Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising

Due to the widespread of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnos...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on radiation and plasma medical sciences Vol. 5; no. 2; pp. 213 - 223
Main Authors Gong, Yu, Shan, Hongming, Teng, Yueyang, Tu, Ning, Li, Ming, Liang, Guodong, Wang, Ge, Wang, Shanshan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2469-7311
2469-7303
DOI10.1109/TRPMS.2020.3025071

Cover

Loading…
Abstract Due to the widespread of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnostic performance. In this article, we propose a parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose PET image denoising. The contributions of this article are twofold: 1) a PT-WGAN framework is designed to denoise low-dose PET images without compromising structural details and 2) a task-specific initialization based on transfer learning is developed to train PT-WGAN using trainable parameters transferred from a pretrained model, which significantly improves the training efficiency of PT-WGAN. The experimental results on clinical data show that the proposed network can suppress image noise more effectively while preserving better image fidelity than recently published state-of-the-art methods. We make our code available at https://github.com/90n9-yu/PT-WGAN.
AbstractList Due to the widespread use of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnostic performance. In this paper, we propose a parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose PET image denoising. The contributions of this paper are twofold: i) a PT-WGAN framework is designed to denoise low-dose PET images without compromising structural details, and ii) a task-specific initialization based on transfer learning is developed to train PT-WGAN using trainable parameters transferred from a pretrained model, which significantly improves the training efficiency of PT-WGAN. The experimental results on clinical data show that the proposed network can suppress image noise more effectively while preserving better image fidelity than recently published state-of-the-art methods. We make our code available at https://github.com/90n9-yu/PT-WGAN .
Due to the widespread of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnostic performance. In this article, we propose a parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose PET image denoising. The contributions of this article are twofold: 1) a PT-WGAN framework is designed to denoise low-dose PET images without compromising structural details and 2) a task-specific initialization based on transfer learning is developed to train PT-WGAN using trainable parameters transferred from a pretrained model, which significantly improves the training efficiency of PT-WGAN. The experimental results on clinical data show that the proposed network can suppress image noise more effectively while preserving better image fidelity than recently published state-of-the-art methods. We make our code available at https://github.com/90n9-yu/PT-WGAN .
Due to the widespread use of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnostic performance. In this paper, we propose a parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose PET image denoising. The contributions of this paper are twofold: i) a PT-WGAN framework is designed to denoise low-dose PET images without compromising structural details, and ii) a task-specific initialization based on transfer learning is developed to train PT-WGAN using trainable parameters transferred from a pretrained model, which significantly improves the training efficiency of PT-WGAN. The experimental results on clinical data show that the proposed network can suppress image noise more effectively while preserving better image fidelity than recently published state-of-the-art methods. We make our code available at https://github.com/90n9-yu/PT-WGAN.Due to the widespread use of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnostic performance. In this paper, we propose a parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose PET image denoising. The contributions of this paper are twofold: i) a PT-WGAN framework is designed to denoise low-dose PET images without compromising structural details, and ii) a task-specific initialization based on transfer learning is developed to train PT-WGAN using trainable parameters transferred from a pretrained model, which significantly improves the training efficiency of PT-WGAN. The experimental results on clinical data show that the proposed network can suppress image noise more effectively while preserving better image fidelity than recently published state-of-the-art methods. We make our code available at https://github.com/90n9-yu/PT-WGAN.
Due to the widespread use of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be minimized. However, with the reduction in the radiation dose, the resultant images may suffer from noise and artifacts that compromise diagnostic performance. In this paper, we propose a parameter-transferred Wasserstein generative adversarial network (PT-WGAN) for low-dose PET image denoising. The contributions of this paper are twofold: i) a PT-WGAN framework is designed to denoise low-dose PET images without compromising structural details, and ii) a task-specific initialization based on transfer learning is developed to train PT-WGAN using trainable parameters transferred from a pretrained model, which significantly improves the training efficiency of PT-WGAN. The experimental results on clinical data show that the proposed network can suppress image noise more effectively while preserving better image fidelity than recently published state-of-the-art methods. We make our code available at https://github.com/90n9-yu/PT-WGAN.
Author Tu, Ning
Li, Ming
Wang, Ge
Wang, Shanshan
Shan, Hongming
Teng, Yueyang
Gong, Yu
Liang, Guodong
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0002-7431-6097
  surname: Gong
  fullname: Gong, Yu
  email: gongyu0010@gmail.com
  organization: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Hongming
  orcidid: 0000-0002-0604-3197
  surname: Shan
  fullname: Shan, Hongming
  email: hmshan@ieee.org
  organization: Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
– sequence: 3
  givenname: Yueyang
  orcidid: 0000-0002-1487-8434
  surname: Teng
  fullname: Teng, Yueyang
  email: tengyy@bmie.neu.edu.cn
  organization: College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
– sequence: 4
  givenname: Ning
  surname: Tu
  fullname: Tu, Ning
  email: tuning@whu.edu.cn
  organization: PET-CT/MRI Center and Molecular Imaging Center, Wuhan University Renmin Hospital, Wuhan, China
– sequence: 5
  givenname: Ming
  surname: Li
  fullname: Li, Ming
  email: ming_li@neusoft.com
  organization: MI Research and Development Division, Neusoft Medical Systems Company, Ltd., Shenyang, China
– sequence: 6
  givenname: Guodong
  surname: Liang
  fullname: Liang, Guodong
  email: lianggd@neusoft.com
  organization: MI Research and Development Division, Neusoft Medical Systems Company, Ltd., Shenyang, China
– sequence: 7
  givenname: Ge
  orcidid: 0000-0002-2656-7705
  surname: Wang
  fullname: Wang, Ge
  email: wangg6@rpi.edu
  organization: Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
– sequence: 8
  givenname: Shanshan
  surname: Wang
  fullname: Wang, Shanshan
  email: ss.wang@siat.ac.cn
  organization: Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35402757$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1UREvoHwAJWWJTFhP8GNvjDVLUR6gUSgSDurTcyZ3gdsYu9iRV_z0OCRF0gWTpWvY5x_f6e4kOfPCA0GtKxpQS_aH-Ov_8bcwII2NOmCCKPkNHrJS6UJzwg_2e0kN0nNItIYSqiulSvECHXJSEKaGO0N3cRtvDALGoo_WphRhhga9tShDTAM7jKXiIdnBrwJPFOp_a6GyHr2B4CPEOn8zr4no6uXqP2xDxLDwUZyEBnp_X-LK3S8Bn4INLzi9foeet7RIc7-oIfb84r08_FbMv08vTyaxoSiKHgjdSECFl1fKGyIYLyWSuN0prQjWFUpZcWkVLm8euqBBKtS3PS1dCKw18hD5uc-9XNz0sGvBDtJ25j6638dEE68y_N979MMuwNpXWnEqeA052ATH8XEEaTO9SA11nPYRVMkyWmglK8keP0Lsn0tuwij6PZ1ipK6k0J1VWvf27o30rfzhkAdsKmhhSitDuJZSYDW_zm7fZ8DY73tlUPTE1bsigwmYq1_3f-mZrdQCwf0szsjHwX-Kwtg4
CODEN ITRPFI
CitedBy_id crossref_primary_10_1016_j_media_2022_102519
crossref_primary_10_1109_TRPMS_2022_3194408
crossref_primary_10_1007_s10462_022_10305_2
crossref_primary_10_4018_JOEUC_355191
crossref_primary_10_1016_j_compmedimag_2021_102010
crossref_primary_10_1002_mp_16830
crossref_primary_10_1007_s40747_021_00405_x
crossref_primary_10_3390_mi14030634
crossref_primary_10_1016_j_media_2024_103300
crossref_primary_10_2967_jnumed_122_265000
crossref_primary_10_1007_s12194_024_00780_3
crossref_primary_10_1016_j_media_2023_102993
crossref_primary_10_1016_j_cpet_2021_06_005
crossref_primary_10_1109_TRPMS_2023_3260214
crossref_primary_10_1109_TRPMS_2023_3349194
crossref_primary_10_1109_TRPMS_2024_3355247
crossref_primary_10_1186_s12880_024_01417_y
crossref_primary_10_1002_acm2_14270
crossref_primary_10_1088_1361_6560_ad14c5
crossref_primary_10_1016_j_bspc_2023_105197
crossref_primary_10_1016_j_bspc_2024_107195
crossref_primary_10_59324_ejtas_2024_2_6__77
crossref_primary_10_1007_s00259_022_05746_4
crossref_primary_10_3390_cancers16213702
crossref_primary_10_1002_mp_15867
crossref_primary_10_1088_1361_6560_abfb17
crossref_primary_10_1088_1361_6560_ad0535
crossref_primary_10_1109_TRPMS_2021_3131999
crossref_primary_10_1109_JBHI_2023_3260180
crossref_primary_10_1016_j_media_2024_103291
crossref_primary_10_1016_j_media_2025_103558
crossref_primary_10_1016_j_nima_2021_165908
crossref_primary_10_2967_jnumed_122_264826
crossref_primary_10_1109_TMI_2021_3113365
crossref_primary_10_3389_fradi_2021_781868
crossref_primary_10_1109_TMI_2021_3076191
crossref_primary_10_1007_s00259_022_05805_w
Cites_doi 10.1109/TKDE.2009.191
10.1088/1361-6560/aa837d
10.1109/TRPMS.2018.2810221
10.1109/ISBI.2016.7493320
10.1007/s10278-018-00173-0
10.1002/mp.12097
10.1053/j.semnuclmed.2004.09.002
10.1109/CVPR.2019.00221
10.1109/TMI.2018.2832217
10.1088/1361-6560/ab3d07
10.1109/TRPMS.2018.2869936
10.1016/j.media.2017.12.007
10.1109/TRPMS.2017.2771490
10.1109/TRPMS.2018.2877644
10.1109/TRPMS.2018.2860788
10.1016/j.neucom.2017.06.048
10.1007/978-3-030-32248-9_30
10.1109/TRPMS.2018.2890359
10.1109/TCI.2019.2913287
10.1016/j.neuroimage.2018.03.045
10.1016/j.mri.2020.02.002
10.1007/s00259-019-04468-4
10.1088/0031-9155/43/4/012
10.3389/fneur.2019.00647
10.1038/s42256-019-0057-9
10.1056/NEJMra072149
10.1109/TMI.2012.2211378
10.1109/TIP.2003.819861
10.1016/j.nima.2014.05.042
10.1109/ICIP.2010.5649275
10.1088/0031-9155/60/22/R363
10.1109/TIP.2005.859378
10.1109/TMI.2017.2715284
10.1007/s10278-018-0056-0
10.1148/radiol.2018180940
10.1007/978-3-030-32248-9_4
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QO
8FD
F28
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1109/TRPMS.2020.3025071
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Nursing & Allied Health Premium
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Nursing & Allied Health Premium
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2469-7303
EndPage 223
ExternalDocumentID PMC8993163
35402757
10_1109_TRPMS_2020_3025071
9201109
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Basic Research Program of Shenzhen
  grantid: JCYJ20180507182400762
– fundername: NIH/NCI
  grantid: R01CA233888; R01CA237267
– fundername: Youth Innovation Promotion Association Program of Chinese Academy of Sciences
  grantid: 2019351
  funderid: 10.13039/501100002367
– fundername: Scientific and Technical Innovation 2030-“New Generation Artificial Intelligence” Project
  grantid: 2020AAA0104100; 2020AAA0104105
– fundername: National Natural Science Foundation of China
  grantid: 61871371; 81830056; 61671441
  funderid: 10.13039/501100001809
– fundername: Science and Technology Planning Project of Guangdong Province
  grantid: 2017B020227012; 2018B010109009
  funderid: 10.13039/501100012245
– fundername: ZJLab
– fundername: Shanghai Municipal Science and Technology Major Project
  grantid: 2018SHZDZX01
– fundername: Shanghai Center for Brain Science and Brain-Inspired Technology, Natural Science Foundation of Liaoning Province of China
  grantid: 20170540321
  funderid: 10.13039/501100005047
– fundername: NIH/NIBIB
  grantid: R01EB026646
– fundername: NIBIB NIH HHS
  grantid: R01 EB026646
– fundername: NCI NIH HHS
  grantid: R01 CA237267
– fundername: NCI NIH HHS
  grantid: R01 CA250636
– fundername: NCI NIH HHS
  grantid: R01 CA233888
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
RIG
NPM
7QO
8FD
F28
FR3
K9.
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c406t-3c6505668f3c06c3562606cb7990191e46436a714a250815577ff3ff3985979e3
IEDL.DBID RIE
ISSN 2469-7311
IngestDate Thu Aug 21 18:12:56 EDT 2025
Fri Jul 11 08:09:03 EDT 2025
Mon Jun 30 17:46:26 EDT 2025
Sun Jul 20 01:30:40 EDT 2025
Tue Jul 01 03:04:15 EDT 2025
Thu Apr 24 22:51:59 EDT 2025
Wed Aug 27 02:39:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
image quality
transfer learning
task-specific initialization
low-dose PET
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-3c6505668f3c06c3562606cb7990191e46436a714a250815577ff3ff3985979e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2656-7705
0000-0002-1487-8434
0000-0002-7431-6097
0000-0002-0604-3197
PMID 35402757
PQID 2498679308
PQPubID 4437208
PageCount 11
ParticipantIDs proquest_miscellaneous_2649251030
crossref_primary_10_1109_TRPMS_2020_3025071
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8993163
ieee_primary_9201109
crossref_citationtrail_10_1109_TRPMS_2020_3025071
pubmed_primary_35402757
proquest_journals_2498679308
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on radiation and plasma medical sciences
PublicationTitleAbbrev TRPMS
PublicationTitleAlternate IEEE Trans Radiat Plasma Med Sci
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref15
ref14
abadi (ref42) 2016
ref31
goodfellow (ref29) 2014
ref30
ref33
ref11
ref32
ref10
ref1
ref39
ref17
ref16
ref19
ref18
fahey (ref4) 2019; 46
gulrajani (ref38) 2017
glorot (ref34) 2010
brenner (ref5) 2007; 357
ref24
ref45
ref23
ref26
ref25
ref20
arjovsky (ref37) 2017
xu (ref46) 2017
ref22
ref44
ref21
ref43
ref28
ref27
ref8
ref7
kingma (ref41) 2014
mao (ref36) 2016
ref9
ref3
ref6
beyer (ref2) 2008; 41
ref40
References_xml – ident: ref39
  doi: 10.1109/TKDE.2009.191
– ident: ref10
  doi: 10.1088/1361-6560/aa837d
– ident: ref15
  doi: 10.1109/TRPMS.2018.2810221
– ident: ref20
  doi: 10.1109/ISBI.2016.7493320
– start-page: 249
  year: 2010
  ident: ref34
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Stat
– year: 2014
  ident: ref41
  publication-title: Adam A method for stochastic optimization
– year: 2017
  ident: ref38
  article-title: Improved training of Wasserstein GANs
  publication-title: Advances in neural information processing systems
– ident: ref16
  doi: 10.1007/s10278-018-00173-0
– year: 2014
  ident: ref29
  article-title: Generative adversarial nets
  publication-title: Advances in neural information processing systems
– ident: ref14
  doi: 10.1002/mp.12097
– ident: ref3
  doi: 10.1053/j.semnuclmed.2004.09.002
– ident: ref45
  doi: 10.1109/CVPR.2019.00221
– ident: ref33
  doi: 10.1109/TMI.2018.2832217
– ident: ref9
  doi: 10.1088/1361-6560/ab3d07
– ident: ref13
  doi: 10.1109/TRPMS.2018.2869936
– ident: ref19
  doi: 10.1016/j.media.2017.12.007
– ident: ref11
  doi: 10.1109/TRPMS.2017.2771490
– year: 2016
  ident: ref36
  article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
  publication-title: Advances in neural information processing systems
– ident: ref27
  doi: 10.1109/TRPMS.2018.2877644
– ident: ref25
  doi: 10.1109/TRPMS.2018.2860788
– year: 2017
  ident: ref46
  publication-title: 200x low-dose pet reconstruction using deep learning
– ident: ref30
  doi: 10.1016/j.neucom.2017.06.048
– year: 2016
  ident: ref42
  publication-title: Tensorflow Large-scale machine learning on heterogeneous distributed systems
– ident: ref18
  doi: 10.1007/978-3-030-32248-9_30
– ident: ref17
  doi: 10.1109/TRPMS.2018.2890359
– ident: ref12
  doi: 10.1109/TCI.2019.2913287
– ident: ref28
  doi: 10.1016/j.neuroimage.2018.03.045
– ident: ref21
  doi: 10.1016/j.mri.2020.02.002
– ident: ref31
  doi: 10.1007/s00259-019-04468-4
– ident: ref7
  doi: 10.1088/0031-9155/43/4/012
– ident: ref23
  doi: 10.3389/fneur.2019.00647
– ident: ref26
  doi: 10.1038/s42256-019-0057-9
– volume: 357
  start-page: 2277
  year: 2007
  ident: ref5
  article-title: Computed tomography-An increasing source of radiation exposure
  publication-title: New England J Med
  doi: 10.1056/NEJMra072149
– ident: ref8
  doi: 10.1109/TMI.2012.2211378
– ident: ref40
  doi: 10.1109/TIP.2003.819861
– start-page: 214
  year: 2017
  ident: ref37
  article-title: Wasserstein generative adversarial networks
  publication-title: Proc 34th Int Conf Mach Learn
– ident: ref6
  doi: 10.1016/j.nima.2014.05.042
– ident: ref43
  doi: 10.1109/ICIP.2010.5649275
– volume: 46
  start-page: 285
  year: 2019
  ident: ref4
  article-title: Novel approaches to dose optimization in nuclear medicine
  publication-title: Med Phys
– ident: ref1
  doi: 10.1088/0031-9155/60/22/R363
– ident: ref44
  doi: 10.1109/TIP.2005.859378
– ident: ref35
  doi: 10.1109/TMI.2017.2715284
– ident: ref24
  doi: 10.1007/s10278-018-0056-0
– ident: ref32
  doi: 10.1148/radiol.2018180940
– ident: ref22
  doi: 10.1007/978-3-030-32248-9_4
– volume: 41
  start-page: 1369
  year: 2008
  ident: ref2
  article-title: A combined PET/CT scanner for clinical oncology
  publication-title: J Nucl Med
SSID ssj0001782945
Score 2.3552232
Snippet Due to the widespread of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to be...
Due to the widespread use of positron emission tomography (PET) in clinical practice, the potential risk of PET-associated radiation dose to patients needs to...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 213
SubjectTerms Biomedical imaging
Convolution
Deconvolution
Deep learning
Generative adversarial networks
image quality
low-dose positron emission tomography (PET)
Medical imaging
Noise reduction
Parameters
Positron emission
Positron emission tomography
Radiation
Radiation dosage
task-specific initialization
Three-dimensional displays
Tomography
Transfer learning
Two dimensional displays
Title Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising
URI https://ieeexplore.ieee.org/document/9201109
https://www.ncbi.nlm.nih.gov/pubmed/35402757
https://www.proquest.com/docview/2498679308
https://www.proquest.com/docview/2649251030
https://pubmed.ncbi.nlm.nih.gov/PMC8993163
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9VAEB7aguCLVeslWmUFHxTd0ySb7OWx9GIVezjgKe1bSHY3WFoTORcEf70zm5zYU4oIeQjsJiQ7szvz7c58A_CWzEZVuYx742KeicpxXcqK6O5UntnEO0v5zqdjeXKWfbnILzbg45AL470PwWd-RLfhLN-1dklbZXsmWCuzCZsI3Lpcrb_7KWjqTKhJnCLi40okySpHJjZ7UwTx3xANpghSyeqrZM0OhcIqd_mYt0Mlb9ie4204XX11F3JyNVouqpH9fYvQ8X9_6yE86J1Qtt9pzSPY8M1juBeCQe18B64mJYVs4YjzYMpqP5t5x87LkJpJ5TFZx1ZNSyULJZ3nJSkyG3dB5ezdZMrPP-2P3zP0idnX9hc_bOeeTY6m7PMPXMHYoW_aS9qmeAJnx0fTgxPeF2XgFm3_ggsryWmSuhY2llbkhIikrRQdsJnEZ-jiyFIlWYnDrNFbUaquBV5GI3YxXjyFraZt_HNgudPGOZvqWprModJYFdvYamsq7evcR5CsRFTYnrGcCmdcFwG5xKYIYi1IrEUv1gg-DM_87Pg6_tl7h8Qx9OwlEcHuShOKfkrPC8SpRE4oYh3Bm6EZJyOdsJSNb5fYRxLXI1Vui-BZpzjDu2mDLVW5ikCtqdTQgYi-11uay--B8BsxsUC_-cXdX_sS7qcUaBMC43ZhazFb-lfoKS2q12GK_AE8kg4d
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQXXuURaMFIHEDU2yRO4vhY9cEWdlcrkaq9RYntiKo0qfYhJH49M042sFWFkPYQKc4qyYzzzWfPfAPwnmCjLE3ErTI-j0RpeFokJcndyTjSgTWa6p3Hk2R4Gn05j883YLevhbHWuuQzO6BDt5dvGr2kpbI95dBK3YG7iPuRaqu1_qyoINgp15U4RM7HpQiCVZWMr_YypPHfkA-GSFMJ92WwhkSutcptUebNZMm_0Of4EYxX990mnVwOlotyoH_dkHT83wd7DA-7MJTtt37zBDZs_RTuuXRQPd-Cy2lBSVv4zrkDs8rOZtaws8IVZ1KDTNbqVdPHkrmmzvOCXJlN2rRy9mGa8bPP-5OPDKNiNmp-8sNmbtn0KGMnV_gNY4e2bi5ooeIZnB4fZQdD3rVl4BrRf8GFTihsStJKaD_RIiZOlOhS0habCmyEQU5SyCAq8DWnGK9IWVUCfypF9qKseA6bdVPbl8BikypjdJhWiYoMuo2WvvZ1qlWZ2iq2HgQrE-W60yyn1hk_csddfJU7s-Zk1rwzqwef-muuW8WOf47eInP0IztLeLC98oS8m9TzHJkqyRMKP_XgXX8apyPtsRS1bZY4JiG1R-rd5sGL1nH6_6YltlDG0gO55lL9AJL6Xj9TX3x3kt_IigVGzq9uv9u3cH-YjUf56GTy9TU8CCntxqXJbcPmYra0Oxg3Lco3brr8BoiwEW0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameter-Transferred+Wasserstein+Generative+Adversarial+Network+%28PT-WGAN%29+for+Low-Dose+PET+Image+Denoising&rft.jtitle=IEEE+transactions+on+radiation+and+plasma+medical+sciences&rft.au=Gong%2C+Yu&rft.au=Shan%2C+Hongming&rft.au=Teng%2C+Yueyang&rft.au=Tu%2C+Ning&rft.date=2021-03-01&rft.issn=2469-7311&rft.volume=5&rft.issue=2&rft.spage=213&rft_id=info:doi/10.1109%2Ftrpms.2020.3025071&rft_id=info%3Apmid%2F35402757&rft.externalDocID=35402757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-7311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-7311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-7311&client=summon