Phase Change Materials for Energy Efficiency in Buildings and Their Use in Mortars
The construction industry is responsible for consuming large amounts of energy. The development of new materials with the purpose of increasing the thermal efficiency of buildings is, therefore, becoming, imperative. Thus, during the last decades, integration of Phase Change Materials (PCMs) into bu...
Saved in:
Published in | Materials Vol. 12; no. 8; p. 1260 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
17.04.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The construction industry is responsible for consuming large amounts of energy. The development of new materials with the purpose of increasing the thermal efficiency of buildings is, therefore, becoming, imperative. Thus, during the last decades, integration of Phase Change Materials (PCMs) into buildings has gained interest. Such materials can reduce the temperature variations, leading to an improvement in human comfort and decreasing at the same time the energy consumption of buildings, due to their capability to absorb and release energy from/in the environment. In the present paper, recent experimental studies dealing with mortars or concrete-containing PCMs, used as passive building systems, have been examined. This review is mainly aimed at providing information on the currently investigated materials and the employed methodologies for their manufacture, as well as at summarizing the results achieved so far on this subject. |
---|---|
AbstractList | The construction industry is responsible for consuming large amounts of energy. The development of new materials with the purpose of increasing the thermal efficiency of buildings is, therefore, becoming, imperative. Thus, during the last decades, integration of Phase Change Materials (PCMs) into buildings has gained interest. Such materials can reduce the temperature variations, leading to an improvement in human comfort and decreasing at the same time the energy consumption of buildings, due to their capability to absorb and release energy from/in the environment. In the present paper, recent experimental studies dealing with mortars or concrete-containing PCMs, used as passive building systems, have been examined. This review is mainly aimed at providing information on the currently investigated materials and the employed methodologies for their manufacture, as well as at summarizing the results achieved so far on this subject. The construction industry is responsible for consuming large amounts of energy. The development of new materials with the purpose of increasing the thermal efficiency of buildings is, therefore, becoming, imperative. Thus, during the last decades, integration of Phase Change Materials (PCMs) into buildings has gained interest. Such materials can reduce the temperature variations, leading to an improvement in human comfort and decreasing at the same time the energy consumption of buildings, due to their capability to absorb and release energy from/in the environment. In the present paper, recent experimental studies dealing with mortars or concrete-containing PCMs, used as passive building systems, have been examined. This review is mainly aimed at providing information on the currently investigated materials and the employed methodologies for their manufacture, as well as at summarizing the results achieved so far on this subject.The construction industry is responsible for consuming large amounts of energy. The development of new materials with the purpose of increasing the thermal efficiency of buildings is, therefore, becoming, imperative. Thus, during the last decades, integration of Phase Change Materials (PCMs) into buildings has gained interest. Such materials can reduce the temperature variations, leading to an improvement in human comfort and decreasing at the same time the energy consumption of buildings, due to their capability to absorb and release energy from/in the environment. In the present paper, recent experimental studies dealing with mortars or concrete-containing PCMs, used as passive building systems, have been examined. This review is mainly aimed at providing information on the currently investigated materials and the employed methodologies for their manufacture, as well as at summarizing the results achieved so far on this subject. |
Author | Sarcinella, Antonella Frigione, Mariaenrica Lettieri, Mariateresa |
AuthorAffiliation | 1 Innovation Engineering Department, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy; antonella.sarcinella@unisalento.it 2 Institute of Archaeological Heritage—Monuments and Sites, CNR–IBAM, Prov.le Lecce-Monteroni, 73100 Lecce, Italy; mariateresa.lettieri@cnr.it |
AuthorAffiliation_xml | – name: 2 Institute of Archaeological Heritage—Monuments and Sites, CNR–IBAM, Prov.le Lecce-Monteroni, 73100 Lecce, Italy; mariateresa.lettieri@cnr.it – name: 1 Innovation Engineering Department, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy; antonella.sarcinella@unisalento.it |
Author_xml | – sequence: 1 givenname: Mariaenrica orcidid: 0000-0001-6183-6029 surname: Frigione fullname: Frigione, Mariaenrica – sequence: 2 givenname: Mariateresa orcidid: 0000-0002-3060-3836 surname: Lettieri fullname: Lettieri, Mariateresa – sequence: 3 givenname: Antonella surname: Sarcinella fullname: Sarcinella, Antonella |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30999615$$D View this record in MEDLINE/PubMed |
BookMark | eNptkV1LIzEUhoNU1up64w9YAt6IUE0ymczkRtDS3RUUZdHrkEnOtCnTpJvMCP33pvixrpibBM5zHt6cs49GPnhA6IiSs6KQ5HylKSM1ZYLsoDGVUkyo5Hz04b2HDlNaknyKgtZMfkN7BZG5Sssx-nO_0AnwdKH9HPCt7iE63SXchohnHuJ8g2dt64wDbzbYeXw1uM46P09Ye4sfFuAifsyGXLoNsdcxfUe7bVbA4et9gB5_zh6mvyc3d7-up5c3E8OJ6CcFY4I2nApWygpYWVdcQiuEbSoDpCxsWfGKW9YYyRtjbW0IZbaiVltTV1oXB-jixbsemhVYA76PulPr6FY6blTQTv1f8W6h5uFJiZKWnNAsOHkVxPB3gNSrlUsGuk57CENSjNHt_JhkGT3-hC7DEH3-nmIlr4UkpOKZ-vEx0XuUt3FngLwAJoaUIrTKuF73LmwDuk5RorZLVf-WmltOP7W8Wb-AnwFS-KA1 |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2022_129102 crossref_primary_10_1016_j_conbuildmat_2024_135108 crossref_primary_10_1051_matecconf_201930302001 crossref_primary_10_3390_buildings14010040 crossref_primary_10_3390_ma15072497 crossref_primary_10_20396_parc_v15i00_8673208 crossref_primary_10_1088_2631_8695_ad86a2 crossref_primary_10_1016_j_cscm_2024_e03214 crossref_primary_10_1016_j_jobe_2023_106309 crossref_primary_10_1016_j_conbuildmat_2022_129734 crossref_primary_10_1080_15567036_2023_2171514 crossref_primary_10_1016_j_conbuildmat_2022_129056 crossref_primary_10_1016_j_cemconcomp_2022_104492 crossref_primary_10_1590_s1678_86212022000300610 crossref_primary_10_1016_j_solener_2019_12_003 crossref_primary_10_1016_j_cemconres_2020_106039 crossref_primary_10_1002_er_6537 crossref_primary_10_1016_j_conbuildmat_2024_137661 crossref_primary_10_1016_j_est_2022_104547 crossref_primary_10_1016_j_est_2023_106665 crossref_primary_10_1016_j_est_2020_101679 crossref_primary_10_3390_en14123544 crossref_primary_10_4028_www_scientific_net_KEM_886_228 crossref_primary_10_1108_JEDT_05_2020_0193 crossref_primary_10_1016_j_est_2022_105200 crossref_primary_10_1038_s41598_024_72690_8 crossref_primary_10_1016_j_matpr_2023_05_459 crossref_primary_10_1016_j_applthermaleng_2020_115269 crossref_primary_10_1007_s41207_023_00350_w crossref_primary_10_3390_ma17235721 crossref_primary_10_1016_j_applthermaleng_2021_118011 crossref_primary_10_1016_j_enbuild_2022_112280 crossref_primary_10_4028_www_scientific_net_KEM_886_256 crossref_primary_10_1016_j_isci_2022_104226 crossref_primary_10_3390_coatings14030250 crossref_primary_10_3390_ma15196564 crossref_primary_10_1007_s10973_022_11558_3 crossref_primary_10_3390_ma13092055 crossref_primary_10_1016_j_ecmx_2022_100237 crossref_primary_10_1016_j_enbuild_2022_112680 crossref_primary_10_1016_j_est_2023_107545 crossref_primary_10_1016_j_tsep_2021_100920 crossref_primary_10_1088_2631_6331_ac826b crossref_primary_10_1016_j_energy_2021_120549 crossref_primary_10_3390_buildings14113387 crossref_primary_10_3390_ma13225186 crossref_primary_10_1016_j_matpr_2020_10_791 crossref_primary_10_1016_j_solmat_2022_111629 crossref_primary_10_1016_j_conbuildmat_2024_136946 crossref_primary_10_3390_en13123065 crossref_primary_10_3390_ma17061379 crossref_primary_10_1016_j_wasman_2019_12_051 crossref_primary_10_3390_polym16081121 crossref_primary_10_3390_en16052384 crossref_primary_10_1039_D3TA07521D crossref_primary_10_1016_j_asej_2023_102141 crossref_primary_10_1016_j_rineng_2024_102028 crossref_primary_10_1016_j_conbuildmat_2022_128697 crossref_primary_10_1016_j_applthermaleng_2022_118832 crossref_primary_10_1016_j_heliyon_2024_e25800 crossref_primary_10_3390_ma14040809 crossref_primary_10_1016_j_est_2025_116328 crossref_primary_10_1016_j_est_2024_114533 crossref_primary_10_1007_s10668_021_01320_4 crossref_primary_10_1615_HeatTransRes_2023047570 crossref_primary_10_1016_j_apenergy_2024_125217 crossref_primary_10_1016_j_conbuildmat_2021_122344 crossref_primary_10_1016_j_seta_2021_101709 crossref_primary_10_1016_j_est_2022_104974 crossref_primary_10_1016_j_conbuildmat_2022_126309 crossref_primary_10_3390_en16124806 crossref_primary_10_1007_s10973_023_12436_2 crossref_primary_10_1016_j_enbuild_2022_112514 crossref_primary_10_1016_j_est_2022_104102 crossref_primary_10_3390_ma14061356 crossref_primary_10_1002_er_6617 crossref_primary_10_1016_j_icheatmasstransfer_2021_105798 crossref_primary_10_3390_ma14123241 crossref_primary_10_3390_ma15031192 crossref_primary_10_1002_suco_202400189 crossref_primary_10_1007_s00396_022_05009_6 crossref_primary_10_3390_buildings15030351 crossref_primary_10_1016_j_applthermaleng_2024_122881 crossref_primary_10_1016_j_seta_2021_101318 crossref_primary_10_1016_j_conbuildmat_2024_135568 crossref_primary_10_1080_02286203_2024_2315281 crossref_primary_10_3390_buildings14092994 crossref_primary_10_1016_j_cemconcomp_2021_104033 crossref_primary_10_1080_15435075_2021_1890082 crossref_primary_10_1617_s11527_024_02544_2 crossref_primary_10_1051_matecconf_202440303007 crossref_primary_10_1016_j_conbuildmat_2022_127467 crossref_primary_10_1680_jcoma_20_00045 crossref_primary_10_3390_c10020046 crossref_primary_10_1016_j_mtener_2021_100905 crossref_primary_10_3390_micro2030026 crossref_primary_10_1016_j_dibe_2023_100243 crossref_primary_10_1007_s10098_023_02626_9 crossref_primary_10_1007_s40430_021_03308_7 crossref_primary_10_1016_j_est_2023_108280 crossref_primary_10_1016_j_cclet_2025_110815 crossref_primary_10_1016_j_solener_2023_05_006 crossref_primary_10_3390_su14063171 crossref_primary_10_1021_acsapm_4c00322 crossref_primary_10_3390_en17010063 crossref_primary_10_1016_j_est_2024_114397 crossref_primary_10_1016_j_jobe_2020_102122 crossref_primary_10_1016_j_est_2024_114671 crossref_primary_10_1016_j_conbuildmat_2022_130285 crossref_primary_10_2139_ssrn_4147033 crossref_primary_10_1016_j_cscm_2023_e02084 crossref_primary_10_3390_ma12213502 crossref_primary_10_3390_cryst11091067 crossref_primary_10_1016_j_conbuildmat_2023_131036 crossref_primary_10_1016_j_conbuildmat_2023_130621 crossref_primary_10_1016_j_jobe_2025_112106 crossref_primary_10_3390_nano10061168 crossref_primary_10_1016_j_applthermaleng_2024_124168 crossref_primary_10_2174_2665980801999200902142658 crossref_primary_10_1016_j_energy_2022_123501 crossref_primary_10_1016_j_est_2024_112421 crossref_primary_10_1021_acsaem_0c02341 crossref_primary_10_3390_buildings13102481 crossref_primary_10_1080_23744731_2023_2253089 crossref_primary_10_1088_1742_6596_2385_1_012009 crossref_primary_10_3390_en17040912 crossref_primary_10_1016_j_csite_2022_102300 crossref_primary_10_1002_er_8734 |
Cites_doi | 10.1016/j.rser.2017.10.002 10.1016/j.enbuild.2017.02.033 10.1016/j.cemconcomp.2009.08.002 10.1007/s10765-013-1550-8 10.1155/2016/7254823 10.1016/j.rser.2013.08.037 10.1080/19648189.2015.1008651 10.4028/www.scientific.net/AMM.71-78.1958 10.1016/j.energy.2017.10.021 10.1155/2014/391690 10.1016/j.enbuild.2012.12.042 10.4028/www.scientific.net/AMR.687.255 10.1016/j.egypro.2015.11.265 10.1088/1757-899X/264/1/012013 10.1093/ijlct/cts021 10.1016/j.rser.2012.10.034 10.1016/j.enbuild.2015.07.043 10.1016/j.enbuild.2015.02.023 10.1016/j.conbuildmat.2016.06.114 10.15407/fm24.03.481 10.1016/j.est.2015.09.003 10.1007/s10973-014-3844-x 10.1016/j.nanoen.2015.02.016 10.1016/j.applthermaleng.2014.01.027 10.1016/j.cemconcomp.2017.04.001 10.1016/j.conbuildmat.2013.05.018 10.1016/j.enbuild.2010.03.022 10.4028/www.scientific.net/KEM.634.22 10.1016/j.enbuild.2015.02.044 10.1016/j.scitotenv.2012.11.012 10.1016/j.rser.2013.08.107 10.1016/j.egypro.2014.12.393 10.1007/s10973-012-2291-9 10.3390/su8101046 10.1016/j.conbuildmat.2015.04.031 10.1016/j.enbuild.2013.11.064 10.3390/ma11060871 10.1016/j.ijheatmasstransfer.2016.08.013 10.1016/j.rser.2015.09.040 10.1016/j.rser.2006.05.010 10.1016/j.conbuildmat.2013.05.111 10.1177/1687814017700828 10.1016/j.enbuild.2014.08.010 10.1016/j.apenergy.2011.08.025 10.1016/j.apenergy.2016.10.072 10.1016/j.conbuildmat.2016.05.116 10.1016/j.cemconcomp.2015.10.023 10.1016/j.rser.2013.12.042 10.4028/www.scientific.net/KEM.634.33 10.1016/j.rser.2007.10.005 10.1016/j.solmat.2013.12.015 10.1520/JTE20160021 10.1016/j.apenergy.2014.11.055 10.1007/s40095-014-0081-9 10.1016/j.rser.2013.12.033 10.1016/j.apenergy.2017.05.144 10.1016/0038-092X(83)90186-X 10.1016/j.rser.2013.03.031 10.1016/j.conbuildmat.2011.10.039 10.1080/19648189.2018.1446362 10.1002/er.4238 10.1016/j.enbuild.2013.08.006 10.1016/j.rser.2016.03.036 10.1016/j.enconman.2013.03.026 10.1016/j.enbuild.2017.10.066 10.1016/j.rser.2016.11.272 10.1016/j.applthermaleng.2014.06.053 10.1016/j.ijrefrig.2015.12.005 10.1016/j.conbuildmat.2017.03.165 10.1016/j.apenergy.2015.11.013 10.1016/j.rser.2012.10.022 10.1016/j.applthermaleng.2016.07.050 10.1016/j.proeng.2014.04.037 10.1016/j.conbuildmat.2016.05.091 10.1016/j.enbuild.2015.06.040 10.1016/j.apenergy.2016.05.097 10.1016/j.cemconres.2010.09.011 10.1088/1757-899X/431/6/062001 10.1016/j.rser.2017.05.093 10.1016/j.matdes.2018.02.056 10.1016/j.enbuild.2017.03.063 10.1016/j.proeng.2017.04.277 10.1016/j.enbuild.2017.09.011 10.1016/j.conbuildmat.2018.05.113 10.1016/j.enconman.2015.02.028 10.1016/j.conbuildmat.2019.01.098 10.1016/j.enconman.2016.02.045 10.1016/j.conbuildmat.2015.08.077 10.1016/j.apenergy.2012.09.057 10.1002/er.3765 10.1016/j.enbuild.2013.01.041 10.1016/j.rser.2015.07.201 10.1016/j.rser.2016.12.012 10.1016/j.conbuildmat.2014.04.027 10.1016/j.rser.2016.11.145 10.1016/j.applthermaleng.2017.08.161 10.1002/er.3945 10.1016/j.scs.2013.05.007 10.1016/j.proeng.2015.09.027 10.3992/1943-4618.12.2.59 10.1016/j.cemconcomp.2017.04.010 10.1016/j.conbuildmat.2018.12.199 10.1016/j.solmat.2015.06.039 10.1016/j.rser.2016.10.014 10.1016/j.pmatsci.2014.03.005 10.1016/j.cemconcomp.2014.03.003 10.1016/j.enbuild.2017.08.037 10.1007/s10765-012-1169-1 10.1016/j.enbuild.2015.11.028 10.1016/j.solener.2014.05.001 10.1016/j.apenergy.2015.12.043 10.1002/adem.201300278 10.1016/j.enbuild.2016.04.006 10.1080/01430750.2013.823106 10.1016/j.renene.2012.08.024 10.1016/j.enbuild.2013.07.060 10.1088/1757-899X/251/1/012024 10.1016/j.enbuild.2017.09.098 10.1016/j.rser.2017.01.048 10.1016/j.enbuild.2013.11.087 10.1617/s11527-014-0490-5 10.1016/j.conbuildmat.2015.03.066 10.3989/mc.2014.05613 10.1016/j.jclepro.2017.08.131 10.1016/j.enbuild.2016.10.016 10.1016/j.energy.2015.10.131 10.1016/j.cemconcomp.2016.06.018 10.1016/S0196-8904(02)00251-0 10.1016/j.conbuildmat.2018.10.222 10.1016/j.enbuild.2014.05.021 10.1016/j.rser.2013.02.013 10.1016/j.rser.2016.03.007 10.1016/j.apenergy.2013.02.038 10.1016/j.rser.2015.04.044 10.1016/j.conbuildmat.2018.12.057 10.1007/978-3-319-26950-4 10.3989/mc.2015.07314 10.1016/j.rser.2010.11.018 10.1016/j.rser.2017.05.139 10.1007/s40243-015-0047-8 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma12081260 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC6515401 30999615 10_3390_ma12081260 |
Genre | Journal Article Review |
GroupedDBID | 29M 2WC 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c406t-32261b4162597e258749ef66db7ce053d57474d2bc94bcdd8c012d71dadc87aa3 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 14:24:16 EDT 2025 Fri Jul 11 09:09:20 EDT 2025 Fri Jul 25 11:42:46 EDT 2025 Thu Apr 03 07:08:15 EDT 2025 Tue Jul 01 03:56:02 EDT 2025 Thu Apr 24 22:55:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | building materials concrete phase change material (PCM) thermal energy storage (TES) mortar passive building systems |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-32261b4162597e258749ef66db7ce053d57474d2bc94bcdd8c012d71dadc87aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3060-3836 0000-0001-6183-6029 |
OpenAccessLink | https://www.proquest.com/docview/2548690074?pq-origsite=%requestingapplication% |
PMID | 30999615 |
PQID | 2548690074 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6515401 proquest_miscellaneous_2211944292 proquest_journals_2548690074 pubmed_primary_30999615 crossref_citationtrail_10_3390_ma12081260 crossref_primary_10_3390_ma12081260 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190417 |
PublicationDateYYYYMMDD | 2019-04-17 |
PublicationDate_xml | – month: 4 year: 2019 text: 20190417 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_92 Hunger (ref_140) 2009; 31 (ref_141) 2003; 44 ref_12 ref_11 Rao (ref_14) 2018; 158 Kim (ref_94) 2014; 122 ref_135 Franquet (ref_111) 2014; 73 Lucas (ref_76) 2013; 66 Eddhahak (ref_73) 2014; 117 Khodadadi (ref_67) 2013; 24 Jayalath (ref_113) 2016; 120 Kasaeian (ref_39) 2017; 154 Meshgin (ref_139) 2012; 28 Yuan (ref_28) 2014; 29 Cabeza (ref_153) 2014; 29 Kenisarin (ref_24) 2014; 107 Ricklefs (ref_118) 2017; 104 Cunha (ref_78) 2013; 687 Cui (ref_27) 2015; 121 Waqas (ref_36) 2013; 18 Tittelein (ref_108) 2015; 140 ref_128 Haurie (ref_110) 2016; 111 Zhang (ref_133) 2017; 24 Alva (ref_57) 2017; 144 He (ref_99) 2016; 133 Johra (ref_44) 2017; 69 Amaral (ref_33) 2017; 79 Pasupathy (ref_20) 2008; 12 Nepomuceno (ref_127) 2014; 63 Cui (ref_120) 2015; 105 Ferreira (ref_154) 2013; 444 Lacasta (ref_65) 2017; 251 Cunha (ref_85) 2015; 65 Richardson (ref_117) 2017; 12 Cabeza (ref_56) 2016; 53 Sharifi (ref_123) 2016; 5 Souayfane (ref_30) 2016; 129 Kusama (ref_47) 2017; 141 Khan (ref_32) 2016; 115 Silva (ref_45) 2016; 53 Riffat (ref_60) 2015; 36 Cunha (ref_83) 2015; 634 Saffari (ref_59) 2017; 80 Zhang (ref_101) 2013; 50 Bullard (ref_142) 2011; 41 Lv (ref_69) 2017; 68 Eames (ref_31) 2016; 177 Jamekhorshid (ref_52) 2014; 31 Aguayo (ref_70) 2016; 73 Cunha (ref_86) 2015; 20 Sharifi (ref_126) 2015; 103 Thiele (ref_121) 2016; 65 Song (ref_42) 2018; 158 Cunha (ref_80) 2015; 19 Tittelein (ref_109) 2015; 78 Wei (ref_119) 2017; 81 Soares (ref_3) 2013; 59 Wang (ref_96) 2014; 71 Abokersh (ref_54) 2017; 42 Kheradmand (ref_114) 2014; 5 ref_143 Zhang (ref_66) 2016; 165 Coppola (ref_71) 2016; 2016 Kim (ref_98) 2014; 70 Cellat (ref_49) 2017; 143 Castell (ref_156) 2010; 42 Alqallaf (ref_43) 2013; 61 Abdelrazeq (ref_136) 2016; 107 Jelle (ref_5) 2015; 94 Keppert (ref_89) 2014; 35 Vieira (ref_95) 2014; 70 Iten (ref_37) 2016; 61 ref_50 Li (ref_68) 2019; 194 Cunha (ref_84) 2015; 634 Cunha (ref_74) 2016; 122 Cabeza (ref_16) 2011; 15 Joulin (ref_97) 2014; 66 Socaciu (ref_21) 2012; 11 Jeon (ref_1) 2013; 111 Janarthanan (ref_6) 2015; 8 Liu (ref_53) 2015; 13 ref_51 Abhat (ref_15) 1983; 30 Li (ref_146) 2019; 203 Lecompte (ref_72) 2015; 94 Sharma (ref_46) 2009; 13 Kamali (ref_23) 2014; 80 Cunha (ref_79) 2014; 19 Esmaeeli (ref_148) 2018; 145 Veerakumar (ref_29) 2016; 67 Wang (ref_90) 2016; 120 Castell (ref_152) 2013; 109 Zhai (ref_35) 2013; 22 Zhou (ref_17) 2012; 92 ref_64 Akeiber (ref_13) 2016; 60 Pielichowska (ref_104) 2014; 65 Fokaides (ref_61) 2015; 4 Sun (ref_40) 2013; 71 Ramakrishnan (ref_124) 2017; 207 Fallahi (ref_63) 2017; 127 Snoeck (ref_102) 2016; 49 Yu (ref_106) 2017; 45 Choi (ref_137) 2014; 2014 Nayak (ref_145) 2019; 201 Thambidurai (ref_26) 2015; 4 Safari (ref_38) 2017; 70 Mohamed (ref_58) 2017; 70 Vendrell (ref_75) 2013; 47 Cui (ref_8) 2011; 71–78 Keppert (ref_88) 2013; 34 Serrano (ref_155) 2013; 47 Shadnia (ref_91) 2015; 84 Li (ref_134) 2017; 9 Rathod (ref_18) 2013; 18 Cunha (ref_87) 2017; 11 Li (ref_100) 2013; 103 ref_34 Akeiber (ref_151) 2014; 2014 Kheradmand (ref_122) 2015; 89 Lin (ref_48) 2018; 82 ref_112 Drissi (ref_144) 2018; 431 Konstantinidou (ref_149) 2019; 43 Pilehvar (ref_93) 2019; 200 Pomianowski (ref_7) 2013; 67 Kheradmand (ref_115) 2014; 84 Qian (ref_130) 2018; 142 Kheradmand (ref_107) 2016; 163 Cunha (ref_82) 2014; 16 Baldassarri (ref_105) 2017; 156 Fernandes (ref_138) 2014; 51 Nkwetta (ref_10) 2014; 10 Khadiran (ref_55) 2015; 143 Liu (ref_132) 2017; 80 Madessa (ref_9) 2014; 62 ref_103 Huang (ref_41) 2017; 72 Kibria (ref_62) 2015; 95 Whiffen (ref_22) 2013; 8 Li (ref_131) 2017; 264 Cui (ref_129) 2017; 185 ref_2 Santos (ref_77) 2018; 167 Kyriaki (ref_150) 2018; 42 Cunha (ref_81) 2015; 98 Memon (ref_19) 2014; 31 Ramakrishnan (ref_125) 2017; 180 Yeon (ref_147) 2018; 177 Su (ref_25) 2015; 48 ref_4 Kheradmand (ref_116) 2016; 94 |
References_xml | – volume: 82 start-page: 2730 year: 2018 ident: ref_48 article-title: Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.10.002 – volume: 141 start-page: 226 year: 2017 ident: ref_47 article-title: Thermal effects of a novel phase change material (PCM) plaster under different insulation and heating scenarios publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.02.033 – volume: 31 start-page: 731 year: 2009 ident: ref_140 article-title: The behavior of self-compacting concrete containing micro-encapsulated Phase Change Materials publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2009.08.002 – volume: 35 start-page: 767 year: 2014 ident: ref_89 article-title: Experimental Investigation of the Properties of Lime-Based Plaster-Containing PCM for Enhancing the Heat-Storage Capacity of Building Envelopes publication-title: Int. J. Thermophys. doi: 10.1007/s10765-013-1550-8 – volume: 9 start-page: 1 year: 2017 ident: ref_134 article-title: Thermal properties of phase change cement board with capric acid/expanded perlite form-stable phase change material publication-title: Adv. Mech. Eng. – volume: 2016 start-page: 1 year: 2016 ident: ref_71 article-title: Cement-Based Renders Manufactured with Phase-Change Materials: Applications and Feasibility publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2016/7254823 – volume: 29 start-page: 394 year: 2014 ident: ref_153 article-title: Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.08.037 – volume: 19 start-page: 1216 year: 2015 ident: ref_80 article-title: Mortars based in different binders with incorporation of phase-change materials: Physical and mechanical properties publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2015.1008651 – volume: 71–78 start-page: 1958 year: 2011 ident: ref_8 article-title: Review on Phase Change Materials for Building Applications publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.71-78.1958 – volume: 142 start-page: 234 year: 2018 ident: ref_130 article-title: Octadecane/C-decorated diatomite composite phase change material with enhanced thermal conductivity as aggregate for developing structural-functional integrated cement for thermal energy storage publication-title: Energy doi: 10.1016/j.energy.2017.10.021 – volume: 2014 start-page: 391690 year: 2014 ident: ref_151 article-title: Review of development survey of phase change material models in building applications publication-title: Sci. World J. doi: 10.1155/2014/391690 – volume: 59 start-page: 82 year: 2013 ident: ref_3 article-title: Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.12.042 – volume: 687 start-page: 255 year: 2013 ident: ref_78 article-title: Influence of Adding Encapsulated Phase Change Materials in Aerial Lime Based Mortars publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.687.255 – volume: 78 start-page: 1696 year: 2015 ident: ref_109 article-title: Identification of Thermal Properties and Thermodynamic Model for a Cement Mortar Containing PCM by Using Inverse Method publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.11.265 – volume: 11 start-page: 75 year: 2012 ident: ref_21 article-title: Thermal energy storage with phase change material publication-title: Leonardo Electron. J. Pract. Technol. – volume: 264 start-page: 012013 year: 2017 ident: ref_131 article-title: Applications of graphite-enabled phase change material composites to improve thermal performance of cementitious materials publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/264/1/012013 – volume: 8 start-page: 147 year: 2013 ident: ref_22 article-title: A review of PCM technology for thermal energy storage in the built environment: Part I publication-title: Int. J. Low-Carbon Technol. doi: 10.1093/ijlct/cts021 – volume: 18 start-page: 607 year: 2013 ident: ref_36 article-title: Phase change material (PCM) storage for free cooling of buildings—A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.10.034 – volume: 105 start-page: 273 year: 2015 ident: ref_120 article-title: Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materials publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.07.043 – volume: 11 start-page: 339 year: 2017 ident: ref_87 article-title: Mortars with Incorporation of Phase Change Materials for Thermal Rehabilitation publication-title: Int. J. Archit. Herit. – volume: 94 start-page: 150 year: 2015 ident: ref_5 article-title: Phase change materials and products for building applications: A state-of-the-art review and future research opportunities publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.02.023 – volume: 122 start-page: 637 year: 2016 ident: ref_74 article-title: Thermal performance and cost analysis of mortars made with PCM and different binders publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.06.114 – volume: 24 start-page: 481 year: 2017 ident: ref_133 article-title: Preparation and characterization of mortar mixes containing organic acid/expanded vermiculite composite PCM publication-title: Funct. Mater. doi: 10.15407/fm24.03.481 – volume: 4 start-page: 74 year: 2015 ident: ref_26 article-title: Review on phase change material based free cooling of buildings—The way toward sustainability publication-title: J. Energy Storage doi: 10.1016/j.est.2015.09.003 – volume: 117 start-page: 537 year: 2014 ident: ref_73 article-title: Effect of phase change materials on the hydration reaction and kinetic of PCM-mortars publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-014-3844-x – ident: ref_135 – volume: 13 start-page: 814 year: 2015 ident: ref_53 article-title: Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.02.016 – volume: 66 start-page: 171 year: 2014 ident: ref_97 article-title: Experimental investigation of thermal characteristics of a mortar with or without a micro-encapsulated phase change material publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.01.027 – volume: 80 start-page: 317 year: 2017 ident: ref_132 article-title: Integrating phase change materials into concrete through microencapsulation using cenospheres publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2017.04.001 – volume: 47 start-page: 872 year: 2013 ident: ref_155 article-title: Optimization of three new compositions of stabilized rammed earth incorporating PCM: Thermal properties characterization and LCA publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.05.018 – volume: 42 start-page: 1517 year: 2010 ident: ref_156 article-title: Life Cycle Assessment of the inclusion of phase change materials (PCM) in experimental buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.03.022 – volume: 634 start-page: 22 year: 2015 ident: ref_83 article-title: Mortars with Phase Change Materials—Part I: Physical and Mechanical Characterization publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.634.22 – volume: 94 start-page: 52 year: 2015 ident: ref_72 article-title: Mechanical and thermo-physical behaviour of concretes and mortars containing phase change material publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.02.044 – volume: 444 start-page: 16 year: 2013 ident: ref_154 article-title: Phase change material applications in buildings: An environmental assessment for some Spanish climate severities publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2012.11.012 – ident: ref_128 – volume: 29 start-page: 482 year: 2014 ident: ref_28 article-title: Fatty acids as phase change materials: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.08.107 – ident: ref_103 – volume: 62 start-page: 318 year: 2014 ident: ref_9 article-title: A Review of the Performance of Buildings Integrated with Phase Change Material: Opportunities for Application in Cold Climate publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.12.393 – volume: 111 start-page: 279 year: 2013 ident: ref_1 article-title: Application of PCM thermal energy storage system to reduce building energy consumption publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-012-2291-9 – ident: ref_51 doi: 10.3390/su8101046 – volume: 89 start-page: 48 year: 2015 ident: ref_122 article-title: Assessing the feasibility of impregnating phase change materials in lightweight aggregate for development of thermal energy storage systems publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.04.031 – volume: 70 start-page: 224 year: 2014 ident: ref_95 article-title: Functionalization of mortars for controlling the indoor ambient of buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.11.064 – ident: ref_112 doi: 10.3390/ma11060871 – volume: 104 start-page: 71 year: 2017 ident: ref_118 article-title: Thermal conductivity of cementitious composites containing microencapsulated phase change materials publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.08.013 – ident: ref_11 – volume: 53 start-page: 1059 year: 2016 ident: ref_56 article-title: Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.09.040 – volume: 8 start-page: 205 year: 2015 ident: ref_6 article-title: Thermal energy storage using phase change materials and their applications: A review publication-title: Int. J. ChemTech Res. – volume: 12 start-page: 39 year: 2008 ident: ref_20 article-title: Phase change material-based building architecture for thermal management in residential and commercial establishments publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2006.05.010 – volume: 47 start-page: 1210 year: 2013 ident: ref_75 article-title: Newly-designed traditional lime mortar with a phase change material as an additive publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.05.111 – volume: 19 start-page: 171 year: 2014 ident: ref_79 article-title: Thermal Mortars with Incorporation of PCM Microcapsules publication-title: RBM – ident: ref_34 doi: 10.1177/1687814017700828 – volume: 2014 start-page: 1 year: 2014 ident: ref_137 article-title: Feasibility of Using Phase Change Materials to Control the Heat of Hydration in Massive Concrete Structures publication-title: Sci. World J. – ident: ref_92 – volume: 84 start-page: 526 year: 2014 ident: ref_115 article-title: Thermal behavior of cement based plastering mortar containing hybrid microencapsulated phase change materials publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.08.010 – volume: 92 start-page: 593 year: 2012 ident: ref_17 article-title: Review on thermal energy storage with phase change materials (PCMs) in building applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.08.025 – volume: 185 start-page: 107 year: 2017 ident: ref_129 article-title: Development of structural-functional integrated energy storage concrete with innovative macro-encapsulated PCM by hollow steel ball publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.10.072 – volume: 120 start-page: 408 year: 2016 ident: ref_113 article-title: Properties of cementitious mortar and concrete containing micro-encapsulated phase change materials publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.05.116 – volume: 65 start-page: 214 year: 2016 ident: ref_121 article-title: Figure of merit for the thermal performance of cementitious composites containing phase change materials publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2015.10.023 – volume: 31 start-page: 870 year: 2014 ident: ref_19 article-title: Phase change materials integrated in building walls: A state of the art review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.12.042 – volume: 634 start-page: 33 year: 2015 ident: ref_84 article-title: Mortars with Phase Change Materials—Part II: Durability Evaluation publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.634.33 – volume: 13 start-page: 318 year: 2009 ident: ref_46 article-title: Review on thermal energy storage with phase change materials and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2007.10.005 – volume: 122 start-page: 257 year: 2014 ident: ref_94 article-title: Thermal performance enhancement of mortar mixed with octadecane/xGnP SSPCM to save building energy consumption publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2013.12.015 – volume: 45 start-page: 20160021 year: 2017 ident: ref_106 article-title: Experimental Research of Cement Mortar With Incorporated Lauric Acid/Expanded Perlite Phase-Change Materials publication-title: J. Test. Eval. doi: 10.1520/JTE20160021 – volume: 140 start-page: 269 year: 2015 ident: ref_108 article-title: Simulation of the thermal and energy behaviour of a composite material containing encapsulated-PCM: Influence of the thermodynamical modelling publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.11.055 – volume: 5 start-page: 81 year: 2014 ident: ref_114 article-title: Estimation of the specific enthalpy-temperature functions for plastering mortars containing hybrid mixes of phase change materials publication-title: Int. J. Energy Environ. Eng. doi: 10.1007/s40095-014-0081-9 – volume: 31 start-page: 531 year: 2014 ident: ref_52 article-title: A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.12.033 – volume: 207 start-page: 654 year: 2017 ident: ref_124 article-title: Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.144 – volume: 30 start-page: 313 year: 1983 ident: ref_15 article-title: Low temperature latent heat thermal energy storage: Heat storage materials publication-title: Sol. Energy doi: 10.1016/0038-092X(83)90186-X – volume: 24 start-page: 418 year: 2013 ident: ref_67 article-title: Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.03.031 – volume: 28 start-page: 713 year: 2012 ident: ref_139 article-title: Utilization of phase change materials and rubber particles to improve thermal and mechanical properties of mortar publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.10.039 – ident: ref_143 doi: 10.1080/19648189.2018.1446362 – volume: 43 start-page: 150 year: 2019 ident: ref_149 article-title: Life cycle and life cycle cost implications of integrated phase change materials in office buildings publication-title: Int. J. Energy Res. doi: 10.1002/er.4238 – volume: 67 start-page: 56 year: 2013 ident: ref_7 article-title: Review of thermal energy storage technologies based on PCM application in buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.08.006 – volume: 60 start-page: 1470 year: 2016 ident: ref_13 article-title: A review on phase change material (PCM) for sustainable passive cooling in building envelopes publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.03.036 – volume: 71 start-page: 101 year: 2013 ident: ref_40 article-title: Peak load shifting control using different cold thermal energy storage facilities in commercial buildings: A review publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2013.03.026 – ident: ref_64 – volume: 158 start-page: 776 year: 2018 ident: ref_42 article-title: Review on building energy performance improvement using phase change materials publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.10.066 – volume: 70 start-page: 905 year: 2017 ident: ref_38 article-title: A review on supercooling of Phase Change Materials in thermal energy storage systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.272 – volume: 73 start-page: 32 year: 2014 ident: ref_111 article-title: Experimental and theoretical analysis of a cement mortar containing microencapsulated PCM publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.06.053 – volume: 67 start-page: 271 year: 2016 ident: ref_29 article-title: Phase change material based cold thermal energy storage: Materials, techniques and applications—A review publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2015.12.005 – volume: 143 start-page: 490 year: 2017 ident: ref_49 article-title: A comparative study on corrosion behavior of rebar in concrete with fatty acid additive as phase change material publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.03.165 – volume: 163 start-page: 81 year: 2016 ident: ref_107 article-title: Optimal behavior of responsive residential demand considering hybrid phase change materials publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.11.013 – volume: 20 start-page: 245 year: 2015 ident: ref_86 article-title: Argamassas com incorporação de Materiais de Mudança de Fase (PCM): Caracterização física, mecânica e durabilidade publication-title: Matéria – volume: 18 start-page: 246 year: 2013 ident: ref_18 article-title: Thermal stability of phase change materials used in latent heat energy storage systems: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.10.022 – volume: 107 start-page: 1313 year: 2016 ident: ref_136 article-title: Heat transfer performance of paraffin wax based phase change materials applicable in building industry publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.07.050 – volume: 71 start-page: 261 year: 2014 ident: ref_96 article-title: A Phase Change Storage Material that May be Used in the Fire Resistance of Building Structure publication-title: Procedia Eng. doi: 10.1016/j.proeng.2014.04.037 – volume: 120 start-page: 329 year: 2016 ident: ref_90 article-title: Influence of phase change material on mechanical and thermal properties of clay geopolymer mortar publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.05.091 – volume: 103 start-page: 83 year: 2015 ident: ref_126 article-title: Application of phase change materials to improve the thermal performance of cementitious material publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.06.040 – volume: 177 start-page: 227 year: 2016 ident: ref_31 article-title: Thermal energy storage for low and medium temperature applications using phase change materials—A review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.05.097 – volume: 41 start-page: 1208 year: 2011 ident: ref_142 article-title: Mechanisms of cement hydration publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2010.09.011 – volume: 431 start-page: 062001 year: 2018 ident: ref_144 article-title: Thermal and durability performances of mortar and concrete containing phase change materials publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/431/6/062001 – volume: 79 start-page: 1212 year: 2017 ident: ref_33 article-title: Phase change materials and carbon nanostructures for thermal energy storage: A literature review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.093 – volume: 145 start-page: 74 year: 2018 ident: ref_148 article-title: Numerical analysis of the freeze-thaw performance of cementitious composites that contain phase change material (PCM) publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.02.056 – volume: 144 start-page: 276 year: 2017 ident: ref_57 article-title: Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.03.063 – volume: 180 start-page: 1170 year: 2017 ident: ref_125 article-title: Thermal Energy Storage Enhancement of Lightweight Cement Mortars with the Application of Phase Change Materials publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.04.277 – volume: 156 start-page: 374 year: 2017 ident: ref_105 article-title: Environmental and spatial assessment for the ecodesign of a cladding system with embedded Phase Change Materials publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.09.011 – volume: 177 start-page: 202 year: 2018 ident: ref_147 article-title: Potential applications of phase change materials to mitigate freeze-thaw deteriorations in concrete pavement publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.05.113 – volume: 95 start-page: 69 year: 2015 ident: ref_62 article-title: A review on thermophysical properties of nanoparticle dispersed phase change materials publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2015.02.028 – volume: 203 start-page: 621 year: 2019 ident: ref_146 article-title: Evaluation of the potential use of form-stable phase change materials to improve the freeze-thaw resistance of concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.01.098 – volume: 115 start-page: 132 year: 2016 ident: ref_32 article-title: A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2016.02.045 – volume: 98 start-page: 89 year: 2015 ident: ref_81 article-title: Effect of temperature on mortars with incorporation of phase change materials publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.08.077 – volume: 103 start-page: 393 year: 2013 ident: ref_100 article-title: Heat storage properties of the cement mortar incorporated with composite phase change material publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.09.057 – volume: 42 start-page: 329 year: 2017 ident: ref_54 article-title: Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS) publication-title: Int. J. Energy Res. doi: 10.1002/er.3765 – volume: 61 start-page: 73 year: 2013 ident: ref_43 article-title: Concrete roof with cylindrical holes containing PCM to reduce the heat gain publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.01.041 – volume: 53 start-page: 515 year: 2016 ident: ref_45 article-title: Literature review on the use of phase change materials in glazing and shading solutions publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.07.201 – volume: 70 start-page: 1072 year: 2017 ident: ref_58 article-title: A review on current status and challenges of inorganic phase change materials for thermal energy storage systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.12.012 – volume: 63 start-page: 89 year: 2014 ident: ref_127 article-title: Experimental evaluation of cement mortars with phase change material incorporated via lightweight expanded clay aggregate publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2014.04.027 – volume: 69 start-page: 19 year: 2017 ident: ref_44 article-title: Influence of internal thermal mass on the indoor thermal dynamics and integration of phase change materials in furniture for building energy storage: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.145 – volume: 127 start-page: 1427 year: 2017 ident: ref_63 article-title: Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.08.161 – volume: 42 start-page: 3068 year: 2018 ident: ref_150 article-title: Life cycle analysis (LCA) and life cycle cost analysis (LCCA) of phase change materials (PCM) for thermal applications: A review publication-title: Int. J. Energy Res. doi: 10.1002/er.3945 – volume: 10 start-page: 87 year: 2014 ident: ref_10 article-title: Thermal energy storage with phase change material—A state-of-the art review publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2013.05.007 – volume: 121 start-page: 763 year: 2015 ident: ref_27 article-title: Review of Phase Change Materials Integrated in Building Walls for Energy Saving publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.09.027 – volume: 12 start-page: 59 year: 2017 ident: ref_117 article-title: Optimal performance characteristics of mortar incorporating phase change materials and silica fume publication-title: J. Green Build. doi: 10.3992/1943-4618.12.2.59 – volume: 81 start-page: 66 year: 2017 ident: ref_119 article-title: The durability of cementitious composites containing microencapsulated phase change materials publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2017.04.010 – volume: 201 start-page: 246 year: 2019 ident: ref_145 article-title: Microstructure-guided numerical simulation to evaluate the influence of phase change materials (PCMs) on the freeze-thaw response of concrete pavements publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.12.199 – volume: 143 start-page: 78 year: 2015 ident: ref_55 article-title: Encapsulation techniques for organic phase change materials as thermal energy storage medium: A review publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.06.039 – volume: 68 start-page: 707 year: 2017 ident: ref_69 article-title: Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.10.014 – volume: 65 start-page: 67 year: 2014 ident: ref_104 article-title: Phase change materials for thermal energy storage publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2014.03.005 – volume: 51 start-page: 14 year: 2014 ident: ref_138 article-title: On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2014.03.003 – volume: 154 start-page: 96 year: 2017 ident: ref_39 article-title: Experimental studies on the applications of PCMs and nano-PCMs in buildings: A critical review publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.08.037 – volume: 5 start-page: 349 year: 2016 ident: ref_123 article-title: Application of lightweight aggregate and rice husk ash to incorporate phase change materials into cementitious materials publication-title: J. Sustain. Cem.-Based Mater. – volume: 34 start-page: 851 year: 2013 ident: ref_88 article-title: Apparent Thermal Properties of Phase-Change Materials: An Analysis Using Differential Scanning Calorimetry and Impulse Method publication-title: Int. J. Thermophys. doi: 10.1007/s10765-012-1169-1 – volume: 111 start-page: 393 year: 2016 ident: ref_110 article-title: Single layer mortars with microencapsulated PCM: Study of physical and thermal properties, and fire behaviour publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.11.028 – volume: 107 start-page: 553 year: 2014 ident: ref_24 article-title: Thermophysical properties of some organic phase change materials for latent heat storage. A review publication-title: Sol. Energy doi: 10.1016/j.solener.2014.05.001 – volume: 165 start-page: 472 year: 2016 ident: ref_66 article-title: A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.12.043 – volume: 16 start-page: 433 year: 2014 ident: ref_82 article-title: Influence of the Type of Phase Change Materials Microcapsules on the Properties of Lime-Gypsum Thermal Mortars publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201300278 – volume: 129 start-page: 396 year: 2016 ident: ref_30 article-title: Phase change materials (PCM) for cooling applications in buildings: A review publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.04.006 – volume: 36 start-page: 102 year: 2015 ident: ref_60 article-title: Phase change material developments: A review publication-title: Int. J. Ambient Energy doi: 10.1080/01430750.2013.823106 – volume: 50 start-page: 670 year: 2013 ident: ref_101 article-title: Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material publication-title: Renew. Energy doi: 10.1016/j.renene.2012.08.024 – volume: 66 start-page: 724 year: 2013 ident: ref_76 article-title: Latent heat storage in PCM containing mortars—Study of microstructural modifications publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.07.060 – volume: 251 start-page: 012024 year: 2017 ident: ref_65 article-title: Physical, thermal and mechanical study of MPC formulated with LG-MgO incorporating Phase Change Materials as admixture publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/251/1/012024 – volume: 158 start-page: 95 year: 2018 ident: ref_14 article-title: PCM-mortar based construction materials for energy efficient buildings: A review on research trends publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.09.098 – volume: 72 start-page: 128 year: 2017 ident: ref_41 article-title: Morphological characterization and applications of phase change materials in thermal energy storage: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.01.048 – volume: 70 start-page: 472 year: 2014 ident: ref_98 article-title: Thermal characteristics of mortar containing hexadecane/xGnP SSPCM and energy storage behaviors of envelopes integrated with enhanced heat storage composites for energy efficient buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.11.087 – volume: 49 start-page: 225 year: 2016 ident: ref_102 article-title: Encapsulated Phase-Change Materials as additives in cementitious materials to promote thermal comfort in concrete constructions publication-title: Mater. Struct. doi: 10.1617/s11527-014-0490-5 – volume: 84 start-page: 95 year: 2015 ident: ref_91 article-title: Experimental study of geopolymer mortar with incorporated PCM publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.03.066 – ident: ref_50 doi: 10.3989/mc.2014.05613 – volume: 167 start-page: 55 year: 2018 ident: ref_77 article-title: Production of eco-efficient earth-based plasters: Influence of composition on physical performance and bio-susceptibility publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.08.131 – volume: 133 start-page: 547 year: 2016 ident: ref_99 article-title: Utilization of lauric acid-myristic acid/expanded graphite phase change materials to improve thermal properties of cement mortar publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.10.016 – volume: 94 start-page: 250 year: 2016 ident: ref_116 article-title: Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings publication-title: Energy doi: 10.1016/j.energy.2015.10.131 – volume: 73 start-page: 29 year: 2016 ident: ref_70 article-title: The influence of microencapsulated phase change material (PCM) characteristics on the microstructure and strength of cementitious composites: Experiments and finite element simulations publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2016.06.018 – volume: 44 start-page: 2277 year: 2003 ident: ref_141 article-title: Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storage applications publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(02)00251-0 – ident: ref_2 – volume: 194 start-page: 287 year: 2019 ident: ref_68 article-title: Review on micropore grade inorganic porous medium based form stable composite phase change materials: Preparation, performance improvement and effects on the properties of cement mortar publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.10.222 – ident: ref_12 – volume: 80 start-page: 131 year: 2014 ident: ref_23 article-title: Review of free cooling system using phase change material for building publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.05.021 – volume: 22 start-page: 108 year: 2013 ident: ref_35 article-title: A review on phase change cold storage in air-conditioning system: Materials and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.02.013 – volume: 61 start-page: 175 year: 2016 ident: ref_37 article-title: A review on the air-PCM-TES application for free cooling and heating in the buildings publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.03.007 – volume: 109 start-page: 544 year: 2013 ident: ref_152 article-title: Evaluation of the environmental impact of experimental buildings with different constructive systems using Material Flow Analysis and Life Cycle Assessment publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.02.038 – volume: 48 start-page: 373 year: 2015 ident: ref_25 article-title: Review of solid–liquid phase change materials and their encapsulation technologies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.04.044 – volume: 200 start-page: 94 year: 2019 ident: ref_93 article-title: Effect of freeze-thaw cycles on the mechanical behavior of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.12.057 – ident: ref_4 doi: 10.1007/978-3-319-26950-4 – volume: 65 start-page: 1 year: 2015 ident: ref_85 article-title: Ranking procedure based on mechanical, durability and thermal behavior of mortars with incorporation of phase change materials publication-title: Mater. Constr. doi: 10.3989/mc.2015.07314 – volume: 15 start-page: 1675 year: 2011 ident: ref_16 article-title: Materials used as PCM in thermal energy storage in buildings: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.11.018 – volume: 80 start-page: 1239 year: 2017 ident: ref_59 article-title: Passive cooling of buildings with phase change materials using whole-building energy simulation tools: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.139 – volume: 4 start-page: 6 year: 2015 ident: ref_61 article-title: Phase change materials (PCMs) integrated into transparent building elements: A review publication-title: Mater. Renew. Sustain. Energy doi: 10.1007/s40243-015-0047-8 |
SSID | ssj0000331829 |
Score | 2.543516 |
SecondaryResourceType | review_article |
Snippet | The construction industry is responsible for consuming large amounts of energy. The development of new materials with the purpose of increasing the thermal... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1260 |
SubjectTerms | Buildings Carbon dioxide Climate change Cold Concrete Construction industry Emission standards Emissions Energy consumption Energy efficiency Energy storage Flooring Heat Heating Mortars (material) Phase change materials Phase transitions Review Temperature Thermal energy Thermodynamic efficiency |
Title | Phase Change Materials for Energy Efficiency in Buildings and Their Use in Mortars |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30999615 https://www.proquest.com/docview/2548690074 https://www.proquest.com/docview/2211944292 https://pubmed.ncbi.nlm.nih.gov/PMC6515401 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8JAEJ4IXPRgfFtFskYvHhrouz0ZMTxiAiEEEm7NdrcNJFpQ4P870y4F1HhsdtI2-5iZb2f3-wAehe-KRuxEutWITZIw43pEhACcYzR1bRGIhCq6vb7bHdtvE2eiNtyW6ljlxidmjlrOBe2R1xHIkHgSRrznxadOqlFUXVUSGiWooAv2EXxVmq3-YFjssjQsnLNmkPOSWojv6x_4ExgGzYyTcicS_Uovf56S3Ak77RM4Vvkie8kH-BQO4vQMjnZYBM9hOJhiKGL5PQHW46t8UjFMR1kru9rHWhlRBN2yZLOUNZUU9pLxVLIRlQrYGN-ATXT2FqHuBYzbrdFrV1dSCbrAiLzScVm6RoTJFaIZLzYd37ODOHFdGXmCxB-kg7DBlmYkAjsSUvoCA5P0DMml8D3OrUsop_M0vgaGzluaniksJ0H0xBNfRoFvJAbnSca1r8HTpttCoXjESc7iPUQ8QV0cbrtYg4fCdpGzZ_xpVd30fqhW0DLcjrcG90Uzzn0qaPA0nq_RhujpbBLc0uAqH6ziMxalvpiuaeDtDWNhQLza-y3pbJrxa5M6PMLOm_9_6xYOMXnKKkuGV4Xy6msd32GCsopqUPLbnZqai_jUmRjfRWzovg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT-swEB6xHOAdEDthNQIOHKI2zn5AiKWlLEUItRK34NiOQHov5dEixJ_iNzKTjbKIG2dbSTue8XyTsb8PYFsGnqxrNzbtuuYkYSbMmAgBhMBs6jkylAl1dNuXXqvrnN24NyPwWt6FoWOV5Z6YbdSqJ-kbeQ0LGRJPwoy3__DfJNUo6q6WEhq5W5zrl2cs2fp7p8e4vjucNxudo5ZZqAqYEpPXwEQP9qwYcQgCf19zN_CdUCeep2Jfkk6CchFhO4rHMnRiqVQgcQ9XvqWEkoEvhI3PHYVxx7ZDiqigeVJ906nbGCE8zFlQcbxe-4d_GZMuzxgwh_LeFzD7-UzmUJJrTsNUgU7ZQe5OMzCi01n4M8RZOAfXV3eY-Fh-K4G1xSB3YYbglzWyi4SskdFS0J1Odp-yw0J4u89EqliHGhOsi0_AITrpi4X1PHR_xYQLMJb2Ur0EDFOF4j6XtptgrSaSQMVhYCWWEEnG7G_Abmm2SBas5SSe8TfC6oVMHL2b2ICtau5DztXx7azV0vpREa_96N27DNishjHSqH0iUt17wjlEhueQvJcBi_liVa-xCWgjODTA_7CM1QRi8f44kt7fZWzepEWPRe7yzz9rAyZanfZFdHF6eb4Ckwjbsp6W5a_C2ODxSa8hNBrE65k_Mrj97QB4A-0LIkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BIiF6qFpeTaHFFXDgEG3iPJwcUFXKrqDAaoVYiVtwbEeLBFlgF6H-tf46ZvJiKYgbZ1tONB57vvHY3wewpaJQOSZIbc8xnCTMpJ0SIYCUGE1DX8Uqo4ruSS88GPh_zoPzGfhXv4Wha5X1nlhs1Hqk6Iy8jYkMiSdhxGtn1bWI_n73582tTQpSVGmt5TRKFzkyfx8wfRvvHu7jXG9z3u2c_T6wK4UBW2Egm9jozaGbIibBJEAYHkTCj00WhjoVijQTdIBo29c8VbGfKq0jhfu5Fq6WWkVCSg_HnYU5gVmR04K5vU6vf9qc8Dgerhcel5yonhc77Ws0AIZgXvBhTkXBF9D2_xuaUyGv-wk-VliV_Sqd6zPMmHwRPkwxGC7BaX-IYZCVbxTYiZyUDs0QCrNO8ayQdQqSCnrhyS5ztlfJcI-ZzDU7ozIFG-AI2ET3fjHNXobBuxhxBVr5KDdfgGHg0Fxw5QUZZm4yi3QaR27mSpkVPP8W7NRmS1TFYU5SGlcJ5jJk4uTJxBZsNn1vSuaOV3ut19ZPqtU7Tp58zYIfTTOuOyqmyNyM7rEPUeP5JPZlwWo5Wc1nPILdCBUtEM-mselAnN7PW_LLYcHtTcr0mPJ-ffu3NmAenT85PuwdrcECYriiwOWKdWhN7u7NN8RJk_R75ZAMLt57DTwCGGwn0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+Change+Materials+for+Energy+Efficiency+in+Buildings+and+Their+Use+in+Mortars&rft.jtitle=Materials&rft.au=Frigione%2C+Mariaenrica&rft.au=Lettieri%2C+Mariateresa&rft.au=Sarcinella%2C+Antonella&rft.date=2019-04-17&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=12&rft.issue=8&rft.spage=1260&rft_id=info:doi/10.3390%2Fma12081260&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ma12081260 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |