Phase Change Materials for Energy Efficiency in Buildings and Their Use in Mortars

The construction industry is responsible for consuming large amounts of energy. The development of new materials with the purpose of increasing the thermal efficiency of buildings is, therefore, becoming, imperative. Thus, during the last decades, integration of Phase Change Materials (PCMs) into bu...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 12; no. 8; p. 1260
Main Authors Frigione, Mariaenrica, Lettieri, Mariateresa, Sarcinella, Antonella
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 17.04.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The construction industry is responsible for consuming large amounts of energy. The development of new materials with the purpose of increasing the thermal efficiency of buildings is, therefore, becoming, imperative. Thus, during the last decades, integration of Phase Change Materials (PCMs) into buildings has gained interest. Such materials can reduce the temperature variations, leading to an improvement in human comfort and decreasing at the same time the energy consumption of buildings, due to their capability to absorb and release energy from/in the environment. In the present paper, recent experimental studies dealing with mortars or concrete-containing PCMs, used as passive building systems, have been examined. This review is mainly aimed at providing information on the currently investigated materials and the employed methodologies for their manufacture, as well as at summarizing the results achieved so far on this subject.
AbstractList The construction industry is responsible for consuming large amounts of energy. The development of new materials with the purpose of increasing the thermal efficiency of buildings is, therefore, becoming, imperative. Thus, during the last decades, integration of Phase Change Materials (PCMs) into buildings has gained interest. Such materials can reduce the temperature variations, leading to an improvement in human comfort and decreasing at the same time the energy consumption of buildings, due to their capability to absorb and release energy from/in the environment. In the present paper, recent experimental studies dealing with mortars or concrete-containing PCMs, used as passive building systems, have been examined. This review is mainly aimed at providing information on the currently investigated materials and the employed methodologies for their manufacture, as well as at summarizing the results achieved so far on this subject.
The construction industry is responsible for consuming large amounts of energy. The development of new materials with the purpose of increasing the thermal efficiency of buildings is, therefore, becoming, imperative. Thus, during the last decades, integration of Phase Change Materials (PCMs) into buildings has gained interest. Such materials can reduce the temperature variations, leading to an improvement in human comfort and decreasing at the same time the energy consumption of buildings, due to their capability to absorb and release energy from/in the environment. In the present paper, recent experimental studies dealing with mortars or concrete-containing PCMs, used as passive building systems, have been examined. This review is mainly aimed at providing information on the currently investigated materials and the employed methodologies for their manufacture, as well as at summarizing the results achieved so far on this subject.The construction industry is responsible for consuming large amounts of energy. The development of new materials with the purpose of increasing the thermal efficiency of buildings is, therefore, becoming, imperative. Thus, during the last decades, integration of Phase Change Materials (PCMs) into buildings has gained interest. Such materials can reduce the temperature variations, leading to an improvement in human comfort and decreasing at the same time the energy consumption of buildings, due to their capability to absorb and release energy from/in the environment. In the present paper, recent experimental studies dealing with mortars or concrete-containing PCMs, used as passive building systems, have been examined. This review is mainly aimed at providing information on the currently investigated materials and the employed methodologies for their manufacture, as well as at summarizing the results achieved so far on this subject.
Author Sarcinella, Antonella
Frigione, Mariaenrica
Lettieri, Mariateresa
AuthorAffiliation 1 Innovation Engineering Department, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy; antonella.sarcinella@unisalento.it
2 Institute of Archaeological Heritage—Monuments and Sites, CNR–IBAM, Prov.le Lecce-Monteroni, 73100 Lecce, Italy; mariateresa.lettieri@cnr.it
AuthorAffiliation_xml – name: 2 Institute of Archaeological Heritage—Monuments and Sites, CNR–IBAM, Prov.le Lecce-Monteroni, 73100 Lecce, Italy; mariateresa.lettieri@cnr.it
– name: 1 Innovation Engineering Department, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy; antonella.sarcinella@unisalento.it
Author_xml – sequence: 1
  givenname: Mariaenrica
  orcidid: 0000-0001-6183-6029
  surname: Frigione
  fullname: Frigione, Mariaenrica
– sequence: 2
  givenname: Mariateresa
  orcidid: 0000-0002-3060-3836
  surname: Lettieri
  fullname: Lettieri, Mariateresa
– sequence: 3
  givenname: Antonella
  surname: Sarcinella
  fullname: Sarcinella, Antonella
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30999615$$D View this record in MEDLINE/PubMed
BookMark eNptkV1LIzEUhoNU1up64w9YAt6IUE0ymczkRtDS3RUUZdHrkEnOtCnTpJvMCP33pvixrpibBM5zHt6cs49GPnhA6IiSs6KQ5HylKSM1ZYLsoDGVUkyo5Hz04b2HDlNaknyKgtZMfkN7BZG5Sssx-nO_0AnwdKH9HPCt7iE63SXchohnHuJ8g2dt64wDbzbYeXw1uM46P09Ye4sfFuAifsyGXLoNsdcxfUe7bVbA4et9gB5_zh6mvyc3d7-up5c3E8OJ6CcFY4I2nApWygpYWVdcQiuEbSoDpCxsWfGKW9YYyRtjbW0IZbaiVltTV1oXB-jixbsemhVYA76PulPr6FY6blTQTv1f8W6h5uFJiZKWnNAsOHkVxPB3gNSrlUsGuk57CENSjNHt_JhkGT3-hC7DEH3-nmIlr4UkpOKZ-vEx0XuUt3FngLwAJoaUIrTKuF73LmwDuk5RorZLVf-WmltOP7W8Wb-AnwFS-KA1
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2022_129102
crossref_primary_10_1016_j_conbuildmat_2024_135108
crossref_primary_10_1051_matecconf_201930302001
crossref_primary_10_3390_buildings14010040
crossref_primary_10_3390_ma15072497
crossref_primary_10_20396_parc_v15i00_8673208
crossref_primary_10_1088_2631_8695_ad86a2
crossref_primary_10_1016_j_cscm_2024_e03214
crossref_primary_10_1016_j_jobe_2023_106309
crossref_primary_10_1016_j_conbuildmat_2022_129734
crossref_primary_10_1080_15567036_2023_2171514
crossref_primary_10_1016_j_conbuildmat_2022_129056
crossref_primary_10_1016_j_cemconcomp_2022_104492
crossref_primary_10_1590_s1678_86212022000300610
crossref_primary_10_1016_j_solener_2019_12_003
crossref_primary_10_1016_j_cemconres_2020_106039
crossref_primary_10_1002_er_6537
crossref_primary_10_1016_j_conbuildmat_2024_137661
crossref_primary_10_1016_j_est_2022_104547
crossref_primary_10_1016_j_est_2023_106665
crossref_primary_10_1016_j_est_2020_101679
crossref_primary_10_3390_en14123544
crossref_primary_10_4028_www_scientific_net_KEM_886_228
crossref_primary_10_1108_JEDT_05_2020_0193
crossref_primary_10_1016_j_est_2022_105200
crossref_primary_10_1038_s41598_024_72690_8
crossref_primary_10_1016_j_matpr_2023_05_459
crossref_primary_10_1016_j_applthermaleng_2020_115269
crossref_primary_10_1007_s41207_023_00350_w
crossref_primary_10_3390_ma17235721
crossref_primary_10_1016_j_applthermaleng_2021_118011
crossref_primary_10_1016_j_enbuild_2022_112280
crossref_primary_10_4028_www_scientific_net_KEM_886_256
crossref_primary_10_1016_j_isci_2022_104226
crossref_primary_10_3390_coatings14030250
crossref_primary_10_3390_ma15196564
crossref_primary_10_1007_s10973_022_11558_3
crossref_primary_10_3390_ma13092055
crossref_primary_10_1016_j_ecmx_2022_100237
crossref_primary_10_1016_j_enbuild_2022_112680
crossref_primary_10_1016_j_est_2023_107545
crossref_primary_10_1016_j_tsep_2021_100920
crossref_primary_10_1088_2631_6331_ac826b
crossref_primary_10_1016_j_energy_2021_120549
crossref_primary_10_3390_buildings14113387
crossref_primary_10_3390_ma13225186
crossref_primary_10_1016_j_matpr_2020_10_791
crossref_primary_10_1016_j_solmat_2022_111629
crossref_primary_10_1016_j_conbuildmat_2024_136946
crossref_primary_10_3390_en13123065
crossref_primary_10_3390_ma17061379
crossref_primary_10_1016_j_wasman_2019_12_051
crossref_primary_10_3390_polym16081121
crossref_primary_10_3390_en16052384
crossref_primary_10_1039_D3TA07521D
crossref_primary_10_1016_j_asej_2023_102141
crossref_primary_10_1016_j_rineng_2024_102028
crossref_primary_10_1016_j_conbuildmat_2022_128697
crossref_primary_10_1016_j_applthermaleng_2022_118832
crossref_primary_10_1016_j_heliyon_2024_e25800
crossref_primary_10_3390_ma14040809
crossref_primary_10_1016_j_est_2025_116328
crossref_primary_10_1016_j_est_2024_114533
crossref_primary_10_1007_s10668_021_01320_4
crossref_primary_10_1615_HeatTransRes_2023047570
crossref_primary_10_1016_j_apenergy_2024_125217
crossref_primary_10_1016_j_conbuildmat_2021_122344
crossref_primary_10_1016_j_seta_2021_101709
crossref_primary_10_1016_j_est_2022_104974
crossref_primary_10_1016_j_conbuildmat_2022_126309
crossref_primary_10_3390_en16124806
crossref_primary_10_1007_s10973_023_12436_2
crossref_primary_10_1016_j_enbuild_2022_112514
crossref_primary_10_1016_j_est_2022_104102
crossref_primary_10_3390_ma14061356
crossref_primary_10_1002_er_6617
crossref_primary_10_1016_j_icheatmasstransfer_2021_105798
crossref_primary_10_3390_ma14123241
crossref_primary_10_3390_ma15031192
crossref_primary_10_1002_suco_202400189
crossref_primary_10_1007_s00396_022_05009_6
crossref_primary_10_3390_buildings15030351
crossref_primary_10_1016_j_applthermaleng_2024_122881
crossref_primary_10_1016_j_seta_2021_101318
crossref_primary_10_1016_j_conbuildmat_2024_135568
crossref_primary_10_1080_02286203_2024_2315281
crossref_primary_10_3390_buildings14092994
crossref_primary_10_1016_j_cemconcomp_2021_104033
crossref_primary_10_1080_15435075_2021_1890082
crossref_primary_10_1617_s11527_024_02544_2
crossref_primary_10_1051_matecconf_202440303007
crossref_primary_10_1016_j_conbuildmat_2022_127467
crossref_primary_10_1680_jcoma_20_00045
crossref_primary_10_3390_c10020046
crossref_primary_10_1016_j_mtener_2021_100905
crossref_primary_10_3390_micro2030026
crossref_primary_10_1016_j_dibe_2023_100243
crossref_primary_10_1007_s10098_023_02626_9
crossref_primary_10_1007_s40430_021_03308_7
crossref_primary_10_1016_j_est_2023_108280
crossref_primary_10_1016_j_cclet_2025_110815
crossref_primary_10_1016_j_solener_2023_05_006
crossref_primary_10_3390_su14063171
crossref_primary_10_1021_acsapm_4c00322
crossref_primary_10_3390_en17010063
crossref_primary_10_1016_j_est_2024_114397
crossref_primary_10_1016_j_jobe_2020_102122
crossref_primary_10_1016_j_est_2024_114671
crossref_primary_10_1016_j_conbuildmat_2022_130285
crossref_primary_10_2139_ssrn_4147033
crossref_primary_10_1016_j_cscm_2023_e02084
crossref_primary_10_3390_ma12213502
crossref_primary_10_3390_cryst11091067
crossref_primary_10_1016_j_conbuildmat_2023_131036
crossref_primary_10_1016_j_conbuildmat_2023_130621
crossref_primary_10_1016_j_jobe_2025_112106
crossref_primary_10_3390_nano10061168
crossref_primary_10_1016_j_applthermaleng_2024_124168
crossref_primary_10_2174_2665980801999200902142658
crossref_primary_10_1016_j_energy_2022_123501
crossref_primary_10_1016_j_est_2024_112421
crossref_primary_10_1021_acsaem_0c02341
crossref_primary_10_3390_buildings13102481
crossref_primary_10_1080_23744731_2023_2253089
crossref_primary_10_1088_1742_6596_2385_1_012009
crossref_primary_10_3390_en17040912
crossref_primary_10_1016_j_csite_2022_102300
crossref_primary_10_1002_er_8734
Cites_doi 10.1016/j.rser.2017.10.002
10.1016/j.enbuild.2017.02.033
10.1016/j.cemconcomp.2009.08.002
10.1007/s10765-013-1550-8
10.1155/2016/7254823
10.1016/j.rser.2013.08.037
10.1080/19648189.2015.1008651
10.4028/www.scientific.net/AMM.71-78.1958
10.1016/j.energy.2017.10.021
10.1155/2014/391690
10.1016/j.enbuild.2012.12.042
10.4028/www.scientific.net/AMR.687.255
10.1016/j.egypro.2015.11.265
10.1088/1757-899X/264/1/012013
10.1093/ijlct/cts021
10.1016/j.rser.2012.10.034
10.1016/j.enbuild.2015.07.043
10.1016/j.enbuild.2015.02.023
10.1016/j.conbuildmat.2016.06.114
10.15407/fm24.03.481
10.1016/j.est.2015.09.003
10.1007/s10973-014-3844-x
10.1016/j.nanoen.2015.02.016
10.1016/j.applthermaleng.2014.01.027
10.1016/j.cemconcomp.2017.04.001
10.1016/j.conbuildmat.2013.05.018
10.1016/j.enbuild.2010.03.022
10.4028/www.scientific.net/KEM.634.22
10.1016/j.enbuild.2015.02.044
10.1016/j.scitotenv.2012.11.012
10.1016/j.rser.2013.08.107
10.1016/j.egypro.2014.12.393
10.1007/s10973-012-2291-9
10.3390/su8101046
10.1016/j.conbuildmat.2015.04.031
10.1016/j.enbuild.2013.11.064
10.3390/ma11060871
10.1016/j.ijheatmasstransfer.2016.08.013
10.1016/j.rser.2015.09.040
10.1016/j.rser.2006.05.010
10.1016/j.conbuildmat.2013.05.111
10.1177/1687814017700828
10.1016/j.enbuild.2014.08.010
10.1016/j.apenergy.2011.08.025
10.1016/j.apenergy.2016.10.072
10.1016/j.conbuildmat.2016.05.116
10.1016/j.cemconcomp.2015.10.023
10.1016/j.rser.2013.12.042
10.4028/www.scientific.net/KEM.634.33
10.1016/j.rser.2007.10.005
10.1016/j.solmat.2013.12.015
10.1520/JTE20160021
10.1016/j.apenergy.2014.11.055
10.1007/s40095-014-0081-9
10.1016/j.rser.2013.12.033
10.1016/j.apenergy.2017.05.144
10.1016/0038-092X(83)90186-X
10.1016/j.rser.2013.03.031
10.1016/j.conbuildmat.2011.10.039
10.1080/19648189.2018.1446362
10.1002/er.4238
10.1016/j.enbuild.2013.08.006
10.1016/j.rser.2016.03.036
10.1016/j.enconman.2013.03.026
10.1016/j.enbuild.2017.10.066
10.1016/j.rser.2016.11.272
10.1016/j.applthermaleng.2014.06.053
10.1016/j.ijrefrig.2015.12.005
10.1016/j.conbuildmat.2017.03.165
10.1016/j.apenergy.2015.11.013
10.1016/j.rser.2012.10.022
10.1016/j.applthermaleng.2016.07.050
10.1016/j.proeng.2014.04.037
10.1016/j.conbuildmat.2016.05.091
10.1016/j.enbuild.2015.06.040
10.1016/j.apenergy.2016.05.097
10.1016/j.cemconres.2010.09.011
10.1088/1757-899X/431/6/062001
10.1016/j.rser.2017.05.093
10.1016/j.matdes.2018.02.056
10.1016/j.enbuild.2017.03.063
10.1016/j.proeng.2017.04.277
10.1016/j.enbuild.2017.09.011
10.1016/j.conbuildmat.2018.05.113
10.1016/j.enconman.2015.02.028
10.1016/j.conbuildmat.2019.01.098
10.1016/j.enconman.2016.02.045
10.1016/j.conbuildmat.2015.08.077
10.1016/j.apenergy.2012.09.057
10.1002/er.3765
10.1016/j.enbuild.2013.01.041
10.1016/j.rser.2015.07.201
10.1016/j.rser.2016.12.012
10.1016/j.conbuildmat.2014.04.027
10.1016/j.rser.2016.11.145
10.1016/j.applthermaleng.2017.08.161
10.1002/er.3945
10.1016/j.scs.2013.05.007
10.1016/j.proeng.2015.09.027
10.3992/1943-4618.12.2.59
10.1016/j.cemconcomp.2017.04.010
10.1016/j.conbuildmat.2018.12.199
10.1016/j.solmat.2015.06.039
10.1016/j.rser.2016.10.014
10.1016/j.pmatsci.2014.03.005
10.1016/j.cemconcomp.2014.03.003
10.1016/j.enbuild.2017.08.037
10.1007/s10765-012-1169-1
10.1016/j.enbuild.2015.11.028
10.1016/j.solener.2014.05.001
10.1016/j.apenergy.2015.12.043
10.1002/adem.201300278
10.1016/j.enbuild.2016.04.006
10.1080/01430750.2013.823106
10.1016/j.renene.2012.08.024
10.1016/j.enbuild.2013.07.060
10.1088/1757-899X/251/1/012024
10.1016/j.enbuild.2017.09.098
10.1016/j.rser.2017.01.048
10.1016/j.enbuild.2013.11.087
10.1617/s11527-014-0490-5
10.1016/j.conbuildmat.2015.03.066
10.3989/mc.2014.05613
10.1016/j.jclepro.2017.08.131
10.1016/j.enbuild.2016.10.016
10.1016/j.energy.2015.10.131
10.1016/j.cemconcomp.2016.06.018
10.1016/S0196-8904(02)00251-0
10.1016/j.conbuildmat.2018.10.222
10.1016/j.enbuild.2014.05.021
10.1016/j.rser.2013.02.013
10.1016/j.rser.2016.03.007
10.1016/j.apenergy.2013.02.038
10.1016/j.rser.2015.04.044
10.1016/j.conbuildmat.2018.12.057
10.1007/978-3-319-26950-4
10.3989/mc.2015.07314
10.1016/j.rser.2010.11.018
10.1016/j.rser.2017.05.139
10.1007/s40243-015-0047-8
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma12081260
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC6515401
30999615
10_3390_ma12081260
Genre Journal Article
Review
GroupedDBID 29M
2WC
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c406t-32261b4162597e258749ef66db7ce053d57474d2bc94bcdd8c012d71dadc87aa3
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 14:24:16 EDT 2025
Fri Jul 11 09:09:20 EDT 2025
Fri Jul 25 11:42:46 EDT 2025
Thu Apr 03 07:08:15 EDT 2025
Tue Jul 01 03:56:02 EDT 2025
Thu Apr 24 22:55:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords building materials
concrete
phase change material (PCM)
thermal energy storage (TES)
mortar
passive building systems
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-32261b4162597e258749ef66db7ce053d57474d2bc94bcdd8c012d71dadc87aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3060-3836
0000-0001-6183-6029
OpenAccessLink https://www.proquest.com/docview/2548690074?pq-origsite=%requestingapplication%
PMID 30999615
PQID 2548690074
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6515401
proquest_miscellaneous_2211944292
proquest_journals_2548690074
pubmed_primary_30999615
crossref_citationtrail_10_3390_ma12081260
crossref_primary_10_3390_ma12081260
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190417
PublicationDateYYYYMMDD 2019-04-17
PublicationDate_xml – month: 4
  year: 2019
  text: 20190417
  day: 17
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_92
Hunger (ref_140) 2009; 31
(ref_141) 2003; 44
ref_12
ref_11
Rao (ref_14) 2018; 158
Kim (ref_94) 2014; 122
ref_135
Franquet (ref_111) 2014; 73
Lucas (ref_76) 2013; 66
Eddhahak (ref_73) 2014; 117
Khodadadi (ref_67) 2013; 24
Jayalath (ref_113) 2016; 120
Kasaeian (ref_39) 2017; 154
Meshgin (ref_139) 2012; 28
Yuan (ref_28) 2014; 29
Cabeza (ref_153) 2014; 29
Kenisarin (ref_24) 2014; 107
Ricklefs (ref_118) 2017; 104
Cunha (ref_78) 2013; 687
Cui (ref_27) 2015; 121
Waqas (ref_36) 2013; 18
Tittelein (ref_108) 2015; 140
ref_128
Haurie (ref_110) 2016; 111
Zhang (ref_133) 2017; 24
Alva (ref_57) 2017; 144
He (ref_99) 2016; 133
Johra (ref_44) 2017; 69
Amaral (ref_33) 2017; 79
Pasupathy (ref_20) 2008; 12
Nepomuceno (ref_127) 2014; 63
Cui (ref_120) 2015; 105
Ferreira (ref_154) 2013; 444
Lacasta (ref_65) 2017; 251
Cunha (ref_85) 2015; 65
Richardson (ref_117) 2017; 12
Cabeza (ref_56) 2016; 53
Sharifi (ref_123) 2016; 5
Souayfane (ref_30) 2016; 129
Kusama (ref_47) 2017; 141
Khan (ref_32) 2016; 115
Silva (ref_45) 2016; 53
Riffat (ref_60) 2015; 36
Cunha (ref_83) 2015; 634
Saffari (ref_59) 2017; 80
Zhang (ref_101) 2013; 50
Bullard (ref_142) 2011; 41
Lv (ref_69) 2017; 68
Eames (ref_31) 2016; 177
Jamekhorshid (ref_52) 2014; 31
Aguayo (ref_70) 2016; 73
Cunha (ref_86) 2015; 20
Sharifi (ref_126) 2015; 103
Thiele (ref_121) 2016; 65
Song (ref_42) 2018; 158
Cunha (ref_80) 2015; 19
Tittelein (ref_109) 2015; 78
Wei (ref_119) 2017; 81
Soares (ref_3) 2013; 59
Wang (ref_96) 2014; 71
Abokersh (ref_54) 2017; 42
Kheradmand (ref_114) 2014; 5
ref_143
Zhang (ref_66) 2016; 165
Coppola (ref_71) 2016; 2016
Kim (ref_98) 2014; 70
Cellat (ref_49) 2017; 143
Castell (ref_156) 2010; 42
Alqallaf (ref_43) 2013; 61
Abdelrazeq (ref_136) 2016; 107
Jelle (ref_5) 2015; 94
Keppert (ref_89) 2014; 35
Vieira (ref_95) 2014; 70
Iten (ref_37) 2016; 61
ref_50
Li (ref_68) 2019; 194
Cunha (ref_84) 2015; 634
Cunha (ref_74) 2016; 122
Cabeza (ref_16) 2011; 15
Joulin (ref_97) 2014; 66
Socaciu (ref_21) 2012; 11
Jeon (ref_1) 2013; 111
Janarthanan (ref_6) 2015; 8
Liu (ref_53) 2015; 13
ref_51
Abhat (ref_15) 1983; 30
Li (ref_146) 2019; 203
Lecompte (ref_72) 2015; 94
Sharma (ref_46) 2009; 13
Kamali (ref_23) 2014; 80
Cunha (ref_79) 2014; 19
Esmaeeli (ref_148) 2018; 145
Veerakumar (ref_29) 2016; 67
Wang (ref_90) 2016; 120
Castell (ref_152) 2013; 109
Zhai (ref_35) 2013; 22
Zhou (ref_17) 2012; 92
ref_64
Akeiber (ref_13) 2016; 60
Pielichowska (ref_104) 2014; 65
Fokaides (ref_61) 2015; 4
Sun (ref_40) 2013; 71
Ramakrishnan (ref_124) 2017; 207
Fallahi (ref_63) 2017; 127
Snoeck (ref_102) 2016; 49
Yu (ref_106) 2017; 45
Choi (ref_137) 2014; 2014
Nayak (ref_145) 2019; 201
Thambidurai (ref_26) 2015; 4
Safari (ref_38) 2017; 70
Mohamed (ref_58) 2017; 70
Vendrell (ref_75) 2013; 47
Cui (ref_8) 2011; 71–78
Keppert (ref_88) 2013; 34
Serrano (ref_155) 2013; 47
Shadnia (ref_91) 2015; 84
Li (ref_134) 2017; 9
Rathod (ref_18) 2013; 18
Cunha (ref_87) 2017; 11
Li (ref_100) 2013; 103
ref_34
Akeiber (ref_151) 2014; 2014
Kheradmand (ref_122) 2015; 89
Lin (ref_48) 2018; 82
ref_112
Drissi (ref_144) 2018; 431
Konstantinidou (ref_149) 2019; 43
Pilehvar (ref_93) 2019; 200
Pomianowski (ref_7) 2013; 67
Kheradmand (ref_115) 2014; 84
Qian (ref_130) 2018; 142
Kheradmand (ref_107) 2016; 163
Cunha (ref_82) 2014; 16
Baldassarri (ref_105) 2017; 156
Fernandes (ref_138) 2014; 51
Nkwetta (ref_10) 2014; 10
Khadiran (ref_55) 2015; 143
Liu (ref_132) 2017; 80
Madessa (ref_9) 2014; 62
ref_103
Huang (ref_41) 2017; 72
Kibria (ref_62) 2015; 95
Whiffen (ref_22) 2013; 8
Li (ref_131) 2017; 264
Cui (ref_129) 2017; 185
ref_2
Santos (ref_77) 2018; 167
Kyriaki (ref_150) 2018; 42
Cunha (ref_81) 2015; 98
Memon (ref_19) 2014; 31
Ramakrishnan (ref_125) 2017; 180
Yeon (ref_147) 2018; 177
Su (ref_25) 2015; 48
ref_4
Kheradmand (ref_116) 2016; 94
References_xml – volume: 82
  start-page: 2730
  year: 2018
  ident: ref_48
  article-title: Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.10.002
– volume: 141
  start-page: 226
  year: 2017
  ident: ref_47
  article-title: Thermal effects of a novel phase change material (PCM) plaster under different insulation and heating scenarios
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.02.033
– volume: 31
  start-page: 731
  year: 2009
  ident: ref_140
  article-title: The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2009.08.002
– volume: 35
  start-page: 767
  year: 2014
  ident: ref_89
  article-title: Experimental Investigation of the Properties of Lime-Based Plaster-Containing PCM for Enhancing the Heat-Storage Capacity of Building Envelopes
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-013-1550-8
– volume: 9
  start-page: 1
  year: 2017
  ident: ref_134
  article-title: Thermal properties of phase change cement board with capric acid/expanded perlite form-stable phase change material
  publication-title: Adv. Mech. Eng.
– volume: 2016
  start-page: 1
  year: 2016
  ident: ref_71
  article-title: Cement-Based Renders Manufactured with Phase-Change Materials: Applications and Feasibility
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2016/7254823
– volume: 29
  start-page: 394
  year: 2014
  ident: ref_153
  article-title: Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.08.037
– volume: 19
  start-page: 1216
  year: 2015
  ident: ref_80
  article-title: Mortars based in different binders with incorporation of phase-change materials: Physical and mechanical properties
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2015.1008651
– volume: 71–78
  start-page: 1958
  year: 2011
  ident: ref_8
  article-title: Review on Phase Change Materials for Building Applications
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.71-78.1958
– volume: 142
  start-page: 234
  year: 2018
  ident: ref_130
  article-title: Octadecane/C-decorated diatomite composite phase change material with enhanced thermal conductivity as aggregate for developing structural-functional integrated cement for thermal energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2017.10.021
– volume: 2014
  start-page: 391690
  year: 2014
  ident: ref_151
  article-title: Review of development survey of phase change material models in building applications
  publication-title: Sci. World J.
  doi: 10.1155/2014/391690
– volume: 59
  start-page: 82
  year: 2013
  ident: ref_3
  article-title: Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.12.042
– volume: 687
  start-page: 255
  year: 2013
  ident: ref_78
  article-title: Influence of Adding Encapsulated Phase Change Materials in Aerial Lime Based Mortars
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.687.255
– volume: 78
  start-page: 1696
  year: 2015
  ident: ref_109
  article-title: Identification of Thermal Properties and Thermodynamic Model for a Cement Mortar Containing PCM by Using Inverse Method
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.11.265
– volume: 11
  start-page: 75
  year: 2012
  ident: ref_21
  article-title: Thermal energy storage with phase change material
  publication-title: Leonardo Electron. J. Pract. Technol.
– volume: 264
  start-page: 012013
  year: 2017
  ident: ref_131
  article-title: Applications of graphite-enabled phase change material composites to improve thermal performance of cementitious materials
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/264/1/012013
– volume: 8
  start-page: 147
  year: 2013
  ident: ref_22
  article-title: A review of PCM technology for thermal energy storage in the built environment: Part I
  publication-title: Int. J. Low-Carbon Technol.
  doi: 10.1093/ijlct/cts021
– volume: 18
  start-page: 607
  year: 2013
  ident: ref_36
  article-title: Phase change material (PCM) storage for free cooling of buildings—A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.10.034
– volume: 105
  start-page: 273
  year: 2015
  ident: ref_120
  article-title: Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materials
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.07.043
– volume: 11
  start-page: 339
  year: 2017
  ident: ref_87
  article-title: Mortars with Incorporation of Phase Change Materials for Thermal Rehabilitation
  publication-title: Int. J. Archit. Herit.
– volume: 94
  start-page: 150
  year: 2015
  ident: ref_5
  article-title: Phase change materials and products for building applications: A state-of-the-art review and future research opportunities
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.02.023
– volume: 122
  start-page: 637
  year: 2016
  ident: ref_74
  article-title: Thermal performance and cost analysis of mortars made with PCM and different binders
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.06.114
– volume: 24
  start-page: 481
  year: 2017
  ident: ref_133
  article-title: Preparation and characterization of mortar mixes containing organic acid/expanded vermiculite composite PCM
  publication-title: Funct. Mater.
  doi: 10.15407/fm24.03.481
– volume: 4
  start-page: 74
  year: 2015
  ident: ref_26
  article-title: Review on phase change material based free cooling of buildings—The way toward sustainability
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2015.09.003
– volume: 117
  start-page: 537
  year: 2014
  ident: ref_73
  article-title: Effect of phase change materials on the hydration reaction and kinetic of PCM-mortars
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-014-3844-x
– ident: ref_135
– volume: 13
  start-page: 814
  year: 2015
  ident: ref_53
  article-title: Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.02.016
– volume: 66
  start-page: 171
  year: 2014
  ident: ref_97
  article-title: Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.01.027
– volume: 80
  start-page: 317
  year: 2017
  ident: ref_132
  article-title: Integrating phase change materials into concrete through microencapsulation using cenospheres
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2017.04.001
– volume: 47
  start-page: 872
  year: 2013
  ident: ref_155
  article-title: Optimization of three new compositions of stabilized rammed earth incorporating PCM: Thermal properties characterization and LCA
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.05.018
– volume: 42
  start-page: 1517
  year: 2010
  ident: ref_156
  article-title: Life Cycle Assessment of the inclusion of phase change materials (PCM) in experimental buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.03.022
– volume: 634
  start-page: 22
  year: 2015
  ident: ref_83
  article-title: Mortars with Phase Change Materials—Part I: Physical and Mechanical Characterization
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.634.22
– volume: 94
  start-page: 52
  year: 2015
  ident: ref_72
  article-title: Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.02.044
– volume: 444
  start-page: 16
  year: 2013
  ident: ref_154
  article-title: Phase change material applications in buildings: An environmental assessment for some Spanish climate severities
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2012.11.012
– ident: ref_128
– volume: 29
  start-page: 482
  year: 2014
  ident: ref_28
  article-title: Fatty acids as phase change materials: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.08.107
– ident: ref_103
– volume: 62
  start-page: 318
  year: 2014
  ident: ref_9
  article-title: A Review of the Performance of Buildings Integrated with Phase Change Material: Opportunities for Application in Cold Climate
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.12.393
– volume: 111
  start-page: 279
  year: 2013
  ident: ref_1
  article-title: Application of PCM thermal energy storage system to reduce building energy consumption
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-012-2291-9
– ident: ref_51
  doi: 10.3390/su8101046
– volume: 89
  start-page: 48
  year: 2015
  ident: ref_122
  article-title: Assessing the feasibility of impregnating phase change materials in lightweight aggregate for development of thermal energy storage systems
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.04.031
– volume: 70
  start-page: 224
  year: 2014
  ident: ref_95
  article-title: Functionalization of mortars for controlling the indoor ambient of buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.11.064
– ident: ref_112
  doi: 10.3390/ma11060871
– volume: 104
  start-page: 71
  year: 2017
  ident: ref_118
  article-title: Thermal conductivity of cementitious composites containing microencapsulated phase change materials
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.08.013
– ident: ref_11
– volume: 53
  start-page: 1059
  year: 2016
  ident: ref_56
  article-title: Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.09.040
– volume: 8
  start-page: 205
  year: 2015
  ident: ref_6
  article-title: Thermal energy storage using phase change materials and their applications: A review
  publication-title: Int. J. ChemTech Res.
– volume: 12
  start-page: 39
  year: 2008
  ident: ref_20
  article-title: Phase change material-based building architecture for thermal management in residential and commercial establishments
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2006.05.010
– volume: 47
  start-page: 1210
  year: 2013
  ident: ref_75
  article-title: Newly-designed traditional lime mortar with a phase change material as an additive
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.05.111
– volume: 19
  start-page: 171
  year: 2014
  ident: ref_79
  article-title: Thermal Mortars with Incorporation of PCM Microcapsules
  publication-title: RBM
– ident: ref_34
  doi: 10.1177/1687814017700828
– volume: 2014
  start-page: 1
  year: 2014
  ident: ref_137
  article-title: Feasibility of Using Phase Change Materials to Control the Heat of Hydration in Massive Concrete Structures
  publication-title: Sci. World J.
– ident: ref_92
– volume: 84
  start-page: 526
  year: 2014
  ident: ref_115
  article-title: Thermal behavior of cement based plastering mortar containing hybrid microencapsulated phase change materials
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.08.010
– volume: 92
  start-page: 593
  year: 2012
  ident: ref_17
  article-title: Review on thermal energy storage with phase change materials (PCMs) in building applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.08.025
– volume: 185
  start-page: 107
  year: 2017
  ident: ref_129
  article-title: Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.072
– volume: 120
  start-page: 408
  year: 2016
  ident: ref_113
  article-title: Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.05.116
– volume: 65
  start-page: 214
  year: 2016
  ident: ref_121
  article-title: Figure of merit for the thermal performance of cementitious composites containing phase change materials
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2015.10.023
– volume: 31
  start-page: 870
  year: 2014
  ident: ref_19
  article-title: Phase change materials integrated in building walls: A state of the art review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.12.042
– volume: 634
  start-page: 33
  year: 2015
  ident: ref_84
  article-title: Mortars with Phase Change Materials—Part II: Durability Evaluation
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.634.33
– volume: 13
  start-page: 318
  year: 2009
  ident: ref_46
  article-title: Review on thermal energy storage with phase change materials and applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2007.10.005
– volume: 122
  start-page: 257
  year: 2014
  ident: ref_94
  article-title: Thermal performance enhancement of mortar mixed with octadecane/xGnP SSPCM to save building energy consumption
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.12.015
– volume: 45
  start-page: 20160021
  year: 2017
  ident: ref_106
  article-title: Experimental Research of Cement Mortar With Incorporated Lauric Acid/Expanded Perlite Phase-Change Materials
  publication-title: J. Test. Eval.
  doi: 10.1520/JTE20160021
– volume: 140
  start-page: 269
  year: 2015
  ident: ref_108
  article-title: Simulation of the thermal and energy behaviour of a composite material containing encapsulated-PCM: Influence of the thermodynamical modelling
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.11.055
– volume: 5
  start-page: 81
  year: 2014
  ident: ref_114
  article-title: Estimation of the specific enthalpy-temperature functions for plastering mortars containing hybrid mixes of phase change materials
  publication-title: Int. J. Energy Environ. Eng.
  doi: 10.1007/s40095-014-0081-9
– volume: 31
  start-page: 531
  year: 2014
  ident: ref_52
  article-title: A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.12.033
– volume: 207
  start-page: 654
  year: 2017
  ident: ref_124
  article-title: Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.144
– volume: 30
  start-page: 313
  year: 1983
  ident: ref_15
  article-title: Low temperature latent heat thermal energy storage: Heat storage materials
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(83)90186-X
– volume: 24
  start-page: 418
  year: 2013
  ident: ref_67
  article-title: Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.03.031
– volume: 28
  start-page: 713
  year: 2012
  ident: ref_139
  article-title: Utilization of phase change materials and rubber particles to improve thermal and mechanical properties of mortar
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.10.039
– ident: ref_143
  doi: 10.1080/19648189.2018.1446362
– volume: 43
  start-page: 150
  year: 2019
  ident: ref_149
  article-title: Life cycle and life cycle cost implications of integrated phase change materials in office buildings
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4238
– volume: 67
  start-page: 56
  year: 2013
  ident: ref_7
  article-title: Review of thermal energy storage technologies based on PCM application in buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.08.006
– volume: 60
  start-page: 1470
  year: 2016
  ident: ref_13
  article-title: A review on phase change material (PCM) for sustainable passive cooling in building envelopes
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.03.036
– volume: 71
  start-page: 101
  year: 2013
  ident: ref_40
  article-title: Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2013.03.026
– ident: ref_64
– volume: 158
  start-page: 776
  year: 2018
  ident: ref_42
  article-title: Review on building energy performance improvement using phase change materials
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.10.066
– volume: 70
  start-page: 905
  year: 2017
  ident: ref_38
  article-title: A review on supercooling of Phase Change Materials in thermal energy storage systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.272
– volume: 73
  start-page: 32
  year: 2014
  ident: ref_111
  article-title: Experimental and theoretical analysis of a cement mortar containing microencapsulated PCM
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.06.053
– volume: 67
  start-page: 271
  year: 2016
  ident: ref_29
  article-title: Phase change material based cold thermal energy storage: Materials, techniques and applications—A review
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2015.12.005
– volume: 143
  start-page: 490
  year: 2017
  ident: ref_49
  article-title: A comparative study on corrosion behavior of rebar in concrete with fatty acid additive as phase change material
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.03.165
– volume: 163
  start-page: 81
  year: 2016
  ident: ref_107
  article-title: Optimal behavior of responsive residential demand considering hybrid phase change materials
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.11.013
– volume: 20
  start-page: 245
  year: 2015
  ident: ref_86
  article-title: Argamassas com incorporação de Materiais de Mudança de Fase (PCM): Caracterização física, mecânica e durabilidade
  publication-title: Matéria
– volume: 18
  start-page: 246
  year: 2013
  ident: ref_18
  article-title: Thermal stability of phase change materials used in latent heat energy storage systems: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.10.022
– volume: 107
  start-page: 1313
  year: 2016
  ident: ref_136
  article-title: Heat transfer performance of paraffin wax based phase change materials applicable in building industry
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.07.050
– volume: 71
  start-page: 261
  year: 2014
  ident: ref_96
  article-title: A Phase Change Storage Material that May be Used in the Fire Resistance of Building Structure
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2014.04.037
– volume: 120
  start-page: 329
  year: 2016
  ident: ref_90
  article-title: Influence of phase change material on mechanical and thermal properties of clay geopolymer mortar
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.05.091
– volume: 103
  start-page: 83
  year: 2015
  ident: ref_126
  article-title: Application of phase change materials to improve the thermal performance of cementitious material
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.06.040
– volume: 177
  start-page: 227
  year: 2016
  ident: ref_31
  article-title: Thermal energy storage for low and medium temperature applications using phase change materials—A review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.05.097
– volume: 41
  start-page: 1208
  year: 2011
  ident: ref_142
  article-title: Mechanisms of cement hydration
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2010.09.011
– volume: 431
  start-page: 062001
  year: 2018
  ident: ref_144
  article-title: Thermal and durability performances of mortar and concrete containing phase change materials
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/431/6/062001
– volume: 79
  start-page: 1212
  year: 2017
  ident: ref_33
  article-title: Phase change materials and carbon nanostructures for thermal energy storage: A literature review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.093
– volume: 145
  start-page: 74
  year: 2018
  ident: ref_148
  article-title: Numerical analysis of the freeze-thaw performance of cementitious composites that contain phase change material (PCM)
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.02.056
– volume: 144
  start-page: 276
  year: 2017
  ident: ref_57
  article-title: Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.03.063
– volume: 180
  start-page: 1170
  year: 2017
  ident: ref_125
  article-title: Thermal Energy Storage Enhancement of Lightweight Cement Mortars with the Application of Phase Change Materials
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.04.277
– volume: 156
  start-page: 374
  year: 2017
  ident: ref_105
  article-title: Environmental and spatial assessment for the ecodesign of a cladding system with embedded Phase Change Materials
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.09.011
– volume: 177
  start-page: 202
  year: 2018
  ident: ref_147
  article-title: Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.05.113
– volume: 95
  start-page: 69
  year: 2015
  ident: ref_62
  article-title: A review on thermophysical properties of nanoparticle dispersed phase change materials
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.02.028
– volume: 203
  start-page: 621
  year: 2019
  ident: ref_146
  article-title: Evaluation of the potential use of form-stable phase change materials to improve the freeze-thaw resistance of concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.01.098
– volume: 115
  start-page: 132
  year: 2016
  ident: ref_32
  article-title: A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.02.045
– volume: 98
  start-page: 89
  year: 2015
  ident: ref_81
  article-title: Effect of temperature on mortars with incorporation of phase change materials
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.08.077
– volume: 103
  start-page: 393
  year: 2013
  ident: ref_100
  article-title: Heat storage properties of the cement mortar incorporated with composite phase change material
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.09.057
– volume: 42
  start-page: 329
  year: 2017
  ident: ref_54
  article-title: Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS)
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3765
– volume: 61
  start-page: 73
  year: 2013
  ident: ref_43
  article-title: Concrete roof with cylindrical holes containing PCM to reduce the heat gain
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.01.041
– volume: 53
  start-page: 515
  year: 2016
  ident: ref_45
  article-title: Literature review on the use of phase change materials in glazing and shading solutions
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.07.201
– volume: 70
  start-page: 1072
  year: 2017
  ident: ref_58
  article-title: A review on current status and challenges of inorganic phase change materials for thermal energy storage systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.12.012
– volume: 63
  start-page: 89
  year: 2014
  ident: ref_127
  article-title: Experimental evaluation of cement mortars with phase change material incorporated via lightweight expanded clay aggregate
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2014.04.027
– volume: 69
  start-page: 19
  year: 2017
  ident: ref_44
  article-title: Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.145
– volume: 127
  start-page: 1427
  year: 2017
  ident: ref_63
  article-title: Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.08.161
– volume: 42
  start-page: 3068
  year: 2018
  ident: ref_150
  article-title: Life cycle analysis (LCA) and life cycle cost analysis (LCCA) of phase change materials (PCM) for thermal applications: A review
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3945
– volume: 10
  start-page: 87
  year: 2014
  ident: ref_10
  article-title: Thermal energy storage with phase change material—A state-of-the art review
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2013.05.007
– volume: 121
  start-page: 763
  year: 2015
  ident: ref_27
  article-title: Review of Phase Change Materials Integrated in Building Walls for Energy Saving
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.09.027
– volume: 12
  start-page: 59
  year: 2017
  ident: ref_117
  article-title: Optimal performance characteristics of mortar incorporating phase change materials and silica fume
  publication-title: J. Green Build.
  doi: 10.3992/1943-4618.12.2.59
– volume: 81
  start-page: 66
  year: 2017
  ident: ref_119
  article-title: The durability of cementitious composites containing microencapsulated phase change materials
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2017.04.010
– volume: 201
  start-page: 246
  year: 2019
  ident: ref_145
  article-title: Microstructure-guided numerical simulation to evaluate the influence of phase change materials (PCMs) on the freeze-thaw response of concrete pavements
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.12.199
– volume: 143
  start-page: 78
  year: 2015
  ident: ref_55
  article-title: Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.06.039
– volume: 68
  start-page: 707
  year: 2017
  ident: ref_69
  article-title: Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.10.014
– volume: 65
  start-page: 67
  year: 2014
  ident: ref_104
  article-title: Phase change materials for thermal energy storage
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2014.03.005
– volume: 51
  start-page: 14
  year: 2014
  ident: ref_138
  article-title: On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2014.03.003
– volume: 154
  start-page: 96
  year: 2017
  ident: ref_39
  article-title: Experimental studies on the applications of PCMs and nano-PCMs in buildings: A critical review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.08.037
– volume: 5
  start-page: 349
  year: 2016
  ident: ref_123
  article-title: Application of lightweight aggregate and rice husk ash to incorporate phase change materials into cementitious materials
  publication-title: J. Sustain. Cem.-Based Mater.
– volume: 34
  start-page: 851
  year: 2013
  ident: ref_88
  article-title: Apparent Thermal Properties of Phase-Change Materials: An Analysis Using Differential Scanning Calorimetry and Impulse Method
  publication-title: Int. J. Thermophys.
  doi: 10.1007/s10765-012-1169-1
– volume: 111
  start-page: 393
  year: 2016
  ident: ref_110
  article-title: Single layer mortars with microencapsulated PCM: Study of physical and thermal properties, and fire behaviour
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.11.028
– volume: 107
  start-page: 553
  year: 2014
  ident: ref_24
  article-title: Thermophysical properties of some organic phase change materials for latent heat storage. A review
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.05.001
– volume: 165
  start-page: 472
  year: 2016
  ident: ref_66
  article-title: A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.12.043
– volume: 16
  start-page: 433
  year: 2014
  ident: ref_82
  article-title: Influence of the Type of Phase Change Materials Microcapsules on the Properties of Lime-Gypsum Thermal Mortars
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201300278
– volume: 129
  start-page: 396
  year: 2016
  ident: ref_30
  article-title: Phase change materials (PCM) for cooling applications in buildings: A review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.04.006
– volume: 36
  start-page: 102
  year: 2015
  ident: ref_60
  article-title: Phase change material developments: A review
  publication-title: Int. J. Ambient Energy
  doi: 10.1080/01430750.2013.823106
– volume: 50
  start-page: 670
  year: 2013
  ident: ref_101
  article-title: Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.08.024
– volume: 66
  start-page: 724
  year: 2013
  ident: ref_76
  article-title: Latent heat storage in PCM containing mortars—Study of microstructural modifications
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.07.060
– volume: 251
  start-page: 012024
  year: 2017
  ident: ref_65
  article-title: Physical, thermal and mechanical study of MPC formulated with LG-MgO incorporating Phase Change Materials as admixture
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/251/1/012024
– volume: 158
  start-page: 95
  year: 2018
  ident: ref_14
  article-title: PCM-mortar based construction materials for energy efficient buildings: A review on research trends
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.09.098
– volume: 72
  start-page: 128
  year: 2017
  ident: ref_41
  article-title: Morphological characterization and applications of phase change materials in thermal energy storage: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.01.048
– volume: 70
  start-page: 472
  year: 2014
  ident: ref_98
  article-title: Thermal characteristics of mortar containing hexadecane/xGnP SSPCM and energy storage behaviors of envelopes integrated with enhanced heat storage composites for energy efficient buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.11.087
– volume: 49
  start-page: 225
  year: 2016
  ident: ref_102
  article-title: Encapsulated Phase-Change Materials as additives in cementitious materials to promote thermal comfort in concrete constructions
  publication-title: Mater. Struct.
  doi: 10.1617/s11527-014-0490-5
– volume: 84
  start-page: 95
  year: 2015
  ident: ref_91
  article-title: Experimental study of geopolymer mortar with incorporated PCM
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.03.066
– ident: ref_50
  doi: 10.3989/mc.2014.05613
– volume: 167
  start-page: 55
  year: 2018
  ident: ref_77
  article-title: Production of eco-efficient earth-based plasters: Influence of composition on physical performance and bio-susceptibility
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.08.131
– volume: 133
  start-page: 547
  year: 2016
  ident: ref_99
  article-title: Utilization of lauric acid-myristic acid/expanded graphite phase change materials to improve thermal properties of cement mortar
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.10.016
– volume: 94
  start-page: 250
  year: 2016
  ident: ref_116
  article-title: Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.131
– volume: 73
  start-page: 29
  year: 2016
  ident: ref_70
  article-title: The influence of microencapsulated phase change material (PCM) characteristics on the microstructure and strength of cementitious composites: Experiments and finite element simulations
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2016.06.018
– volume: 44
  start-page: 2277
  year: 2003
  ident: ref_141
  article-title: Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications
  publication-title: Energy Convers. Manag.
  doi: 10.1016/S0196-8904(02)00251-0
– ident: ref_2
– volume: 194
  start-page: 287
  year: 2019
  ident: ref_68
  article-title: Review on micropore grade inorganic porous medium based form stable composite phase change materials: Preparation, performance improvement and effects on the properties of cement mortar
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.10.222
– ident: ref_12
– volume: 80
  start-page: 131
  year: 2014
  ident: ref_23
  article-title: Review of free cooling system using phase change material for building
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.05.021
– volume: 22
  start-page: 108
  year: 2013
  ident: ref_35
  article-title: A review on phase change cold storage in air-conditioning system: Materials and applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.02.013
– volume: 61
  start-page: 175
  year: 2016
  ident: ref_37
  article-title: A review on the air-PCM-TES application for free cooling and heating in the buildings
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.03.007
– volume: 109
  start-page: 544
  year: 2013
  ident: ref_152
  article-title: Evaluation of the environmental impact of experimental buildings with different constructive systems using Material Flow Analysis and Life Cycle Assessment
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.02.038
– volume: 48
  start-page: 373
  year: 2015
  ident: ref_25
  article-title: Review of solid–liquid phase change materials and their encapsulation technologies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.04.044
– volume: 200
  start-page: 94
  year: 2019
  ident: ref_93
  article-title: Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.12.057
– ident: ref_4
  doi: 10.1007/978-3-319-26950-4
– volume: 65
  start-page: 1
  year: 2015
  ident: ref_85
  article-title: Ranking procedure based on mechanical, durability and thermal behavior of mortars with incorporation of phase change materials
  publication-title: Mater. Constr.
  doi: 10.3989/mc.2015.07314
– volume: 15
  start-page: 1675
  year: 2011
  ident: ref_16
  article-title: Materials used as PCM in thermal energy storage in buildings: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.11.018
– volume: 80
  start-page: 1239
  year: 2017
  ident: ref_59
  article-title: Passive cooling of buildings with phase change materials using whole-building energy simulation tools: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.139
– volume: 4
  start-page: 6
  year: 2015
  ident: ref_61
  article-title: Phase change materials (PCMs) integrated into transparent building elements: A review
  publication-title: Mater. Renew. Sustain. Energy
  doi: 10.1007/s40243-015-0047-8
SSID ssj0000331829
Score 2.543516
SecondaryResourceType review_article
Snippet The construction industry is responsible for consuming large amounts of energy. The development of new materials with the purpose of increasing the thermal...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1260
SubjectTerms Buildings
Carbon dioxide
Climate change
Cold
Concrete
Construction industry
Emission standards
Emissions
Energy consumption
Energy efficiency
Energy storage
Flooring
Heat
Heating
Mortars (material)
Phase change materials
Phase transitions
Review
Temperature
Thermal energy
Thermodynamic efficiency
Title Phase Change Materials for Energy Efficiency in Buildings and Their Use in Mortars
URI https://www.ncbi.nlm.nih.gov/pubmed/30999615
https://www.proquest.com/docview/2548690074
https://www.proquest.com/docview/2211944292
https://pubmed.ncbi.nlm.nih.gov/PMC6515401
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4IXPRgfFtFskYvHhrouz0ZMTxiAiEEEm7NdrcNJFpQ4P870y4F1HhsdtI2-5iZb2f3-wAehe-KRuxEutWITZIw43pEhACcYzR1bRGIhCq6vb7bHdtvE2eiNtyW6ljlxidmjlrOBe2R1xHIkHgSRrznxadOqlFUXVUSGiWooAv2EXxVmq3-YFjssjQsnLNmkPOSWojv6x_4ExgGzYyTcicS_Uovf56S3Ak77RM4Vvkie8kH-BQO4vQMjnZYBM9hOJhiKGL5PQHW46t8UjFMR1kru9rHWhlRBN2yZLOUNZUU9pLxVLIRlQrYGN-ATXT2FqHuBYzbrdFrV1dSCbrAiLzScVm6RoTJFaIZLzYd37ODOHFdGXmCxB-kg7DBlmYkAjsSUvoCA5P0DMml8D3OrUsop_M0vgaGzluaniksJ0H0xBNfRoFvJAbnSca1r8HTpttCoXjESc7iPUQ8QV0cbrtYg4fCdpGzZ_xpVd30fqhW0DLcjrcG90Uzzn0qaPA0nq_RhujpbBLc0uAqH6ziMxalvpiuaeDtDWNhQLza-y3pbJrxa5M6PMLOm_9_6xYOMXnKKkuGV4Xy6msd32GCsopqUPLbnZqai_jUmRjfRWzovg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-swEB6xHOAdEDthNQIOHKI2zn5AiKWlLEUItRK34NiOQHov5dEixJ_iNzKTjbKIG2dbSTue8XyTsb8PYFsGnqxrNzbtuuYkYSbMmAgBhMBs6jkylAl1dNuXXqvrnN24NyPwWt6FoWOV5Z6YbdSqJ-kbeQ0LGRJPwoy3__DfJNUo6q6WEhq5W5zrl2cs2fp7p8e4vjucNxudo5ZZqAqYEpPXwEQP9qwYcQgCf19zN_CdUCeep2Jfkk6CchFhO4rHMnRiqVQgcQ9XvqWEkoEvhI3PHYVxx7ZDiqigeVJ906nbGCE8zFlQcbxe-4d_GZMuzxgwh_LeFzD7-UzmUJJrTsNUgU7ZQe5OMzCi01n4M8RZOAfXV3eY-Fh-K4G1xSB3YYbglzWyi4SskdFS0J1Odp-yw0J4u89EqliHGhOsi0_AITrpi4X1PHR_xYQLMJb2Ur0EDFOF4j6XtptgrSaSQMVhYCWWEEnG7G_Abmm2SBas5SSe8TfC6oVMHL2b2ICtau5DztXx7azV0vpREa_96N27DNishjHSqH0iUt17wjlEhueQvJcBi_liVa-xCWgjODTA_7CM1QRi8f44kt7fZWzepEWPRe7yzz9rAyZanfZFdHF6eb4Ckwjbsp6W5a_C2ODxSa8hNBrE65k_Mrj97QB4A-0LIkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIiF6qFpeTaHFFXDgEG3iPJwcUFXKrqDAaoVYiVtwbEeLBFlgF6H-tf46ZvJiKYgbZ1tONB57vvHY3wewpaJQOSZIbc8xnCTMpJ0SIYCUGE1DX8Uqo4ruSS88GPh_zoPzGfhXv4Wha5X1nlhs1Hqk6Iy8jYkMiSdhxGtn1bWI_n73582tTQpSVGmt5TRKFzkyfx8wfRvvHu7jXG9z3u2c_T6wK4UBW2Egm9jozaGbIibBJEAYHkTCj00WhjoVijQTdIBo29c8VbGfKq0jhfu5Fq6WWkVCSg_HnYU5gVmR04K5vU6vf9qc8Dgerhcel5yonhc77Ws0AIZgXvBhTkXBF9D2_xuaUyGv-wk-VliV_Sqd6zPMmHwRPkwxGC7BaX-IYZCVbxTYiZyUDs0QCrNO8ayQdQqSCnrhyS5ztlfJcI-ZzDU7ozIFG-AI2ET3fjHNXobBuxhxBVr5KDdfgGHg0Fxw5QUZZm4yi3QaR27mSpkVPP8W7NRmS1TFYU5SGlcJ5jJk4uTJxBZsNn1vSuaOV3ut19ZPqtU7Tp58zYIfTTOuOyqmyNyM7rEPUeP5JPZlwWo5Wc1nPILdCBUtEM-mselAnN7PW_LLYcHtTcr0mPJ-ffu3NmAenT85PuwdrcECYriiwOWKdWhN7u7NN8RJk_R75ZAMLt57DTwCGGwn0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Change+Materials+for+Energy+Efficiency+in+Buildings+and+Their+Use+in+Mortars&rft.jtitle=Materials&rft.au=Frigione%2C+Mariaenrica&rft.au=Lettieri%2C+Mariateresa&rft.au=Sarcinella%2C+Antonella&rft.date=2019-04-17&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=12&rft.issue=8&rft.spage=1260&rft_id=info:doi/10.3390%2Fma12081260&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ma12081260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon