020.12.009_b0035 article-title: Comparison Analysis of Variation Characteristics of SO2, NOx, O3 and PM2.5 Between Rural and Urban Areas publication-title: Beijing. Annual meeting of Chinese Meteorological Society – volume: 22 start-page: 506 issue: 6 year: 2002 ident: 10.1016/j.aej.2020.12.009_b0030 article-title: Variation characteristics of PM2.5 concentration and its relationship with PM10 and TSP in Beijing. Chinese Environmental publication-title: Science – volume: 13 start-page: 53 issue: 2 year: 2009 ident: 10.1016/j.aej.2020.12.009_b0060 article-title: Predictions of freeway traffic speeds and volumes using vector autoregressive models publication-title: Journal of Intelligent Transportation Systems doi: 10.1080/15472450902858368 – volume: 94 start-page: 284 issue: 2 year: 2004 ident: 10.1016/j.aej.2020.12.009_b0110 article-title: Tobler's first law and spatial analysis publication-title: Annals of the Association of American Geographers doi: 10.1111/j.1467-8306.2004.09402005.x – volume: 220 start-page: 486 year: 2019 ident: 10.1016/j.aej.2020.12.009_b0120 article-title: Long short-term memory-Fully connected (LSTM-FC) neural network for PM2. 5 concentration prediction publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.12.128 – volume: 63 start-page: 968 year: 2018 ident: 10.1016/j.aej.2020.12.009_b0020 article-title: Advances in research on proinflammatory effects of biochemical components of atmospheric particulate matter publication-title: Chinese Science Bulletin doi: 10.1360/N972017-01063 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.aej.2020.12.009_b0070 article-title: Long short-term memory publication-title: Neural computation doi: 10.1162/neco.1997.9.8.1735 – volume: 27 start-page: 1553 issue: 6 year: 2016 ident: 10.1016/j.aej.2020.12.009_b0045 article-title: Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM 2.5 publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1955-3 – volume: 654 start-page: 1091 year: 2019 ident: 10.1016/j.aej.2020.12.009_b0095 article-title: A novel spatiotemporal convolutional long short-term neural network for air pollution prediction publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2018.11.086 – volume: 314 start-page: 198 year: 2018 ident: 10.1016/j.aej.2020.12.009_b0100 article-title: A deep spatial-temporal ensemble model for air quality prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.049 – volume: 137 start-page: 47 year: 2014 ident: 10.1016/j.aej.2020.12.009_b0040 article-title: Time series forecasting using a deep belief network with restricted Boltzmann machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.047 – volume: 121 start-page: 2331 issue: 21 year: 2010 ident: 10.1016/j.aej.2020.12.009_b0005 article-title: Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association publication-title: Circulation doi: 10.1161/CIR.0b013e3181dbece1 – volume: 664 start-page: 1 year: 2019 ident: 10.1016/j.aej.2020.12.009_b0085 article-title: A hybrid model for spatiotemporal forecasting of PM2. 5 based on graph convolutional neural network and long short-term memory publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2019.01.333 – volume: 160 start-page: 252 year: 2015 ident: 10.1016/j.aej.2020.12.009_b0010 article-title: Remote sensing of atmospheric fine particulate matter (PM2. 5) mass concentration near the ground from satellite observation publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2015.02.005 – volume: 437 start-page: 129 issue: 7055 year: 2005 ident: 10.1016/j.aej.2020.12.009_b0025 article-title: Increase in tropospheric nitrogen dioxide over China observed from space publication-title: Nature doi: 10.1038/nature04092 – year: 2015 ident: 10.1016/j.aej.2020.12.009_b0050 – start-page: 3104 year: 2014 ident: 10.1016/j.aej.2020.12.009_b0065 article-title: Sequence to sequence learning with neural networks publication-title: Advances in Neural Information Processing Systems – volume: 209 start-page: 134 year: 2019 ident: 10.1016/j.aej.2020.12.009_b0090 article-title: Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2018.10.243 |
SSID | ssj0000579496 |
Score | 2.5329046 |
Snippet | Accurate monitoring of air quality is of great importance to our daily life. By predicting the air quality in advance, we can make timely warnings and defenses... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 2021 |
SubjectTerms | Air quality prediction Deep learning LSTM Supervised learning Time series |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09a8MwEBUlUzuUftL0Cw2dCqa25A95bEtCKE2XJJBNSJYECcEJIR3673sn2cFL26WbEbJlns68O-vpiZAHY4AIDDORKyyPUuaqqMxgQoBKRAkFiS4EbhQef-SjWfo2z-ado75QExbsgQNwT2ifZw3QkoZKIbcQMM5wC6QkCuWS3JttA-d1iqng6g1x5g_ngm8ZlVe5aJc0vbhL2SXUhiz2vwJRjNghJe_d3-GmDt8MT8hxkyjS5_CCp-TA1mfkqGMfeE4GEy-HbtylVnSzxVUXRJquHVWLLQ1bJr8ocpWh0P4-mY4pelhC9zoowC_IbDiYvo6i5liEqAL23UVZIpRjLmdVrLVWInPcxjmAw1LNi1SZMnPKitiinZZOAbjYaA5pDxOmMHB5SXr1urZXhGY6sWUO85gZlhZQ6mluy4prXVWlg8yvT-IWF1k1nuF4dMVKtuKwpQQoJUIpEyYByj553N-yCYYZv3V-QbD3HdHr2jdABMgmAuRfEdAnaTtVskkbQjoAj1r8PPb1f4x9Qw4Zily8lOeW9HbbT3sHWcpO3_uA_Abv5eAz priority: 102 providerName: Directory of Open Access Journals |
Title | Spatiotemporal prediction of air quality based on LSTM neural network |
URI | https://dx.doi.org/10.1016/j.aej.2020.12.009 https://doaj.org/article/1349ed512b9246e196fd3e24487af166 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQXdqh6lOlD-ShU6WIYDuvERAIldKhgMpmxbFdgRAgRIf--945CUqHdqiUIbLOSXTn-Luz7z4T8qg1AIFm2rOR4Z5gNvOSAAwCUBInEJCoKMZC4fFrOJyJ53kwr5FeWQuDaZXF3J_P6W62LlpahTZb28WiBf8h8geFAGHoRXMs-OUidkV88-5hnQWLLYU7pgvlPexQbm66NK_ULCFKZL5bFMS0xAo8ORb_CkpVkGdwRk4Ll5F28q86JzWzviAnFSLBS9KfuMTogmdqRbc73H9BndONpeliR_PiyS-KqKUptL9MpmOKbJYgvs5zwa_IbNCf9oZecUCClwEO772gHaeW2ZBlvlIqjQPLjR8yAZfikUh1EtjUxL5BYi0lmEp8rTg4QCzWkYbba1Jfb9bmhtBAtU0SgkUDzUQEQZ_iJsm4UlmWWPABG8Qv9SKzgj0cD7FYyTJNbClBlRJVKdtMgiob5OnQZZtTZ_wl3EVlHwSR9do1bHYfsjC7RCpFo8FFURA1hgYmD6u5AQcljlLbDsMGEaWp5I9BBI9a_P7u2_91uyPHDBNcXBrPPanvd5_mATyUvWqSo87o7X3UdBF-0w3Ib5ox45Y |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9owEB7R7aHdQ7Xd7mrp04fupVJEcN6HHrpdEJTHBZC4uXFsr4IQIJaq4nf1D3bGcRA9tIdKSDlElu1Y48k87M-fAT4qhY5AceWZRAdeyE3hZRFOCLqSNMOERCYpHRQejePeLPw2j-YN-FWfhSFYpbP9lU231tqVtJw0W5uybOF_SPxBMbowiqKD1CErB3r_E_O2x8_9e5zkW867nenXnueuFvAK9GA7L2qnueEm5oUvpczTyATaj3mIjwySMFdZZHKd-pooqWTIZeYrGWDowFOVKHzFfp_AU4w-ErIG_fndYWGHTneG9l4wGqBHI6x3Uy2uLNcLTEu5b1chCQd55A_ttQFHbvHI1XUv4IWLUdmXSgwvoaFXl3B-xFz4CjoTi8R2xFZLttnShg9NMlsblpdbVp3W3DNyk4ph-XAyHTGiz8Tqqwp8fgWzk4jtGs5W65W-ARbJts5iVKFI8TDBLFMGOisCKYsiMxh0NsGv5SIKR1dOt2YsRY1LWwgUpSBRijYXKMomfDo02VRcHf-qfEfCPlQkmm1bsN4-CKdngrgbtcKYSGKaGmu0VkYFGiOiNMlNO46bENZTJf7QWuyq_Pu3X_9fsw_wrDcdDcWwPx68geec0DUWQ_QWznbbH_odhkc7-d6qI4Pvp9b_3wSBHi0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatiotemporal+prediction+of+air+quality+based+on+LSTM+neural+network&rft.jtitle=Alexandria+engineering+journal&rft.au=Seng%2C+Dewen&rft.au=Zhang%2C+Qiyan&rft.au=Zhang%2C+Xuefeng&rft.au=Chen%2C+Guangsen&rft.date=2021-04-01&rft.issn=1110-0168&rft.volume=60&rft.issue=2&rft.spage=2021&rft.epage=2032&rft_id=info:doi/10.1016%2Fj.aej.2020.12.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aej_2020_12_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |