Restricted Phase Space Thermodynamics of Nonlinear Electrodynamics-Anti-de Sitter Black Holes
We study the Restricted Phase Space Thermodynamics (RPST) of magnetically charged anti-de Sitter (AdS) black holes sourced by nonlinear electrodynamics (NED). The first law and the corresponding Euler relation are examined using the scaling properties. While the mass is homogeneous in the first orde...
Saved in:
Published in | Progress of theoretical and experimental physics Vol. 2024; no. 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-3911 2050-3911 |
DOI | 10.1093/ptep/ptae154 |
Cover
Abstract | We study the Restricted Phase Space Thermodynamics (RPST) of magnetically charged anti-de Sitter (AdS) black holes sourced by nonlinear electrodynamics (NED). The first law and the corresponding Euler relation are examined using the scaling properties. While the mass is homogeneous in the first order, the intensive variables are observed to follow zeroth-order homogeneity. We use numerical and graphical techniques to find the critical points of the various thermodynamic quantities. By utilizing the rescaling properties of the equation of states, we study the thermodynamic processes using different pairs of variables. From our analysis, we infer that although the RPST of the NED-AdS black hole resembles those of Reissner–Nordström-AdS, Kerr-AdS, and Kerr–Sen-AdS black holes in most of its aspects, hinting at a possible universality, there exists one particular $\mu -C$ process that differs in its behavior from its counterparts in earlier reported works. |
---|---|
AbstractList | We study the Restricted Phase Space Thermodynamics (RPST) of magnetically charged anti-de Sitter (AdS) black holes sourced by nonlinear electrodynamics (NED). The first law and the corresponding Euler relation are examined using the scaling properties. While the mass is homogeneous in the first order, the intensive variables are observed to follow zeroth-order homogeneity. We use numerical and graphical techniques to find the critical points of the various thermodynamic quantities. By utilizing the rescaling properties of the equation of states, we study the thermodynamic processes using different pairs of variables. From our analysis, we infer that although the RPST of the NED-AdS black hole resembles those of Reissner–Nordström-AdS, Kerr-AdS, and Kerr–Sen-AdS black holes in most of its aspects, hinting at a possible universality, there exists one particular $\mu -C$ process that differs in its behavior from its counterparts in earlier reported works. We study the Restricted Phase Space Thermodynamics (RPST) of magnetically charged anti-de Sitter (AdS) black holes sourced by nonlinear electrodynamics (NED). The first law and the corresponding Euler relation are examined using the scaling properties. While the mass is homogeneous in the first order, the intensive variables are observed to follow zeroth-order homogeneity. We use numerical and graphical techniques to find the critical points of the various thermodynamic quantities. By utilizing the rescaling properties of the equation of states, we study the thermodynamic processes using different pairs of variables. From our analysis, we infer that although the RPST of the NED-AdS black hole resembles those of Reissner–Nordström-AdS, Kerr-AdS, and Kerr–Sen-AdS black holes in most of its aspects, hinting at a possible universality, there exists one particular $\mu -C$ process that differs in its behavior from its counterparts in earlier reported works. |
Author | Phukon, Prabwal Awal, Mozib Bin |
Author_xml | – sequence: 1 givenname: Mozib Bin orcidid: 0009-0007-8797-667X surname: Awal fullname: Awal, Mozib Bin email: mozibawal@gmail.com – sequence: 2 givenname: Prabwal orcidid: 0000-0002-4465-7974 surname: Phukon fullname: Phukon, Prabwal email: prabwal@dibru.ac.in |
BookMark | eNp9kEFLAzEQhYNUsNbe_AEBD15cTTbZTfdYS7VCUdF6lCWbzNLUbbIm6aH_3i0tIoJeZh7M92aYd4p61llA6JySa0oKdtNGaLsigWb8CPVTkpGEFZT2fugTNAxhRQihRAjCaR-9v0CI3qgIGj8vZQD82koFeLEEv3Z6a-XaqIBdjR-dbYwF6fG0ARX99zAZ22gS3TlNjODxbSPVB565BsIZOq5lE2B46AP0djddTGbJ_On-YTKeJ4qTPCZcC854zbSoRowpqDKmpCay6nSRqiKtakHSTOQ1VTnTVUGrTANAyjNOakrZAF3s97befW66j8qV23jbnSwZzUdCiCLbUemeUt6F4KEulYkyGmejl6YpKSl3SZa7JMtDkp3p6pep9WYt_fYv_HKPu037P_kF2W-ICA |
CitedBy_id | crossref_primary_10_1140_epjc_s10052_025_14035_x |
Cites_doi | 10.1007/JHEP12(2015)073 10.1103/PhysRevD.96.124018 10.1155/2017/3819246 10.1088/1674-1137/ace9c2 10.1142/S0218271817501516 10.1007/JHEP04(2016)142 10.1016/j.nuclphysb.2022.115949 10.1088/0264-9381/22/9/002 10.12942/lrr-1999-2 10.1103/PhysRevD.63.044005 10.3390/e24081131 10.1016/j.physletb.2014.07.019 10.1016/j.nuclphysb.2023.116184 10.1007/BF02345020 10.1007/JHEP07(2012)033 10.1140/epjc/s10052-014-2970-8 10.1103/PhysRevLett.127.091301 10.1103/PhysRevD.7.2333 10.1016/j.dark.2023.101261 10.1103/PhysRevD.15.2752 10.1103/PhysRevD.91.044028 10.1007/s10714-022-03024-0 10.1140/epjc/s10052-017-4937-z 10.1088/0264-9381/28/23/235017 10.1016/j.physletb.2016.12.004 10.1088/0264-9381/26/19/195011 10.1140/epjc/s10052-022-10080-y 10.1103/PhysRevD.84.127503 10.1103/PhysRevLett.26.1344 10.1007/BF01645742 10.1103/PhysRevD.105.106014 10.1016/j.physletb.2024.138801 10.1007/JHEP09(2013)005 10.1088/0264-9381/31/20/205002 10.1103/PhysRevD.60.064018 10.1103/RevModPhys.83.793 10.4310/ATMP.1998.v2.n2.a1 10.1088/1361-6382/ac566c 10.1103/PhysRevD.105.024058 10.1088/0264-9381/28/12/125020 10.1088/1361-6382/aa5c69 10.1103/PhysRevD.108.044045 10.3390/e25040687 10.1007/BF01208266 10.1016/j.aop.2023.169569 10.1007/JHEP11(2014)120 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1093/ptep/ptae154 |
DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central (New) (NC LIVE) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2050-3911 |
ExternalDocumentID | 10_1093_ptep_ptae154 10.1093/ptep/ptae154 |
GroupedDBID | .I3 0R~ 4.4 5VS 88I AAFWJ AAMVS AAPXW AAVAP ABEJV ABGNP ABPTD ABUWG ABXVV ACGFS ADHZD AENEX AENZO AFKRA AFPKN AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AZQEC BAYMD BENPR CCPQU CIDKT DWQXO D~K EBS EJD ER. GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ISR ITC KQ8 KSI M2P M~E O9- OAWHX OJQWA OK1 PEELM PHGZM PHGZT PIMPY ROL RXO TOX ~D7 AAYXX CITATION 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c406t-4d7434f3d7b833ceb53cad0ab3ce92c92bf702576f1c63db91b5deee24540f113 |
IEDL.DBID | BENPR |
ISSN | 2050-3911 |
IngestDate | Mon Jun 30 12:26:41 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 Tue Jul 01 02:09:16 EDT 2025 Mon Jun 30 08:34:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Funded by SCOAP3 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-4d7434f3d7b833ceb53cad0ab3ce92c92bf702576f1c63db91b5deee24540f113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0007-8797-667X 0000-0002-4465-7974 |
OpenAccessLink | https://www.proquest.com/docview/3168777951?pq-origsite=%requestingapplication% |
PQID | 3168777951 |
PQPubID | 7121340 |
ParticipantIDs | proquest_journals_3168777951 crossref_citationtrail_10_1093_ptep_ptae154 crossref_primary_10_1093_ptep_ptae154 oup_primary_10_1093_ptep_ptae154 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Progress of theoretical and experimental physics |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Hawking (2024112718261250200_bib1) 1975; 43 Zhang (2024112718261250200_bib16) 2017; 2017 Zeyuan (2024112718261250200_bib27) 2022; 39 Guo (2024112718261250200_bib44) 2024; 855 Kastor (2024112718261250200_bib20) 2014; 11 Mahapatra (2024112718261250200_bib45) 2016; 04 Visser (2024112718261250200_bib19) 2022; 105 Karch (2024112718261250200_bib22) 2015; 12 Ali (2024112718261250200_bib29) 2023; 108 Du (2024112718261250200_bib33) 2023; 25 Sadeghi (2024112718261250200_bib35) 2024; 460 Cong (2024112718261250200_bib26) 2021; 127 Kubiznak (2024112718261250200_bib5) 2012; 07 Cai (2024112718261250200_bib7) 2013; 09 Bronnikov (2024112718261250200_bib40) 2001; 63 Konoplya (2024112718261250200_bib48) 2011; 83 Kong (2024112718261250200_bib32) 2022; 24 Dolan (2024112718261250200_bib10) 2011; 28 Sadeghi (2024112718261250200_bib34) 2022; 54 Ladghami (2024112718261250200_bib30) 2023; 41 Zou (2024112718261250200_bib46) 2017; 77 Dolan (2024112718261250200_bib12) 2011; 84 Xu (2024112718261250200_bib14) 2014; 74 Xu (2024112718261250200_bib15) 2014; 736 Gao (2024112718261250200_bib28) 2022; 82 Gibbons (2024112718261250200_bib43) 2005; 22 Johnson (2024112718261250200_bib17) 2014; 31 Bekenstein (2024112718261250200_bib3) 1973; 7 Kastor (2024112718261250200_bib9) 2009; 26 Maldacena (2024112718261250200_bib8) 1998; 2 Alipour (2024112718261250200_bib37) 2023; 990 Sadeghi (2024112718261250200_bib38) Rafiee (2024112718261250200_bib25) 2022; 105 Dolan (2024112718261250200_bib11) 2011; 28 Wei (2024112718261250200_bib24) 2017; 96 Hawking (2024112718261250200_bib6) 1983; 87 Gibbons (2024112718261250200_bib41) 1977; 15 Kokkotas (2024112718261250200_bib47) 1999; 2 Maity (2024112718261250200_bib23) 2017; 765 Kong (2024112718261250200_bib31) 2023; 47 Hawking (2024112718261250200_bib2) 1971; 26 Kruglov (2024112718261250200_bib39) 2022; 984 Bardeen (2024112718261250200_bib4) 1973; 31 Bai (2024112718261250200_bib36) Zhang (2024112718261250200_bib21) 2015; 91 Kubiznak (2024112718261250200_bib13) 2017; 34 Xu (2024112718261250200_bib18) 2017; 26 Chamblin (2024112718261250200_bib42) 1999; 60 |
References_xml | – volume: 12 start-page: 073 year: 2015 ident: 2024112718261250200_bib22 publication-title: J. High Energy Phys. doi: 10.1007/JHEP12(2015)073 – volume: 96 start-page: 124018 year: 2017 ident: 2024112718261250200_bib24 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.96.124018 – volume: 2017 start-page: 3819246 year: 2017 ident: 2024112718261250200_bib16 publication-title: Adv. High Energy Phys. doi: 10.1155/2017/3819246 – volume: 47 start-page: 095105 year: 2023 ident: 2024112718261250200_bib31 publication-title: Chin. Phys. C doi: 10.1088/1674-1137/ace9c2 – volume: 26 start-page: 1750151 year: 2017 ident: 2024112718261250200_bib18 publication-title: Int. J. Mod. Phys. D doi: 10.1142/S0218271817501516 – ident: 2024112718261250200_bib36 – volume: 04 start-page: 142 year: 2016 ident: 2024112718261250200_bib45 publication-title: J. High Energy Phys. doi: 10.1007/JHEP04(2016)142 – volume: 984 start-page: 115949 year: 2022 ident: 2024112718261250200_bib39 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2022.115949 – volume: 22 start-page: 1503 year: 2005 ident: 2024112718261250200_bib43 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/22/9/002 – volume: 2 start-page: 2 year: 1999 ident: 2024112718261250200_bib47 publication-title: Living Rev. Rel. doi: 10.12942/lrr-1999-2 – volume: 63 start-page: 044005 year: 2001 ident: 2024112718261250200_bib40 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.63.044005 – volume: 24 start-page: 1131 year: 2022 ident: 2024112718261250200_bib32 publication-title: Entropy doi: 10.3390/e24081131 – volume: 736 start-page: 214 year: 2014 ident: 2024112718261250200_bib15 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2014.07.019 – volume: 990 start-page: 116184 year: 2023 ident: 2024112718261250200_bib37 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2023.116184 – volume: 43 start-page: 199 year: 1975 ident: 2024112718261250200_bib1 publication-title: Commun. Math. Phys. doi: 10.1007/BF02345020 – volume: 07 start-page: 033 year: 2012 ident: 2024112718261250200_bib5 publication-title: J. High Energy Phys. doi: 10.1007/JHEP07(2012)033 – volume: 74 start-page: 2970 year: 2014 ident: 2024112718261250200_bib14 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-014-2970-8 – volume: 127 start-page: 091301 year: 2021 ident: 2024112718261250200_bib26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.127.091301 – volume: 7 start-page: 2333 year: 1973 ident: 2024112718261250200_bib3 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.7.2333 – volume: 41 start-page: 101261 year: 2023 ident: 2024112718261250200_bib30 publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2023.101261 – volume: 15 start-page: 2752 year: 1977 ident: 2024112718261250200_bib41 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.15.2752 – volume: 91 start-page: 044028 year: 2015 ident: 2024112718261250200_bib21 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.91.044028 – volume: 54 start-page: 129 year: 2022 ident: 2024112718261250200_bib34 publication-title: Gen. Rel. Grav. doi: 10.1007/s10714-022-03024-0 – volume: 77 start-page: 365 year: 2017 ident: 2024112718261250200_bib46 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-017-4937-z – volume: 28 start-page: 235017 year: 2011 ident: 2024112718261250200_bib11 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/28/23/235017 – volume: 765 start-page: 386 year: 2017 ident: 2024112718261250200_bib23 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2016.12.004 – volume: 26 start-page: 195011 year: 2009 ident: 2024112718261250200_bib9 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/26/19/195011 – volume: 82 start-page: 112 year: 2022 ident: 2024112718261250200_bib28 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-022-10080-y – volume: 84 start-page: 127503 year: 2011 ident: 2024112718261250200_bib12 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.84.127503 – volume: 26 start-page: 1344 year: 1971 ident: 2024112718261250200_bib2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.26.1344 – volume: 31 start-page: 161 year: 1973 ident: 2024112718261250200_bib4 publication-title: Commun. Math. Phys. doi: 10.1007/BF01645742 – volume: 105 start-page: 106014 year: 2022 ident: 2024112718261250200_bib19 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.106014 – start-page: 095106 volume-title: Chinese Physics C ident: 2024112718261250200_bib38 – volume: 855 start-page: 138801 year: 2024 ident: 2024112718261250200_bib44 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2024.138801 – volume: 09 start-page: 005 year: 2013 ident: 2024112718261250200_bib7 publication-title: J. High Energy Phys. doi: 10.1007/JHEP09(2013)005 – volume: 31 start-page: 205002 year: 2014 ident: 2024112718261250200_bib17 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/31/20/205002 – volume: 60 start-page: 064018 year: 1999 ident: 2024112718261250200_bib42 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.60.064018 – volume: 83 start-page: 793 year: 2011 ident: 2024112718261250200_bib48 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.793 – volume: 2 start-page: 231 year: 1998 ident: 2024112718261250200_bib8 publication-title: Adv. Theor. Math. Phys. doi: 10.4310/ATMP.1998.v2.n2.a1 – volume: 39 start-page: 075019 year: 2022 ident: 2024112718261250200_bib27 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/ac566c – volume: 105 start-page: 024058 year: 2022 ident: 2024112718261250200_bib25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.024058 – volume: 28 start-page: 125020 year: 2011 ident: 2024112718261250200_bib10 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/28/12/125020 – volume: 34 start-page: 063001 year: 2017 ident: 2024112718261250200_bib13 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aa5c69 – volume: 108 start-page: 044045 year: 2023 ident: 2024112718261250200_bib29 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.044045 – volume: 25 start-page: 687 year: 2023 ident: 2024112718261250200_bib33 publication-title: Entropy doi: 10.3390/e25040687 – volume: 87 start-page: 577 year: 1983 ident: 2024112718261250200_bib6 publication-title: Commun. Math. Phys. doi: 10.1007/BF01208266 – volume: 460 start-page: 169569 year: 2024 ident: 2024112718261250200_bib35 publication-title: Ann. Phys. doi: 10.1016/j.aop.2023.169569 – volume: 11 start-page: 120 year: 2014 ident: 2024112718261250200_bib20 publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2014)120 |
SSID | ssj0001077041 |
Score | 2.3110125 |
Snippet | We study the Restricted Phase Space Thermodynamics (RPST) of magnetically charged anti-de Sitter (AdS) black holes sourced by nonlinear electrodynamics (NED).... |
SourceID | proquest crossref oup |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Black holes Thermodynamics |
Title | Restricted Phase Space Thermodynamics of Nonlinear Electrodynamics-Anti-de Sitter Black Holes |
URI | https://www.proquest.com/docview/3168777951 |
Volume | 2024 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELagXVh4Iwql8gATsprETtxMqKCiiqFUpZW6oCh-iUqQlDb8f86JQ9UBWKxIvizn8913Z_s-hK4h4kaUGU24UYwwW2iKDVUkpgbiacT8NC1v-Y6i4Yw9zcO5K7it3bXK2ieWjlrl0tbIu5ZgiXMOgOBu-Uksa5Q9XXUUGruoCS64B3bevB-MxpNNlcXj3GO-u_EO2Xt3WeglDKn2Q7YVi7bet9UOuYwyj4do38FD3K_W8wjt6OwYHTioiN1GXJ-g14m2hBsS8CIev0Ekwi-Q_GoMq776yFVFM7_GucGjqhdGusKDivGmniT9rFgQBX8u7IseXJby8NA2eDpFs8fB9GFIHFMCkRCQC8IUAAEGOuaiR6nUIqQyVV4q4DsOZBwIwz2bWhhfRlSJ2Beh0loHtv-e8X16hhpZnulzhCF9goxEciV7sW2tn3Lp00gKEahQCW1a6LbWWSJdG3HLZvGeVMfZNLEaTpyGW-jmR3pZtc_4RQ6D-v8Raddrk7h9tk42VnHx9_Ql2gsAjlSvCNuoUay-9BXAiUJ0nM10ynQcxunz_BuK5tDF |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB50PejFt_g2Bz1JsG3Sxh5EfKysr0V8gBepzQsXdHfdrYh_yt_oZJsqHtSTl1JIUspkkm9mkpkPYB0RN2HcGiqs5pS7QFNqmaYps4inCQ_zfHDLt5k0bvjJbXw7BO9VLoy7VlntiYONWneUi5FvOYIlIQQaBLvdZ-pYo9zpakWhUarFqXl7RZetv3N8iPO7EUVH9euDBvWsAlQheBWUawRNjv8j5DZjysiYqVwHucT3NFJpJK0InBluQ5UwLdNQxtoYE7ladTYMGX53GEa4y2itwch-vXlx-RXVCYQIeOhv2Acp2-oWpouP3IQx_4Z93_LpKgAYoNrRJIx7c5TslfozBUOmPQ0T3jQlfuH3Z-Du0jiCD4X2Kbl4QOQjV-hsG4Ja1nvq6JLWvk86ljTL2ht5j9RLhp2qke61ixbVOLLlMojIIHRIGq6g1Czc_IsM56DW7rTNPBB019ADUkKr7dSV8s-FClmipIx0rKWxC7BZySxTvmy5Y894zMrjc5Y5CWdewguw8dm7W5br-KEfQfH_0WW5mpvMr-t-9qWFi783r8Fo4_r8LDs7bp4uwViEplCZwbgMtaL3YlbQlCnkqtcfAvf_rbIfNCcMdA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restricted+Phase+Space+Thermodynamics+of+Nonlinear+Electrodynamics-Anti-de+Sitter+Black+Holes&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Awal%2C+Mozib+Bin&rft.au=Phukon%2C+Prabwal&rft.date=2024-11-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2024&rft.issue=11&rft_id=info:doi/10.1093%2Fptep%2Fptae154&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptae154 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |