Production and Persistence of Extreme Two-temperature Plasmas in Radiative Relativistic Turbulence
Turbulence is a predominant process for energizing electrons and ions in collisionless astrophysical plasmas, and thus is responsible for shaping their radiative signatures (luminosity, spectra, and variability). To better understand the kinetic properties of a collisionless radiative plasma subject...
Saved in:
Published in | The Astrophysical journal Vol. 908; no. 1; pp. 71 - 76 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.02.2021
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Turbulence is a predominant process for energizing electrons and ions in collisionless astrophysical plasmas, and thus is responsible for shaping their radiative signatures (luminosity, spectra, and variability). To better understand the kinetic properties of a collisionless radiative plasma subject to externally driven turbulence, we investigate particle-in-cell simulations of relativistic plasma turbulence with external inverse Compton cooling acting on the electrons. We find that ions continuously heat up while electrons gradually cool down (due to the net effect of radiation), and hence the ion-to-electron temperature ratio Ti/Te grows in time. We show that Ti/Te is limited only by the size and duration of the simulations (reaching ), indicating that there are no efficient collisionless mechanisms of electron-ion thermal coupling. This result has implications for models of radiatively inefficient accretion flows, such as observed in the Galactic center and in M87, for which so-called two-temperature plasmas with have been invoked to explain their low luminosity. Additionally, we find that electrons acquire a quasi-thermal distribution (dictated by the competition of turbulent particle energization and radiative cooling), while ions undergo efficient nonthermal acceleration (acquiring a harder distribution than in equivalent nonradiative simulations). There is a modest nonthermal population of high-energy electrons that are beamed intermittently in space, time, and direction; these beamed electrons may explain rapid flares in certain high-energy astrophysical systems (e.g., in the Galactic center). These numerical results demonstrate that extreme two-temperature plasmas can be produced and maintained by relativistic radiative turbulence. |
---|---|
AbstractList | Turbulence is a predominant process for energizing electrons and ions in collisionless astrophysical plasmas, and thus is responsible for shaping their radiative signatures (luminosity, spectra, and variability). To better understand the kinetic properties of a collisionless radiative plasma subject to externally driven turbulence, we investigate particle-in-cell simulations of relativistic plasma turbulence with external inverse Compton cooling acting on the electrons. We find that ions continuously heat up while electrons gradually cool down (due to the net effect of radiation), and hence the ion-to-electron temperature ratio Ti/Te grows in time. We show that Ti/Te is limited only by the size and duration of the simulations (reaching ), indicating that there are no efficient collisionless mechanisms of electron-ion thermal coupling. This result has implications for models of radiatively inefficient accretion flows, such as observed in the Galactic center and in M87, for which so-called two-temperature plasmas with have been invoked to explain their low luminosity. Additionally, we find that electrons acquire a quasi-thermal distribution (dictated by the competition of turbulent particle energization and radiative cooling), while ions undergo efficient nonthermal acceleration (acquiring a harder distribution than in equivalent nonradiative simulations). There is a modest nonthermal population of high-energy electrons that are beamed intermittently in space, time, and direction; these beamed electrons may explain rapid flares in certain high-energy astrophysical systems (e.g., in the Galactic center). These numerical results demonstrate that extreme two-temperature plasmas can be produced and maintained by relativistic radiative turbulence. Turbulence is a predominant process for energizing electrons and ions in collisionless astrophysical plasmas, and thus is responsible for shaping their radiative signatures (luminosity, spectra, and variability). To better understand the kinetic properties of a collisionless radiative plasma subject to externally driven turbulence, we investigate particle-in-cell simulations of relativistic plasma turbulence with external inverse Compton cooling acting on the electrons. We find that ions continuously heat up while electrons gradually cool down (due to the net effect of radiation), and hence the ion-to-electron temperature ratio T i / T e grows in time. We show that T i / T e is limited only by the size and duration of the simulations (reaching ), indicating that there are no efficient collisionless mechanisms of electron–ion thermal coupling. This result has implications for models of radiatively inefficient accretion flows, such as observed in the Galactic center and in M87, for which so-called two-temperature plasmas with have been invoked to explain their low luminosity. Additionally, we find that electrons acquire a quasi-thermal distribution (dictated by the competition of turbulent particle energization and radiative cooling), while ions undergo efficient nonthermal acceleration (acquiring a harder distribution than in equivalent nonradiative simulations). There is a modest nonthermal population of high-energy electrons that are beamed intermittently in space, time, and direction; these beamed electrons may explain rapid flares in certain high-energy astrophysical systems (e.g., in the Galactic center). These numerical results demonstrate that extreme two-temperature plasmas can be produced and maintained by relativistic radiative turbulence. Turbulence is a predominant process for energizing electrons and ions in collisionless astrophysical plasmas, and thus is responsible for shaping their radiative signatures (luminosity, spectra, and variability). To better understand the kinetic properties of a collisionless radiative plasma subject to externally driven turbulence, we investigate particle-in-cell simulations of relativistic plasma turbulence with external inverse Compton cooling acting on the electrons. We find that ions continuously heat up while electrons gradually cool down (due to the net effect of radiation), and hence the ion-to-electron temperature ratio T i /T e grows in time. We show that T i /T e is limited only by the size and duration of the simulations (reaching \({T}_{i}/{T}_{e}\sim {10}^{3}\)), indicating that there are no efficient collisionless mechanisms of electron–ion thermal coupling. This result has implications for models of radiatively inefficient accretion flows, such as observed in the Galactic center and in M87, for which so-called two-temperature plasmas with \({T}_{i}/{T}_{e}\gg 1\) have been invoked to explain their low luminosity. Additionally, we find that electrons acquire a quasi-thermal distribution (dictated by the competition of turbulent particle energization and radiative cooling), while ions undergo efficient nonthermal acceleration (acquiring a harder distribution than in equivalent nonradiative simulations). There is a modest nonthermal population of high-energy electrons that are beamed intermittently in space, time, and direction; these beamed electrons may explain rapid flares in certain high-energy astrophysical systems (e.g., in the Galactic center). These numerical results demonstrate that extreme two-temperature plasmas can be produced and maintained by relativistic radiative turbulence. Turbulence is a predominant process for energizing electrons and ions in collisionless astrophysical plasmas, and thus is responsible for shaping their radiative signatures (luminosity, spectra, and variability). To better understand the kinetic properties of a collisionless radiative plasma subject to externally driven turbulence, we investigate particle-in-cell simulations of relativistic plasma turbulence with external inverse Compton cooling acting on the electrons. We find that ions continuously heat up while electrons gradually cool down (due to the net effect of radiation), and hence the ion-to-electron temperature ratio Ti/Te grows in time. Furthermore, we show that Ti/Te is limited only by the size and duration of the simulations (reaching ${T}_{i}/{T}_{e}\sim {10}^{3}$), indicating that there are no efficient collisionless mechanisms of electron–ion thermal coupling. This result has implications for models of radiatively inefficient accretion flows, such as observed in the Galactic center and in M87, for which so-called two-temperature plasmas with ${T}_{i}/{T}_{e}\gg 1$ have been invoked to explain their low luminosity. Additionally, we find that electrons acquire a quasi-thermal distribution (dictated by the competition of turbulent particle energization and radiative cooling), while ions undergo efficient nonthermal acceleration (acquiring a harder distribution than in equivalent nonradiative simulations). There is a modest nonthermal population of high-energy electrons that are beamed intermittently in space, time, and direction; these beamed electrons may explain rapid flares in certain high-energy astrophysical systems (e.g., in the Galactic center). These numerical results demonstrate that extreme two-temperature plasmas can be produced and maintained by relativistic radiative turbulence. |
Author | Zhdankin, Vladimir Uzdensky, Dmitri A. Kunz, Matthew W. |
Author_xml | – sequence: 1 givenname: Vladimir surname: Zhdankin fullname: Zhdankin, Vladimir email: zhdankin@princeton.edu organization: Princeton University Department of Astrophysical Sciences, 4 Ivy Lane, Princeton, NJ 08544, USA – sequence: 2 givenname: Dmitri A. surname: Uzdensky fullname: Uzdensky, Dmitri A. organization: University of Colorado Center for Integrated Plasma Studies, Department of Physics, 390 UCB, Boulder, CO 80309, USA – sequence: 3 givenname: Matthew W. surname: Kunz fullname: Kunz, Matthew W. organization: Princeton Plasma Physics Laboratory , P.O. Box 451, Princeton, NJ 08543, USA |
BackLink | https://www.osti.gov/servlets/purl/1817210$$D View this record in Osti.gov |
BookMark | eNp9kEtLxDAURoMoOD72LoO6tJo0adMuRcYHCA4yC3chk95ihk5Sk9THvzeloiDiJi_Od-_N2UPb1llA6IiSc1ZxcUELVmWcFeJCrXTL6BaafT9toxkhhGclE0-7aC-E9XjN63qGVgvvmkFH4yxWtsEL8MGECFYDdi2ev0cPG8DLN5dF2PTgVRw84EWnwkYFbCx-VI1R0bwCfoRuPKS40Xg5-NXQjXUO0E6rugCHX_s-Wl7Pl1e32f3Dzd3V5X2mOSljlrcMgCumKKsLXgmxormuy6oiTd4SXmtSi7SqBKcPatYI1mhdMOBAC63YPjqeyrrUXwZtIuhn7awFHSWtqMgpSdDJBPXevQwQoly7wds0lsx5VYsyickTRSZKexeCh1b23myU_5CUyNG2HNXKUa2cbKdI-SuSBlCj1uiV6f4Lnk1B4_qfYf7BT__AVb-WNakklYLKvmnZJ9N5ohQ |
CitedBy_id | crossref_primary_10_3847_1538_4357_acaf54 crossref_primary_10_1051_0004_6361_202141730 crossref_primary_10_1103_PhysRevX_13_021014 crossref_primary_10_1093_mnras_stac2730 crossref_primary_10_1103_PhysRevLett_132_085202 crossref_primary_10_3847_1538_4357_accd73 crossref_primary_10_1051_0004_6361_202244690 crossref_primary_10_1017_S0022377823000727 crossref_primary_10_3847_2041_8213_ac441e crossref_primary_10_3847_1538_4357_ad5b51 crossref_primary_10_3847_2041_8213_ac6cde crossref_primary_10_1103_PhysRevLett_127_255102 crossref_primary_10_3847_1538_4357_ad1827 crossref_primary_10_1088_1402_4896_acc7d6 crossref_primary_10_1093_mnras_stad3863 crossref_primary_10_3847_2041_8213_ac3afa crossref_primary_10_3847_1538_4357_ac8a94 crossref_primary_10_3390_universe9060282 crossref_primary_10_1093_mnras_stab2534 crossref_primary_10_3847_1538_4365_ac582e crossref_primary_10_3847_1538_4365_adaea6 crossref_primary_10_1103_PhysRevD_104_063020 crossref_primary_10_1017_S0022377822000721 |
Cites_doi | 10.3847/0004-637X/826/2/221 10.1051/0004-6361/200811354 10.3847/1538-4357/ab4c33 10.1088/0004-637X/800/2/88 10.1111/j.1365-2966.2008.13209.x 10.1111/j.1745-3933.2010.00958.x 10.1086/520800 10.1088/0004-637X/770/2/147 10.1109/MCSE.2014.80 10.1086/176343 10.1093/mnras/stx2883 10.3847/2041-8213/ab8122 10.1073/pnas.1812491116 10.1017/S0022377819000345 10.3847/1538-4357/ab20cc 10.1103/PhysRevLett.122.055101 10.1088/0004-637X/800/2/89 10.1016/j.cpc.2013.10.022 10.3847/2041-8213/ab0f43 10.3847/2041-8213/aae88c 10.1093/mnras/staa284 10.1063/1.5098478 10.1051/0004-6361/201117505 10.1103/PhysRevLett.112.205003 10.1038/295017a0 10.1093/mnras/stz3313 10.1088/2041-8205/758/2/L44 10.1103/PhysRevLett.121.255101 10.1103/PhysRevLett.118.055103 10.1051/0004-6361:20030983 10.1086/155314 10.1086/305770 10.1086/307423 10.1086/166698 10.1086/154162 10.1038/35092510 10.1086/305845 10.1146/annurev.astro.44.051905.092532 10.1146/annurev-astro-082812-141003 |
ContentType | Journal Article |
Copyright | 2021. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Feb 01, 2021 |
Copyright_xml | – notice: 2021. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Feb 01, 2021 |
CorporateAuthor | Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States) |
CorporateAuthor_xml | – name: Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States) |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M OIOZB OTOTI |
DOI | 10.3847/1538-4357/abcf31 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Production and Persistence of Extreme Two-temperature Plasmas in Radiative Relativistic Turbulence |
EISSN | 1538-4357 |
ExternalDocumentID | 1817210 10_3847_1538_4357_abcf31 apjabcf31 |
GrantInformation_xml | – fundername: NSF grantid: AST-1715277 – fundername: NASA grantid: NNX17AK57G – fundername: NSF grantid: AST-1806084 – fundername: NASA grantid: HST-HF2-51426.001-A – fundername: NASA grantid: 80NSSC20K0545 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M ABPTK OIOZB OTOTI |
ID | FETCH-LOGICAL-c406t-2f3ee4a3a13954877b12c96880d2f049c09749ca406bcfc3d73dcc53e4e15ca3 |
IEDL.DBID | O3W |
ISSN | 0004-637X 1538-4357 |
IngestDate | Thu May 18 22:29:25 EDT 2023 Wed Aug 13 09:18:02 EDT 2025 Tue Jul 01 03:24:33 EDT 2025 Thu Apr 24 22:59:41 EDT 2025 Wed Feb 24 05:40:46 EST 2021 Wed Aug 21 03:37:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-2f3ee4a3a13954877b12c96880d2f049c09749ca406bcfc3d73dcc53e4e15ca3 |
Notes | High-Energy Phenomena and Fundamental Physics AAS26086 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 National Aeronautics and Space Administration (NASA) USDOE Office of Science (SC) National Science Foundation (NSF) AC02-06CH11357; HST-HF2-51426.001-A; NAS5-26555; NNX17AK57G; 80NSSC20K0545; AST-1806084; AST-1715277; ACI-1548562 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1817210 |
PQID | 2489760002 |
PQPubID | 4562441 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2489760002 crossref_primary_10_3847_1538_4357_abcf31 iop_journals_10_3847_1538_4357_abcf31 osti_scitechconnect_1817210 crossref_citationtrail_10_3847_1538_4357_abcf31 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2021 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Eckart (apjabcf31bib10) 2009; 500 Arzamasskiy (apjabcf31bib2) 2019; 879 Kunz (apjabcf31bib19) 2014; 112 Schekochihin (apjabcf31bib29) 2019; 85 Comisso (apjabcf31bib8) 2018; 121 Ichimaru (apjabcf31bib15) 1977; 214 Zhdankin (apjabcf31bib43) 2019; 122 Zhdankin (apjabcf31bib44) 2017; 118 TenBarge (apjabcf31bib36) 2014; 185 Zhdankin (apjabcf31bib42) 2018b; 867 Zhdankin (apjabcf31bib40) 2020; 493 Quataert (apjabcf31bib26) 1999; 520 Towns (apjabcf31bib37) 2014; 16 Landau (apjabcf31bib20) 1975; Vol. 2 Begelman (apjabcf31bib4) 1988; 332 Quataert (apjabcf31bib25) 1998; 500 Yuan (apjabcf31bib39) 2014; 52 Sharma (apjabcf31bib32) 2007; 667 Remillard (apjabcf31bib28) 2006; 44 Schlickeiser (apjabcf31bib30) 1985; 143 Mehlhaff (apjabcf31bib21) 2020 Porquet (apjabcf31bib24) 2003; 407 Colafrancesco (apjabcf31bib7) 2011; 535 Narayan (apjabcf31bib22) 1995; 452 Rees (apjabcf31bib27) 1982; 295 Sironi (apjabcf31bib33) 2015; 800 Nättilä (apjabcf31bib23) 2019 Erlund (apjabcf31bib11) 2008; 386 Shapiro (apjabcf31bib31) 1976; 204 Alves (apjabcf31bib1) 2019; 26 Kardashev (apjabcf31bib17) 1962; 6 Boldyrev (apjabcf31bib5) 2012; 758 Gruzinov (apjabcf31bib13) 1998; 501 Kagan (apjabcf31bib16) 2016; 826 Kawazura (apjabcf31bib18) 2019; 116 Sobacchi (apjabcf31bib35) 2020; 491 Baganoff (apjabcf31bib3) 2001; 413 Comisso (apjabcf31bib9) 2019; 886 Wong (apjabcf31bib38) 2020; 893 Zhdankin (apjabcf31bib41) 2018a; 474 Cerutti (apjabcf31bib6) 2013; 770 Event Horizon Telescope Collaboration (apjabcf31bib12) 2019; 875 Howes (apjabcf31bib14) 2010; 409 Sironi (apjabcf31bib34) 2015; 800 |
References_xml | – volume: 826 start-page: 221 year: 2016 ident: apjabcf31bib16 publication-title: ApJ doi: 10.3847/0004-637X/826/2/221 – volume: 500 start-page: 935 year: 2009 ident: apjabcf31bib10 publication-title: A&A doi: 10.1051/0004-6361/200811354 – volume: 886 start-page: 122 year: 2019 ident: apjabcf31bib9 publication-title: ApJ doi: 10.3847/1538-4357/ab4c33 – volume: 800 start-page: 88 year: 2015 ident: apjabcf31bib34 publication-title: ApJ doi: 10.1088/0004-637X/800/2/88 – volume: 386 start-page: 1774 year: 2008 ident: apjabcf31bib11 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13209.x – volume: 409 start-page: L104 year: 2010 ident: apjabcf31bib14 publication-title: MNRAS doi: 10.1111/j.1745-3933.2010.00958.x – year: 2019 ident: apjabcf31bib23 – volume: 667 start-page: 714 year: 2007 ident: apjabcf31bib32 publication-title: ApJ doi: 10.1086/520800 – volume: 770 start-page: 147 year: 2013 ident: apjabcf31bib6 publication-title: ApJ doi: 10.1088/0004-637X/770/2/147 – volume: 16 start-page: 62 year: 2014 ident: apjabcf31bib37 publication-title: CSE doi: 10.1109/MCSE.2014.80 – year: 2020 ident: apjabcf31bib21 – volume: 452 start-page: 710 year: 1995 ident: apjabcf31bib22 publication-title: ApJ doi: 10.1086/176343 – volume: 474 start-page: 2514 year: 2018a ident: apjabcf31bib41 publication-title: MNRAS doi: 10.1093/mnras/stx2883 – volume: 143 start-page: 431 year: 1985 ident: apjabcf31bib30 publication-title: A&A – volume: 893 start-page: L7 year: 2020 ident: apjabcf31bib38 publication-title: ApJL doi: 10.3847/2041-8213/ab8122 – volume: 116 start-page: 771 year: 2019 ident: apjabcf31bib18 publication-title: PNAS doi: 10.1073/pnas.1812491116 – volume: 85 start-page: 905850303 year: 2019 ident: apjabcf31bib29 publication-title: JPlPh doi: 10.1017/S0022377819000345 – volume: 879 start-page: 53 year: 2019 ident: apjabcf31bib2 publication-title: ApJ doi: 10.3847/1538-4357/ab20cc – volume: 122 year: 2019 ident: apjabcf31bib43 publication-title: PhRvL doi: 10.1103/PhysRevLett.122.055101 – volume: 800 start-page: 89 year: 2015 ident: apjabcf31bib33 publication-title: ApJ doi: 10.1088/0004-637X/800/2/89 – volume: 185 start-page: 578 year: 2014 ident: apjabcf31bib36 publication-title: CoPhC doi: 10.1016/j.cpc.2013.10.022 – volume: 875 start-page: L5 year: 2019 ident: apjabcf31bib12 publication-title: ApJL doi: 10.3847/2041-8213/ab0f43 – volume: 867 start-page: L18 year: 2018b ident: apjabcf31bib42 publication-title: ApJL doi: 10.3847/2041-8213/aae88c – volume: 493 start-page: 603 year: 2020 ident: apjabcf31bib40 publication-title: MNRAS doi: 10.1093/mnras/staa284 – volume: 26 start-page: 072105 year: 2019 ident: apjabcf31bib1 publication-title: PhPl doi: 10.1063/1.5098478 – volume: 535 start-page: A108 year: 2011 ident: apjabcf31bib7 publication-title: A&A doi: 10.1051/0004-6361/201117505 – volume: 112 start-page: 205003 year: 2014 ident: apjabcf31bib19 publication-title: PhRvL doi: 10.1103/PhysRevLett.112.205003 – volume: 295 start-page: 17 year: 1982 ident: apjabcf31bib27 publication-title: Natur doi: 10.1038/295017a0 – volume: 6 start-page: 317 year: 1962 ident: apjabcf31bib17 publication-title: SvA – volume: 491 start-page: 3900 year: 2020 ident: apjabcf31bib35 publication-title: MNRAS doi: 10.1093/mnras/stz3313 – volume: 758 start-page: L44 year: 2012 ident: apjabcf31bib5 publication-title: ApJL doi: 10.1088/2041-8205/758/2/L44 – volume: 121 year: 2018 ident: apjabcf31bib8 publication-title: PhRvL doi: 10.1103/PhysRevLett.121.255101 – volume: 118 year: 2017 ident: apjabcf31bib44 publication-title: PhRvL doi: 10.1103/PhysRevLett.118.055103 – volume: 407 start-page: L17 year: 2003 ident: apjabcf31bib24 publication-title: A&A doi: 10.1051/0004-6361:20030983 – volume: 214 start-page: 840 year: 1977 ident: apjabcf31bib15 publication-title: ApJ doi: 10.1086/155314 – volume: 500 start-page: 978 year: 1998 ident: apjabcf31bib25 publication-title: ApJ doi: 10.1086/305770 – volume: 520 start-page: 248 year: 1999 ident: apjabcf31bib26 publication-title: ApJ doi: 10.1086/307423 – volume: 332 start-page: 872 year: 1988 ident: apjabcf31bib4 publication-title: ApJ doi: 10.1086/166698 – volume: 204 start-page: 187 year: 1976 ident: apjabcf31bib31 publication-title: ApJ doi: 10.1086/154162 – volume: 413 start-page: 45 year: 2001 ident: apjabcf31bib3 publication-title: Natur doi: 10.1038/35092510 – volume: 501 start-page: 787 year: 1998 ident: apjabcf31bib13 publication-title: ApJ doi: 10.1086/305845 – volume: Vol. 2 year: 1975 ident: apjabcf31bib20 – volume: 44 start-page: 49 year: 2006 ident: apjabcf31bib28 publication-title: ARA&A doi: 10.1146/annurev.astro.44.051905.092532 – volume: 52 start-page: 529 year: 2014 ident: apjabcf31bib39 publication-title: ARA&A doi: 10.1146/annurev-astro-082812-141003 |
SSID | ssj0004299 |
Score | 2.5154185 |
Snippet | Turbulence is a predominant process for energizing electrons and ions in collisionless astrophysical plasmas, and thus is responsible for shaping their... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 71 |
SubjectTerms | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY Accretion Astronomical models Astrophysics Computational fluid dynamics Cooling Cosmic rays Deposition Electron energy High energy astronomy High energy astrophysics High energy electrons Ions Luminosity Non-thermal radiation sources Particle in cell technique Plasma astrophysics Plasma turbulence Radiation Radiation effects Radiative cooling Relativistic effects Relativistic jets Relativistic particles Relativistic plasmas Simulation Temperature ratio Thermal coupling |
Title | Production and Persistence of Extreme Two-temperature Plasmas in Radiative Relativistic Turbulence |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/abcf31 https://www.proquest.com/docview/2489760002 https://www.osti.gov/servlets/purl/1817210 |
Volume | 908 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xEFIvFSyt2PKQD4DEwWxiOy_1hCoQIAErtKh7sxzHkVqVZNUN0P57ZuIsaAVacfPBefnzjOezZ74A7CPDSJ0LIm7LRHCFc4jnKlfcIWPJhZORVVTvfHUdn9-py3E0XoLvL7Uw9aRz_cfY9ELBfgjJviX60kFro7jKJwOT25JqqFdlGqfEvG7kz9eiSJF1sa_isUzG_ozy3TvMrUnL-Fz0zzVa2Bv_3C46Z-vwuYsW2Yl_tw1YclUPtk6mtH9d3_9nh6xt--2JaQ_Whr61CfnQS7nisDNTFYwy3QlR_GRWl-z0X0Mbg2z0VHNSp-qkldkQg-l7M2W_KnZLqgXkDJlPmHtsJZ3Z6AFxaCuVvsDo7HT045x3_1PgFpfthotSOqeMNBj1EVFJ8lDYLEYLLkSJTMEGSC4ya7AzDouVRSILayPplAsja-RXWKnqym0Bi2UYFaEt4gL5mEWjD4x0QsWGig9dHvRhMBtQbTutcfrlxR-NnIMg0ASBJgi0h6APRy9XTLzOxoK-B4iR7oxtuqDf7lw_M_mtsyDVoU5CPSnKPmwTyhonHAnmWsosso3GmAdpMX7Dzgz811sIlWZ0lBmIbx98iW34JCgNpk303oGV5u-D28U4psn3YPniZrjXztpn1VXszw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB3BIlAvVaFULCzgQ6nEwd3EdpLNEVFWfBVWaBF7sxzHkUCQrLqBtv-emTiAUCvEzQfHsf084xl75hngK3oYA-eCiNsiEVzhGuKZyhR36LFkwsnIKsp3_nkWH16q40k0ad85bXJhqmmr-r9j0RMF-ykk-ZaoS_uNjOIun_RNZgsZ9qd5MQ8LkYxjervhXF69JEaKtLV_FY9lMvH3lP9t5dW-NI__Rh1doZT9o6ObjWf4CT62FiPb8_1bhjlXrsDa3ozOsKu7v-wba8r-iGK2AosjX_oM2cjTueLUM1PmjKLdCVUcNqsKdvCnpsNBNv5dcWKoaumV2QgN6jszY9cluyDmAlKIzAfNPTS0zmx8j1g02UqrMB4ejPcPefumAre4dddcFNI5ZaRBy4-clSQLhU1jlOJcFOgt2AAdjNQarIzTYmWeyNzaSDrlwsga-QU6ZVW6NWCxDKM8tHmco09mUfADI51QsaEERJcFXeg_Tai2Ld84PXtxq9HvIAg0QaAJAu0h6MLu8xdTz7XxRt0dxEi3Ajd7o97mq3pmeqPTYKBDnYQaF04XNghljYuOSHMtRRfZWqPdg64xjqH3BP5LE0INUrrODMT6OzuxDUujH0N9enR2sgEfBEXFNHHfPejUv-7dJpo1dbbVLN1H3xfvtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+and+Persistence+of+Extreme+Two-temperature+Plasmas+in+Radiative+Relativistic+Turbulence&rft.jtitle=The+Astrophysical+journal&rft.au=Zhdankin%2C+Vladimir&rft.au=Uzdensky%2C+Dmitri+A.&rft.au=Kunz%2C+Matthew+W.&rft.date=2021-02-01&rft.pub=IOP+Publishing&rft.issn=1538-4357&rft.eissn=1538-4357&rft.volume=908&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fabcf31&rft.externalDocID=1817210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |