Accurate size-based protein localization from cryo-ET tomograms

[Display omitted] •Size-based particle picking algorithm efficiently locates proteins within tomograms.•Does not require external templates, labeled data for training or access to GPUs.•Uses contamination mask to reduce the number of false-positives and improve accuracy.•Is faster and achieves highe...

Full description

Saved in:
Bibliographic Details
Published inJournal of structural biology. X Vol. 10; p. 100104
Main Authors Jin, Weisheng, Zhou, Ye, Bartesaghi, Alberto
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.12.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Size-based particle picking algorithm efficiently locates proteins within tomograms.•Does not require external templates, labeled data for training or access to GPUs.•Uses contamination mask to reduce the number of false-positives and improve accuracy.•Is faster and achieves higher accuracy than fully-supervised deep learning methods.•Validated on in vitro and in situ datasets and on complexes with 300 kDa to 3 MDa sizes. Cryo-electron tomography (cryo-ET) combined with sub-tomogram averaging (STA) allows the determination of protein structures imaged within the native context of the cell at near-atomic resolution. Particle picking is an essential step in the cryo-ET/STA image analysis pipeline that consists in locating the position of proteins within crowded cellular tomograms so that they can be aligned and averaged in 3D to improve resolution. While extensive work in 2D particle picking has been done in the context of single-particle cryo-EM, comparatively fewer strategies have been proposed to pick particles from 3D tomograms, in part due to the challenges associated with working with noisy 3D volumes affected by the missing wedge. While strategies based on 3D template-matching and deep learning are commonly used, these methods are computationally expensive and require either an external template or manual labelling which can bias the results and limit their applicability. Here, we propose a size-based method to pick particles from tomograms that is fast, accurate, and does not require external templates or user provided labels. We compare the performance of our approach against a commonly used algorithm based on deep learning, crYOLO, and show that our method: i) has higher detection accuracy, ii) does not require user input for labeling or time-consuming training, and iii) runs efficiently on non-specialized CPU hardware. We demonstrate the effectiveness of our approach by automatically detecting particles from tomograms representing different types of samples and using these particles to determine the high-resolution structures of ribosomes imaged in vitro and in situ.
AbstractList Cryo-electron tomography (cryo-ET) combined with sub-tomogram averaging (STA) allows the determination of protein structures imaged within the native context of the cell at near-atomic resolution. Particle picking is an essential step in the cryo-ET/STA image analysis pipeline that consists in locating the position of proteins within crowded cellular tomograms so that they can be aligned and averaged in 3D to improve resolution. While extensive work in 2D particle picking has been done in the context of single-particle cryo-EM, comparatively fewer strategies have been proposed to pick particles from 3D tomograms, in part due to the challenges associated with working with noisy 3D volumes affected by the missing wedge. While strategies based on 3D template-matching and deep learning are commonly used, these methods are computationally expensive and require either an external template or manual labelling which can bias the results and limit their applicability. Here, we propose a size-based method to pick particles from tomograms that is fast, accurate, and does not require external templates or user provided labels. We compare the performance of our approach against a commonly used algorithm based on deep learning, crYOLO, and show that our method: i) has higher detection accuracy, ii) does not require user input for labeling or time-consuming training, and iii) runs efficiently on non-specialized CPU hardware. We demonstrate the effectiveness of our approach by automatically detecting particles from tomograms representing different types of samples and using these particles to determine the high-resolution structures of ribosomes imaged in vitro and in situ.
• Size-based particle picking algorithm efficiently locates proteins within tomograms. • Does not require external templates, labeled data for training or access to GPUs. • Uses contamination mask to reduce the number of false-positives and improve accuracy. • Is faster and achieves higher accuracy than fully-supervised deep learning methods. • Validated on in vitro and in situ datasets and on complexes with 300 kDa to 3 MDa sizes. Cryo-electron tomography (cryo-ET) combined with sub-tomogram averaging (STA) allows the determination of protein structures imaged within the native context of the cell at near-atomic resolution. Particle picking is an essential step in the cryo-ET/STA image analysis pipeline that consists in locating the position of proteins within crowded cellular tomograms so that they can be aligned and averaged in 3D to improve resolution. While extensive work in 2D particle picking has been done in the context of single-particle cryo-EM, comparatively fewer strategies have been proposed to pick particles from 3D tomograms, in part due to the challenges associated with working with noisy 3D volumes affected by the missing wedge. While strategies based on 3D template-matching and deep learning are commonly used, these methods are computationally expensive and require either an external template or manual labelling which can bias the results and limit their applicability. Here, we propose a size-based method to pick particles from tomograms that is fast, accurate, and does not require external templates or user provided labels. We compare the performance of our approach against a commonly used algorithm based on deep learning, crYOLO, and show that our method: i) has higher detection accuracy, ii) does not require user input for labeling or time-consuming training, and iii) runs efficiently on non-specialized CPU hardware. We demonstrate the effectiveness of our approach by automatically detecting particles from tomograms representing different types of samples and using these particles to determine the high-resolution structures of ribosomes imaged in vitro and in situ .
[Display omitted] •Size-based particle picking algorithm efficiently locates proteins within tomograms.•Does not require external templates, labeled data for training or access to GPUs.•Uses contamination mask to reduce the number of false-positives and improve accuracy.•Is faster and achieves higher accuracy than fully-supervised deep learning methods.•Validated on in vitro and in situ datasets and on complexes with 300 kDa to 3 MDa sizes. Cryo-electron tomography (cryo-ET) combined with sub-tomogram averaging (STA) allows the determination of protein structures imaged within the native context of the cell at near-atomic resolution. Particle picking is an essential step in the cryo-ET/STA image analysis pipeline that consists in locating the position of proteins within crowded cellular tomograms so that they can be aligned and averaged in 3D to improve resolution. While extensive work in 2D particle picking has been done in the context of single-particle cryo-EM, comparatively fewer strategies have been proposed to pick particles from 3D tomograms, in part due to the challenges associated with working with noisy 3D volumes affected by the missing wedge. While strategies based on 3D template-matching and deep learning are commonly used, these methods are computationally expensive and require either an external template or manual labelling which can bias the results and limit their applicability. Here, we propose a size-based method to pick particles from tomograms that is fast, accurate, and does not require external templates or user provided labels. We compare the performance of our approach against a commonly used algorithm based on deep learning, crYOLO, and show that our method: i) has higher detection accuracy, ii) does not require user input for labeling or time-consuming training, and iii) runs efficiently on non-specialized CPU hardware. We demonstrate the effectiveness of our approach by automatically detecting particles from tomograms representing different types of samples and using these particles to determine the high-resolution structures of ribosomes imaged in vitro and in situ.
Cryo-electron tomography (cryo-ET) combined with sub-tomogram averaging (STA) allows the determination of protein structures imaged within the native context of the cell at near-atomic resolution. Particle picking is an essential step in the cryo-ET/STA image analysis pipeline that consists in locating the position of proteins within crowded cellular tomograms so that they can be aligned and averaged in 3D to improve resolution. While extensive work in 2D particle picking has been done in the context of single-particle cryo-EM, comparatively fewer strategies have been proposed to pick particles from 3D tomograms, in part due to the challenges associated with working with noisy 3D volumes affected by the missing wedge. While strategies based on 3D template-matching and deep learning are commonly used, these methods are computationally expensive and require either an external template or manual labelling which can bias the results and limit their applicability. Here, we propose a size-based method to pick particles from tomograms that is fast, accurate, and does not require external templates or user provided labels. We compare the performance of our approach against a commonly used algorithm based on deep learning, crYOLO, and show that our method: i) has higher detection accuracy, ii) does not require user input for labeling or time-consuming training, and iii) runs efficiently on non-specialized CPU hardware. We demonstrate the effectiveness of our approach by automatically detecting particles from tomograms representing different types of samples and using these particles to determine the high-resolution structures of ribosomes imaged and .
Cryo-electron tomography (cryo-ET) combined with sub-tomogram averaging (STA) allows the determination of protein structures imaged within the native context of the cell at near-atomic resolution. Particle picking is an essential step in the cryo-ET/STA image analysis pipeline that consists in locating the position of proteins within crowded cellular tomograms so that they can be aligned and averaged in 3D to improve resolution. While extensive work in 2D particle picking has been done in the context of single-particle cryo-EM, comparatively fewer strategies have been proposed to pick particles from 3D tomograms, in part due to the challenges associated with working with noisy 3D volumes affected by the missing wedge. While strategies based on 3D template-matching and deep learning are commonly used, these methods are computationally expensive and require either an external template or manual labelling which can bias the results and limit their applicability. Here, we propose a size-based method to pick particles from tomograms that is fast, accurate, and does not require external templates or user provided labels. We compare the performance of our approach against a commonly used algorithm based on deep learning, crYOLO, and show that our method: i) has higher detection accuracy, ii) does not require user input for labeling or time-consuming training, and iii) runs efficiently on non-specialized CPU hardware. We demonstrate the effectiveness of our approach by automatically detecting particles from tomograms representing different types of samples and using these particles to determine the high-resolution structures of ribosomes imaged in vitro and in situ.Cryo-electron tomography (cryo-ET) combined with sub-tomogram averaging (STA) allows the determination of protein structures imaged within the native context of the cell at near-atomic resolution. Particle picking is an essential step in the cryo-ET/STA image analysis pipeline that consists in locating the position of proteins within crowded cellular tomograms so that they can be aligned and averaged in 3D to improve resolution. While extensive work in 2D particle picking has been done in the context of single-particle cryo-EM, comparatively fewer strategies have been proposed to pick particles from 3D tomograms, in part due to the challenges associated with working with noisy 3D volumes affected by the missing wedge. While strategies based on 3D template-matching and deep learning are commonly used, these methods are computationally expensive and require either an external template or manual labelling which can bias the results and limit their applicability. Here, we propose a size-based method to pick particles from tomograms that is fast, accurate, and does not require external templates or user provided labels. We compare the performance of our approach against a commonly used algorithm based on deep learning, crYOLO, and show that our method: i) has higher detection accuracy, ii) does not require user input for labeling or time-consuming training, and iii) runs efficiently on non-specialized CPU hardware. We demonstrate the effectiveness of our approach by automatically detecting particles from tomograms representing different types of samples and using these particles to determine the high-resolution structures of ribosomes imaged in vitro and in situ.
ArticleNumber 100104
Author Zhou, Ye
Jin, Weisheng
Bartesaghi, Alberto
Author_xml – sequence: 1
  givenname: Weisheng
  surname: Jin
  fullname: Jin, Weisheng
  organization: Department of Computer Science, Duke University, Durham, USA
– sequence: 2
  givenname: Ye
  surname: Zhou
  fullname: Zhou, Ye
  organization: Department of Computer Science, Duke University, Durham, USA
– sequence: 3
  givenname: Alberto
  surname: Bartesaghi
  fullname: Bartesaghi, Alberto
  email: alberto.bartesaghi@duke.edu
  organization: Department of Computer Science, Duke University, Durham, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39044770$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAQhq2KqnyUX4BU5dhLtuOvOD5UCCGgSEi90LPlOJPFURJv7Sxi-fUYQhFceprRzDvPjOY9JHtTmJCQEworCrT60a92fWoeVgyYyBWgID6RAyY1lFQysfcu3yfHKfUAwJQWAPIL2ecahFAKDsjpmXPbaGcskn_EsrEJ22ITw4x-Kobg7OAf7ezDVHQxjIWLu1Be3BZzGMM62jF9JZ87OyQ8fo1H5M_lxe35r_Lm99X1-dlN6QRUc8mtaLhgNVjdtbRWlahbq7jtZC2kQi2rRmrFmRKVcJJp0bEm9xmngBxpw4_I9cJtg-3NJvrRxp0J1puXQohrY-Ps3YAmkzRDTTtttXAtt5IL3iraOYe8djyzThfWZtuM2Dqc5miHD9CPncnfmXW4N5SyiuuKZcL3V0IMf7eYZjP65HAY7IRhmwyHWgCnQkGW8kXqYkgpYve2h4J5ttL05sVK82ylWazMU9_en_g288-4LPi5CDA__d5jNMl5nBy2PqKb81f8fxc8AYAMsV8
Cites_doi 10.1109/MSP.2019.2957822
10.1038/s41467-021-22251-8
10.1016/j.jsb.2016.05.009
10.7554/eLife.70506
10.1038/s41592-022-01690-1
10.1016/j.jsb.2016.07.006
10.7554/eLife.42166
10.1038/s41592-019-0575-8
10.1016/S0091-679X(06)79025-2
10.1006/jsbi.2001.4348
10.1016/bs.mie.2016.04.014
10.1016/j.jsb.2023.107990
10.1107/S2059798322005010
10.1093/nar/gkac1062
10.1016/j.tcb.2004.11.009
10.1016/j.sbi.2009.06.005
10.1038/nprot.2016.124
10.3390/ijms241713375
10.1016/j.sbi.2019.05.021
10.1016/j.jsb.2008.02.008
10.1038/s41592-021-01275-4
10.1038/s42003-019-0437-z
10.1016/j.cell.2015.03.050
10.1038/s41592-023-02045-0
10.1107/S2052252518014392
10.1038/s41592-020-01054-7
10.7554/eLife.80047
10.1038/nmeth.4405
10.1016/bs.mcb.2019.04.003
10.1007/s00138-018-0949-4
10.1016/j.jsb.2019.08.006
10.1038/s41467-022-29501-3
10.1016/j.jsb.2022.107911
10.1038/s41592-019-0580-y
10.1016/S0091-679X(08)00606-7
ContentType Journal Article
Copyright 2024 The Author(s)
2024 The Author(s).
2024 The Author(s) 2024
Copyright_xml – notice: 2024 The Author(s)
– notice: 2024 The Author(s).
– notice: 2024 The Author(s) 2024
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.yjsbx.2024.100104
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2590-1524
ExternalDocumentID oai_doaj_org_article_b5992e91f9a94cd3a5343d71fcce38c3
10_1016_j_yjsbx_2024_100104
39044770
S2590152424000096
Genre Journal Article
GroupedDBID 0R~
0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADVLN
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
RPM
SSZ
AFJKZ
NPM
PGMZT
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c406t-3a4b34280a9fd187648da73af58457e956b597327464c5294f2ba732310e3e1b3
IEDL.DBID RPM
ISSN 2590-1524
IngestDate Tue Oct 22 14:58:45 EDT 2024
Tue Sep 17 21:27:54 EDT 2024
Sat Oct 26 04:32:48 EDT 2024
Wed Oct 09 16:35:39 EDT 2024
Sat Nov 02 12:21:41 EDT 2024
Sat Jul 13 15:33:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 3D particle picking
Cryo-electron tomography
Size-based object detection
Sub-tomogram averaging
Language English
License This is an open access article under the CC BY license.
2024 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-3a4b34280a9fd187648da73af58457e956b597327464c5294f2ba732310e3e1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263962/
PMID 39044770
PQID 3084031470
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b5992e91f9a94cd3a5343d71fcce38c3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11263962
proquest_miscellaneous_3084031470
crossref_primary_10_1016_j_yjsbx_2024_100104
pubmed_primary_39044770
elsevier_sciencedirect_doi_10_1016_j_yjsbx_2024_100104
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of structural biology. X
PublicationTitleAlternate J Struct Biol X
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Bartesaghi, Subramaniam (b0010) 2017; 19
Tegunov, Xue, Dienemann, Cramer, Mahamid (b0185) 2021; 18
Shiyu, Liu, Yang (b0175) 2022
Klumpe (b0130) 2021; 10
McIntosh, Nicastro, Mastronarde (b0155) 2005; 15
Bartesaghi, Matthies, Banerjee, Merk, Subramaniam (b0020) 2018; 7
Huang, Zhou, Bartesaghi (b0095) 2021
Best, Nickell, Baumeister (b0035) 2007; 79
Bharat, Scheres (b0040) 2016; 11
Bepler, Morin, Rapp, Brasch, Shapiro, Noble, Berger (b0030) 2019; 16
Zhang, Zhao, Chen, Shen, Li (b0215) 2022; 13
Moebel (b0160) 2021; 18
Nicholson, Glaeser (b0165) 2001; 133
McEwen, Renken, Marko, Mannella (b0150) 2008; 89
Khavnekar, Wan, Majumder, Wietrzynski, Erdmann, Plitzko (b0120) 2023; 215
Chaillet, Schot, Gubins, Roet, Veltkamp, Förster (b0055) 2023; 24
Eisenstein, Danev, Pilhofer (b0080) 2019; 208
Iudin, Korir, Somasundharam, Weyand, Cattavitello, Fonseca, Salih, Kleywegt, Patwardhan (b0110) 2023; 51
Liu, Zhou, Huang, Piland, Jin, Mandel, Du, Martin, Bartesaghi (b0145) 2023; 20
Zhang (b0210) 2009; 58
Zivanov, Nakane, Forsberg, Kimanius, Hagen, Lindahl, Scheres (b0220) 2018; 7
Chen, Dai, Sun, Jonasch, He, Schmid, Chiu, Ludtke (b0065) 2017; 14
Sanchez-Garcia, Segura, Maluenda, Carazo, Sorzano, consensus (b0170) 2018; 5
Wang, Gong, Liu, Li, Yan, Xia, Li, Zeng (b0205) 2016; 195
Leigh, Navarro, Scaramuzza, Chen, Zhang, Castaño-Díez, Kudryashev (b0135) 2019; 152
Bendory, Bartesaghi, Singer (b0025) 2020; 37
Che, Lin, Zeng, Elmaaroufi, Galeotti, Xu (b0060) 2018; 29
Doerr (b0075) 2017; 14
Liu, Zhou, Bartesaghi (b0140) 2022; 78
Wagner, Merino, Stabrin (b0195) 2019; 2
Huang, Zhou, Liu, Bartesaghi (b0105) 2022
Bartesaghi, Sprechmann, Liu, Randall, Sapiro, Subramaniam (b0015) 2008; 162
Wan, Briggs (b0200) 2016; 579
Bouvette (b0045) 2021; 12
Genthe, Miletic, Tekkali, James, Marlovits, Heuser (b0090) 2023; 215
Tegunov, Cramer (b0180) 2019; 16
Bouvette, Huang, Riccio, Copeland, Bartesaghi, Borgnia (b0050) 2022; 11
Huang, Zhou, Liu, Bartesaghi (b0100) 2022
Voss, Yoshioka, Radermacher, Potter, Carragher (b0190) 2014; 111
Cheng, Grigorieff, Penczek, Walz (b0070) 2015; 161
Eisenstein, Yanagisawa, Kashihara, Kikkawa, Tsukita, Danev (b0085) 2023; 20
Al-Azzawi, Ouadou, Tanner, Cheng (b0005) 2019; 20
Kelley (b0115) 2022; 13
Khoshouei, Pfeffer, Baumeister, Förster, Danev (b0125) 2017; 197
Chen (10.1016/j.yjsbx.2024.100104_b0065) 2017; 14
Zivanov (10.1016/j.yjsbx.2024.100104_b0220) 2018; 7
Chaillet (10.1016/j.yjsbx.2024.100104_b0055) 2023; 24
Kelley (10.1016/j.yjsbx.2024.100104_b0115) 2022; 13
Eisenstein (10.1016/j.yjsbx.2024.100104_b0085) 2023; 20
Iudin (10.1016/j.yjsbx.2024.100104_b0110) 2023; 51
Al-Azzawi (10.1016/j.yjsbx.2024.100104_b0005) 2019; 20
Klumpe (10.1016/j.yjsbx.2024.100104_b0130) 2021; 10
Eisenstein (10.1016/j.yjsbx.2024.100104_b0080) 2019; 208
Genthe (10.1016/j.yjsbx.2024.100104_b0090) 2023; 215
Wagner (10.1016/j.yjsbx.2024.100104_b0195) 2019; 2
Liu (10.1016/j.yjsbx.2024.100104_b0145) 2023; 20
Bartesaghi (10.1016/j.yjsbx.2024.100104_b0015) 2008; 162
Che (10.1016/j.yjsbx.2024.100104_b0060) 2018; 29
Leigh (10.1016/j.yjsbx.2024.100104_b0135) 2019; 152
Huang (10.1016/j.yjsbx.2024.100104_b0100) 2022
McIntosh (10.1016/j.yjsbx.2024.100104_b0155) 2005; 15
Doerr (10.1016/j.yjsbx.2024.100104_b0075) 2017; 14
Huang (10.1016/j.yjsbx.2024.100104_b0105) 2022
Khoshouei (10.1016/j.yjsbx.2024.100104_b0125) 2017; 197
Voss (10.1016/j.yjsbx.2024.100104_b0190) 2014; 111
Bouvette (10.1016/j.yjsbx.2024.100104_b0050) 2022; 11
McEwen (10.1016/j.yjsbx.2024.100104_b0150) 2008; 89
Nicholson (10.1016/j.yjsbx.2024.100104_b0165) 2001; 133
Wan (10.1016/j.yjsbx.2024.100104_b0200) 2016; 579
Huang (10.1016/j.yjsbx.2024.100104_b0095) 2021
Zhang (10.1016/j.yjsbx.2024.100104_b0215) 2022; 13
Wang (10.1016/j.yjsbx.2024.100104_b0205) 2016; 195
Best (10.1016/j.yjsbx.2024.100104_b0035) 2007; 79
Bendory (10.1016/j.yjsbx.2024.100104_b0025) 2020; 37
Cheng (10.1016/j.yjsbx.2024.100104_b0070) 2015; 161
Shiyu (10.1016/j.yjsbx.2024.100104_b0175) 2022
Tegunov (10.1016/j.yjsbx.2024.100104_b0180) 2019; 16
Bartesaghi (10.1016/j.yjsbx.2024.100104_b0020) 2018; 7
Bepler (10.1016/j.yjsbx.2024.100104_b0030) 2019; 16
Bharat (10.1016/j.yjsbx.2024.100104_b0040) 2016; 11
Bouvette (10.1016/j.yjsbx.2024.100104_b0045) 2021; 12
Khavnekar (10.1016/j.yjsbx.2024.100104_b0120) 2023; 215
Sanchez-Garcia (10.1016/j.yjsbx.2024.100104_b0170) 2018; 5
Liu (10.1016/j.yjsbx.2024.100104_b0140) 2022; 78
Tegunov (10.1016/j.yjsbx.2024.100104_b0185) 2021; 18
Moebel (10.1016/j.yjsbx.2024.100104_b0160) 2021; 18
Bartesaghi (10.1016/j.yjsbx.2024.100104_b0010) 2017; 19
Zhang (10.1016/j.yjsbx.2024.100104_b0210) 2009; 58
References_xml – volume: 37
  start-page: 58
  year: 2020
  end-page: 76
  ident: b0025
  article-title: Single-particle cryo-electron microscopy: mathematical theory, computational challenges, and opportunities
  publication-title: IEEE Signal Process. Mag.
  contributor:
    fullname: Singer
– volume: 13
  start-page: p. 185
  year: 2022
  ident: b0115
  article-title: Waffle method: a general and flexible approach for improving throughput in FIB-milling
  publication-title: Nature Communications
  contributor:
    fullname: Kelley
– volume: 29
  start-page: 1227
  year: 2018
  end-page: 1236
  ident: b0060
  article-title: Improved deep learning based macromolecules structure classification from electron cryo tomograms
  publication-title: Mach. Vis. Appl.
  contributor:
    fullname: Xu
– volume: 89
  start-page: 129
  year: 2008
  end-page: 168
  ident: b0150
  article-title: Principles and practice in electron tomography
  publication-title: Methods Cell Biol.
  contributor:
    fullname: Mannella
– volume: 51
  start-page: D1503
  year: 2023
  end-page: D1511
  ident: b0110
  article-title: EMPIAR: the electron microscopy public image archive
  publication-title: Nucl. Acids Res.
  contributor:
    fullname: Patwardhan
– volume: 19
  start-page: 402
  year: 2017
  end-page: 407
  ident: b0010
  article-title: Membrane protein structure determination using cryo-electron tomography and 3D image averaging
  publication-title: Curr. Opin. Struct. Biol.
  contributor:
    fullname: Subramaniam
– volume: 20
  start-page: 1
  year: 2019
  end-page: 26
  ident: b0005
  article-title: AutoCryoPicker: an unsupervised learning approach for fully automated single particle picking in cryo-EM images
  publication-title: BMC Bioinf.
  contributor:
    fullname: Cheng
– volume: 162
  start-page: 436
  year: 2008
  end-page: 450
  ident: b0015
  article-title: Classification and 3D averaging with missing wedge correction in biological electron tomography
  publication-title: J. Struct. Biol.
  contributor:
    fullname: Subramaniam
– volume: 133
  start-page: 90
  year: 2001
  end-page: 101
  ident: b0165
  article-title: Review: automatic particle detection in electron microscopy
  publication-title: J. Struct. Biol.
  contributor:
    fullname: Glaeser
– volume: 14
  start-page: 983
  year: 2017
  end-page: 985
  ident: b0065
  article-title: Convolutional neural networks for automated annotation of cellular cryo-electron tomograms
  publication-title: Nat. Methods
  contributor:
    fullname: Ludtke
– volume: 215
  start-page: p. 10799
  year: 2023
  ident: b0090
  article-title: PickYOLO: fast deep learning particle detector for annotation of cryo electron tomograms
  publication-title: J. Struct. Biol.
  contributor:
    fullname: Heuser
– volume: 15
  start-page: 43
  year: 2005
  end-page: 51
  ident: b0155
  article-title: New views of cells in 3D: an introduction to electron tomography
  publication-title: Trends Cell Biol.
  contributor:
    fullname: Mastronarde
– volume: 14
  start-page: 1
  year: 2017
  ident: b0075
  article-title: Cryo-electron tomography
  publication-title: Nat. Methods
  contributor:
    fullname: Doerr
– volume: 579
  start-page: 329
  year: 2016
  end-page: 367
  ident: b0200
  article-title: Cryo-electron tomography and subtomogram averaging
  publication-title: Methods Enzymol.
  contributor:
    fullname: Briggs
– volume: 152
  start-page: 217
  year: 2019
  end-page: 259
  ident: b0135
  article-title: Subtomogram averaging from cryo-electron tomograms
  publication-title: Methods Cell Biol.
  contributor:
    fullname: Kudryashev
– volume: 111
  start-page: 11709
  year: 2014
  end-page: 11714
  ident: b0190
  article-title: DoG Picker and Tilt-Picker: software tools to facilitate particle selection in single particle electron microscopy
  publication-title: J. Struct. Biol.
  contributor:
    fullname: Carragher
– volume: 195
  start-page: 325
  year: 2016
  end-page: 336
  ident: b0205
  article-title: DeepPicker: a deep learning approach for fully automated particle picking in cryo-EM
  publication-title: J. Struct. Biol.
  contributor:
    fullname: Zeng
– volume: 11
  start-page: e80047
  year: 2022
  ident: b0050
  article-title: Automated systematic evaluation of cryo-EM specimens with SmartScope
  publication-title: eLife
  contributor:
    fullname: Borgnia
– start-page: 644
  year: 2022
  end-page: 660
  ident: b0105
  article-title: Accurate detection of proteins in cryo-electron tomograms from sparse labels
  publication-title: Comput. Vis.–ECCV
  contributor:
    fullname: Bartesaghi
– volume: 79
  start-page: 615
  year: 2007
  end-page: 638
  ident: b0035
  article-title: Localization of protein complexes by pattern recognition
  publication-title: Methods Cell Biol.
  contributor:
    fullname: Baumeister
– volume: 12
  start-page: 1957
  year: 2021
  ident: b0045
  article-title: Beam image-shift accelerated data acquisition for near-atomic resolution single-particle cryo-electron tomography
  publication-title: Nat. Commun.
  contributor:
    fullname: Bouvette
– volume: 20
  start-page: 1909
  year: 2023
  end-page: 1919
  ident: b0145
  article-title: nextPYP: a comprehensive and scalable platform for characterizing protein variability in-situ using single-particle cryo-electron tomography
  publication-title: Nat. Methods
  contributor:
    fullname: Bartesaghi
– volume: 16
  start-page: 1146
  year: 2019
  end-page: 1152
  ident: b0180
  article-title: Real-time cryo-electron microscopy data preprocessing with Warp
  publication-title: Nat. Methods
  contributor:
    fullname: Cramer
– volume: 16
  start-page: 1153
  year: 2019
  end-page: 1160
  ident: b0030
  article-title: Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs
  publication-title: Nat. Methods
  contributor:
    fullname: Berger
– volume: 208
  start-page: 107
  year: 2019
  end-page: 114
  ident: b0080
  article-title: Improved applicability and robustness of fast cryo-electron tomography data acquisition
  publication-title: J. Struct. Biol.
  contributor:
    fullname: Pilhofer
– volume: 58
  start-page: 249
  year: 2009
  end-page: 258
  ident: b0210
  article-title: Advances in cryo-electron tomography and subtomogram averaging and classification
  publication-title: Curr. Opin. Struct. Biol.
  contributor:
    fullname: Zhang
– volume: 197
  start-page: 94
  year: 2017
  end-page: 101
  ident: b0125
  article-title: Subtomogram analysis using the Volta phase plate
  publication-title: J. Struct. Biol.
  contributor:
    fullname: Danev
– volume: 18
  start-page: 1386
  year: 2021
  end-page: 1394
  ident: b0160
  article-title: Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms
  publication-title: Nat. Methods
  contributor:
    fullname: Moebel
– volume: 11
  start-page: 2054
  year: 2016
  end-page: 2065
  ident: b0040
  article-title: Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION
  publication-title: Nat. Protoc.
  contributor:
    fullname: Scheres
– start-page: 3260
  year: 2022
  end-page: 3269
  ident: b0100
  article-title: Weakly supervised learning for joint image denoising and protein localization in cryo-electron microscopy
  publication-title: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)
  contributor:
    fullname: Bartesaghi
– volume: 24
  year: 2023
  ident: b0055
  article-title: Extensive angular sampling enables the sensitive localization of macro-molecules in electron tomograms
  publication-title: Int. J. Mol. Sci.
  contributor:
    fullname: Förster
– volume: 161
  start-page: 438
  year: 2015
  end-page: 449
  ident: b0070
  article-title: A primer to single-particle cryo-electron microscopy
  publication-title: Cell
  contributor:
    fullname: Walz
– start-page: 1
  year: 2021
  end-page: 8
  ident: b0095
  article-title: Joint model for image denoising and detection of proteins imaged by cryo-EM
  publication-title: 2021 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)
  contributor:
    fullname: Bartesaghi
– volume: 18
  start-page: 186
  year: 2021
  end-page: 193
  ident: b0185
  article-title: Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.7 Å in cells
  publication-title: Nat. Methods
  contributor:
    fullname: Mahamid
– start-page: 1
  year: 2022
  end-page: 5
  ident: b0175
  article-title: Fast particle picking for cryo-electron tomography using one-stage detection
  publication-title: 2022 IEEE 19th International Symposium on Biomedical Imaging ISBI)
  contributor:
    fullname: Yang
– volume: 78
  start-page: 817
  year: 2022
  end-page: 824
  ident: b0140
  article-title: High-resolution structure determination using high-throughput electron cryo-tomography
  publication-title: Acta Crystallogr. Sect. D Struct. Biol.
  contributor:
    fullname: Bartesaghi
– volume: 5
  start-page: 854
  year: 2018
  end-page: 865
  ident: b0170
  article-title: a deep learning-based approach for particle pruning in cryoelectron microscopy
  publication-title: IUCrJ
  contributor:
    fullname: consensus
– volume: 2
  start-page: 218
  year: 2019
  ident: b0195
  article-title: SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM
  publication-title: Commun. Biol.
  contributor:
    fullname: Stabrin
– volume: 215
  start-page: 10791
  year: 2023
  ident: b0120
  article-title: Multishot tomography for high-resolution in situ subtomogram averaging
  publication-title: J. Struct. Biol.
  contributor:
    fullname: Plitzko
– volume: 7
  start-page: e42166
  year: 2018
  ident: b0220
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: eLife
  contributor:
    fullname: Scheres
– volume: 13
  start-page: 1
  year: 2022
  end-page: 10
  ident: b0215
  article-title: EPicker is an exemplar-based continual learning approach for knowledge accumulation in cryoEM particle picking
  publication-title: Nat. Commun.
  contributor:
    fullname: Li
– volume: 10
  start-page: e70506
  year: 2021
  ident: b0130
  article-title: A modular platform for automated cryo-FIB workflows
  publication-title: eLife
  contributor:
    fullname: Klumpe
– volume: 20
  start-page: 131
  year: 2023
  end-page: 138
  ident: b0085
  article-title: Parallel cryo electron tomography on in situ lamellae
  publication-title: Nat. Methods
  contributor:
    fullname: Danev
– volume: 7
  start-page: e42166
  year: 2018
  ident: b0020
  article-title: Structure of -galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  contributor:
    fullname: Subramaniam
– volume: 37
  start-page: 58
  issue: 2
  year: 2020
  ident: 10.1016/j.yjsbx.2024.100104_b0025
  article-title: Single-particle cryo-electron microscopy: mathematical theory, computational challenges, and opportunities
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2019.2957822
  contributor:
    fullname: Bendory
– volume: 12
  start-page: 1957
  year: 2021
  ident: 10.1016/j.yjsbx.2024.100104_b0045
  article-title: Beam image-shift accelerated data acquisition for near-atomic resolution single-particle cryo-electron tomography
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22251-8
  contributor:
    fullname: Bouvette
– volume: 20
  start-page: 1
  issue: 326
  year: 2019
  ident: 10.1016/j.yjsbx.2024.100104_b0005
  article-title: AutoCryoPicker: an unsupervised learning approach for fully automated single particle picking in cryo-EM images
  publication-title: BMC Bioinf.
  contributor:
    fullname: Al-Azzawi
– volume: 197
  start-page: 94
  issue: 2
  year: 2017
  ident: 10.1016/j.yjsbx.2024.100104_b0125
  article-title: Subtomogram analysis using the Volta phase plate
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2016.05.009
  contributor:
    fullname: Khoshouei
– volume: 10
  start-page: e70506
  year: 2021
  ident: 10.1016/j.yjsbx.2024.100104_b0130
  article-title: A modular platform for automated cryo-FIB workflows
  publication-title: eLife
  doi: 10.7554/eLife.70506
  contributor:
    fullname: Klumpe
– volume: 20
  start-page: 131
  issue: 1
  year: 2023
  ident: 10.1016/j.yjsbx.2024.100104_b0085
  article-title: Parallel cryo electron tomography on in situ lamellae
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01690-1
  contributor:
    fullname: Eisenstein
– volume: 7
  start-page: e42166
  year: 2018
  ident: 10.1016/j.yjsbx.2024.100104_b0020
  article-title: Structure of -galactosidase at 3.2-Å resolution obtained by cryo-electron microscopy
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  contributor:
    fullname: Bartesaghi
– volume: 111
  start-page: 11709
  issue: 32
  year: 2014
  ident: 10.1016/j.yjsbx.2024.100104_b0190
  article-title: DoG Picker and Tilt-Picker: software tools to facilitate particle selection in single particle electron microscopy
  publication-title: J. Struct. Biol.
  contributor:
    fullname: Voss
– volume: 195
  start-page: 325
  issue: 3
  year: 2016
  ident: 10.1016/j.yjsbx.2024.100104_b0205
  article-title: DeepPicker: a deep learning approach for fully automated particle picking in cryo-EM
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2016.07.006
  contributor:
    fullname: Wang
– start-page: 1
  year: 2021
  ident: 10.1016/j.yjsbx.2024.100104_b0095
  article-title: Joint model for image denoising and detection of proteins imaged by cryo-EM
  contributor:
    fullname: Huang
– start-page: 3260
  year: 2022
  ident: 10.1016/j.yjsbx.2024.100104_b0100
  article-title: Weakly supervised learning for joint image denoising and protein localization in cryo-electron microscopy
  contributor:
    fullname: Huang
– start-page: 1
  year: 2022
  ident: 10.1016/j.yjsbx.2024.100104_b0175
  article-title: Fast particle picking for cryo-electron tomography using one-stage detection
  contributor:
    fullname: Shiyu
– volume: 7
  start-page: e42166
  year: 2018
  ident: 10.1016/j.yjsbx.2024.100104_b0220
  article-title: New tools for automated high-resolution cryo-EM structure determination in RELION-3
  publication-title: eLife
  doi: 10.7554/eLife.42166
  contributor:
    fullname: Zivanov
– volume: 16
  start-page: 1153
  issue: 11
  year: 2019
  ident: 10.1016/j.yjsbx.2024.100104_b0030
  article-title: Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0575-8
  contributor:
    fullname: Bepler
– volume: 79
  start-page: 615
  year: 2007
  ident: 10.1016/j.yjsbx.2024.100104_b0035
  article-title: Localization of protein complexes by pattern recognition
  publication-title: Methods Cell Biol.
  doi: 10.1016/S0091-679X(06)79025-2
  contributor:
    fullname: Best
– volume: 133
  start-page: 90
  issue: 2
  year: 2001
  ident: 10.1016/j.yjsbx.2024.100104_b0165
  article-title: Review: automatic particle detection in electron microscopy
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.2001.4348
  contributor:
    fullname: Nicholson
– volume: 579
  start-page: 329
  year: 2016
  ident: 10.1016/j.yjsbx.2024.100104_b0200
  article-title: Cryo-electron tomography and subtomogram averaging
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2016.04.014
  contributor:
    fullname: Wan
– volume: 215
  start-page: p. 10799
  issue: 3
  year: 2023
  ident: 10.1016/j.yjsbx.2024.100104_b0090
  article-title: PickYOLO: fast deep learning particle detector for annotation of cryo electron tomograms
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2023.107990
  contributor:
    fullname: Genthe
– volume: 78
  start-page: 817
  issue: 7
  year: 2022
  ident: 10.1016/j.yjsbx.2024.100104_b0140
  article-title: High-resolution structure determination using high-throughput electron cryo-tomography
  publication-title: Acta Crystallogr. Sect. D Struct. Biol.
  doi: 10.1107/S2059798322005010
  contributor:
    fullname: Liu
– volume: 51
  start-page: D1503
  year: 2023
  ident: 10.1016/j.yjsbx.2024.100104_b0110
  article-title: EMPIAR: the electron microscopy public image archive
  publication-title: Nucl. Acids Res.
  doi: 10.1093/nar/gkac1062
  contributor:
    fullname: Iudin
– volume: 15
  start-page: 43
  issue: 1
  year: 2005
  ident: 10.1016/j.yjsbx.2024.100104_b0155
  article-title: New views of cells in 3D: an introduction to electron tomography
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2004.11.009
  contributor:
    fullname: McIntosh
– volume: 13
  start-page: 1
  issue: 2468
  year: 2022
  ident: 10.1016/j.yjsbx.2024.100104_b0215
  article-title: EPicker is an exemplar-based continual learning approach for knowledge accumulation in cryoEM particle picking
  publication-title: Nat. Commun.
  contributor:
    fullname: Zhang
– volume: 19
  start-page: 402
  issue: 4
  year: 2017
  ident: 10.1016/j.yjsbx.2024.100104_b0010
  article-title: Membrane protein structure determination using cryo-electron tomography and 3D image averaging
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2009.06.005
  contributor:
    fullname: Bartesaghi
– volume: 11
  start-page: 2054
  year: 2016
  ident: 10.1016/j.yjsbx.2024.100104_b0040
  article-title: Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.124
  contributor:
    fullname: Bharat
– start-page: 644
  year: 2022
  ident: 10.1016/j.yjsbx.2024.100104_b0105
  article-title: Accurate detection of proteins in cryo-electron tomograms from sparse labels
  publication-title: Comput. Vis.–ECCV
  contributor:
    fullname: Huang
– volume: 24
  issue: 17
  year: 2023
  ident: 10.1016/j.yjsbx.2024.100104_b0055
  article-title: Extensive angular sampling enables the sensitive localization of macro-molecules in electron tomograms
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms241713375
  contributor:
    fullname: Chaillet
– volume: 58
  start-page: 249
  year: 2009
  ident: 10.1016/j.yjsbx.2024.100104_b0210
  article-title: Advances in cryo-electron tomography and subtomogram averaging and classification
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2019.05.021
  contributor:
    fullname: Zhang
– volume: 162
  start-page: 436
  issue: 3
  year: 2008
  ident: 10.1016/j.yjsbx.2024.100104_b0015
  article-title: Classification and 3D averaging with missing wedge correction in biological electron tomography
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2008.02.008
  contributor:
    fullname: Bartesaghi
– volume: 14
  start-page: 1
  issue: 34
  year: 2017
  ident: 10.1016/j.yjsbx.2024.100104_b0075
  article-title: Cryo-electron tomography
  publication-title: Nat. Methods
  contributor:
    fullname: Doerr
– volume: 18
  start-page: 1386
  issue: 11
  year: 2021
  ident: 10.1016/j.yjsbx.2024.100104_b0160
  article-title: Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01275-4
  contributor:
    fullname: Moebel
– volume: 2
  start-page: 218
  issue: 1
  year: 2019
  ident: 10.1016/j.yjsbx.2024.100104_b0195
  article-title: SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-019-0437-z
  contributor:
    fullname: Wagner
– volume: 161
  start-page: 438
  issue: 3
  year: 2015
  ident: 10.1016/j.yjsbx.2024.100104_b0070
  article-title: A primer to single-particle cryo-electron microscopy
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.050
  contributor:
    fullname: Cheng
– volume: 20
  start-page: 1909
  year: 2023
  ident: 10.1016/j.yjsbx.2024.100104_b0145
  article-title: nextPYP: a comprehensive and scalable platform for characterizing protein variability in-situ using single-particle cryo-electron tomography
  publication-title: Nat. Methods
  doi: 10.1038/s41592-023-02045-0
  contributor:
    fullname: Liu
– volume: 5
  start-page: 854
  issue: 6
  year: 2018
  ident: 10.1016/j.yjsbx.2024.100104_b0170
  article-title: a deep learning-based approach for particle pruning in cryoelectron microscopy
  publication-title: IUCrJ
  doi: 10.1107/S2052252518014392
  contributor:
    fullname: Sanchez-Garcia
– volume: 18
  start-page: 186
  year: 2021
  ident: 10.1016/j.yjsbx.2024.100104_b0185
  article-title: Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.7 Å in cells
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01054-7
  contributor:
    fullname: Tegunov
– volume: 11
  start-page: e80047
  year: 2022
  ident: 10.1016/j.yjsbx.2024.100104_b0050
  article-title: Automated systematic evaluation of cryo-EM specimens with SmartScope
  publication-title: eLife
  doi: 10.7554/eLife.80047
  contributor:
    fullname: Bouvette
– volume: 14
  start-page: 983
  issue: 10
  year: 2017
  ident: 10.1016/j.yjsbx.2024.100104_b0065
  article-title: Convolutional neural networks for automated annotation of cellular cryo-electron tomograms
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4405
  contributor:
    fullname: Chen
– volume: 152
  start-page: 217
  year: 2019
  ident: 10.1016/j.yjsbx.2024.100104_b0135
  article-title: Subtomogram averaging from cryo-electron tomograms
  publication-title: Methods Cell Biol.
  doi: 10.1016/bs.mcb.2019.04.003
  contributor:
    fullname: Leigh
– volume: 29
  start-page: 1227
  year: 2018
  ident: 10.1016/j.yjsbx.2024.100104_b0060
  article-title: Improved deep learning based macromolecules structure classification from electron cryo tomograms
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-018-0949-4
  contributor:
    fullname: Che
– volume: 208
  start-page: 107
  issue: 2
  year: 2019
  ident: 10.1016/j.yjsbx.2024.100104_b0080
  article-title: Improved applicability and robustness of fast cryo-electron tomography data acquisition
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2019.08.006
  contributor:
    fullname: Eisenstein
– volume: 13
  start-page: p. 185
  issue: 1
  year: 2022
  ident: 10.1016/j.yjsbx.2024.100104_b0115
  article-title: Waffle method: a general and flexible approach for improving throughput in FIB-milling
  publication-title: Nature Communications
  doi: 10.1038/s41467-022-29501-3
  contributor:
    fullname: Kelley
– volume: 215
  start-page: 10791
  issue: 1
  year: 2023
  ident: 10.1016/j.yjsbx.2024.100104_b0120
  article-title: Multishot tomography for high-resolution in situ subtomogram averaging
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2022.107911
  contributor:
    fullname: Khavnekar
– volume: 16
  start-page: 1146
  issue: 11
  year: 2019
  ident: 10.1016/j.yjsbx.2024.100104_b0180
  article-title: Real-time cryo-electron microscopy data preprocessing with Warp
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0580-y
  contributor:
    fullname: Tegunov
– volume: 89
  start-page: 129
  year: 2008
  ident: 10.1016/j.yjsbx.2024.100104_b0150
  article-title: Principles and practice in electron tomography
  publication-title: Methods Cell Biol.
  doi: 10.1016/S0091-679X(08)00606-7
  contributor:
    fullname: McEwen
SSID ssj0002794005
Score 2.3221247
Snippet [Display omitted] •Size-based particle picking algorithm efficiently locates proteins within tomograms.•Does not require external templates, labeled data for...
Cryo-electron tomography (cryo-ET) combined with sub-tomogram averaging (STA) allows the determination of protein structures imaged within the native context...
• Size-based particle picking algorithm efficiently locates proteins within tomograms. • Does not require external templates, labeled data for training or...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 100104
SubjectTerms 3D particle picking
Cryo-electron tomography
Size-based object detection
Sub-tomogram averaging
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et-uLCh4Ntk3SJidRUUTQk4K3kMcEd8GuuLvg-uvNo5VdBb14bfpI5ms73ySTbxA6ZuBZMSiKheYaUygtVspWmHNGlYMgqBKmBu7uq5tHevvEnmZKfYWcsCQPnAx3qpkQJYjCCSWosUQxf7WtC2cMEG6SzmcuZoKpQVxOCwW_WSczFBO6poORfvcRYUmj8FBbmq1zRVGxf84j_WSc3xMnZzzR9SpaaSlkdp66voYWoFlHS6mo5HQDnZ0bMwkCENmo_wE4uCmbRTmGfpNF19VuvczC1pLMvE2H-OohGw9fYqbWaBM9Xl89XN7gtkwCNt4bjzFRVBMfReRKOFv4vxvlVtVEOc8tWA0-API2rIkPPytqWCmoK7VvD8QOCBSabKHFZtjADsqAlI4yo6wDoNoZRYjhFS8LsC7XvO6hk85i8jWpYcguTWwgo4FlMLBMBu6hi2DVr1ODlHU84AGWLcDyL4B7qOowkS0rSN7e36r_-9OPOgSl_2bCQohqYDgZSZL7sJYUtM57aDsh-tVHInJK69DC57CeG8R8S9N_jrrcYTcWEVW5-x_D3kPLYSwpc2YfLY7fJnDg-c9YH8ZX_RPdPwRW
  priority: 102
  providerName: Directory of Open Access Journals
Title Accurate size-based protein localization from cryo-ET tomograms
URI https://dx.doi.org/10.1016/j.yjsbx.2024.100104
https://www.ncbi.nlm.nih.gov/pubmed/39044770
https://www.proquest.com/docview/3084031470
https://pubmed.ncbi.nlm.nih.gov/PMC11263962
https://doaj.org/article/b5992e91f9a94cd3a5343d71fcce38c3
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYACamXihZolxaUSj3WbBLbiX2qKAKhSiAOIHGz_Bi3WbEJ2ofU7a-v7cSIpRIHrnEe9swkM-N88w1CXxn4qBgUxUJzjSmUFitlK8w5o8pBIFQJWwOXV9XFLf15x-42UJVqYSJo3-jmuL2fHrfN74itfJiaccKJja8vT0PZCxFVOd5Em95Cn-Tok_grLTT7ZoliKIK5VpO5_uOzwZJG0qGhLVtyQ5Gtf80b_R9tPgdNPvFC5zvo7RA-Zif9NN-hDWjfo-2-oeRqF30_MWYZyB-yefMXcHBRNotUDE2bRbc1lF1moawkM7NVh89uskU3jSit-R66PT-7Ob3AQ4sEbLwnXmCiqCY-g8iVcLbwXzbKraqJcj6uYDX45EezwMdT04oaVgrqSu3HQ1AHBApN9tFW27XwEWVASkeZUdYBUO2MIsTwipcFWJdrXo_QtyQx-dAzYcgEEZvIKGAZBCx7AY_QjyDVx1MDjXU80M1-yUGZ0k9OlCAKJ5SgxhLFvGnYunDGAOGGjFCVdCKHiKD39P5WzctP_5I0KP37En6CqBa65VyS3Ke0pKB1PkIfeo0-zpGInNI6jPA1Xa8tYn3Em2jk5E4mefD6Sz-hN2EFPVbmM9pazJZw6COehT6KOwVH0cz_AWx_A9Y
link.rule.ids 230,315,730,783,787,867,888,2109,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NIQQvjK9B2YAg8UjaJLaT-Alt06YC68RDJ_Zm-RNSaDK1qUT312M78bQOCQle43z4cufcXfy73wG8I9pGxZrjmIpSxFhnKuZc5XFZEsyNdoQq7tfA5Cwfn-NPF-RiC_JQC-NB-1JUw_rnfFhX3z228nIuRwEnNvoyOXJlL4jm2egO3LULNsE3svSZ30xz7b5JIBnycK71bCl-2Xwww552qG_MFhyR5-vf8Ed_xpu3YZM3_NDJDnwNEnTwkx_DVSuG8uoWueO_i_gIHvahaXTQjT-GLV0_gXtds8r1U_hwIOXKEUtEy-pKx879qcjTPFR15F1iX9IZuZKVSC7WTXw8jdpm7hFgy2dwfnI8PRrHffuFWFov38aIY4FsdpJwalRqv5q4VLxA3NiYhRTaJlaCOK6fAudYkoxikwk77gJGjXQq0C5s102tX0CkUWYwkVwZrbEwkiMky7zMUq1MIspiAO-DLthlx7LBAvxsxrzqmFMd61Q3gEOnr-tTHUW2P9AsvrH-LTI7OZppmhrKKZYKcWLNThWpkVKjUqIB5EHbrI82uijC3qr6-9PfBttgdi26DRZe62a1ZCix6TJKcZEM4HlnK9dzRDTBuHAj5YYVbQixOWJtw_N9B1t4-f-XvoH74-nklJ1-PPu8Bw-cNB0mZx-228VKv7KRVSte-2X0G6zgJQY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagCMSlrKXDGiSOeCaJ7cQ-oVI6KkurHlqpEgfLK2RgktEkIzH99dhOXHWKxKHX2Fle3nPe9-LPnwF4R4xDxUZgyCSVEJtcQyF0ASklWFjjBVX8r4Gj4-LwDH85J-cDq7IdaJW1ktW4_j0f19XPwK1czNUk8sQmJ0f7ftkLYkU-WWg7uQ3uuEGbFlcq9VmYUPNbfpMoNBQoXetZK_-4mjDHQXpo2JwtJqOg2b-Rk_7FnNepk1dy0fQB-B6t6Ckov8arTo7VxTWBx5uZ-RBsDxA12ev7PAK3TP0Y3O03rVw_AR_2lFp5gYmkrS4M9GlQJ0HuoaqTkBqHpZ2JX7qSqOW6gQenSdfMAxOsfQrOpgen-4dw2IYBKpftO4gElshVKalgVmfu64mpFiUS1mEXUhpXYEniNX9KXGBFcoZtLl27B44GmUyiHbBVN7XZBYlBucVECW2NwdIqgZCiBc0zo20qaTkC76M_-KJX2-CRhjbjwX3cu4_37huBj95nl129VHY40Cx_8OFNcvdwLDcss0wwrDQSxIWfLjOrlEFUoREoosf5gDp6NOEuVf3_7m9jfHA3Jv1Ei6hNs2o5Sl3ZjDJcpiPwrI-Xy2dELMW49C10I5I2jNhscfERdL9jPDy_-alvwL2TT1P-7fPx1xfgvjemp-a8BFvdcmVeOYDVyddhJP0Fy6Enhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+size-based+protein+localization+from+cryo-ET+tomograms&rft.jtitle=Journal+of+structural+biology.+X&rft.au=Jin%2C+Weisheng&rft.au=Zhou%2C+Ye&rft.au=Bartesaghi%2C+Alberto&rft.date=2024-12-01&rft.eissn=2590-1524&rft.volume=10&rft.spage=100104&rft_id=info:doi/10.1016%2Fj.yjsbx.2024.100104&rft_id=info%3Apmid%2F39044770&rft.externalDocID=39044770
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1524&client=summon