A Quantum Computing-Based Accelerated Model for Image Classification Using a Parallel Pipeline Encoded Inception Module

Image classification is typically a research area that trains an algorithm for accurately identifying subjects in images that have never been seen before. Training a model to recognize images within a dataset is significant as image classification generally has several applications in medicine, face...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 11; no. 11; p. 2513
Main Authors Alsubai, Shtwai, Alqahtani, Abdullah, Binbusayyis, Adel, Sha, Mohemmed, Gumaei, Abdu, Wang, Shuihua
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 30.05.2023
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math11112513

Cover

Loading…
Abstract Image classification is typically a research area that trains an algorithm for accurately identifying subjects in images that have never been seen before. Training a model to recognize images within a dataset is significant as image classification generally has several applications in medicine, face detection, image reconstruction, etc. In spite of such applications, the main difficulty in this area involves the computation in the classification process, which is vast, leading to slow speed of classification. Moreover, as conventional image classification approaches have fallen short in terms of attaining high accuracy, an optimal model is needed. To resolve this, quantum computing has been developed. Due to their parallel computing ability, quantum-based algorithms could accomplish the classification of vast amounts of image data. This has theoretically confirmed the feasibility and advantages of incorporating a quantum computing-based system with traditional image classification methodologies. Considering this, the present study quantizes the layers of the proposed parallel encoded Inception module to improvise the network performance. This study exposes the flexibility of DL (deep learning)-based quantum state computational methodologies for missing computations by creating a pipeline for denoising, state estimation, and imputation. Furthermore, controlled parameterized rotations are regarded for entanglement, a vital component in quantum perceptron structure. The proposed approach not only possesses the unique features of quantum mechanics, but it also maintains the weight sharing of the kernel. Finally, the MNIST (Modified National Institute of Standards and Technology) and Fashion MNIST image classification outcomes are attained by measuring the quantum state. Overall performance is assessed to prove its effectiveness in image classification.
AbstractList Image classification is typically a research area that trains an algorithm for accurately identifying subjects in images that have never been seen before. Training a model to recognize images within a dataset is significant as image classification generally has several applications in medicine, face detection, image reconstruction, etc. In spite of such applications, the main difficulty in this area involves the computation in the classification process, which is vast, leading to slow speed of classification. Moreover, as conventional image classification approaches have fallen short in terms of attaining high accuracy, an optimal model is needed. To resolve this, quantum computing has been developed. Due to their parallel computing ability, quantum-based algorithms could accomplish the classification of vast amounts of image data. This has theoretically confirmed the feasibility and advantages of incorporating a quantum computing-based system with traditional image classification methodologies. Considering this, the present study quantizes the layers of the proposed parallel encoded Inception module to improvise the network performance. This study exposes the flexibility of DL (deep learning)-based quantum state computational methodologies for missing computations by creating a pipeline for denoising, state estimation, and imputation. Furthermore, controlled parameterized rotations are regarded for entanglement, a vital component in quantum perceptron structure. The proposed approach not only possesses the unique features of quantum mechanics, but it also maintains the weight sharing of the kernel. Finally, the MNIST (Modified National Institute of Standards and Technology) and Fashion MNIST image classification outcomes are attained by measuring the quantum state. Overall performance is assessed to prove its effectiveness in image classification.
Audience Academic
Author Alsubai, Shtwai
Binbusayyis, Adel
Wang, Shuihua
Gumaei, Abdu
Sha, Mohemmed
Alqahtani, Abdullah
Author_xml – sequence: 1
  givenname: Shtwai
  orcidid: 0000-0002-6584-7400
  surname: Alsubai
  fullname: Alsubai, Shtwai
– sequence: 2
  givenname: Abdullah
  surname: Alqahtani
  fullname: Alqahtani, Abdullah
– sequence: 3
  givenname: Adel
  orcidid: 0000-0001-9683-2175
  surname: Binbusayyis
  fullname: Binbusayyis, Adel
– sequence: 4
  givenname: Mohemmed
  orcidid: 0000-0001-6255-9529
  surname: Sha
  fullname: Sha, Mohemmed
– sequence: 5
  givenname: Abdu
  orcidid: 0000-0001-8512-9687
  surname: Gumaei
  fullname: Gumaei, Abdu
– sequence: 6
  givenname: Shuihua
  orcidid: 0000-0003-4713-2791
  surname: Wang
  fullname: Wang, Shuihua
BookMark eNptkU-LFDEQxRtZwXXdmx8g4NVZO3-6OzmOw6oDK67gnpvqpDJmSCdtkkb89mZnRBaxckhR-b2XgveyuQgxYNO8pu0N56p9N0P5TmuxjvJnzSVjbNgM9eHiSf-iuc752NZSlEuhLpufW_J1hVDWmezivKzFhcPmPWQ0ZKs1ekxQav85GvTExkT2MxyQ7Dzk7KzTUFwM5CFXGQFyDwm8r-S9W9C7gOQ26Co1ZB80Lie2Wq0eXzXPLfiM13_uq-bhw-233afN3ZeP-932bqNF25eN0IqhaDUVyvSSKm0odIZOUy-t7qWU1A7QTVYBUsqtlgbMIHpqun7Sfd_xq2Z_9jURjuOS3Azp1xjBjadBTIcRUnHa44iC0d5qwwZqhVFCTm1nJOdG0YFJFNXrzdlrSfHHirmMx7imUNcfmWSi5bTlQ6VuztQBqqkLNpYEuh6Ds9M1M-vqfDt0TAydUo-2b88CnWLOCe3fNWk7PkY7Po224uwfXLtyiqH-4_z_Rb8B_8eopQ
CitedBy_id crossref_primary_10_1007_s42979_024_03398_9
crossref_primary_10_1007_s41870_024_01835_9
Cites_doi 10.1103/RevModPhys.94.015004
10.1088/2632-2153/ac104d
10.1103/PhysRevLett.125.070501
10.1088/2632-2153/abaf98
10.1155/2022/5701479
10.1038/s41467-020-14454-2
10.1007/s42484-021-00061-x
10.1049/qtc2.12017
10.1088/2058-9565/ab9f93
10.1016/j.neucom.2019.07.026
10.1371/journal.pone.0216224
10.1109/ACCESS.2021.3139323
10.1109/TNNLS.2022.3179354
10.11591/eei.v10i2.2750
10.1016/j.asoc.2023.110099
10.1103/PhysRevApplied.19.054023
10.21203/rs.3.rs-38495/v1
10.20944/preprints202103.0583.v1
10.1103/PhysRevA.101.062327
10.1007/s11128-023-03876-8
10.1109/CSICC52343.2021.9420604
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math11112513
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_e4216fcd271f4d948b05d833d91728e4
A752475994
10_3390_math11112513
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c406t-4c92e40c149d6819cd1a5d1bb68fc68881f7a5bf9ae113fc8dad7461d56bc6653
IEDL.DBID 8FG
ISSN 2227-7390
IngestDate Wed Aug 27 01:23:17 EDT 2025
Fri Jul 25 10:14:10 EDT 2025
Tue Jun 10 20:27:15 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Tue Jul 01 01:53:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-4c92e40c149d6819cd1a5d1bb68fc68881f7a5bf9ae113fc8dad7461d56bc6653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6584-7400
0000-0001-6255-9529
0000-0001-8512-9687
0000-0003-4713-2791
0000-0001-9683-2175
OpenAccessLink https://www.proquest.com/docview/2824031037?pq-origsite=%requestingapplication%
PQID 2824031037
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_e4216fcd271f4d948b05d833d91728e4
proquest_journals_2824031037
gale_infotracacademiconefile_A752475994
crossref_primary_10_3390_math11112513
crossref_citationtrail_10_3390_math11112513
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-30
PublicationDateYYYYMMDD 2023-05-30
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-30
  day: 30
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mangini (ref_10) 2020; 1
Krzysztof (ref_25) 2021; 27
Konar (ref_7) 2023; 136
Maheshwari (ref_17) 2021; 10
ref_14
ref_13
Chen (ref_28) 2021; 2
ref_11
Obaid (ref_8) 2021; 10
Rather (ref_12) 2020; 125
ref_18
Bharti (ref_24) 2022; 94
ref_16
ref_15
Hur (ref_23) 2022; 4
Kerenidis (ref_26) 2020; 101
Li (ref_9) 2020; 5
Singh (ref_22) 2022; 60
Hellstern (ref_20) 2021; 2
ref_21
Li (ref_19) 2022; 2022
ref_3
Li (ref_6) 2019; 362
ref_2
ref_27
Beer (ref_4) 2020; 11
ref_5
Friedrich (ref_1) 2023; 22
References_xml – volume: 94
  start-page: 015004
  year: 2022
  ident: ref_24
  article-title: Noisy intermediate-scale quantum algorithms
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.94.015004
– ident: ref_5
– volume: 2
  start-page: 045021
  year: 2021
  ident: ref_28
  article-title: An end-to-end trainable hybrid classical-quantum classifier
  publication-title: Mach. Learn. Sci. Technol.
  doi: 10.1088/2632-2153/ac104d
– ident: ref_3
– volume: 125
  start-page: 070501
  year: 2020
  ident: ref_12
  article-title: Creating ensembles of dual unitary and maximally entangling quantum evolutions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.070501
– volume: 1
  start-page: 045008
  year: 2020
  ident: ref_10
  article-title: Quantum computing model of an artificial neuron with continuously valued input data
  publication-title: Mach. Learn. Sci. Technol.
  doi: 10.1088/2632-2153/abaf98
– volume: 2022
  start-page: 5701479
  year: 2022
  ident: ref_19
  article-title: An Image Classification Algorithm Based on Hybrid Quantum Classical Convolutional Neural Network
  publication-title: Quantum Eng.
  doi: 10.1155/2022/5701479
– volume: 11
  start-page: 808
  year: 2020
  ident: ref_4
  article-title: Training deep quantum neural networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14454-2
– volume: 4
  start-page: 3
  year: 2022
  ident: ref_23
  article-title: Quantum convolutional neural network for classical data classification
  publication-title: Quantum Mach. Intell.
  doi: 10.1007/s42484-021-00061-x
– volume: 2
  start-page: 153
  year: 2021
  ident: ref_20
  article-title: Analysis of a hybrid quantum network for classification tasks
  publication-title: IET Quantum Commun.
  doi: 10.1049/qtc2.12017
– volume: 60
  start-page: 407
  year: 2022
  ident: ref_22
  article-title: Implementation of quantum support vector machine algorithm using a benchmarking dataset
  publication-title: Indian J. Pure Appl. Phys. (IJPAP)
– volume: 5
  start-page: 044003
  year: 2020
  ident: ref_9
  article-title: A quantum deep convolutional neural network for image recognition
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/ab9f93
– volume: 362
  start-page: 156
  year: 2019
  ident: ref_6
  article-title: Evolving deep convolutional neural networks by quantum behaved particle swarm optimization with binary encoding for image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.026
– ident: ref_13
  doi: 10.1371/journal.pone.0216224
– volume: 10
  start-page: 3705
  year: 2021
  ident: ref_17
  article-title: Variational quantum classifier for binary classification: Real vs. synthetic dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3139323
– ident: ref_11
  doi: 10.1109/TNNLS.2022.3179354
– volume: 10
  start-page: 750
  year: 2021
  ident: ref_8
  article-title: Pre-convoluted neural networks for fashion classification
  publication-title: Bull. Electr. Eng. Inform.
  doi: 10.11591/eei.v10i2.2750
– ident: ref_27
– ident: ref_2
– volume: 136
  start-page: 110099
  year: 2023
  ident: ref_7
  article-title: A shallow hybrid classical-quantum spiking feedforward neural network for noise-robust image classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110099
– ident: ref_18
  doi: 10.1103/PhysRevApplied.19.054023
– ident: ref_14
  doi: 10.21203/rs.3.rs-38495/v1
– ident: ref_15
– ident: ref_16
  doi: 10.20944/preprints202103.0583.v1
– volume: 27
  start-page: 99
  year: 2021
  ident: ref_25
  article-title: Applying a quantum annealing based restricted Boltzmann machine for mnist handwritten digit classification
  publication-title: CMST
– volume: 101
  start-page: 062327
  year: 2020
  ident: ref_26
  article-title: Classification of the MNIST data set with quantum slow feature analysis
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.101.062327
– volume: 22
  start-page: 132
  year: 2023
  ident: ref_1
  article-title: Evolution strategies: Application in hybrid quantum-classical neural networks
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-023-03876-8
– ident: ref_21
  doi: 10.1109/CSICC52343.2021.9420604
SSID ssj0000913849
Score 2.2286832
Snippet Image classification is typically a research area that trains an algorithm for accurately identifying subjects in images that have never been seen before....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2513
SubjectTerms Accuracy
Algorithms
Analysis
Atoms
Classification
Coding
Datasets
Deep learning
Discriminant analysis
Efficiency
Face recognition
Image classification
Image reconstruction
Machine learning
Model accuracy
Modified National Institute of Standards and Technology
Modules
Neural networks
Noise
Performance evaluation
Pipelining (computers)
Quantum computing
Quantum entanglement
Quantum mechanics
Quantum physics
State estimation
Technology application
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSiwxEA3iShfiE8fHJQvFhTROHp3uLMeLooKioOAupFMJCmMrOoO_b1W6HeYu5G7cDsWQrkpy6kDlHMYOwDbJ-yHSEmhkoY3HMxdBFiCMD-Cl9Hmq8vrGXDzoq8fycc7qi2bCOnngLnEnUUthUgBZiaTB6roZllArBZaclWJWAkXMmyNT-Q62QtXadpPuCnn9CfZ_T3Q9IJ6rfzAoS_X_dCFnlDlfZSt9e8hH3bLW2EJs19ny9Uxb9WODfY743RTzMX3hnSUDgk9ximAEfBQCogiJPwAnk7Mxx5aUX77gncGz-yXNBeVS8DwqwD2_9e_kpjLmt89v9DQ98rOWnrkDv2z7iRf6q-k4brKH87P7vxdFb59QBETpSaGDlVEPA3IgMAj8AYQvQTSNqVMwyHxFqnzZJOujECqFGjxU2ggoTROMKdUWW2xf27jNePLIa3SlTFKAHV60FSBxDHUyMSSpzYAdfyfUhV5bnCwuxg45BqXfzad_wA5n0W-dpsYPcadUm1kMKWHnH3B_uH5_uP_tjwE7oso6Oq-4pOD7Zwf4YaR85UZVKUnz0GLk3nfxXX-QPxwyUk3qqara-Y3V7LIl8qvP4wfDPbY4eZ_GfexqJs2fvIG_AJum9QU
  priority: 102
  providerName: Directory of Open Access Journals
Title A Quantum Computing-Based Accelerated Model for Image Classification Using a Parallel Pipeline Encoded Inception Module
URI https://www.proquest.com/docview/2824031037
https://doaj.org/article/e4216fcd271f4d948b05d833d91728e4
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxELWgvcAB8SlSSuQDiANaNf5Y7-6pSlBCi9QqICr1Znk9NlRKNyEf4u93xnECHMo1a0Ubjz1vnjN-j7F30LTRuQHSEmhloY3DPRdAFiCM8-CkdKmr8uLSnF3pL9fldT5wW-W2yl1OTIka5p7OyE-QGmiSsVTV6eJXQa5R9O9qttB4yA4FIg2t8HryeX_GQpqXtW62_e4K2f0JVoE_KUkgqqt_kCgJ9t-XlhPWTJ6yJ7lI5MNtVJ-xB6F7zh5f7BVWVy_Y7yH_usFZ2dzyrTEDQlAxQkgCPvQesYQkIICT1dmMY2HKz28xc_DkgUndQSkgPDUMcMenbkmeKjM-vVnQBfXAxx1ddgd-3uW-F_qqzSy8ZFeT8fdPZ0U2USg8YvW60L6RQQ88MiEwCP8ehCtBtK2pozfIf0WsXNnGxgUhVPQ1OKi0EVCa1htTqlfsoJt34TXj0SG70ZUyUQHWeaGpAOmjr6MJPkpteuzjbkKtzwrjZHQxs8g0aPrt39PfY-_3oxdbZY17xo0oNvsxpIedPpgvf9i8vWzQUpjoQVYiamh03Q5KqJWChvy3gu6xDxRZS7sWX8m7fPkAfxjpX9lhVUpSPmxw5PEu-DZv55X9s_iO_v_4DXtEfvSpvWBwzA7Wy014i1XLuu2npdlnh6Px5fRbP3H_OwK274w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKdYKNQHKg4oauI4TnJAaAtddmm3KlIr9WYcj91W2maXfajiT_EbmXGSLRzKrdd4FCWe8TySme9j7B2UlTcmxrIEKhFJZfDMORARJMpYMEKY0FU5PlLDU_ntLDvbYL-7WRhqq-x8YnDUMLX0jXwXSwNJMJZp_mn2MyLWKPq72lFoNGZx4H5dY8m2-Dj6gvrdEWKwf_J5GLWsApHF4LWMpC2Fk7HF0gAUxkMLickgqSpVeKuwIEx8brLKl8YlSeptAQZyqRLIVGWVIpYIdPn3ZJqW1EJYDL6uv-kQxmYhy6a_HtfjXcw6L8gpYRaR_hP5AkHAbWEgxLbBY_aoTUp5v7GiJ2zD1U_Zw_Ea0XXxjF33-fcVamF1xRsiCAx50R6GQOB9azF2EeQEcKJWm3BMhPnoCj0VD5yb1I0UDICHBgVu-LGZE4fLhB9fzmgg3vH9mobrgY_qts-GbrWauOfs9E629wXbrKe1e8m4N1hNyTxVPgXMK12ZA5artvDKWS-k6rEP3YZq2yKaE7HGRGNlQ9uv_97-HttZS88aJI9b5PZIN2sZwt8OF6bzc90eZ-2kSJS3IPLESyhlUcUZFGkKJfF9Odlj70mzmrwEPpI17bADvhjhbel-nglCWixRcqtTvm7dx0LfGPur_y9vs_vDk_GhPhwdHbxmDwRmYKG1Id5im8v5yr3BjGlZvQ1mytmPuz4XfwBkVSqU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE4oPISCwV8oOKAok1sx0kOCG1ply6l1SJRqTfjeGxA2ma3-1DFX-PXMeNkFziUW6_JKEpmxvNwxt_H2Cuo6mBtim0J1CJR2uKa8yASyLR1YIWwcary5FQfnamP5_n5Fvu1PgtDY5XrmBgDNUwd7ZH3sTVQBGMpi37oxiLGB8N3s8uEGKToT-uaTqN1kWP_8wrbt8Xb0QHaek-I4eGX90dJxzCQOExky0S5SniVOmwTQGNudJDZHLK61mVwGpvDLBQ2r0NlfZbJ4EqwUCidQa5rpzUxRmD4v1XIMiX2hHL4YbO_Q3ibparaWXspq7SPFeh3ClBYUch_smAkC7guJcQ8N9xh97oClQ9aj7rPtnzzgN092aC7Lh6yqwH_vEKLrC54SwqB6S_Zx3QIfOAc5jGCnwBONGsTjkUxH11g1OKRf5Mmk6Iz8DiswC0f2znxuUz4-MeMDsd7ftjQQXvgo6abuaFHrSb-ETu7EfU-ZtvNtPFPGA8WOytVSB0kYI3pqwKwdXVl0N4FoXSPvVkr1LgO3ZxINiYGuxxSv_lb_T22t5Getage18jtk202MoTFHS9M599Mt7SNVyLTwYEosqCgUmWd5lBKCRVxf3nVY6_JsoYiBr6Ss93BB_wwwt4ygyIXhLpYoeTu2vimCyUL88fxn_7_9kt2G1eE-TQ6PX7G7ggsxuKUQ7rLtpfzlX-OxdOyfhG9lLOvN70sfgP49S7B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quantum+Computing-Based+Accelerated+Model+for+Image+Classification+Using+a+Parallel+Pipeline+Encoded+Inception+Module&rft.jtitle=Mathematics+%28Basel%29&rft.au=Alsubai%2C+Shtwai&rft.au=Alqahtani%2C+Abdullah&rft.au=Binbusayyis%2C+Adel&rft.au=Sha%2C+Mohemmed&rft.date=2023-05-30&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=11&rft_id=info:doi/10.3390%2Fmath11112513&rft.externalDocID=A752475994
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon