A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials

•A non-ordinary state-based peridynamic model for brittle fracture in ceramics or fracture in quasi-brittle materials is developed.•The modified Johnson Holmquist (JH-2) constitutive and damage model is implemented in peridynamics framework at finite strain with objectivity.•Numerical simulations ha...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 111; pp. 130 - 146
Main Authors Lai, Xin, Liu, Lisheng, Li, Shaofan, Zeleke, Migbar, Liu, Qiwen, Wang, Zhen
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.01.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A non-ordinary state-based peridynamic model for brittle fracture in ceramics or fracture in quasi-brittle materials is developed.•The modified Johnson Holmquist (JH-2) constitutive and damage model is implemented in peridynamics framework at finite strain with objectivity.•Numerical simulations have been performed to verify and demonstrate the proposed model, including validation cases, edge-on impact experiment, and drop ball test. In this work, we have developed a non-ordinary state-based peridynamics model for brittle fracture in ceramics or fracture in quasi-brittle materials in general. The model is firstly validated by three numerical benchmark tests, and then it is applied to simulate the edge-on impact and drop ball test experiments. We have implemented the modified Johnson Holmquist (JH-2) constitutive damage model into the peridynamics framework at finite strain. Furthermore, the contact algorithm between the projectile and target is discussed. It is shown that the numerical results obtained from peridynamics simulations are in general agreement with those from the experiment. The comparison of experimental and numerical results indicates that the proposed peridynamics model has the ability to capture the damage propagation and other features of the brittle fracture.
AbstractList •A non-ordinary state-based peridynamic model for brittle fracture in ceramics or fracture in quasi-brittle materials is developed.•The modified Johnson Holmquist (JH-2) constitutive and damage model is implemented in peridynamics framework at finite strain with objectivity.•Numerical simulations have been performed to verify and demonstrate the proposed model, including validation cases, edge-on impact experiment, and drop ball test. In this work, we have developed a non-ordinary state-based peridynamics model for brittle fracture in ceramics or fracture in quasi-brittle materials in general. The model is firstly validated by three numerical benchmark tests, and then it is applied to simulate the edge-on impact and drop ball test experiments. We have implemented the modified Johnson Holmquist (JH-2) constitutive damage model into the peridynamics framework at finite strain. Furthermore, the contact algorithm between the projectile and target is discussed. It is shown that the numerical results obtained from peridynamics simulations are in general agreement with those from the experiment. The comparison of experimental and numerical results indicates that the proposed peridynamics model has the ability to capture the damage propagation and other features of the brittle fracture.
In this work, we have developed a non-ordinary state-based peridynamics model for brittle fracture in ceramics or fracture in quasi-brittle materials in general. The model is firstly validated by three numerical benchmark tests, and then it is applied to simulate the edge-on impact and drop ball test experiments. We have implemented the modified Johnson Holmquist (JH-2) constitutive damage model into the peridynamics framework at finite strain. Furthermore, the contact algorithm between the projectile and target is discussed. It is shown that the numerical results obtained from peridynamics simulations are in general agreement with those from the experiment. The comparison of experimental and numerical results indicates that the proposed peridynamics model has the ability to capture the damage propagation and other features of the brittle fracture.
Author Liu, Qiwen
Li, Shaofan
Lai, Xin
Zeleke, Migbar
Wang, Zhen
Liu, Lisheng
Author_xml – sequence: 1
  givenname: Xin
  surname: Lai
  fullname: Lai, Xin
  organization: Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan 430070, China
– sequence: 2
  givenname: Lisheng
  surname: Liu
  fullname: Liu, Lisheng
  email: liulish@whut.edu.cn
  organization: Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan 430070, China
– sequence: 3
  givenname: Shaofan
  surname: Li
  fullname: Li, Shaofan
  organization: Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720, USA
– sequence: 4
  givenname: Migbar
  surname: Zeleke
  fullname: Zeleke, Migbar
  organization: Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan 430070, China
– sequence: 5
  givenname: Qiwen
  surname: Liu
  fullname: Liu, Qiwen
  organization: Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan 430070, China
– sequence: 6
  givenname: Zhen
  surname: Wang
  fullname: Wang, Zhen
  organization: Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan 430070, China
BookMark eNqFkMtKBDEQRYMoOD5-QQKuu6109_QDXCjiCwQ3Cu5COqlINdPJmGQE_94Moxs3rmpzz62qc8T2nXfI2JmAUoBoL6aSJprX6N7LCkRXQl8C9HtsIfpuKOolDPtsAV3dFF1Tvx2yoxgnyEFYwoK9XfNcV_hgyKnwxWNSCYtRRTR8jYHMl1Mz6chnb3BF7p17y21QOm0CRk6Of2xUpGIMlNIK-ZzxQGoVT9iBzQNPf-Yxe727fbl5KJ6e7x9vrp8K3UCbiqZBbEVlh1rXCqwZOivQjGO1vbu31th2aQGhrkXVjlqLrmlMa5UAPZi-aupjdr7rXQf_scGY5OQ3weWVUgx9VUHbd11OtbuUDj7GgFauA835YSlAbi3KSf5alFuLEnqZLWbw8g-oKSsi71JQtPofv9rhmBV8EgYZNaHTaCigTtJ4-q_iG5bblo0
CitedBy_id crossref_primary_10_1007_s00366_021_01527_z
crossref_primary_10_1016_j_ijimpeng_2022_104367
crossref_primary_10_1016_j_ijimpeng_2020_103791
crossref_primary_10_1007_s11804_023_00344_8
crossref_primary_10_1016_j_nocx_2022_100102
crossref_primary_10_1016_j_ijmecsci_2019_02_019
crossref_primary_10_1155_2021_7782326
crossref_primary_10_1016_j_cma_2019_01_017
crossref_primary_10_1007_s00466_020_01846_w
crossref_primary_10_1016_j_cnsns_2023_107236
crossref_primary_10_1016_j_ijimpeng_2021_103918
crossref_primary_10_1007_s40940_023_00231_2
crossref_primary_10_1007_s10035_019_0896_4
crossref_primary_10_1155_2020_3892903
crossref_primary_10_1016_j_cma_2020_113298
crossref_primary_10_1007_s00366_022_01620_x
crossref_primary_10_32604_cmes_2022_020495
crossref_primary_10_1007_s11012_019_01106_z
crossref_primary_10_1007_s00366_023_01898_5
crossref_primary_10_1016_j_engfracmech_2024_110438
crossref_primary_10_1016_j_tafmec_2024_104329
crossref_primary_10_1016_j_jcp_2019_05_017
crossref_primary_10_1016_j_ijimpeng_2022_104231
crossref_primary_10_1016_j_ijimpeng_2020_103740
crossref_primary_10_1007_s11012_019_01098_w
crossref_primary_10_1016_j_engfracmech_2021_108135
crossref_primary_10_1061__ASCE_EM_1943_7889_0001876
crossref_primary_10_1016_j_engfracmech_2023_109261
crossref_primary_10_1007_s00466_021_02014_4
crossref_primary_10_1016_j_ijimpeng_2022_104471
crossref_primary_10_1680_jgeot_17_P_274
crossref_primary_10_1016_j_euromechsol_2019_103810
crossref_primary_10_1002_nme_6819
crossref_primary_10_1016_j_tafmec_2020_102705
crossref_primary_10_1016_j_conbuildmat_2024_139203
crossref_primary_10_1016_j_mechmat_2021_103790
crossref_primary_10_1007_s42102_024_00117_z
crossref_primary_10_1007_s11044_023_09948_y
crossref_primary_10_1016_j_ijimpeng_2025_105268
crossref_primary_10_1016_j_oceaneng_2022_111404
crossref_primary_10_1016_j_tafmec_2023_104144
crossref_primary_10_1007_s00366_023_01792_0
crossref_primary_10_1007_s00366_024_02014_x
crossref_primary_10_1016_j_ceramint_2018_03_214
crossref_primary_10_1080_15376494_2019_1602237
crossref_primary_10_1007_s10704_023_00758_z
crossref_primary_10_1007_s11012_019_00975_8
crossref_primary_10_32604_cmes_2024_050488
crossref_primary_10_1016_j_ijimpeng_2022_104387
crossref_primary_10_1016_j_tafmec_2020_102573
crossref_primary_10_1016_j_engfracmech_2023_109196
crossref_primary_10_1016_j_engfracmech_2024_110023
crossref_primary_10_1016_j_ijimpeng_2024_105110
crossref_primary_10_1016_j_ijsolstr_2021_111279
crossref_primary_10_1061__ASCE_EM_1943_7889_0001628
crossref_primary_10_1016_j_ijsolstr_2022_111478
crossref_primary_10_1007_s11012_020_01138_w
crossref_primary_10_1016_j_apm_2023_09_016
crossref_primary_10_32604_cmes_2021_017268
crossref_primary_10_1016_j_commatsci_2021_110667
crossref_primary_10_1016_j_compstruct_2020_113472
crossref_primary_10_1016_j_ijmecsci_2021_106571
crossref_primary_10_1007_s40571_019_00268_7
crossref_primary_10_1016_j_cma_2021_114246
crossref_primary_10_1016_j_tafmec_2024_104434
crossref_primary_10_32604_cmes_2022_020792
crossref_primary_10_1016_j_jallcom_2021_161703
crossref_primary_10_1016_j_cma_2021_114568
crossref_primary_10_1002_nme_6691
crossref_primary_10_1016_j_compstruct_2019_111194
crossref_primary_10_1016_j_engfracmech_2024_110536
crossref_primary_10_1007_s00466_021_02072_8
crossref_primary_10_1007_s40571_024_00873_1
crossref_primary_10_1007_s40870_022_00351_w
crossref_primary_10_1016_j_finel_2020_103480
crossref_primary_10_3390_ma13061340
crossref_primary_10_1016_j_jmps_2021_104469
crossref_primary_10_1016_j_cma_2024_117593
crossref_primary_10_1016_j_jmps_2024_105783
crossref_primary_10_1016_j_ijimpeng_2024_105181
crossref_primary_10_3390_ma16114050
crossref_primary_10_1016_j_cma_2020_113304
crossref_primary_10_1016_j_jmps_2022_104894
crossref_primary_10_1016_j_ijrmms_2019_03_007
crossref_primary_10_1007_s40571_020_00355_0
crossref_primary_10_1007_s40571_019_00254_z
crossref_primary_10_1016_j_conbuildmat_2020_118021
crossref_primary_10_1016_j_tafmec_2020_102566
crossref_primary_10_32604_cmes_2024_052923
crossref_primary_10_1007_s00466_022_02147_0
crossref_primary_10_1016_j_cma_2023_115904
crossref_primary_10_1142_S2424913018500066
crossref_primary_10_1007_s10409_021_01055_5
crossref_primary_10_1016_j_ijmecsci_2019_03_033
crossref_primary_10_1016_j_apm_2023_01_007
Cites_doi 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
10.1016/j.ijimpeng.2015.06.019
10.1002/nme.1151
10.1007/s10659-008-9163-3
10.1016/S0022-5096(99)00029-0
10.1103/PhysRev.159.98
10.1016/j.cma.2006.06.020
10.1016/0734-743X(94)90033-H
10.1016/0045-7825(83)90125-1
10.1016/S0013-7944(01)00083-2
10.1002/nag.2356
10.1016/j.ijrmms.2007.12.002
10.1016/j.engfailanal.2013.09.018
10.1016/S0045-7825(96)01050-X
10.1115/IPACK2013-73291
10.1016/j.ijimpeng.2015.08.006
10.1002/nme.5257
10.1016/0045-7825(87)90065-X
10.1016/j.cma.2017.01.026
10.1177/105678959200100107
10.1016/j.cma.2010.03.031
10.1007/s10659-007-9125-1
10.1007/s10444-004-1817-5
10.1016/j.cma.2016.12.031
10.1016/S0734-743X(01)00023-9
10.1016/0021-9991(89)90032-6
10.1016/j.compositesb.2010.10.001
10.1002/nme.2725
10.1007/s00466-007-0184-8
10.1111/j.1744-7402.2004.tb00175.x
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Jan 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2018
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.ijimpeng.2017.08.008
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3509
EndPage 146
ExternalDocumentID 10_1016_j_ijimpeng_2017_08_008
S0734743X16308880
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SR
7TB
8BQ
8FD
EFKBS
FR3
JG9
KR7
ID FETCH-LOGICAL-c406t-44ee612f93c3a0fd97f1edbb235098ffdf65f0e033126bcc1744d6fa10c9d8243
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Mon Jul 14 09:34:30 EDT 2025
Tue Jul 01 03:54:26 EDT 2025
Thu Apr 24 23:02:45 EDT 2025
Fri Feb 23 02:46:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Peridynamics
Ceramics
Johnson–Holmquist model
Brittle fracture
Non-local mechanics model
Quasi-brittle materials
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-44ee612f93c3a0fd97f1edbb235098ffdf65f0e033126bcc1744d6fa10c9d8243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1982206877
PQPubID 2045463
PageCount 17
ParticipantIDs proquest_journals_1982206877
crossref_primary_10_1016_j_ijimpeng_2017_08_008
crossref_citationtrail_10_1016_j_ijimpeng_2017_08_008
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2017_08_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2018
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: January 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of impact engineering
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chen (bib0004) 1992; 1
Gazonas (bib0025) 2002
Madenci, Oterkus (bib0027) 2013
Hidallana-Gamage, Thambiratnam, Perera (bib0028) 2014; 36
Xue L, Coble CR, Lee H, Yu D, Chaparala S, Park S, et al. Dynamic analysis of thin glass under ball drop impact with new metrics. In: Proceedings of the ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Berlingame, CA, USA: American Soceity of Mechanical Engineers; 2013: p. V001T03A006.
Strassburger, Senf (bib0049) 1995
Silling, Lehoucq (bib0014) 2008; 93
Anderson Jr. (bib0003) 2007
Rabczuk, Zi, Bordas, Nguyen-Xuan (bib0012) 2010; 199
Cronin, Bui, Kaufmann, McIntosh, Berstad (bib0024) 2003; D-I
Bürger D, Donadon MV, de Melo FCL, de Almeida SFM. Formulation and implementation of a constitutive model for brittle materials in ABAQUS explicit finite element code. In: Proceedings of COBEM 2009 (ABCM, 2009), Gramado, RS, Brazil; 2009.
Foster, Silling, Chen (bib0015) 2010; 81
Ren, Zhuang, Rabczuk (bib0055) 2017; 318
Mose, Dolbow, Belytschko (bib0009) 1999; 46
Liu, Liu (bib0044) 2003
Bourago, Kukudzhanov (bib0037) 2005; 40
Flanagan, Taylor (bib0035) 1987; 62
Karandikar, Evans, Wong, Aghajanian, Sennett (bib0001) 2008; 29
Walker, Anderson Jr. (bib0021) 1991
Ma, An (bib0030) 2008; 45
Johnson, Holmquist (bib0023) 1992
Lai, Ren, Fan, Li, Wu, Regueiro (bib0018) 2015; 39
Krishnan, Sockalingam, Bansal, Rajan (bib0029) 2010; 41
Tuniki (bib0017) 2012
Johnson, Holmquist (bib0032) 1994; vol. 309
Rubinstein, Atluri (bib0034) 1983; 36
Fan, Bergel, Li (bib0019) 2016; 87
Benson (bib0046) 1997; 140
Strassburger, Patel, McCauley, Templeton (bib0050) 2005
Li, Liu (bib0005) 2007
Strassburger, Patel, McCauley, Kovalchick, Ramesh, Templeton (bib0048) 2008
Anderson Jr., Nicholls, Chocron, Ryckman (bib0045) 2006; vol. 845
Silling (bib0013) 2000; 48
van den Bosch, Schreurs, Geers (bib0008) 2008; 42
Monaghan (bib0042) 1987
Strassburger (bib0047) 2004; 1
Ball, McKenzie (bib0051) 1994; 04(C8)
Elices, Guinea, Gomez, Planas (bib0007) 2002; 69
Rajendran (bib0022) 1994; 15
Rabczuk, Belytschko (bib0006) 2004; 61
Rabczuk, Belytschko (bib0011) 2007; 196
Allen, Tildesley (bib0039) 1989
Silling, Epton, Weckner, Xu, Askari (bib0031) 2007; 88
Hallquist (bib0038) 2006
Bouzid, Nyoungue, Azari, Bouaouadja, Pluvinage (bib0052) 2001; 25
Verlet (bib0041) 1967; 159
Amani, Oterkus, Areias, Zi, Nguyen-Thoi, Rabczuk (bib0033) 2016; 87
Fan, Li (bib0020) 2017; 318
Crisfield (bib0036) 2003
Anderson Jr. (bib0002) 2006
Monaghan (bib0043) 1989; 82
Ren, Zhuang, Cai, Rabczuk (bib0054) 2016; 108
Mitchell (bib0016) 2011
Nordlund (bib0040) 2015
Xiao, Belytschko (bib0010) 2005; 23
Walker (10.1016/j.ijimpeng.2017.08.008_bib0021) 1991
Strassburger (10.1016/j.ijimpeng.2017.08.008_bib0050) 2005
Fan (10.1016/j.ijimpeng.2017.08.008_bib0019) 2016; 87
Bourago (10.1016/j.ijimpeng.2017.08.008_bib0037) 2005; 40
Amani (10.1016/j.ijimpeng.2017.08.008_bib0033) 2016; 87
Li (10.1016/j.ijimpeng.2017.08.008_bib0005) 2007
Strassburger (10.1016/j.ijimpeng.2017.08.008_bib0047) 2004; 1
Karandikar (10.1016/j.ijimpeng.2017.08.008_bib0001) 2008; 29
Elices (10.1016/j.ijimpeng.2017.08.008_bib0007) 2002; 69
Anderson Jr. (10.1016/j.ijimpeng.2017.08.008_bib0045) 2006; vol. 845
Verlet (10.1016/j.ijimpeng.2017.08.008_bib0041) 1967; 159
Rubinstein (10.1016/j.ijimpeng.2017.08.008_bib0034) 1983; 36
Rabczuk (10.1016/j.ijimpeng.2017.08.008_bib0011) 2007; 196
Rabczuk (10.1016/j.ijimpeng.2017.08.008_bib0012) 2010; 199
10.1016/j.ijimpeng.2017.08.008_bib0053
Ren (10.1016/j.ijimpeng.2017.08.008_bib0054) 2016; 108
Silling (10.1016/j.ijimpeng.2017.08.008_bib0013) 2000; 48
Monaghan (10.1016/j.ijimpeng.2017.08.008_bib0043) 1989; 82
Johnson (10.1016/j.ijimpeng.2017.08.008_bib0023) 1992
Fan (10.1016/j.ijimpeng.2017.08.008_bib0020) 2017; 318
Ball (10.1016/j.ijimpeng.2017.08.008_sbref0050) 1994; 04(C8)
Tuniki (10.1016/j.ijimpeng.2017.08.008_bib0017) 2012
Rabczuk (10.1016/j.ijimpeng.2017.08.008_bib0006) 2004; 61
Anderson Jr. (10.1016/j.ijimpeng.2017.08.008_bib0003) 2007
Anderson Jr. (10.1016/j.ijimpeng.2017.08.008_bib0002) 2006
Crisfield (10.1016/j.ijimpeng.2017.08.008_sbref0035) 2003
Ma (10.1016/j.ijimpeng.2017.08.008_bib0030) 2008; 45
Madenci (10.1016/j.ijimpeng.2017.08.008_sbref0026) 2013
Gazonas (10.1016/j.ijimpeng.2017.08.008_bib0025) 2002
Flanagan (10.1016/j.ijimpeng.2017.08.008_bib0035) 1987; 62
Krishnan (10.1016/j.ijimpeng.2017.08.008_bib0029) 2010; 41
Monaghan (10.1016/j.ijimpeng.2017.08.008_bib0042) 1987
Foster (10.1016/j.ijimpeng.2017.08.008_bib0015) 2010; 81
Cronin (10.1016/j.ijimpeng.2017.08.008_bib0024) 2003; D-I
10.1016/j.ijimpeng.2017.08.008_bib0026
Rajendran (10.1016/j.ijimpeng.2017.08.008_bib0022) 1994; 15
Ren (10.1016/j.ijimpeng.2017.08.008_bib0055) 2017; 318
Silling (10.1016/j.ijimpeng.2017.08.008_bib0031) 2007; 88
Mitchell (10.1016/j.ijimpeng.2017.08.008_bib0016) 2011
Hallquist (10.1016/j.ijimpeng.2017.08.008_bib0038) 2006
Benson (10.1016/j.ijimpeng.2017.08.008_bib0046) 1997; 140
Lai (10.1016/j.ijimpeng.2017.08.008_bib0018) 2015; 39
Xiao (10.1016/j.ijimpeng.2017.08.008_bib0010) 2005; 23
Strassburger (10.1016/j.ijimpeng.2017.08.008_bib0049) 1995
Bouzid (10.1016/j.ijimpeng.2017.08.008_bib0052) 2001; 25
Liu (10.1016/j.ijimpeng.2017.08.008_bib0044) 2003
Strassburger (10.1016/j.ijimpeng.2017.08.008_bib0048) 2008
Johnson (10.1016/j.ijimpeng.2017.08.008_bib0032) 1994; vol. 309
Nordlund (10.1016/j.ijimpeng.2017.08.008_bib0040) 2015
Silling (10.1016/j.ijimpeng.2017.08.008_bib0014) 2008; 93
Chen (10.1016/j.ijimpeng.2017.08.008_bib0004) 1992; 1
Allen (10.1016/j.ijimpeng.2017.08.008_bib0039) 1989
van den Bosch (10.1016/j.ijimpeng.2017.08.008_bib0008) 2008; 42
Hidallana-Gamage (10.1016/j.ijimpeng.2017.08.008_bib0028) 2014; 36
Mose (10.1016/j.ijimpeng.2017.08.008_bib0009) 1999; 46
References_xml – volume: vol. 845
  start-page: 1367
  year: 2006
  end-page: 1370
  ident: bib0045
  article-title: Taylor anvil impact
  publication-title: Shock compression of condensed matter-2005: Proceedings of the conference of the American physical society topical group on shock compression of condensed matter
– year: 1995
  ident: bib0049
  publication-title: Experimental investigations of wave and fracture phenomena in impacted ceramics and glasses
– volume: 140
  start-page: 59
  year: 1997
  end-page: 86
  ident: bib0046
  article-title: A mixture theory for contact in multi-material Eulerian formulations
  publication-title: Comput Methods Appl Mech Eng
– year: 2002
  ident: bib0025
  publication-title: Implementation of the Johnson–Holmquist II (JH-2) constitutive model into DYNA3d
– year: 2003
  ident: bib0036
  article-title: Non-linear finite element analysis of solids and structures. Vol. 1: Essentials
– year: 2008
  ident: bib0048
  publication-title: High-speed transmission shadowgraphic and dynamic photoelasticity study of stress wave and impact damage propagation in transparent materials and laminates using the edge-on impact (EOI) method
– volume: 318
  start-page: 762
  year: 2017
  end-page: 782
  ident: bib0055
  article-title: Dual-horizon peridynamics: a stable solution to varying horizons
  publication-title: Comput Methods Appl Mech Eng
– year: 1989
  ident: bib0039
  article-title: Computer simulation of liquids
– volume: 41
  start-page: 583
  year: 2010
  end-page: 593
  ident: bib0029
  article-title: Numerical simulation of ceramic composite armor subjected to ballistic impact
  publication-title: Compos B: Eng
– year: 2006
  ident: bib0038
  article-title: LS-DYNA theory manual
– year: 2015
  ident: bib0040
  article-title: Molecular dynamics simulations course lecture notes
  publication-title: Personal web page of K. Nordlund
– year: 2003
  ident: bib0044
  article-title: Smoothed particle hydrodynamics: a meshfree particle method
– volume: 81
  start-page: 1242
  year: 2010
  end-page: 1258
  ident: bib0015
  article-title: Viscoplasticity using peridynamics
  publication-title: Int J Numer Methods Eng
– volume: 15
  start-page: 749
  year: 1994
  end-page: 768
  ident: bib0022
  article-title: Modeling the impact behavior of AD85 ceramic under multiaxial loading
  publication-title: Int J Impact Eng
– volume: 108
  start-page: 1451
  year: 2016
  end-page: 1476
  ident: bib0054
  article-title: Dual-horizon peridynamics
  publication-title: Int J Numer Methods Eng
– start-page: 1
  year: 2006
  end-page: 18
  ident: bib0002
  article-title: A review of computational ceramic armor modeling
  publication-title: Advances in ceramic armor II:ceramic engineering and science proceedings
– volume: 36
  start-page: 277
  year: 1983
  end-page: 290
  ident: bib0034
  article-title: Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analyses
  publication-title: Comput Methods Appl Mech Eng
– volume: 62
  start-page: 305
  year: 1987
  end-page: 320
  ident: bib0035
  article-title: An accurate numerical algorithm for stress integration with finite rotations
  publication-title: Comput Methods Appl Mech Eng
– volume: 42
  start-page: 171
  year: 2008
  end-page: 180
  ident: bib0008
  article-title: On the development of a 3d cohesive zone element in the presence of large deformations
  publication-title: Comput Mech
– volume: 87
  start-page: 14
  year: 2016
  end-page: 27
  ident: bib0019
  article-title: A hybrid peridynamics-SPH simulation of soil fragmentation by blast loads of buried explosive
  publication-title: Int J Impact Eng
– volume: 199
  start-page: 2437
  year: 2010
  end-page: 2455
  ident: bib0012
  article-title: A simple and robust three-dimensional cracking-particle method without enrichment
  publication-title: Comput Methods Appl Mech Eng
– volume: 25
  start-page: 831
  year: 2001
  end-page: 845
  ident: bib0052
  article-title: Fracture criterion for glass under impact loading
  publication-title: Int J Impact Eng
– year: 2007
  ident: bib0003
  article-title: A review of computational ceramic armor modeling
  publication-title: Advances in ceramic armor IV: Ceramic engineering and science proceedings
– volume: 87
  start-page: 83
  year: 2016
  end-page: 94
  ident: bib0033
  article-title: A non-ordinary state-based peridynamics formulation for thermoplastic fracture
  publication-title: Int J Impact Eng
– volume: 48
  start-page: 175
  year: 2000
  end-page: 209
  ident: bib0013
  article-title: Reformulation of elasticity theory for discontinuities and long-range forces
  publication-title: J Mech Phys Solids
– year: 2012
  ident: bib0017
  publication-title: Peridynamic constitutive model for concrete
– volume: 29
  start-page: 163
  year: 2008
  end-page: 175
  ident: bib0001
  article-title: A review of ceramics for armor applications
  publication-title: Advances in ceramic armor IV: Ceramic engineering and science proceedings
– volume: 40
  start-page: 35
  year: 2005
  end-page: 71
  ident: bib0037
  article-title: A review of contact algorithms
  publication-title: Mech Solids
– volume: 04(C8)
  year: 1994
  ident: bib0051
  article-title: On the low velocity impact behaviour of glass plates
  publication-title: J Phys IV
– year: 1987
  ident: bib0042
  article-title: SPH meets the shocks of NOH
– volume: D-I
  start-page: 47
  year: 2003
  end-page: 60
  ident: bib0024
  article-title: Implementation and validation of the Johnson–Holmquist ceramic material model in LS-Dyna
– volume: 23
  start-page: 171
  year: 2005
  end-page: 190
  ident: bib0010
  article-title: Material stability analysis of particle methods
  publication-title: Adv Comput Math
– volume: 61
  start-page: 2316
  year: 2004
  end-page: 2343
  ident: bib0006
  article-title: Cracking particles: a simplified meshfree method for arbitrary evolving cracks
  publication-title: Int J Numer Methods Eng
– volume: 45
  start-page: 966
  year: 2008
  end-page: 975
  ident: bib0030
  article-title: Numerical simulation of blasting-induced rock fractures
  publication-title: Int J Rock Mech Min Sci
– volume: 318
  start-page: 349
  year: 2017
  end-page: 381
  ident: bib0020
  article-title: A peridynamics-SPH modeling and simulation of blast fragmentation of soil under buried explosive loads
  publication-title: Comput Methods Appl Mech Eng
– volume: 1
  start-page: 235
  year: 2004
  end-page: 242
  ident: bib0047
  article-title: Visualization of impact damage in ceramics using the edge-on impact technique
  publication-title: Int J Appl Ceram Technol
– volume: 36
  start-page: 14
  year: 2014
  end-page: 29
  ident: bib0028
  article-title: Failure analysis of laminated glass panels subjected to blast loads
  publication-title: Eng Fail Anal
– year: 2007
  ident: bib0005
  article-title: Meshfree particle methods
– volume: 1
  start-page: 132
  year: 1992
  end-page: 143
  ident: bib0004
  article-title: Numerical simulation of shear induced plugging in HY100 steel plates
  publication-title: Int J Damage Mech
– start-page: 769
  year: 2005
  end-page: 776
  ident: bib0050
  article-title: Visualization of wave propagationand impact damage in a polycrystalline transparent ceramic-AlON
  publication-title: Ballistics 2005, 22nd international symposium on ballistics. Vol. 2: Terminal ballistics and vulnerability, lethality and wound ballistics
– volume: 46
  start-page: 131
  year: 1999
  end-page: 150
  ident: bib0009
  article-title: A finite element method for crack growth without remeshing
  publication-title: Int J Numer Methods Eng
– volume: vol. 309
  start-page: 981
  year: 1994
  end-page: 984
  ident: bib0032
  article-title: An improved computational constitutive model for brittle materials
  publication-title: AIP conference proceedings
– volume: 93
  start-page: 13
  year: 2008
  end-page: 37
  ident: bib0014
  article-title: Convergence of peridynamics to classical elasticity theory
  publication-title: J Elast
– volume: 159
  start-page: 98
  year: 1967
  end-page: 103
  ident: bib0041
  article-title: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules
  publication-title: Phys Rev
– volume: 196
  start-page: 2777
  year: 2007
  end-page: 2799
  ident: bib0011
  article-title: A three-dimensional large deformation meshfree method for arbitrary evolving cracks
  publication-title: Comput Methods Appl Mech Eng
– volume: 39
  start-page: 1304
  year: 2015
  end-page: 1330
  ident: bib0018
  article-title: Peridynamics simulations of geomaterial fragmentation by impulse loads
  publication-title: Int J Numer Anal Methods Geomech
– volume: 82
  start-page: 1
  year: 1989
  end-page: 15
  ident: bib0043
  article-title: On the problem of penetration in particle methods
  publication-title: J Comput Phys
– reference: Xue L, Coble CR, Lee H, Yu D, Chaparala S, Park S, et al. Dynamic analysis of thin glass under ball drop impact with new metrics. In: Proceedings of the ASME 2013 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Berlingame, CA, USA: American Soceity of Mechanical Engineers; 2013: p. V001T03A006.
– volume: 88
  start-page: 151
  year: 2007
  end-page: 184
  ident: bib0031
  article-title: Peridynamic states and constitutive modeling
  publication-title: J Elast
– volume: 69
  start-page: 137
  year: 2002
  end-page: 163
  ident: bib0007
  article-title: The cohesive zone model: advantages, limitations and challenges
  publication-title: Eng Fract Mech
– year: 1991
  ident: bib0021
  article-title: The Wilkins computational ceramic model for CTH
– reference: Bürger D, Donadon MV, de Melo FCL, de Almeida SFM. Formulation and implementation of a constitutive model for brittle materials in ABAQUS explicit finite element code. In: Proceedings of COBEM 2009 (ABCM, 2009), Gramado, RS, Brazil; 2009.
– year: 2011
  ident: bib0016
  publication-title: A non-local, ordinary-state-based viscoelasticity model for peridynamics
– year: 2013
  ident: bib0027
  article-title: Peridynamic theory and its applications
– start-page: 1075
  year: 1992
  end-page: 1081
  ident: bib0023
  article-title: A computational constitutive model for brittle materials subjected to large strains
  publication-title: Shock-wave and high strain-rate phenomena in materials
– year: 1995
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0049
– volume: 46
  start-page: 131
  issue: 1
  year: 1999
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0009
  article-title: A finite element method for crack growth without remeshing
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
– volume: 87
  start-page: 83
  year: 2016
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0033
  article-title: A non-ordinary state-based peridynamics formulation for thermoplastic fracture
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2015.06.019
– volume: 61
  start-page: 2316
  issue: 13
  year: 2004
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0006
  article-title: Cracking particles: a simplified meshfree method for arbitrary evolving cracks
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1151
– volume: 93
  start-page: 13
  issue: 1
  year: 2008
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0014
  article-title: Convergence of peridynamics to classical elasticity theory
  publication-title: J Elast
  doi: 10.1007/s10659-008-9163-3
– volume: 48
  start-page: 175
  issue: 1
  year: 2000
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0013
  article-title: Reformulation of elasticity theory for discontinuities and long-range forces
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(99)00029-0
– year: 2006
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0038
– volume: 159
  start-page: 98
  issue: 1
  year: 1967
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0041
  article-title: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules
  publication-title: Phys Rev
  doi: 10.1103/PhysRev.159.98
– volume: 196
  start-page: 2777
  issue: 29
  year: 2007
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0011
  article-title: A three-dimensional large deformation meshfree method for arbitrary evolving cracks
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2006.06.020
– volume: 15
  start-page: 749
  issue: 6
  year: 1994
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0022
  article-title: Modeling the impact behavior of AD85 ceramic under multiaxial loading
  publication-title: Int J Impact Eng
  doi: 10.1016/0734-743X(94)90033-H
– start-page: 1075
  year: 1992
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0023
  article-title: A computational constitutive model for brittle materials subjected to large strains
– volume: 36
  start-page: 277
  issue: 3
  year: 1983
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0034
  article-title: Objectivity of incremental constitutive relations over finite time steps in computational finite deformation analyses
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(83)90125-1
– volume: 69
  start-page: 137
  issue: 2
  year: 2002
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0007
  article-title: The cohesive zone model: advantages, limitations and challenges
  publication-title: Eng Fract Mech
  doi: 10.1016/S0013-7944(01)00083-2
– volume: 39
  start-page: 1304
  year: 2015
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0018
  article-title: Peridynamics simulations of geomaterial fragmentation by impulse loads
  publication-title: Int J Numer Anal Methods Geomech
  doi: 10.1002/nag.2356
– volume: 45
  start-page: 966
  issue: 6
  year: 2008
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0030
  article-title: Numerical simulation of blasting-induced rock fractures
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2007.12.002
– year: 2003
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0044
– volume: 36
  start-page: 14
  year: 2014
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0028
  article-title: Failure analysis of laminated glass panels subjected to blast loads
  publication-title: Eng Fail Anal
  doi: 10.1016/j.engfailanal.2013.09.018
– year: 1987
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0042
– start-page: 769
  year: 2005
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0050
  article-title: Visualization of wave propagationand impact damage in a polycrystalline transparent ceramic-AlON
– volume: 04(C8)
  year: 1994
  ident: 10.1016/j.ijimpeng.2017.08.008_sbref0050
  article-title: On the low velocity impact behaviour of glass plates
  publication-title: J Phys IV
– year: 2007
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0003
  article-title: A review of computational ceramic armor modeling
– year: 2011
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0016
– volume: 29
  start-page: 163
  year: 2008
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0001
  article-title: A review of ceramics for armor applications
– year: 2002
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0025
– volume: 140
  start-page: 59
  issue: 1
  year: 1997
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0046
  article-title: A mixture theory for contact in multi-material Eulerian formulations
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/S0045-7825(96)01050-X
– year: 2013
  ident: 10.1016/j.ijimpeng.2017.08.008_sbref0026
– year: 1989
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0039
– ident: 10.1016/j.ijimpeng.2017.08.008_bib0053
  doi: 10.1115/IPACK2013-73291
– volume: 87
  start-page: 14
  year: 2016
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0019
  article-title: A hybrid peridynamics-SPH simulation of soil fragmentation by blast loads of buried explosive
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2015.08.006
– volume: 108
  start-page: 1451
  issue: 12
  year: 2016
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0054
  article-title: Dual-horizon peridynamics
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.5257
– volume: 62
  start-page: 305
  issue: 3
  year: 1987
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0035
  article-title: An accurate numerical algorithm for stress integration with finite rotations
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/0045-7825(87)90065-X
– year: 2008
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0048
– year: 2015
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0040
  article-title: Molecular dynamics simulations course lecture notes
– year: 2007
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0005
– volume: 318
  start-page: 349
  year: 2017
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0020
  article-title: A peridynamics-SPH modeling and simulation of blast fragmentation of soil under buried explosive loads
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.01.026
– volume: 40
  start-page: 35
  issue: 1
  year: 2005
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0037
  article-title: A review of contact algorithms
  publication-title: Mech Solids
– volume: 1
  start-page: 132
  issue: 1
  year: 1992
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0004
  article-title: Numerical simulation of shear induced plugging in HY100 steel plates
  publication-title: Int J Damage Mech
  doi: 10.1177/105678959200100107
– volume: 199
  start-page: 2437
  issue: 37
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0012
  article-title: A simple and robust three-dimensional cracking-particle method without enrichment
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2010.03.031
– volume: vol. 845
  start-page: 1367
  year: 2006
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0045
  article-title: Taylor anvil impact
– volume: 88
  start-page: 151
  issue: 2
  year: 2007
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0031
  article-title: Peridynamic states and constitutive modeling
  publication-title: J Elast
  doi: 10.1007/s10659-007-9125-1
– volume: 23
  start-page: 171
  issue: 1–2
  year: 2005
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0010
  article-title: Material stability analysis of particle methods
  publication-title: Adv Comput Math
  doi: 10.1007/s10444-004-1817-5
– volume: 318
  start-page: 762
  year: 2017
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0055
  article-title: Dual-horizon peridynamics: a stable solution to varying horizons
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2016.12.031
– year: 2003
  ident: 10.1016/j.ijimpeng.2017.08.008_sbref0035
– volume: 25
  start-page: 831
  issue: 9
  year: 2001
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0052
  article-title: Fracture criterion for glass under impact loading
  publication-title: Int J Impact Eng
  doi: 10.1016/S0734-743X(01)00023-9
– volume: 82
  start-page: 1
  year: 1989
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0043
  article-title: On the problem of penetration in particle methods
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(89)90032-6
– volume: D-I
  start-page: 47
  year: 2003
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0024
– volume: 41
  start-page: 583
  issue: 8
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0029
  article-title: Numerical simulation of ceramic composite armor subjected to ballistic impact
  publication-title: Compos B: Eng
  doi: 10.1016/j.compositesb.2010.10.001
– volume: 81
  start-page: 1242
  issue: 10
  year: 2010
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0015
  article-title: Viscoplasticity using peridynamics
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.2725
– start-page: 1
  year: 2006
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0002
  article-title: A review of computational ceramic armor modeling
– volume: 42
  start-page: 171
  issue: 2
  year: 2008
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0008
  article-title: On the development of a 3d cohesive zone element in the presence of large deformations
  publication-title: Comput Mech
  doi: 10.1007/s00466-007-0184-8
– year: 1991
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0021
– volume: vol. 309
  start-page: 981
  year: 1994
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0032
  article-title: An improved computational constitutive model for brittle materials
– volume: 1
  start-page: 235
  issue: 3
  year: 2004
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0047
  article-title: Visualization of impact damage in ceramics using the edge-on impact technique
  publication-title: Int J Appl Ceram Technol
  doi: 10.1111/j.1744-7402.2004.tb00175.x
– ident: 10.1016/j.ijimpeng.2017.08.008_bib0026
– year: 2012
  ident: 10.1016/j.ijimpeng.2017.08.008_bib0017
SSID ssj0017050
Score 2.5131474
Snippet •A non-ordinary state-based peridynamic model for brittle fracture in ceramics or fracture in quasi-brittle materials is developed.•The modified Johnson...
In this work, we have developed a non-ordinary state-based peridynamics model for brittle fracture in ceramics or fracture in quasi-brittle materials in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 130
SubjectTerms Algorithms
Brittle fracture
Brittle materials
Ceramics
Computer simulation
Crack propagation
Damage assessment
Fractures
Impact tests
Johnson–Holmquist model
Mathematical models
Non-local mechanics model
Peridynamics
Propagation
Quasi-brittle materials
Studies
Title A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials
URI https://dx.doi.org/10.1016/j.ijimpeng.2017.08.008
https://www.proquest.com/docview/1982206877
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6lXvQgPrFaSw5e02Y32dexFEtV7EULvYXNJpEtUmsfV3-7M_soVYQePO6SCWEyzzDzDSF31oQi1FqwNMaWHBNwpl2YMJsIE0RW-r7GRPF5HI4m8nEaTBtkUPfCYFllZftLm15Y6-pPr-Jmb5HnvRcQTgn-bwoRBahKjHm7lBFKefdrW-aBaDHFOwssZrh6p0t41s1nOQSn8zcs8YoKKE8cM_m3g_plqgv_Mzwhx1XgSPvl2U5Jw87PyNEOnOA5mfYpJPMM0smiyZYWzUIM_ZShCGhsyunzK1qMvwES-uGowzapDSTdNJ_Tz026gmR5mSOyMYVgtpTPCzIZ3r8ORqyanMAycNBrJqW1ELq4RGQi5c4kkfOs0doXEB_EzhkXBo5bLoTnhzrLIC2RJnSpx7PExL4Ul6QJB7ZXhGaJAx0HHlsTydT4msNWGhw7bK6tx1skqNmlsgpWHKdbvKu6fmymajYrZLPCsZc8bpHelm5RAmvspUjq21A_RESB9d9L266vT1VKulIeYhfyMI6i639sfUMO4Ssun2XapLlebuwtBCpr3SkksUMO-g9Po_E3ujXqlw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqdgAGxFMUCnhgNXHiPMeqokrpY6GVsllxbKNUqJQ-_j_nPKqCkDqwJjnLOp_v7ot93yH0pKTPfCEYSUNTkiM9SoT2I6IiJr1AuY4jDFAcT_x45r4mXtJAvboWxlyrrHx_6dMLb109sSptWss8t97AOF2IfwlkFLBVQsDtLcNO5TVRqzsYxpPdYUJAi0at5ntiBPYKhefP-TyH_HTxbm55BQWbp-k0-XeM-uWtixDUP0OnVe6Iu-X0zlFDLS7QyR6j4CVKuhjwPAFEWdTZ4qJeiJhQJbHhNJZlA_o1LjrggAj-1FibSqkt4G6cL_DXNl0DXl7lhtwYQz5bmugVmvVfpr2YVM0TSAYxekNcVynIXnTEMpZSLaNA20oK4TBIEUKtpfY9TRVlzHZ8kWWATFzp69SmWSRDx2XXqAkTVjcIZ5GGbQ5qVjJwU-kICkMJiO0wuFA2bSOvVhfPKmZx0-Dig9dXyOa8VjM3auam8yUN28jayS1Lbo2DElG9GvyHlXAIAAdlO_Xy8Wqfrrlt6AupHwbB7T-GfkRH8XQ84qPBZHiHjuFNWP6l6aDmZrVV95C3bMRDZZffwyHtSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+non-ordinary+state-based+peridynamics+modeling+of+fractures+in+quasi-brittle+materials&rft.jtitle=International+journal+of+impact+engineering&rft.au=Lai%2C+Xin&rft.au=Liu%2C+Lisheng&rft.au=Li%2C+Shaofan&rft.au=Zeleke%2C+Migbar&rft.date=2018-01-01&rft.issn=0734-743X&rft.volume=111&rft.spage=130&rft.epage=146&rft_id=info:doi/10.1016%2Fj.ijimpeng.2017.08.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2017_08_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon