A Quantum Computing-Based Accelerated Model for Image Classification Using a Parallel Pipeline Encoded Inception Module
Image classification is typically a research area that trains an algorithm for accurately identifying subjects in images that have never been seen before. Training a model to recognize images within a dataset is significant as image classification generally has several applications in medicine, face...
Saved in:
Published in | Mathematics (Basel) Vol. 11; no. 11; p. 2513 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
30.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-7390 2227-7390 |
DOI | 10.3390/math11112513 |
Cover
Loading…
Abstract | Image classification is typically a research area that trains an algorithm for accurately identifying subjects in images that have never been seen before. Training a model to recognize images within a dataset is significant as image classification generally has several applications in medicine, face detection, image reconstruction, etc. In spite of such applications, the main difficulty in this area involves the computation in the classification process, which is vast, leading to slow speed of classification. Moreover, as conventional image classification approaches have fallen short in terms of attaining high accuracy, an optimal model is needed. To resolve this, quantum computing has been developed. Due to their parallel computing ability, quantum-based algorithms could accomplish the classification of vast amounts of image data. This has theoretically confirmed the feasibility and advantages of incorporating a quantum computing-based system with traditional image classification methodologies. Considering this, the present study quantizes the layers of the proposed parallel encoded Inception module to improvise the network performance. This study exposes the flexibility of DL (deep learning)-based quantum state computational methodologies for missing computations by creating a pipeline for denoising, state estimation, and imputation. Furthermore, controlled parameterized rotations are regarded for entanglement, a vital component in quantum perceptron structure. The proposed approach not only possesses the unique features of quantum mechanics, but it also maintains the weight sharing of the kernel. Finally, the MNIST (Modified National Institute of Standards and Technology) and Fashion MNIST image classification outcomes are attained by measuring the quantum state. Overall performance is assessed to prove its effectiveness in image classification. |
---|---|
AbstractList | Image classification is typically a research area that trains an algorithm for accurately identifying subjects in images that have never been seen before. Training a model to recognize images within a dataset is significant as image classification generally has several applications in medicine, face detection, image reconstruction, etc. In spite of such applications, the main difficulty in this area involves the computation in the classification process, which is vast, leading to slow speed of classification. Moreover, as conventional image classification approaches have fallen short in terms of attaining high accuracy, an optimal model is needed. To resolve this, quantum computing has been developed. Due to their parallel computing ability, quantum-based algorithms could accomplish the classification of vast amounts of image data. This has theoretically confirmed the feasibility and advantages of incorporating a quantum computing-based system with traditional image classification methodologies. Considering this, the present study quantizes the layers of the proposed parallel encoded Inception module to improvise the network performance. This study exposes the flexibility of DL (deep learning)-based quantum state computational methodologies for missing computations by creating a pipeline for denoising, state estimation, and imputation. Furthermore, controlled parameterized rotations are regarded for entanglement, a vital component in quantum perceptron structure. The proposed approach not only possesses the unique features of quantum mechanics, but it also maintains the weight sharing of the kernel. Finally, the MNIST (Modified National Institute of Standards and Technology) and Fashion MNIST image classification outcomes are attained by measuring the quantum state. Overall performance is assessed to prove its effectiveness in image classification. |
Audience | Academic |
Author | Alsubai, Shtwai Binbusayyis, Adel Wang, Shuihua Gumaei, Abdu Sha, Mohemmed Alqahtani, Abdullah |
Author_xml | – sequence: 1 givenname: Shtwai orcidid: 0000-0002-6584-7400 surname: Alsubai fullname: Alsubai, Shtwai – sequence: 2 givenname: Abdullah surname: Alqahtani fullname: Alqahtani, Abdullah – sequence: 3 givenname: Adel orcidid: 0000-0001-9683-2175 surname: Binbusayyis fullname: Binbusayyis, Adel – sequence: 4 givenname: Mohemmed orcidid: 0000-0001-6255-9529 surname: Sha fullname: Sha, Mohemmed – sequence: 5 givenname: Abdu orcidid: 0000-0001-8512-9687 surname: Gumaei fullname: Gumaei, Abdu – sequence: 6 givenname: Shuihua orcidid: 0000-0003-4713-2791 surname: Wang fullname: Wang, Shuihua |
BookMark | eNptkU-LFDEQxRtZwXXdmx8g4NVZO3-6OzmOw6oDK67gnpvqpDJmSCdtkkb89mZnRBaxckhR-b2XgveyuQgxYNO8pu0N56p9N0P5TmuxjvJnzSVjbNgM9eHiSf-iuc752NZSlEuhLpufW_J1hVDWmezivKzFhcPmPWQ0ZKs1ekxQav85GvTExkT2MxyQ7Dzk7KzTUFwM5CFXGQFyDwm8r-S9W9C7gOQ26Co1ZB80Lie2Wq0eXzXPLfiM13_uq-bhw-233afN3ZeP-932bqNF25eN0IqhaDUVyvSSKm0odIZOUy-t7qWU1A7QTVYBUsqtlgbMIHpqun7Sfd_xq2Z_9jURjuOS3Azp1xjBjadBTIcRUnHa44iC0d5qwwZqhVFCTm1nJOdG0YFJFNXrzdlrSfHHirmMx7imUNcfmWSi5bTlQ6VuztQBqqkLNpYEuh6Ds9M1M-vqfDt0TAydUo-2b88CnWLOCe3fNWk7PkY7Po224uwfXLtyiqH-4_z_Rb8B_8eopQ |
CitedBy_id | crossref_primary_10_1007_s42979_024_03398_9 crossref_primary_10_1007_s41870_024_01835_9 |
Cites_doi | 10.1103/RevModPhys.94.015004 10.1088/2632-2153/ac104d 10.1103/PhysRevLett.125.070501 10.1088/2632-2153/abaf98 10.1155/2022/5701479 10.1038/s41467-020-14454-2 10.1007/s42484-021-00061-x 10.1049/qtc2.12017 10.1088/2058-9565/ab9f93 10.1016/j.neucom.2019.07.026 10.1371/journal.pone.0216224 10.1109/ACCESS.2021.3139323 10.1109/TNNLS.2022.3179354 10.11591/eei.v10i2.2750 10.1016/j.asoc.2023.110099 10.1103/PhysRevApplied.19.054023 10.21203/rs.3.rs-38495/v1 10.20944/preprints202103.0583.v1 10.1103/PhysRevA.101.062327 10.1007/s11128-023-03876-8 10.1109/CSICC52343.2021.9420604 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math11112513 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_e4216fcd271f4d948b05d833d91728e4 A752475994 10_3390_math11112513 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c406t-4c92e40c149d6819cd1a5d1bb68fc68881f7a5bf9ae113fc8dad7461d56bc6653 |
IEDL.DBID | 8FG |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:23:17 EDT 2025 Fri Jul 25 10:14:10 EDT 2025 Tue Jun 10 20:27:15 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Tue Jul 01 01:53:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-4c92e40c149d6819cd1a5d1bb68fc68881f7a5bf9ae113fc8dad7461d56bc6653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6584-7400 0000-0001-6255-9529 0000-0001-8512-9687 0000-0003-4713-2791 0000-0001-9683-2175 |
OpenAccessLink | https://www.proquest.com/docview/2824031037?pq-origsite=%requestingapplication% |
PQID | 2824031037 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e4216fcd271f4d948b05d833d91728e4 proquest_journals_2824031037 gale_infotracacademiconefile_A752475994 crossref_primary_10_3390_math11112513 crossref_citationtrail_10_3390_math11112513 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-30 |
PublicationDateYYYYMMDD | 2023-05-30 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Mangini (ref_10) 2020; 1 Krzysztof (ref_25) 2021; 27 Konar (ref_7) 2023; 136 Maheshwari (ref_17) 2021; 10 ref_14 ref_13 Chen (ref_28) 2021; 2 ref_11 Obaid (ref_8) 2021; 10 Rather (ref_12) 2020; 125 ref_18 Bharti (ref_24) 2022; 94 ref_16 ref_15 Hur (ref_23) 2022; 4 Kerenidis (ref_26) 2020; 101 Li (ref_9) 2020; 5 Singh (ref_22) 2022; 60 Hellstern (ref_20) 2021; 2 ref_21 Li (ref_19) 2022; 2022 ref_3 Li (ref_6) 2019; 362 ref_2 ref_27 Beer (ref_4) 2020; 11 ref_5 Friedrich (ref_1) 2023; 22 |
References_xml | – volume: 94 start-page: 015004 year: 2022 ident: ref_24 article-title: Noisy intermediate-scale quantum algorithms publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.94.015004 – ident: ref_5 – volume: 2 start-page: 045021 year: 2021 ident: ref_28 article-title: An end-to-end trainable hybrid classical-quantum classifier publication-title: Mach. Learn. Sci. Technol. doi: 10.1088/2632-2153/ac104d – ident: ref_3 – volume: 125 start-page: 070501 year: 2020 ident: ref_12 article-title: Creating ensembles of dual unitary and maximally entangling quantum evolutions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.070501 – volume: 1 start-page: 045008 year: 2020 ident: ref_10 article-title: Quantum computing model of an artificial neuron with continuously valued input data publication-title: Mach. Learn. Sci. Technol. doi: 10.1088/2632-2153/abaf98 – volume: 2022 start-page: 5701479 year: 2022 ident: ref_19 article-title: An Image Classification Algorithm Based on Hybrid Quantum Classical Convolutional Neural Network publication-title: Quantum Eng. doi: 10.1155/2022/5701479 – volume: 11 start-page: 808 year: 2020 ident: ref_4 article-title: Training deep quantum neural networks publication-title: Nat. Commun. doi: 10.1038/s41467-020-14454-2 – volume: 4 start-page: 3 year: 2022 ident: ref_23 article-title: Quantum convolutional neural network for classical data classification publication-title: Quantum Mach. Intell. doi: 10.1007/s42484-021-00061-x – volume: 2 start-page: 153 year: 2021 ident: ref_20 article-title: Analysis of a hybrid quantum network for classification tasks publication-title: IET Quantum Commun. doi: 10.1049/qtc2.12017 – volume: 60 start-page: 407 year: 2022 ident: ref_22 article-title: Implementation of quantum support vector machine algorithm using a benchmarking dataset publication-title: Indian J. Pure Appl. Phys. (IJPAP) – volume: 5 start-page: 044003 year: 2020 ident: ref_9 article-title: A quantum deep convolutional neural network for image recognition publication-title: Quantum Sci. Technol. doi: 10.1088/2058-9565/ab9f93 – volume: 362 start-page: 156 year: 2019 ident: ref_6 article-title: Evolving deep convolutional neural networks by quantum behaved particle swarm optimization with binary encoding for image classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.07.026 – ident: ref_13 doi: 10.1371/journal.pone.0216224 – volume: 10 start-page: 3705 year: 2021 ident: ref_17 article-title: Variational quantum classifier for binary classification: Real vs. synthetic dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3139323 – ident: ref_11 doi: 10.1109/TNNLS.2022.3179354 – volume: 10 start-page: 750 year: 2021 ident: ref_8 article-title: Pre-convoluted neural networks for fashion classification publication-title: Bull. Electr. Eng. Inform. doi: 10.11591/eei.v10i2.2750 – ident: ref_27 – ident: ref_2 – volume: 136 start-page: 110099 year: 2023 ident: ref_7 article-title: A shallow hybrid classical-quantum spiking feedforward neural network for noise-robust image classification publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110099 – ident: ref_18 doi: 10.1103/PhysRevApplied.19.054023 – ident: ref_14 doi: 10.21203/rs.3.rs-38495/v1 – ident: ref_15 – ident: ref_16 doi: 10.20944/preprints202103.0583.v1 – volume: 27 start-page: 99 year: 2021 ident: ref_25 article-title: Applying a quantum annealing based restricted Boltzmann machine for mnist handwritten digit classification publication-title: CMST – volume: 101 start-page: 062327 year: 2020 ident: ref_26 article-title: Classification of the MNIST data set with quantum slow feature analysis publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.101.062327 – volume: 22 start-page: 132 year: 2023 ident: ref_1 article-title: Evolution strategies: Application in hybrid quantum-classical neural networks publication-title: Quantum Inf. Process. doi: 10.1007/s11128-023-03876-8 – ident: ref_21 doi: 10.1109/CSICC52343.2021.9420604 |
SSID | ssj0000913849 |
Score | 2.2286832 |
Snippet | Image classification is typically a research area that trains an algorithm for accurately identifying subjects in images that have never been seen before.... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2513 |
SubjectTerms | Accuracy Algorithms Analysis Atoms Classification Coding Datasets Deep learning Discriminant analysis Efficiency Face recognition Image classification Image reconstruction Machine learning Model accuracy Modified National Institute of Standards and Technology Modules Neural networks Noise Performance evaluation Pipelining (computers) Quantum computing Quantum entanglement Quantum mechanics Quantum physics State estimation Technology application |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSiwxEA3iShfiE8fHJQvFhTROHp3uLMeLooKioOAupFMJCmMrOoO_b1W6HeYu5G7cDsWQrkpy6kDlHMYOwDbJ-yHSEmhkoY3HMxdBFiCMD-Cl9Hmq8vrGXDzoq8fycc7qi2bCOnngLnEnUUthUgBZiaTB6roZllArBZaclWJWAkXMmyNT-Q62QtXadpPuCnn9CfZ_T3Q9IJ6rfzAoS_X_dCFnlDlfZSt9e8hH3bLW2EJs19ny9Uxb9WODfY743RTzMX3hnSUDgk9ximAEfBQCogiJPwAnk7Mxx5aUX77gncGz-yXNBeVS8DwqwD2_9e_kpjLmt89v9DQ98rOWnrkDv2z7iRf6q-k4brKH87P7vxdFb59QBETpSaGDlVEPA3IgMAj8AYQvQTSNqVMwyHxFqnzZJOujECqFGjxU2ggoTROMKdUWW2xf27jNePLIa3SlTFKAHV60FSBxDHUyMSSpzYAdfyfUhV5bnCwuxg45BqXfzad_wA5n0W-dpsYPcadUm1kMKWHnH3B_uH5_uP_tjwE7oso6Oq-4pOD7Zwf4YaR85UZVKUnz0GLk3nfxXX-QPxwyUk3qqara-Y3V7LIl8qvP4wfDPbY4eZ_GfexqJs2fvIG_AJum9QU priority: 102 providerName: Directory of Open Access Journals |
Title | A Quantum Computing-Based Accelerated Model for Image Classification Using a Parallel Pipeline Encoded Inception Module |
URI | https://www.proquest.com/docview/2824031037 https://doaj.org/article/e4216fcd271f4d948b05d833d91728e4 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxELWgvcAB8SlSSuQDiANaNf5Y7-6pSlBCi9QqICr1Znk9NlRKNyEf4u93xnECHMo1a0Ubjz1vnjN-j7F30LTRuQHSEmhloY3DPRdAFiCM8-CkdKmr8uLSnF3pL9fldT5wW-W2yl1OTIka5p7OyE-QGmiSsVTV6eJXQa5R9O9qttB4yA4FIg2t8HryeX_GQpqXtW62_e4K2f0JVoE_KUkgqqt_kCgJ9t-XlhPWTJ6yJ7lI5MNtVJ-xB6F7zh5f7BVWVy_Y7yH_usFZ2dzyrTEDQlAxQkgCPvQesYQkIICT1dmMY2HKz28xc_DkgUndQSkgPDUMcMenbkmeKjM-vVnQBfXAxx1ddgd-3uW-F_qqzSy8ZFeT8fdPZ0U2USg8YvW60L6RQQ88MiEwCP8ehCtBtK2pozfIf0WsXNnGxgUhVPQ1OKi0EVCa1htTqlfsoJt34TXj0SG70ZUyUQHWeaGpAOmjr6MJPkpteuzjbkKtzwrjZHQxs8g0aPrt39PfY-_3oxdbZY17xo0oNvsxpIedPpgvf9i8vWzQUpjoQVYiamh03Q5KqJWChvy3gu6xDxRZS7sWX8m7fPkAfxjpX9lhVUpSPmxw5PEu-DZv55X9s_iO_v_4DXtEfvSpvWBwzA7Wy014i1XLuu2npdlnh6Px5fRbP3H_OwK274w |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiKdYKNQHKg4oauI4TnJAaAtddmm3KlIr9WYcj91W2maXfajiT_EbmXGSLRzKrdd4FCWe8TySme9j7B2UlTcmxrIEKhFJZfDMORARJMpYMEKY0FU5PlLDU_ntLDvbYL-7WRhqq-x8YnDUMLX0jXwXSwNJMJZp_mn2MyLWKPq72lFoNGZx4H5dY8m2-Dj6gvrdEWKwf_J5GLWsApHF4LWMpC2Fk7HF0gAUxkMLickgqSpVeKuwIEx8brLKl8YlSeptAQZyqRLIVGWVIpYIdPn3ZJqW1EJYDL6uv-kQxmYhy6a_HtfjXcw6L8gpYRaR_hP5AkHAbWEgxLbBY_aoTUp5v7GiJ2zD1U_Zw_Ea0XXxjF33-fcVamF1xRsiCAx50R6GQOB9azF2EeQEcKJWm3BMhPnoCj0VD5yb1I0UDICHBgVu-LGZE4fLhB9fzmgg3vH9mobrgY_qts-GbrWauOfs9E629wXbrKe1e8m4N1hNyTxVPgXMK12ZA5artvDKWS-k6rEP3YZq2yKaE7HGRGNlQ9uv_97-HttZS88aJI9b5PZIN2sZwt8OF6bzc90eZ-2kSJS3IPLESyhlUcUZFGkKJfF9Odlj70mzmrwEPpI17bADvhjhbel-nglCWixRcqtTvm7dx0LfGPur_y9vs_vDk_GhPhwdHbxmDwRmYKG1Id5im8v5yr3BjGlZvQ1mytmPuz4XfwBkVSqU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIiE4oPISCwV8oOKAok1sx0kOCG1ply6l1SJRqTfjeGxA2ma3-1DFX-PXMeNkFziUW6_JKEpmxvNwxt_H2Cuo6mBtim0J1CJR2uKa8yASyLR1YIWwcary5FQfnamP5_n5Fvu1PgtDY5XrmBgDNUwd7ZH3sTVQBGMpi37oxiLGB8N3s8uEGKToT-uaTqN1kWP_8wrbt8Xb0QHaek-I4eGX90dJxzCQOExky0S5SniVOmwTQGNudJDZHLK61mVwGpvDLBQ2r0NlfZbJ4EqwUCidQa5rpzUxRmD4v1XIMiX2hHL4YbO_Q3ibparaWXspq7SPFeh3ClBYUch_smAkC7guJcQ8N9xh97oClQ9aj7rPtnzzgN092aC7Lh6yqwH_vEKLrC54SwqB6S_Zx3QIfOAc5jGCnwBONGsTjkUxH11g1OKRf5Mmk6Iz8DiswC0f2znxuUz4-MeMDsd7ftjQQXvgo6abuaFHrSb-ETu7EfU-ZtvNtPFPGA8WOytVSB0kYI3pqwKwdXVl0N4FoXSPvVkr1LgO3ZxINiYGuxxSv_lb_T22t5Getage18jtk202MoTFHS9M599Mt7SNVyLTwYEosqCgUmWd5lBKCRVxf3nVY6_JsoYiBr6Ss93BB_wwwt4ygyIXhLpYoeTu2vimCyUL88fxn_7_9kt2G1eE-TQ6PX7G7ggsxuKUQ7rLtpfzlX-OxdOyfhG9lLOvN70sfgP49S7B |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quantum+Computing-Based+Accelerated+Model+for+Image+Classification+Using+a+Parallel+Pipeline+Encoded+Inception+Module&rft.jtitle=Mathematics+%28Basel%29&rft.au=Alsubai%2C+Shtwai&rft.au=Alqahtani%2C+Abdullah&rft.au=Binbusayyis%2C+Adel&rft.au=Sha%2C+Mohemmed&rft.date=2023-05-30&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=11&rft_id=info:doi/10.3390%2Fmath11112513&rft.externalDocID=A752475994 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |