Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising
Due to the widespread of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnos...
Saved in:
Published in | IEEE transactions on radiation and plasma medical sciences Vol. 5; no. 2; pp. 213 - 223 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2469-7311 2469-7303 |
DOI | 10.1109/TRPMS.2020.3025071 |
Cover
Loading…
Abstract | Due to the widespread of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnostic performance. In this article, we propose a parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose PET image denoising. The contributions of this article are twofold: 1) a PT-WGAN framework is designed to denoise low-dose PET images without compromising structural details and 2) a task-specific initialization based on transfer learning is developed to train PT-WGAN using trainable parameters transferred from a pretrained model, which significantly improves the training efficiency of PT-WGAN. The experimental results on clinical data show that the proposed network can suppress image noise more effectively while preserving better image fidelity than recently published state-of-the-art methods. We make our code available at https://github.com/90n9-yu/PT-WGAN. |
---|---|
AbstractList | Due to the widespread use of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnostic performance. In this paper, we propose a parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose PET image denoising. The contributions of this paper are twofold: i) a PT-WGAN framework is designed to denoise low-dose PET images without compromising structural details, and ii) a task-specific initialization based on transfer learning is developed to train PT-WGAN using trainable parameters transferred from a pretrained model, which significantly improves the training efficiency of PT-WGAN. The experimental results on clinical data show that the proposed network can suppress image noise more effectively while preserving better image fidelity than recently published state-of-the-art methods. We make our code available at
https://github.com/90n9-yu/PT-WGAN
. Due to the widespread of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnostic performance. In this article, we propose a parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose PET image denoising. The contributions of this article are twofold: 1) a PT-WGAN framework is designed to denoise low-dose PET images without compromising structural details and 2) a task-specific initialization based on transfer learning is developed to train PT-WGAN using trainable parameters transferred from a pretrained model, which significantly improves the training efficiency of PT-WGAN. The experimental results on clinical data show that the proposed network can suppress image noise more effectively while preserving better image fidelity than recently published state-of-the-art methods. We make our code available at https://github.com/90n9-yu/PT-WGAN . Due to the widespread use of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnostic performance. In this paper, we propose a parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose PET image denoising. The contributions of this paper are twofold: i) a PT-WGAN framework is designed to denoise low-dose PET images without compromising structural details, and ii) a task-specific initialization based on transfer learning is developed to train PT-WGAN using trainable parameters transferred from a pretrained model, which significantly improves the training efficiency of PT-WGAN. The experimental results on clinical data show that the proposed network can suppress image noise more effectively while preserving better image fidelity than recently published state-of-the-art methods. We make our code available at https://github.com/90n9-yu/PT-WGAN.Due to the widespread use of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnostic performance. In this paper, we propose a parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose PET image denoising. The contributions of this paper are twofold: i) a PT-WGAN framework is designed to denoise low-dose PET images without compromising structural details, and ii) a task-specific initialization based on transfer learning is developed to train PT-WGAN using trainable parameters transferred from a pretrained model, which significantly improves the training efficiency of PT-WGAN. The experimental results on clinical data show that the proposed network can suppress image noise more effectively while preserving better image fidelity than recently published state-of-the-art methods. We make our code available at https://github.com/90n9-yu/PT-WGAN. Due to the widespread use of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnostic performance. In this paper, we propose a parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose PET image denoising. The contributions of this paper are twofold: i) a PT-WGAN framework is designed to denoise low-dose PET images without compromising structural details, and ii) a task-specific initialization based on transfer learning is developed to train PT-WGAN using trainable parameters transferred from a pretrained model, which significantly improves the training efficiency of PT-WGAN. The experimental results on clinical data show that the proposed network can suppress image noise more effectively while preserving better image fidelity than recently published state-of-the-art methods. We make our code available at https://github.com/90n9-yu/PT-WGAN. |
Author | Tu, Ning Li, Ming Wang, Ge Wang, Shanshan Shan, Hongming Teng, Yueyang Gong, Yu Liang, Guodong |
Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0002-7431-6097 surname: Gong fullname: Gong, Yu email: gongyu0010@gmail.com organization: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China – sequence: 2 givenname: Hongming orcidid: 0000-0002-0604-3197 surname: Shan fullname: Shan, Hongming email: hmshan@ieee.org organization: Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China – sequence: 3 givenname: Yueyang orcidid: 0000-0002-1487-8434 surname: Teng fullname: Teng, Yueyang email: tengyy@bmie.neu.edu.cn organization: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China – sequence: 4 givenname: Ning surname: Tu fullname: Tu, Ning email: tuning@whu.edu.cn organization: PET-CT/MRI Center and Molecular Imaging Center, Wuhan University Renmin Hospital, Wuhan, China – sequence: 5 givenname: Ming surname: Li fullname: Li, Ming email: ming_li@neusoft.com organization: MI Research and Development Division, Neusoft Medical Systems Company, Ltd., Shenyang, China – sequence: 6 givenname: Guodong surname: Liang fullname: Liang, Guodong email: lianggd@neusoft.com organization: MI Research and Development Division, Neusoft Medical Systems Company, Ltd., Shenyang, China – sequence: 7 givenname: Ge orcidid: 0000-0002-2656-7705 surname: Wang fullname: Wang, Ge email: wangg6@rpi.edu organization: Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA – sequence: 8 givenname: Shanshan surname: Wang fullname: Wang, Shanshan email: ss.wang@siat.ac.cn organization: Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35402757$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtvEzEUhS1UREvoHwAJWWJTFhP8GNvjDVLUR6gUSgSDurTcyZ3gdsYu9iRV_z0OCRF0gWTpWvY5x_f6e4kOfPCA0GtKxpQS_aH-Ov_8bcwII2NOmCCKPkNHrJS6UJzwg_2e0kN0nNItIYSqiulSvECHXJSEKaGO0N3cRtvDALGoo_WphRhhga9tShDTAM7jKXiIdnBrwJPFOp_a6GyHr2B4CPEOn8zr4no6uXqP2xDxLDwUZyEBnp_X-LK3S8Bn4INLzi9foeet7RIc7-oIfb84r08_FbMv08vTyaxoSiKHgjdSECFl1fKGyIYLyWSuN0prQjWFUpZcWkVLm8euqBBKtS3PS1dCKw18hD5uc-9XNz0sGvBDtJ25j6638dEE68y_N979MMuwNpXWnEqeA052ATH8XEEaTO9SA11nPYRVMkyWmglK8keP0Lsn0tuwij6PZ1ipK6k0J1VWvf27o30rfzhkAdsKmhhSitDuJZSYDW_zm7fZ8DY73tlUPTE1bsigwmYq1_3f-mZrdQCwf0szsjHwX-Kwtg4 |
CODEN | ITRPFI |
CitedBy_id | crossref_primary_10_1016_j_media_2022_102519 crossref_primary_10_1109_TRPMS_2022_3194408 crossref_primary_10_1007_s10462_022_10305_2 crossref_primary_10_4018_JOEUC_355191 crossref_primary_10_1016_j_compmedimag_2021_102010 crossref_primary_10_1002_mp_16830 crossref_primary_10_1007_s40747_021_00405_x crossref_primary_10_3390_mi14030634 crossref_primary_10_1016_j_media_2024_103300 crossref_primary_10_2967_jnumed_122_265000 crossref_primary_10_1007_s12194_024_00780_3 crossref_primary_10_1016_j_media_2023_102993 crossref_primary_10_1016_j_cpet_2021_06_005 crossref_primary_10_1109_TRPMS_2023_3260214 crossref_primary_10_1109_TRPMS_2023_3349194 crossref_primary_10_1109_TRPMS_2024_3355247 crossref_primary_10_1186_s12880_024_01417_y crossref_primary_10_1002_acm2_14270 crossref_primary_10_1088_1361_6560_ad14c5 crossref_primary_10_1016_j_bspc_2023_105197 crossref_primary_10_1016_j_bspc_2024_107195 crossref_primary_10_59324_ejtas_2024_2_6__77 crossref_primary_10_1007_s00259_022_05746_4 crossref_primary_10_3390_cancers16213702 crossref_primary_10_1002_mp_15867 crossref_primary_10_1088_1361_6560_abfb17 crossref_primary_10_1088_1361_6560_ad0535 crossref_primary_10_1109_TRPMS_2021_3131999 crossref_primary_10_1109_JBHI_2023_3260180 crossref_primary_10_1016_j_media_2024_103291 crossref_primary_10_1016_j_media_2025_103558 crossref_primary_10_1016_j_nima_2021_165908 crossref_primary_10_2967_jnumed_122_264826 crossref_primary_10_1109_TMI_2021_3113365 crossref_primary_10_3389_fradi_2021_781868 crossref_primary_10_1109_TMI_2021_3076191 crossref_primary_10_1007_s00259_022_05805_w |
Cites_doi | 10.1109/TKDE.2009.191 10.1088/1361-6560/aa837d 10.1109/TRPMS.2018.2810221 10.1109/ISBI.2016.7493320 10.1007/s10278-018-00173-0 10.1002/mp.12097 10.1053/j.semnuclmed.2004.09.002 10.1109/CVPR.2019.00221 10.1109/TMI.2018.2832217 10.1088/1361-6560/ab3d07 10.1109/TRPMS.2018.2869936 10.1016/j.media.2017.12.007 10.1109/TRPMS.2017.2771490 10.1109/TRPMS.2018.2877644 10.1109/TRPMS.2018.2860788 10.1016/j.neucom.2017.06.048 10.1007/978-3-030-32248-9_30 10.1109/TRPMS.2018.2890359 10.1109/TCI.2019.2913287 10.1016/j.neuroimage.2018.03.045 10.1016/j.mri.2020.02.002 10.1007/s00259-019-04468-4 10.1088/0031-9155/43/4/012 10.3389/fneur.2019.00647 10.1038/s42256-019-0057-9 10.1056/NEJMra072149 10.1109/TMI.2012.2211378 10.1109/TIP.2003.819861 10.1016/j.nima.2014.05.042 10.1109/ICIP.2010.5649275 10.1088/0031-9155/60/22/R363 10.1109/TIP.2005.859378 10.1109/TMI.2017.2715284 10.1007/s10278-018-0056-0 10.1148/radiol.2018180940 10.1007/978-3-030-32248-9_4 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7QO 8FD F28 FR3 K9. NAPCQ P64 7X8 5PM |
DOI | 10.1109/TRPMS.2020.3025071 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Biotechnology Research Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Nursing & Allied Health Premium Biotechnology Research Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database ANTE: Abstracts in New Technology & Engineering Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Nursing & Allied Health Premium MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2469-7303 |
EndPage | 223 |
ExternalDocumentID | PMC8993163 35402757 10_1109_TRPMS_2020_3025071 9201109 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Basic Research Program of Shenzhen grantid: JCYJ20180507182400762 – fundername: NIH/NCI grantid: R01CA233888; R01CA237267 – fundername: Youth Innovation Promotion Association Program of Chinese Academy of Sciences grantid: 2019351 funderid: 10.13039/501100002367 – fundername: Scientific and Technical Innovation 2030-“New Generation Artificial Intelligence” Project grantid: 2020AAA0104100; 2020AAA0104105 – fundername: National Natural Science Foundation of China grantid: 61871371; 81830056; 61671441 funderid: 10.13039/501100001809 – fundername: Science and Technology Planning Project of Guangdong Province grantid: 2017B020227012; 2018B010109009 funderid: 10.13039/501100012245 – fundername: ZJLab – fundername: Shanghai Municipal Science and Technology Major Project grantid: 2018SHZDZX01 – fundername: Shanghai Center for Brain Science and Brain-Inspired Technology, Natural Science Foundation of Liaoning Province of China grantid: 20170540321 funderid: 10.13039/501100005047 – fundername: NIH/NIBIB grantid: R01EB026646 – fundername: NIBIB NIH HHS grantid: R01 EB026646 – fundername: NCI NIH HHS grantid: R01 CA237267 – fundername: NCI NIH HHS grantid: R01 CA250636 – fundername: NCI NIH HHS grantid: R01 CA233888 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF OCL RIA RIE AAYXX CITATION RIG NPM 7QO 8FD F28 FR3 K9. NAPCQ P64 7X8 5PM |
ID | FETCH-LOGICAL-c406t-3c6505668f3c06c3562606cb7990191e46436a714a250815577ff3ff3985979e3 |
IEDL.DBID | RIE |
ISSN | 2469-7311 |
IngestDate | Thu Aug 21 18:12:56 EDT 2025 Fri Jul 11 08:09:03 EDT 2025 Mon Jun 30 17:46:26 EDT 2025 Sun Jul 20 01:30:40 EDT 2025 Tue Jul 01 03:04:15 EDT 2025 Thu Apr 24 22:51:59 EDT 2025 Wed Aug 27 02:39:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Deep learning image quality transfer learning task-specific initialization low-dose PET |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-3c6505668f3c06c3562606cb7990191e46436a714a250815577ff3ff3985979e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2656-7705 0000-0002-1487-8434 0000-0002-7431-6097 0000-0002-0604-3197 |
PMID | 35402757 |
PQID | 2498679308 |
PQPubID | 4437208 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2649251030 crossref_primary_10_1109_TRPMS_2020_3025071 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8993163 ieee_primary_9201109 crossref_citationtrail_10_1109_TRPMS_2020_3025071 pubmed_primary_35402757 proquest_journals_2498679308 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transactions on radiation and plasma medical sciences |
PublicationTitleAbbrev | TRPMS |
PublicationTitleAlternate | IEEE Trans Radiat Plasma Med Sci |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref15 ref14 abadi (ref42) 2016 ref31 goodfellow (ref29) 2014 ref30 ref33 ref11 ref32 ref10 ref1 ref39 ref17 ref16 ref19 ref18 fahey (ref4) 2019; 46 gulrajani (ref38) 2017 glorot (ref34) 2010 brenner (ref5) 2007; 357 ref24 ref45 ref23 ref26 ref25 ref20 arjovsky (ref37) 2017 xu (ref46) 2017 ref22 ref44 ref21 ref43 ref28 ref27 ref8 ref7 kingma (ref41) 2014 mao (ref36) 2016 ref9 ref3 ref6 beyer (ref2) 2008; 41 ref40 |
References_xml | – ident: ref39 doi: 10.1109/TKDE.2009.191 – ident: ref10 doi: 10.1088/1361-6560/aa837d – ident: ref15 doi: 10.1109/TRPMS.2018.2810221 – ident: ref20 doi: 10.1109/ISBI.2016.7493320 – start-page: 249 year: 2010 ident: ref34 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proc 13th Int Conf Artif Intell Stat – year: 2014 ident: ref41 publication-title: Adam A method for stochastic optimization – year: 2017 ident: ref38 article-title: Improved training of Wasserstein GANs publication-title: Advances in neural information processing systems – ident: ref16 doi: 10.1007/s10278-018-00173-0 – year: 2014 ident: ref29 article-title: Generative adversarial nets publication-title: Advances in neural information processing systems – ident: ref14 doi: 10.1002/mp.12097 – ident: ref3 doi: 10.1053/j.semnuclmed.2004.09.002 – ident: ref45 doi: 10.1109/CVPR.2019.00221 – ident: ref33 doi: 10.1109/TMI.2018.2832217 – ident: ref9 doi: 10.1088/1361-6560/ab3d07 – ident: ref13 doi: 10.1109/TRPMS.2018.2869936 – ident: ref19 doi: 10.1016/j.media.2017.12.007 – ident: ref11 doi: 10.1109/TRPMS.2017.2771490 – year: 2016 ident: ref36 article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections publication-title: Advances in neural information processing systems – ident: ref27 doi: 10.1109/TRPMS.2018.2877644 – ident: ref25 doi: 10.1109/TRPMS.2018.2860788 – year: 2017 ident: ref46 publication-title: 200x low-dose pet reconstruction using deep learning – ident: ref30 doi: 10.1016/j.neucom.2017.06.048 – year: 2016 ident: ref42 publication-title: Tensorflow Large-scale machine learning on heterogeneous distributed systems – ident: ref18 doi: 10.1007/978-3-030-32248-9_30 – ident: ref17 doi: 10.1109/TRPMS.2018.2890359 – ident: ref12 doi: 10.1109/TCI.2019.2913287 – ident: ref28 doi: 10.1016/j.neuroimage.2018.03.045 – ident: ref21 doi: 10.1016/j.mri.2020.02.002 – ident: ref31 doi: 10.1007/s00259-019-04468-4 – ident: ref7 doi: 10.1088/0031-9155/43/4/012 – ident: ref23 doi: 10.3389/fneur.2019.00647 – ident: ref26 doi: 10.1038/s42256-019-0057-9 – volume: 357 start-page: 2277 year: 2007 ident: ref5 article-title: Computed tomography-An increasing source of radiation exposure publication-title: New England J Med doi: 10.1056/NEJMra072149 – ident: ref8 doi: 10.1109/TMI.2012.2211378 – ident: ref40 doi: 10.1109/TIP.2003.819861 – start-page: 214 year: 2017 ident: ref37 article-title: Wasserstein generative adversarial networks publication-title: Proc 34th Int Conf Mach Learn – ident: ref6 doi: 10.1016/j.nima.2014.05.042 – ident: ref43 doi: 10.1109/ICIP.2010.5649275 – volume: 46 start-page: 285 year: 2019 ident: ref4 article-title: Novel approaches to dose optimization in nuclear medicine publication-title: Med Phys – ident: ref1 doi: 10.1088/0031-9155/60/22/R363 – ident: ref44 doi: 10.1109/TIP.2005.859378 – ident: ref35 doi: 10.1109/TMI.2017.2715284 – ident: ref24 doi: 10.1007/s10278-018-0056-0 – ident: ref32 doi: 10.1148/radiol.2018180940 – ident: ref22 doi: 10.1007/978-3-030-32248-9_4 – volume: 41 start-page: 1369 year: 2008 ident: ref2 article-title: A combined PET/CT scanner for clinical oncology publication-title: J Nucl Med |
SSID | ssj0001782945 |
Score | 2.3552232 |
Snippet | Due to the widespread of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be... Due to the widespread use of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 213 |
SubjectTerms | Biomedical imaging Convolution Deconvolution Deep learning Generative adversarial networks image quality low-dose positron emission tomography (PET) Medical imaging Noise reduction Parameters Positron emission Positron emission tomography Radiation Radiation dosage task-specific initialization Three-dimensional displays Tomography Transfer learning Two dimensional displays |
Title | Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising |
URI | https://ieeexplore.ieee.org/document/9201109 https://www.ncbi.nlm.nih.gov/pubmed/35402757 https://www.proquest.com/docview/2498679308 https://www.proquest.com/docview/2649251030 https://pubmed.ncbi.nlm.nih.gov/PMC8993163 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEB7aguCLVeslWmUFHxTd0ySb7OWx9GIVezjgKe1bSHY3WFoTORcEf70zm5zYU4oIeQjsJiQ7szvz7c58A_CWzEZVuYx742KeicpxXcqK6O5UntnEO0v5zqdjeXKWfbnILzbg45AL470PwWd-RLfhLN-1dklbZXsmWCuzCZsI3Lpcrb_7KWjqTKhJnCLi40okySpHJjZ7UwTx3xANpghSyeqrZM0OhcIqd_mYt0Mlb9ie4204XX11F3JyNVouqpH9fYvQ8X9_6yE86J1Qtt9pzSPY8M1juBeCQe18B64mJYVs4YjzYMpqP5t5x87LkJpJ5TFZx1ZNSyULJZ3nJSkyG3dB5ezdZMrPP-2P3zP0idnX9hc_bOeeTY6m7PMPXMHYoW_aS9qmeAJnx0fTgxPeF2XgFm3_ggsryWmSuhY2llbkhIikrRQdsJnEZ-jiyFIlWYnDrNFbUaquBV5GI3YxXjyFraZt_HNgudPGOZvqWprModJYFdvYamsq7evcR5CsRFTYnrGcCmdcFwG5xKYIYi1IrEUv1gg-DM_87Pg6_tl7h8Qx9OwlEcHuShOKfkrPC8SpRE4oYh3Bm6EZJyOdsJSNb5fYRxLXI1Vui-BZpzjDu2mDLVW5ikCtqdTQgYi-11uay--B8BsxsUC_-cXdX_sS7qcUaBMC43ZhazFb-lfoKS2q12GK_AE8kg4d |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQXXuURaMFIHEDU2yRO4vhY9cEWdlcrkaq9RYntiKo0qfYhJH49M042sFWFkPYQKc4qyYzzzWfPfAPwnmCjLE3ErTI-j0RpeFokJcndyTjSgTWa6p3Hk2R4Gn05j883YLevhbHWuuQzO6BDt5dvGr2kpbI95dBK3YG7iPuRaqu1_qyoINgp15U4RM7HpQiCVZWMr_YypPHfkA-GSFMJ92WwhkSutcptUebNZMm_0Of4EYxX990mnVwOlotyoH_dkHT83wd7DA-7MJTtt37zBDZs_RTuuXRQPd-Cy2lBSVv4zrkDs8rOZtaws8IVZ1KDTNbqVdPHkrmmzvOCXJlN2rRy9mGa8bPP-5OPDKNiNmp-8sNmbtn0KGMnV_gNY4e2bi5ooeIZnB4fZQdD3rVl4BrRf8GFTihsStJKaD_RIiZOlOhS0habCmyEQU5SyCAq8DWnGK9IWVUCfypF9qKseA6bdVPbl8BikypjdJhWiYoMuo2WvvZ1qlWZ2iq2HgQrE-W60yyn1hk_csddfJU7s-Zk1rwzqwef-muuW8WOf47eInP0IztLeLC98oS8m9TzHJkqyRMKP_XgXX8apyPtsRS1bZY4JiG1R-rd5sGL1nH6_6YltlDG0gO55lL9AJL6Xj9TX3x3kt_IigVGzq9uv9u3cH-YjUf56GTy9TU8CCntxqXJbcPmYra0Oxg3Lco3brr8BoiwEW0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter-Transferred+Wasserstein+Generative+Adversarial+Network+%28PT-WGAN%29+for+Low-Dose+PET+Image+Denoising&rft.jtitle=IEEE+transactions+on+radiation+and+plasma+medical+sciences&rft.au=Gong%2C+Yu&rft.au=Shan%2C+Hongming&rft.au=Teng%2C+Yueyang&rft.au=Tu%2C+Ning&rft.date=2021-03-01&rft.issn=2469-7311&rft.volume=5&rft.issue=2&rft.spage=213&rft_id=info:doi/10.1109%2Ftrpms.2020.3025071&rft_id=info%3Apmid%2F35402757&rft.externalDocID=35402757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-7311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-7311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-7311&client=summon |