Photocatalytic Oxidation of VOCs in Gas Phase Using Capillary Microreactors with Commercial TiO2 (P25) Fillings

The elimination of volatile organic compounds (VOCs) at low concentration is a subject of great interest because these compounds are very harmful for the environment and human health. In this work, we have developed an easy methodology to immobilize a benchmark photocatalyst (P25) inside a capillary...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 11; no. 7; p. 1149
Main Authors Fernández-Catalá, Javier, Berenguer-Murcia, Ángel, Cazorla-Amorós, Diego
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 06.07.2018
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The elimination of volatile organic compounds (VOCs) at low concentration is a subject of great interest because these compounds are very harmful for the environment and human health. In this work, we have developed an easy methodology to immobilize a benchmark photocatalyst (P25) inside a capillary microreactor (Fused silica capillary with UV transparent coating) without any previous treatment. For this purpose, a dispersion of the sample (P25) in EtOH was used obtaining a packed bed configuration. We have improved the immobilization of the benchmark photocatalyst (P25) inside the capillary incorporating a surfactant (F-127) to generate porosity inside the microreactor to avoid severe pressure drops (∆P < 0.5 bar). The resulting capillaries were characterized by Scanning Electron Microscopy (SEM). These microreactors show a good performance in the abatement of propene (VOC) under flow conditions per mol of active phase (P25) due to an improved mass transfer when the photocatalyst is inside the capillary. Moreover, the prepared microreactors present a higher CO2 production rate (mole CO2/(mole P25·s)) with respect to the same TiO2 operating in a conventional reactor. The microreactor with low pressure drop is very interesting for the abatement of the VOCs since it improves the photoactivity of P25 per mol of TiO2 operating at near atmospheric pressure.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1996-1944
1996-1944
DOI:10.3390/ma11071149