Fluoropolymer Coated DNA Nanoclews for Volumetric Visualization of Oligonucleotides Delivery and Near Infrared Light Activated Anti‐Angiogenic Oncotherapy
The potential of microRNA regulation in oncotherapy is limited by the lack of delivery vehicles. Herein, it is shown that fluoropolymer coated DNA nanoclews (FNCs) provide outstanding ability to deliver oligonucleotide through circulation and realize near infrared (NIR) light activated angiogenesis...
Saved in:
Published in | Advanced science Vol. 10; no. 32; pp. e2304633 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.11.2023
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2198-3844 2198-3844 |
DOI | 10.1002/advs.202304633 |
Cover
Loading…
Abstract | The potential of microRNA regulation in oncotherapy is limited by the lack of delivery vehicles. Herein, it is shown that fluoropolymer coated DNA nanoclews (FNCs) provide outstanding ability to deliver oligonucleotide through circulation and realize near infrared (NIR) light activated angiogenesis suppression to abrogate tumors. Oligonucleotides are loaded in DNA nanoclews through sequence specific bindings and then a fluorinated zwitterionic polymer is coated onto the surface of nanoclews. Further incorporating quantum dots in the polymer coating endows the vectors with NIR‐IIb (1500–1700 nm) fluorescence and NIR light triggered release ability. The FNC vector can deliver oligonucleotides to cancer cells systemically and realize on‐demand cytosolic release of the cargo with high transfection efficiency. Taking advantage of the NIR‐IIb emission, the whole delivery process of FNCs is visualized volumetrically in vivo with a NIR light sheet microscope. Loaded by FNCs, an oligonucleotide can effectively silence the target miRNA when activated with NIR light, and inhibit angiogenesis inside tumor, leading to complete ablation of cancer. These findings suggest FNCs can be used as an efficient oligonucleotide delivery platform to modulate the expression of endogenous microRNA in gene therapy of cancer. |
---|---|
AbstractList | The potential of microRNA regulation in oncotherapy is limited by the lack of delivery vehicles. Herein, it is shown that fluoropolymer coated DNA nanoclews (FNCs) provide outstanding ability to deliver oligonucleotide through circulation and realize near infrared (NIR) light activated angiogenesis suppression to abrogate tumors. Oligonucleotides are loaded in DNA nanoclews through sequence specific bindings and then a fluorinated zwitterionic polymer is coated onto the surface of nanoclews. Further incorporating quantum dots in the polymer coating endows the vectors with NIR-IIb (1500–1700 nm) fluorescence and NIR light triggered release ability. The FNC vector can deliver oligonucleotides to cancer cells systemically and realize on-demand cytosolic release of the cargo with high transfection efficiency. Taking advantage of the NIR-IIb emission, the whole delivery process of FNCs is visualized volumetrically in vivo with a NIR light sheet microscope. Loaded by FNCs, an oligonucleotide can effectively silence the target miRNA when activated with NIR light, and inhibit angiogenesis inside tumor, leading to complete ablation of cancer. These findings suggest FNCs can be used as an efficient oligonucleotide delivery platform to modulate the expression of endogenous microRNA in gene therapy of cancer. Abstract The potential of microRNA regulation in oncotherapy is limited by the lack of delivery vehicles. Herein, it is shown that fluoropolymer coated DNA nanoclews (FNCs) provide outstanding ability to deliver oligonucleotide through circulation and realize near infrared (NIR) light activated angiogenesis suppression to abrogate tumors. Oligonucleotides are loaded in DNA nanoclews through sequence specific bindings and then a fluorinated zwitterionic polymer is coated onto the surface of nanoclews. Further incorporating quantum dots in the polymer coating endows the vectors with NIR‐IIb (1500–1700 nm) fluorescence and NIR light triggered release ability. The FNC vector can deliver oligonucleotides to cancer cells systemically and realize on‐demand cytosolic release of the cargo with high transfection efficiency. Taking advantage of the NIR‐IIb emission, the whole delivery process of FNCs is visualized volumetrically in vivo with a NIR light sheet microscope. Loaded by FNCs, an oligonucleotide can effectively silence the target miRNA when activated with NIR light, and inhibit angiogenesis inside tumor, leading to complete ablation of cancer. These findings suggest FNCs can be used as an efficient oligonucleotide delivery platform to modulate the expression of endogenous microRNA in gene therapy of cancer. The potential of microRNA regulation in oncotherapy is limited by the lack of delivery vehicles. Herein, it is shown that fluoropolymer coated DNA nanoclews (FNCs) provide outstanding ability to deliver oligonucleotide through circulation and realize near infrared (NIR) light activated angiogenesis suppression to abrogate tumors. Oligonucleotides are loaded in DNA nanoclews through sequence specific bindings and then a fluorinated zwitterionic polymer is coated onto the surface of nanoclews. Further incorporating quantum dots in the polymer coating endows the vectors with NIR-IIb (1500-1700 nm) fluorescence and NIR light triggered release ability. The FNC vector can deliver oligonucleotides to cancer cells systemically and realize on-demand cytosolic release of the cargo with high transfection efficiency. Taking advantage of the NIR-IIb emission, the whole delivery process of FNCs is visualized volumetrically in vivo with a NIR light sheet microscope. Loaded by FNCs, an oligonucleotide can effectively silence the target miRNA when activated with NIR light, and inhibit angiogenesis inside tumor, leading to complete ablation of cancer. These findings suggest FNCs can be used as an efficient oligonucleotide delivery platform to modulate the expression of endogenous microRNA in gene therapy of cancer.The potential of microRNA regulation in oncotherapy is limited by the lack of delivery vehicles. Herein, it is shown that fluoropolymer coated DNA nanoclews (FNCs) provide outstanding ability to deliver oligonucleotide through circulation and realize near infrared (NIR) light activated angiogenesis suppression to abrogate tumors. Oligonucleotides are loaded in DNA nanoclews through sequence specific bindings and then a fluorinated zwitterionic polymer is coated onto the surface of nanoclews. Further incorporating quantum dots in the polymer coating endows the vectors with NIR-IIb (1500-1700 nm) fluorescence and NIR light triggered release ability. The FNC vector can deliver oligonucleotides to cancer cells systemically and realize on-demand cytosolic release of the cargo with high transfection efficiency. Taking advantage of the NIR-IIb emission, the whole delivery process of FNCs is visualized volumetrically in vivo with a NIR light sheet microscope. Loaded by FNCs, an oligonucleotide can effectively silence the target miRNA when activated with NIR light, and inhibit angiogenesis inside tumor, leading to complete ablation of cancer. These findings suggest FNCs can be used as an efficient oligonucleotide delivery platform to modulate the expression of endogenous microRNA in gene therapy of cancer. The potential of microRNA regulation in oncotherapy is limited by the lack of delivery vehicles. Herein, it is shown that fluoropolymer coated DNA nanoclews (FNCs) provide outstanding ability to deliver oligonucleotide through circulation and realize near infrared (NIR) light activated angiogenesis suppression to abrogate tumors. Oligonucleotides are loaded in DNA nanoclews through sequence specific bindings and then a fluorinated zwitterionic polymer is coated onto the surface of nanoclews. Further incorporating quantum dots in the polymer coating endows the vectors with NIR‐IIb (1500–1700 nm) fluorescence and NIR light triggered release ability. The FNC vector can deliver oligonucleotides to cancer cells systemically and realize on‐demand cytosolic release of the cargo with high transfection efficiency. Taking advantage of the NIR‐IIb emission, the whole delivery process of FNCs is visualized volumetrically in vivo with a NIR light sheet microscope. Loaded by FNCs, an oligonucleotide can effectively silence the target miRNA when activated with NIR light, and inhibit angiogenesis inside tumor, leading to complete ablation of cancer. These findings suggest FNCs can be used as an efficient oligonucleotide delivery platform to modulate the expression of endogenous microRNA in gene therapy of cancer. |
Author | Guo, Ranran Zhang, Peng Yang, Wuli Tian, Ye Zhang, Haiting |
Author_xml | – sequence: 1 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: Biomaterials Research Center School of Biomedical Engineering Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Southern Medical University Guangzhou 510515 China – sequence: 2 givenname: Ranran surname: Guo fullname: Guo, Ranran organization: School of Biomedical Engineering Guangzhou Medical University Guangzhou 510182 China – sequence: 3 givenname: Haiting surname: Zhang fullname: Zhang, Haiting organization: Biomaterials Research Center School of Biomedical Engineering Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Southern Medical University Guangzhou 510515 China – sequence: 4 givenname: Wuli orcidid: 0000-0003-0384-9213 surname: Yang fullname: Yang, Wuli organization: State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science Fudan University Shanghai 200438 China – sequence: 5 givenname: Ye surname: Tian fullname: Tian, Ye organization: Biomaterials Research Center School of Biomedical Engineering Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Southern Medical University Guangzhou 510515 China |
BookMark | eNp1kcFuEzEURUeoSJTSLWtLbNgk2GPHYy-jlEKkKNlAt6MXjyd15PgF25MqrPgEPoCv40twE1ShSnjzrKdzr311X1cXAYOtqreMjhml9QfoDmlc05pTITl_UV3WTKsRV0Jc_HN_VV2ntKWUsglvBFOX1a9bP2DEPfrjzkYyQ8i2IzfLKVlCQOPtQyI9RnKHftjZHJ0hdy4N4N13yA4DwZ6svNtgGAqM2XU2kRvr3cHGI4HQkaWFSOahjxCL88Jt7jOZmuwOp5emIbvfP35Ow8bhxoZivwoG872NsD--qV724JO9_juvqq-3H7_MPo8Wq0_z2XQxMoLKPOITRWvNqGZNoxstACg0jAmjaqM5A9YL3lgG2pYjqG2YNFYq2QjZS8U5v6rmZ98OYdvuo9tBPLYIrj0tMG5aiNmVgK0GLdcdF6ymWsgJWytZa6Xtem2MkU1fvN6fvfYRvw025XbnkrHeQ7A4pLZWDdVK1VIU9N0zdItDDCVpoVRJopmYFGp8pkzElKLtnz7IaPvYffvYffvUfRGIZwLj8qmsHMH5_8n-AOeptuk |
CitedBy_id | crossref_primary_10_1039_D4PY00124A crossref_primary_10_1109_ACCESS_2024_3421525 crossref_primary_10_59717_j_xinn_mater_2024_100064 crossref_primary_10_1002_jim4_18 crossref_primary_10_1021_acsami_3c18282 crossref_primary_10_1002_adma_202404645 crossref_primary_10_3390_polym16060843 |
Cites_doi | 10.1073/pnas.1201516109 10.1002/adma.201506312 10.1002/adhm.201400787 10.1002/adfm.202001832 10.1021/acsnano.5b06623 10.1038/s41467-018-03779-8 10.1038/s41467-018-03505-4 10.1038/s41467-023-36625-7 10.1002/adma.201204683 10.1016/j.chroma.2014.06.076 10.1016/j.biomaterials.2020.120184 10.1021/ja5088024 10.1073/pnas.1806153115 10.1039/c3cs60439j 10.1073/pnas.2023888118 10.1038/nmat4497 10.1002/anie.201914119 10.1039/C0SM00857E 10.1016/j.nantod.2012.08.001 10.1002/adma.201802546 10.1016/j.canlet.2013.08.043 10.1021/ja000435m 10.1002/mabi.202100024 10.1016/j.ijpharm.2014.02.018 10.1002/adma.201504288 10.1002/adfm.201606826 10.1038/ncomms4053 10.1038/nature13905 10.1002/adma.201403387 10.1021/nl104280c 10.1002/adfm.201606398 10.1158/0008-5472.CAN-05-0137 10.1038/nature09284 10.1016/j.biomaterials.2019.119680 10.1038/labinvest.2009.126 10.1002/anie.202008083 10.1021/ja512293f 10.1016/j.ejpb.2022.10.010 10.1002/adma.201603095 10.1074/jbc.273.13.7507 10.1038/s41592-019-0398-7 10.1038/s41587-019-0262-4 10.1038/nprot.2015.078 10.1023/B:PHAM.0000012146.04068.56 10.1002/smll.202001704 10.1002/anie.201506030 10.1261/rna.2780503 10.1038/nrc1840 |
ContentType | Journal Article |
Copyright | 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 The Authors. Advanced Science published by Wiley-VCH GmbH. |
DBID | AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 DOA |
DOI | 10.1002/advs.202304633 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_9a96bd3412094651b862989ebbccc67f 10_1002_advs_202304633 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAYXX AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADMLS ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU CITATION DWQXO EBS EJD GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO IGS ITC KQ8 M2O M2P O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC ROL RPM 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 WIN PUEGO |
ID | FETCH-LOGICAL-c406t-3580291091779794aa0a7114c82c931a1f437e1a9eeee40e716ce686746f68333 |
IEDL.DBID | DOA |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 01:19:40 EDT 2025 Wed Jul 30 11:08:42 EDT 2025 Fri Jul 25 07:48:37 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Tue Jul 01 03:59:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-3580291091779794aa0a7114c82c931a1f437e1a9eeee40e716ce686746f68333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0384-9213 |
OpenAccessLink | https://doaj.org/article/9a96bd3412094651b862989ebbccc67f |
PQID | 2889799145 |
PQPubID | 4365299 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9a96bd3412094651b862989ebbccc67f proquest_miscellaneous_2870988264 proquest_journals_2889799145 crossref_primary_10_1002_advs_202304633 crossref_citationtrail_10_1002_advs_202304633 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced science |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_8_27_2 e_1_2_8_28_1 e_1_2_8_28_2 e_1_2_8_29_1 e_1_2_8_29_2 e_1_2_8_22_3 e_1_2_8_23_2 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_9_3 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_3_1 e_1_2_8_1_2 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_6_2 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_22_2 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_17_2 e_1_2_8_18_1 e_1_2_8_18_2 e_1_2_8_19_1 e_1_2_8_11_3 e_1_2_8_13_1 e_1_2_8_11_4 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_11_2 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – ident: e_1_2_8_1_3 doi: 10.1073/pnas.1201516109 – ident: e_1_2_8_9_3 doi: 10.1002/adma.201506312 – ident: e_1_2_8_32_1 doi: 10.1002/adhm.201400787 – ident: e_1_2_8_18_1 doi: 10.1002/adfm.202001832 – ident: e_1_2_8_22_2 doi: 10.1021/acsnano.5b06623 – ident: e_1_2_8_11_2 doi: 10.1038/s41467-018-03779-8 – ident: e_1_2_8_29_1 doi: 10.1038/s41467-018-03505-4 – ident: e_1_2_8_11_4 doi: 10.1038/s41467-023-36625-7 – ident: e_1_2_8_21_1 doi: 10.1002/adma.201204683 – ident: e_1_2_8_17_2 doi: 10.1016/j.chroma.2014.06.076 – ident: e_1_2_8_23_1 doi: 10.1016/j.biomaterials.2020.120184 – ident: e_1_2_8_9_1 doi: 10.1021/ja5088024 – ident: e_1_2_8_12_1 doi: 10.1073/pnas.1806153115 – ident: e_1_2_8_15_1 doi: 10.1039/c3cs60439j – ident: e_1_2_8_31_1 doi: 10.1073/pnas.2023888118 – ident: e_1_2_8_3_1 doi: 10.1038/nmat4497 – ident: e_1_2_8_10_1 doi: 10.1002/anie.201914119 – ident: e_1_2_8_17_1 doi: 10.1039/C0SM00857E – ident: e_1_2_8_19_1 doi: 10.1016/j.nantod.2012.08.001 – ident: e_1_2_8_25_1 doi: 10.1002/adma.201802546 – ident: e_1_2_8_28_2 doi: 10.1016/j.canlet.2013.08.043 – ident: e_1_2_8_8_1 doi: 10.1021/ja000435m – ident: e_1_2_8_11_3 doi: 10.1002/mabi.202100024 – ident: e_1_2_8_26_1 doi: 10.1016/j.ijpharm.2014.02.018 – ident: e_1_2_8_4_1 doi: 10.1002/adma.201504288 – ident: e_1_2_8_6_2 doi: 10.1002/adfm.201606826 – ident: e_1_2_8_11_1 doi: 10.1038/ncomms4053 – ident: e_1_2_8_2_1 doi: 10.1038/nature13905 – ident: e_1_2_8_14_1 doi: 10.1002/adma.201403387 – ident: e_1_2_8_22_1 doi: 10.1021/nl104280c – ident: e_1_2_8_22_3 doi: 10.1002/adfm.201606398 – ident: e_1_2_8_27_2 doi: 10.1158/0008-5472.CAN-05-0137 – ident: e_1_2_8_1_2 doi: 10.1038/nature09284 – ident: e_1_2_8_18_2 doi: 10.1016/j.biomaterials.2019.119680 – ident: e_1_2_8_28_1 doi: 10.1038/labinvest.2009.126 – ident: e_1_2_8_29_2 doi: 10.1002/anie.202008083 – ident: e_1_2_8_7_1 doi: 10.1021/ja512293f – ident: e_1_2_8_23_2 doi: 10.1016/j.ejpb.2022.10.010 – ident: e_1_2_8_6_1 doi: 10.1002/adma.201603095 – ident: e_1_2_8_5_1 doi: 10.1074/jbc.273.13.7507 – ident: e_1_2_8_13_1 doi: 10.1038/s41592-019-0398-7 – ident: e_1_2_8_20_1 doi: 10.1038/s41587-019-0262-4 – ident: e_1_2_8_16_1 doi: 10.1038/nprot.2015.078 – ident: e_1_2_8_24_1 doi: 10.1023/B:PHAM.0000012146.04068.56 – ident: e_1_2_8_30_1 doi: 10.1002/smll.202001704 – ident: e_1_2_8_9_2 doi: 10.1002/anie.201506030 – ident: e_1_2_8_27_1 doi: 10.1261/rna.2780503 – ident: e_1_2_8_1_1 doi: 10.1038/nrc1840 |
SSID | ssj0001537418 |
Score | 2.32457 |
Snippet | The potential of microRNA regulation in oncotherapy is limited by the lack of delivery vehicles. Herein, it is shown that fluoropolymer coated DNA nanoclews... Abstract The potential of microRNA regulation in oncotherapy is limited by the lack of delivery vehicles. Herein, it is shown that fluoropolymer coated DNA... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | e2304633 |
SubjectTerms | Acids Angiogenesis angiogenesis suppression Binding sites Cancer DNA nanostructures Efficiency Electrons gene therapy Hydrogen bonds Lasers Light MicroRNAs Morphology oligonucleotides delivery Polymers Quantum dots volumetric imaging |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBLQ-xtFRGQgIOVhPHsZMTSh-rgmCLEK16ixzHXkVa4nY3W9S_wq_tTOINQghySzJxLHueHvsbQt4ItFm1ilgF5oMJ6wzLqiRiWnAH9s1UcZ_B_zKTZxfi01V6FRbcVmFb5UYn9oq69gbXyA95lmEGKhbph-sbhlWjMLsaSmg8JNuggjPg8O2j09nXb79XWdIE4Vk2aI0RP9T1LaJ08x4qK_nDGvWg_X_p5N7QTHfI4-Ah0mKY0l3ywLZPyG6QwRV9F4Ci3z8lv6aLte-rHNz9sEt67MFvrOnJrKCgMz18_HNFwSell70GQih-etms8BTlcPaSekfPF83ctwhq7LumhvZP7AK3atxR3dZ0BnJAP7ZuidvU6WcM5Glh-opocF-0XcOKdt544EJo_ByBHgaUgmfkYnr6_fiMhVoLzIBJ7xhmQ3mOKKFKwTgLrSOtIFYyGTd5EuvYiUTZWOcWLhFZCLOMlZlUQjqZJUnynGy1vrUvCE2VsDxxWspIw9hrLZystBE81jUwjJsQthnz0gQgcqyHsSgHCGVe4hyV4xxNyNuR_nqA4Pgn5RFO4UiF0Nn9A7-cl0ESy1znsqrBeHOIbGUaVxDT5Vluq8oYIxV0b3_DAGWQZ_jFyH0T8np8DZKI6RXdWr9GGhXlELBI8fL_TeyRR9jl4UTjPtnqlmv7ClybrjoI_HsPyFH7Cg priority: 102 providerName: ProQuest |
Title | Fluoropolymer Coated DNA Nanoclews for Volumetric Visualization of Oligonucleotides Delivery and Near Infrared Light Activated Anti‐Angiogenic Oncotherapy |
URI | https://www.proquest.com/docview/2889799145 https://www.proquest.com/docview/2870988264 https://doaj.org/article/9a96bd3412094651b862989ebbccc67f |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQuXBBlB-xUCojIQGHqIntdZJj2u2qoHaLgFa9RbZjV5GWGO1mW_XGI_AAPB1PwoydXRUhxIVcoiQTx7HH86PxfEPIK4E6q8nTRIP6SIR1Jik0TxMlmAP9ZnQWIvgnM3l0Jt5fjC9ulfrCPWERHjgO3F6pSqkbkLUMHBE5zjSY4GVRWq2NMTJ3KH1B591ypmJ-MEdYljVKY8r2VHOF6NwsQGTx37RQAOv_QxYHBTN9QO4PliGtYo-2yR3bPSTbw9pb0jcDQPTbR-THdL7yobrBzRe7oAce7MWGTmYVBVnp4eXrJQVblJ4HyYMQ_PS8XWL2ZMy5pN7R03l76TsEM_Z920D7EzvHLRo3VHUNnQH_03edW-D2dHqMDjytTKiEBtdV17c_v32vusvWA_9B86cI8RDxCR6Ts-nh54OjZKiykBhQ5n2CcVBWIj5onpewOpVKVQ5ekimYKXmmMid4bjNVWjhEasHBMlYWMhfSyYJz_oRsdb6zTwkd58Iy7pSUqYLRV0o4qZURLFMNsIobkWQ96rUZIMixEsa8juDJrMZZqjezNCKvN_RfI_jGXyn3cRI3VAiaHW4AK9UDK9X_YqUR2VmzQD2sZPhEUWDkMxPjEXm5eQxrEAMrqrN-hTR5WoKrIsWz_9GP5-Qe_ljMeNwhW_1iZV-A6dPrXXK3mpwcf4Lz_uHsw8fdwPW_ADwABtw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq7QEuiPIQCy0YCQQcoiaO4yQHhNJuV7t0myLUVr2ljuOsIi1xu5ul2r_Cj-A3MpMXQghuzS2J41ie8Tztbwh5w1FnZb5tpaA-LK5zZQWpa1uSsxz0m0qdOoN_EovJOf986V1ukZ_dWRjcVtnJxFpQZ0ZhjHyfBQFmoBzufbq-sbBqFGZXuxIaDVsc680tuGyrj9MR0PctY-Ojs8OJ1VYVsBQor8rCvB8LEQ_T96FHLqUtffAKVMBU6DrSybnra0eGGi5ua3AolBaB8LnIReBiABRE_jZ3wVQYkO2Do_jL199RHc9FOJgOHdJm-zL7jqjgrIbmcv_QfnWRgL90QK3Yxg_Jg9YipVHDQjtkS5ePyE675lf0fQtM_eEx-TFerE1dVWHzTS_poQE7NaOjOKIgow18fLuiYAPTi1riIfQ_vShWeGqzOetJTU5PF8XclAiibKoig_5HeoFbQzZUlhmNYYLptMyXuC2ezjBwQCNVV2CD-6isCisq54UBrofOTxFYokFFeELO74QKT8mgNKV-Rqjnc83cXAphS5h7KXkuUqk4c2QGDJoPidXNeaJa4HOsv7FIGshmliCNkp5GQ_Kub3_dQH78s-UBkrBvhVDd9QOznCftyk9CGYo0A2OBgSctPCcFHzIMQp2mSinhw_B2OwZIWvkBv-i5fUhe969h5WM6R5barLGNb4fgIAn-_P9dvCL3Jmcns2Q2jY9fkPs4_OY05S4ZVMu13gOzqkpftrxMydVdL59foFY1Og |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrYS4IMpDLBQwEgg4RJs4Xic5IJR2u-rSklaIVr0Fx7FXkbZxu5ul2r_CT-HXMZMXQghuzS2J41ie8Tw8nm8Iec1RZ-WB62SgPhyujXLCzHcdyZkB_aYyr47gf07E4Rn_dDG-2CI_u1wYPFbZycRaUOdW4R75iIUhRqA8Ph6Z9ljE6WT68erawQpSGGntymk0LHKkNzfgvq0-zCZA6zeMTQ--7h86bYUBR4EiqxyMAbIIsTGDAHrnUroyAA9BhUxFvic9w_1AezLScHFXg3OhtAhFwIURoY-boSD-twNMHx2Q7b2D5PTL7x2esY_QMB1SpMtGMv-OCOGshuny_9CEdcGAv_RBreSm98m91jqlccNOO2RLlw_ITrv-V_RdC1L9_iH5MV2sbV1hYXOpl3Tfgs2a00kSU5DXFj6-WVGwh-l5Lf2wDAA9L1aYwdnkfVJr6MmimNsSAZVtVeTQ_0Qv8JjIhsoypwlMMJ2VZolH5OkxbiLQWNXV2OA-LqvCict5YWEFQOcnCDLRICQ8Ime3QoXHZFDaUj8hdBxwzXwjhXAlzL2U3IhMKs48mQOzmiFxujlPVQuCjrU4FmkD38xSpFHa02hI3vbtrxr4j3-23EMS9q0Qtrt-YJfztJUCaSQjkeVgODDwqsXYy8CfjMJIZ5lSSgQwvN2OAdJWlsAves4fklf9a5ACGNqRpbZrbBO4EThLgj_9fxcvyR1YNunxLDl6Ru7i6JvEyl0yqJZr_RwsrCp70bIyJd9ue_X8AgRoOXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluoropolymer+Coated+DNA+Nanoclews+for+Volumetric+Visualization+of+Oligonucleotides+Delivery+and+Near+Infrared+Light+Activated+Anti%E2%80%90Angiogenic+Oncotherapy&rft.jtitle=Advanced+science&rft.au=Zhang%2C+Peng&rft.au=Guo%2C+Ranran&rft.au=Zhang%2C+Haiting&rft.au=Yang%2C+Wuli&rft.date=2023-11-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=10&rft.issue=32&rft_id=info:doi/10.1002%2Fadvs.202304633&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202304633 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |