Production and Persistence of Extreme Two-temperature Plasmas in Radiative Relativistic Turbulence

Turbulence is a predominant process for energizing electrons and ions in collisionless astrophysical plasmas, and thus is responsible for shaping their radiative signatures (luminosity, spectra, and variability). To better understand the kinetic properties of a collisionless radiative plasma subject...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 908; no. 1; pp. 71 - 76
Main Authors Zhdankin, Vladimir, Uzdensky, Dmitri A., Kunz, Matthew W.
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.02.2021
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Turbulence is a predominant process for energizing electrons and ions in collisionless astrophysical plasmas, and thus is responsible for shaping their radiative signatures (luminosity, spectra, and variability). To better understand the kinetic properties of a collisionless radiative plasma subject to externally driven turbulence, we investigate particle-in-cell simulations of relativistic plasma turbulence with external inverse Compton cooling acting on the electrons. We find that ions continuously heat up while electrons gradually cool down (due to the net effect of radiation), and hence the ion-to-electron temperature ratio Ti/Te grows in time. We show that Ti/Te is limited only by the size and duration of the simulations (reaching ), indicating that there are no efficient collisionless mechanisms of electron-ion thermal coupling. This result has implications for models of radiatively inefficient accretion flows, such as observed in the Galactic center and in M87, for which so-called two-temperature plasmas with have been invoked to explain their low luminosity. Additionally, we find that electrons acquire a quasi-thermal distribution (dictated by the competition of turbulent particle energization and radiative cooling), while ions undergo efficient nonthermal acceleration (acquiring a harder distribution than in equivalent nonradiative simulations). There is a modest nonthermal population of high-energy electrons that are beamed intermittently in space, time, and direction; these beamed electrons may explain rapid flares in certain high-energy astrophysical systems (e.g., in the Galactic center). These numerical results demonstrate that extreme two-temperature plasmas can be produced and maintained by relativistic radiative turbulence.
AbstractList Turbulence is a predominant process for energizing electrons and ions in collisionless astrophysical plasmas, and thus is responsible for shaping their radiative signatures (luminosity, spectra, and variability). To better understand the kinetic properties of a collisionless radiative plasma subject to externally driven turbulence, we investigate particle-in-cell simulations of relativistic plasma turbulence with external inverse Compton cooling acting on the electrons. We find that ions continuously heat up while electrons gradually cool down (due to the net effect of radiation), and hence the ion-to-electron temperature ratio Ti/Te grows in time. We show that Ti/Te is limited only by the size and duration of the simulations (reaching ), indicating that there are no efficient collisionless mechanisms of electron-ion thermal coupling. This result has implications for models of radiatively inefficient accretion flows, such as observed in the Galactic center and in M87, for which so-called two-temperature plasmas with have been invoked to explain their low luminosity. Additionally, we find that electrons acquire a quasi-thermal distribution (dictated by the competition of turbulent particle energization and radiative cooling), while ions undergo efficient nonthermal acceleration (acquiring a harder distribution than in equivalent nonradiative simulations). There is a modest nonthermal population of high-energy electrons that are beamed intermittently in space, time, and direction; these beamed electrons may explain rapid flares in certain high-energy astrophysical systems (e.g., in the Galactic center). These numerical results demonstrate that extreme two-temperature plasmas can be produced and maintained by relativistic radiative turbulence.
Turbulence is a predominant process for energizing electrons and ions in collisionless astrophysical plasmas, and thus is responsible for shaping their radiative signatures (luminosity, spectra, and variability). To better understand the kinetic properties of a collisionless radiative plasma subject to externally driven turbulence, we investigate particle-in-cell simulations of relativistic plasma turbulence with external inverse Compton cooling acting on the electrons. We find that ions continuously heat up while electrons gradually cool down (due to the net effect of radiation), and hence the ion-to-electron temperature ratio T i / T e grows in time. We show that T i / T e is limited only by the size and duration of the simulations (reaching ), indicating that there are no efficient collisionless mechanisms of electron–ion thermal coupling. This result has implications for models of radiatively inefficient accretion flows, such as observed in the Galactic center and in M87, for which so-called two-temperature plasmas with have been invoked to explain their low luminosity. Additionally, we find that electrons acquire a quasi-thermal distribution (dictated by the competition of turbulent particle energization and radiative cooling), while ions undergo efficient nonthermal acceleration (acquiring a harder distribution than in equivalent nonradiative simulations). There is a modest nonthermal population of high-energy electrons that are beamed intermittently in space, time, and direction; these beamed electrons may explain rapid flares in certain high-energy astrophysical systems (e.g., in the Galactic center). These numerical results demonstrate that extreme two-temperature plasmas can be produced and maintained by relativistic radiative turbulence.
Turbulence is a predominant process for energizing electrons and ions in collisionless astrophysical plasmas, and thus is responsible for shaping their radiative signatures (luminosity, spectra, and variability). To better understand the kinetic properties of a collisionless radiative plasma subject to externally driven turbulence, we investigate particle-in-cell simulations of relativistic plasma turbulence with external inverse Compton cooling acting on the electrons. We find that ions continuously heat up while electrons gradually cool down (due to the net effect of radiation), and hence the ion-to-electron temperature ratio T i /T e grows in time. We show that T i /T e is limited only by the size and duration of the simulations (reaching \({T}_{i}/{T}_{e}\sim {10}^{3}\)), indicating that there are no efficient collisionless mechanisms of electron–ion thermal coupling. This result has implications for models of radiatively inefficient accretion flows, such as observed in the Galactic center and in M87, for which so-called two-temperature plasmas with \({T}_{i}/{T}_{e}\gg 1\) have been invoked to explain their low luminosity. Additionally, we find that electrons acquire a quasi-thermal distribution (dictated by the competition of turbulent particle energization and radiative cooling), while ions undergo efficient nonthermal acceleration (acquiring a harder distribution than in equivalent nonradiative simulations). There is a modest nonthermal population of high-energy electrons that are beamed intermittently in space, time, and direction; these beamed electrons may explain rapid flares in certain high-energy astrophysical systems (e.g., in the Galactic center). These numerical results demonstrate that extreme two-temperature plasmas can be produced and maintained by relativistic radiative turbulence.
Turbulence is a predominant process for energizing electrons and ions in collisionless astrophysical plasmas, and thus is responsible for shaping their radiative signatures (luminosity, spectra, and variability). To better understand the kinetic properties of a collisionless radiative plasma subject to externally driven turbulence, we investigate particle-in-cell simulations of relativistic plasma turbulence with external inverse Compton cooling acting on the electrons. We find that ions continuously heat up while electrons gradually cool down (due to the net effect of radiation), and hence the ion-to-electron temperature ratio Ti/Te grows in time. Furthermore, we show that Ti/Te is limited only by the size and duration of the simulations (reaching ${T}_{i}/{T}_{e}\sim {10}^{3}$), indicating that there are no efficient collisionless mechanisms of electron–ion thermal coupling. This result has implications for models of radiatively inefficient accretion flows, such as observed in the Galactic center and in M87, for which so-called two-temperature plasmas with ${T}_{i}/{T}_{e}\gg 1$ have been invoked to explain their low luminosity. Additionally, we find that electrons acquire a quasi-thermal distribution (dictated by the competition of turbulent particle energization and radiative cooling), while ions undergo efficient nonthermal acceleration (acquiring a harder distribution than in equivalent nonradiative simulations). There is a modest nonthermal population of high-energy electrons that are beamed intermittently in space, time, and direction; these beamed electrons may explain rapid flares in certain high-energy astrophysical systems (e.g., in the Galactic center). These numerical results demonstrate that extreme two-temperature plasmas can be produced and maintained by relativistic radiative turbulence.
Author Zhdankin, Vladimir
Uzdensky, Dmitri A.
Kunz, Matthew W.
Author_xml – sequence: 1
  givenname: Vladimir
  surname: Zhdankin
  fullname: Zhdankin, Vladimir
  email: zhdankin@princeton.edu
  organization: Princeton University Department of Astrophysical Sciences, 4 Ivy Lane, Princeton, NJ 08544, USA
– sequence: 2
  givenname: Dmitri A.
  surname: Uzdensky
  fullname: Uzdensky, Dmitri A.
  organization: University of Colorado Center for Integrated Plasma Studies, Department of Physics, 390 UCB, Boulder, CO 80309, USA
– sequence: 3
  givenname: Matthew W.
  surname: Kunz
  fullname: Kunz, Matthew W.
  organization: Princeton Plasma Physics Laboratory , P.O. Box 451, Princeton, NJ 08543, USA
BackLink https://www.osti.gov/servlets/purl/1817210$$D View this record in Osti.gov
BookMark eNp9kEtLxDAURoMoOD72LoO6tJo0adMuRcYHCA4yC3chk95ihk5Sk9THvzeloiDiJi_Od-_N2UPb1llA6IiSc1ZxcUELVmWcFeJCrXTL6BaafT9toxkhhGclE0-7aC-E9XjN63qGVgvvmkFH4yxWtsEL8MGECFYDdi2ev0cPG8DLN5dF2PTgVRw84EWnwkYFbCx-VI1R0bwCfoRuPKS40Xg5-NXQjXUO0E6rugCHX_s-Wl7Pl1e32f3Dzd3V5X2mOSljlrcMgCumKKsLXgmxormuy6oiTd4SXmtSi7SqBKcPatYI1mhdMOBAC63YPjqeyrrUXwZtIuhn7awFHSWtqMgpSdDJBPXevQwQoly7wds0lsx5VYsyickTRSZKexeCh1b23myU_5CUyNG2HNXKUa2cbKdI-SuSBlCj1uiV6f4Lnk1B4_qfYf7BT__AVb-WNakklYLKvmnZJ9N5ohQ
CitedBy_id crossref_primary_10_3847_1538_4357_acaf54
crossref_primary_10_1051_0004_6361_202141730
crossref_primary_10_1103_PhysRevX_13_021014
crossref_primary_10_1093_mnras_stac2730
crossref_primary_10_1103_PhysRevLett_132_085202
crossref_primary_10_3847_1538_4357_accd73
crossref_primary_10_1051_0004_6361_202244690
crossref_primary_10_1017_S0022377823000727
crossref_primary_10_3847_2041_8213_ac441e
crossref_primary_10_3847_1538_4357_ad5b51
crossref_primary_10_3847_2041_8213_ac6cde
crossref_primary_10_1103_PhysRevLett_127_255102
crossref_primary_10_3847_1538_4357_ad1827
crossref_primary_10_1088_1402_4896_acc7d6
crossref_primary_10_1093_mnras_stad3863
crossref_primary_10_3847_2041_8213_ac3afa
crossref_primary_10_3847_1538_4357_ac8a94
crossref_primary_10_3390_universe9060282
crossref_primary_10_1093_mnras_stab2534
crossref_primary_10_3847_1538_4365_ac582e
crossref_primary_10_3847_1538_4365_adaea6
crossref_primary_10_1103_PhysRevD_104_063020
crossref_primary_10_1017_S0022377822000721
Cites_doi 10.3847/0004-637X/826/2/221
10.1051/0004-6361/200811354
10.3847/1538-4357/ab4c33
10.1088/0004-637X/800/2/88
10.1111/j.1365-2966.2008.13209.x
10.1111/j.1745-3933.2010.00958.x
10.1086/520800
10.1088/0004-637X/770/2/147
10.1109/MCSE.2014.80
10.1086/176343
10.1093/mnras/stx2883
10.3847/2041-8213/ab8122
10.1073/pnas.1812491116
10.1017/S0022377819000345
10.3847/1538-4357/ab20cc
10.1103/PhysRevLett.122.055101
10.1088/0004-637X/800/2/89
10.1016/j.cpc.2013.10.022
10.3847/2041-8213/ab0f43
10.3847/2041-8213/aae88c
10.1093/mnras/staa284
10.1063/1.5098478
10.1051/0004-6361/201117505
10.1103/PhysRevLett.112.205003
10.1038/295017a0
10.1093/mnras/stz3313
10.1088/2041-8205/758/2/L44
10.1103/PhysRevLett.121.255101
10.1103/PhysRevLett.118.055103
10.1051/0004-6361:20030983
10.1086/155314
10.1086/305770
10.1086/307423
10.1086/166698
10.1086/154162
10.1038/35092510
10.1086/305845
10.1146/annurev.astro.44.051905.092532
10.1146/annurev-astro-082812-141003
ContentType Journal Article
Copyright 2021. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Feb 01, 2021
Copyright_xml – notice: 2021. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Feb 01, 2021
CorporateAuthor Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
CorporateAuthor_xml – name: Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
OIOZB
OTOTI
DOI 10.3847/1538-4357/abcf31
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate Production and Persistence of Extreme Two-temperature Plasmas in Radiative Relativistic Turbulence
EISSN 1538-4357
ExternalDocumentID 1817210
10_3847_1538_4357_abcf31
apjabcf31
GrantInformation_xml – fundername: NSF
  grantid: AST-1715277
– fundername: NASA
  grantid: NNX17AK57G
– fundername: NSF
  grantid: AST-1806084
– fundername: NASA
  grantid: HST-HF2-51426.001-A
– fundername: NASA
  grantid: 80NSSC20K0545
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ABPTK
OIOZB
OTOTI
ID FETCH-LOGICAL-c406t-2f3ee4a3a13954877b12c96880d2f049c09749ca406bcfc3d73dcc53e4e15ca3
IEDL.DBID O3W
ISSN 0004-637X
1538-4357
IngestDate Thu May 18 22:29:25 EDT 2023
Wed Aug 13 09:18:02 EDT 2025
Tue Jul 01 03:24:33 EDT 2025
Thu Apr 24 22:59:41 EDT 2025
Wed Feb 24 05:40:46 EST 2021
Wed Aug 21 03:37:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-2f3ee4a3a13954877b12c96880d2f049c09749ca406bcfc3d73dcc53e4e15ca3
Notes High-Energy Phenomena and Fundamental Physics
AAS26086
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
National Aeronautics and Space Administration (NASA)
USDOE Office of Science (SC)
National Science Foundation (NSF)
AC02-06CH11357; HST-HF2-51426.001-A; NAS5-26555; NNX17AK57G; 80NSSC20K0545; AST-1806084; AST-1715277; ACI-1548562
OpenAccessLink https://www.osti.gov/servlets/purl/1817210
PQID 2489760002
PQPubID 4562441
PageCount 6
ParticipantIDs proquest_journals_2489760002
crossref_primary_10_3847_1538_4357_abcf31
iop_journals_10_3847_1538_4357_abcf31
osti_scitechconnect_1817210
crossref_citationtrail_10_3847_1538_4357_abcf31
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
– name: United States
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2021
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Eckart (apjabcf31bib10) 2009; 500
Arzamasskiy (apjabcf31bib2) 2019; 879
Kunz (apjabcf31bib19) 2014; 112
Schekochihin (apjabcf31bib29) 2019; 85
Comisso (apjabcf31bib8) 2018; 121
Ichimaru (apjabcf31bib15) 1977; 214
Zhdankin (apjabcf31bib43) 2019; 122
Zhdankin (apjabcf31bib44) 2017; 118
TenBarge (apjabcf31bib36) 2014; 185
Zhdankin (apjabcf31bib42) 2018b; 867
Zhdankin (apjabcf31bib40) 2020; 493
Quataert (apjabcf31bib26) 1999; 520
Towns (apjabcf31bib37) 2014; 16
Landau (apjabcf31bib20) 1975; Vol. 2
Begelman (apjabcf31bib4) 1988; 332
Quataert (apjabcf31bib25) 1998; 500
Yuan (apjabcf31bib39) 2014; 52
Sharma (apjabcf31bib32) 2007; 667
Remillard (apjabcf31bib28) 2006; 44
Schlickeiser (apjabcf31bib30) 1985; 143
Mehlhaff (apjabcf31bib21) 2020
Porquet (apjabcf31bib24) 2003; 407
Colafrancesco (apjabcf31bib7) 2011; 535
Narayan (apjabcf31bib22) 1995; 452
Rees (apjabcf31bib27) 1982; 295
Sironi (apjabcf31bib33) 2015; 800
Nättilä (apjabcf31bib23) 2019
Erlund (apjabcf31bib11) 2008; 386
Shapiro (apjabcf31bib31) 1976; 204
Alves (apjabcf31bib1) 2019; 26
Kardashev (apjabcf31bib17) 1962; 6
Boldyrev (apjabcf31bib5) 2012; 758
Gruzinov (apjabcf31bib13) 1998; 501
Kagan (apjabcf31bib16) 2016; 826
Kawazura (apjabcf31bib18) 2019; 116
Sobacchi (apjabcf31bib35) 2020; 491
Baganoff (apjabcf31bib3) 2001; 413
Comisso (apjabcf31bib9) 2019; 886
Wong (apjabcf31bib38) 2020; 893
Zhdankin (apjabcf31bib41) 2018a; 474
Cerutti (apjabcf31bib6) 2013; 770
Event Horizon Telescope Collaboration (apjabcf31bib12) 2019; 875
Howes (apjabcf31bib14) 2010; 409
Sironi (apjabcf31bib34) 2015; 800
References_xml – volume: 826
  start-page: 221
  year: 2016
  ident: apjabcf31bib16
  publication-title: ApJ
  doi: 10.3847/0004-637X/826/2/221
– volume: 500
  start-page: 935
  year: 2009
  ident: apjabcf31bib10
  publication-title: A&A
  doi: 10.1051/0004-6361/200811354
– volume: 886
  start-page: 122
  year: 2019
  ident: apjabcf31bib9
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab4c33
– volume: 800
  start-page: 88
  year: 2015
  ident: apjabcf31bib34
  publication-title: ApJ
  doi: 10.1088/0004-637X/800/2/88
– volume: 386
  start-page: 1774
  year: 2008
  ident: apjabcf31bib11
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13209.x
– volume: 409
  start-page: L104
  year: 2010
  ident: apjabcf31bib14
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2010.00958.x
– year: 2019
  ident: apjabcf31bib23
– volume: 667
  start-page: 714
  year: 2007
  ident: apjabcf31bib32
  publication-title: ApJ
  doi: 10.1086/520800
– volume: 770
  start-page: 147
  year: 2013
  ident: apjabcf31bib6
  publication-title: ApJ
  doi: 10.1088/0004-637X/770/2/147
– volume: 16
  start-page: 62
  year: 2014
  ident: apjabcf31bib37
  publication-title: CSE
  doi: 10.1109/MCSE.2014.80
– year: 2020
  ident: apjabcf31bib21
– volume: 452
  start-page: 710
  year: 1995
  ident: apjabcf31bib22
  publication-title: ApJ
  doi: 10.1086/176343
– volume: 474
  start-page: 2514
  year: 2018a
  ident: apjabcf31bib41
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2883
– volume: 143
  start-page: 431
  year: 1985
  ident: apjabcf31bib30
  publication-title: A&A
– volume: 893
  start-page: L7
  year: 2020
  ident: apjabcf31bib38
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab8122
– volume: 116
  start-page: 771
  year: 2019
  ident: apjabcf31bib18
  publication-title: PNAS
  doi: 10.1073/pnas.1812491116
– volume: 85
  start-page: 905850303
  year: 2019
  ident: apjabcf31bib29
  publication-title: JPlPh
  doi: 10.1017/S0022377819000345
– volume: 879
  start-page: 53
  year: 2019
  ident: apjabcf31bib2
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab20cc
– volume: 122
  year: 2019
  ident: apjabcf31bib43
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.122.055101
– volume: 800
  start-page: 89
  year: 2015
  ident: apjabcf31bib33
  publication-title: ApJ
  doi: 10.1088/0004-637X/800/2/89
– volume: 185
  start-page: 578
  year: 2014
  ident: apjabcf31bib36
  publication-title: CoPhC
  doi: 10.1016/j.cpc.2013.10.022
– volume: 875
  start-page: L5
  year: 2019
  ident: apjabcf31bib12
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab0f43
– volume: 867
  start-page: L18
  year: 2018b
  ident: apjabcf31bib42
  publication-title: ApJL
  doi: 10.3847/2041-8213/aae88c
– volume: 493
  start-page: 603
  year: 2020
  ident: apjabcf31bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/staa284
– volume: 26
  start-page: 072105
  year: 2019
  ident: apjabcf31bib1
  publication-title: PhPl
  doi: 10.1063/1.5098478
– volume: 535
  start-page: A108
  year: 2011
  ident: apjabcf31bib7
  publication-title: A&A
  doi: 10.1051/0004-6361/201117505
– volume: 112
  start-page: 205003
  year: 2014
  ident: apjabcf31bib19
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.112.205003
– volume: 295
  start-page: 17
  year: 1982
  ident: apjabcf31bib27
  publication-title: Natur
  doi: 10.1038/295017a0
– volume: 6
  start-page: 317
  year: 1962
  ident: apjabcf31bib17
  publication-title: SvA
– volume: 491
  start-page: 3900
  year: 2020
  ident: apjabcf31bib35
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3313
– volume: 758
  start-page: L44
  year: 2012
  ident: apjabcf31bib5
  publication-title: ApJL
  doi: 10.1088/2041-8205/758/2/L44
– volume: 121
  year: 2018
  ident: apjabcf31bib8
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.121.255101
– volume: 118
  year: 2017
  ident: apjabcf31bib44
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.118.055103
– volume: 407
  start-page: L17
  year: 2003
  ident: apjabcf31bib24
  publication-title: A&A
  doi: 10.1051/0004-6361:20030983
– volume: 214
  start-page: 840
  year: 1977
  ident: apjabcf31bib15
  publication-title: ApJ
  doi: 10.1086/155314
– volume: 500
  start-page: 978
  year: 1998
  ident: apjabcf31bib25
  publication-title: ApJ
  doi: 10.1086/305770
– volume: 520
  start-page: 248
  year: 1999
  ident: apjabcf31bib26
  publication-title: ApJ
  doi: 10.1086/307423
– volume: 332
  start-page: 872
  year: 1988
  ident: apjabcf31bib4
  publication-title: ApJ
  doi: 10.1086/166698
– volume: 204
  start-page: 187
  year: 1976
  ident: apjabcf31bib31
  publication-title: ApJ
  doi: 10.1086/154162
– volume: 413
  start-page: 45
  year: 2001
  ident: apjabcf31bib3
  publication-title: Natur
  doi: 10.1038/35092510
– volume: 501
  start-page: 787
  year: 1998
  ident: apjabcf31bib13
  publication-title: ApJ
  doi: 10.1086/305845
– volume: Vol. 2
  year: 1975
  ident: apjabcf31bib20
– volume: 44
  start-page: 49
  year: 2006
  ident: apjabcf31bib28
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.44.051905.092532
– volume: 52
  start-page: 529
  year: 2014
  ident: apjabcf31bib39
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-082812-141003
SSID ssj0004299
Score 2.5154185
Snippet Turbulence is a predominant process for energizing electrons and ions in collisionless astrophysical plasmas, and thus is responsible for shaping their...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Accretion
Astronomical models
Astrophysics
Computational fluid dynamics
Cooling
Cosmic rays
Deposition
Electron energy
High energy astronomy
High energy astrophysics
High energy electrons
Ions
Luminosity
Non-thermal radiation sources
Particle in cell technique
Plasma astrophysics
Plasma turbulence
Radiation
Radiation effects
Radiative cooling
Relativistic effects
Relativistic jets
Relativistic particles
Relativistic plasmas
Simulation
Temperature ratio
Thermal coupling
Title Production and Persistence of Extreme Two-temperature Plasmas in Radiative Relativistic Turbulence
URI https://iopscience.iop.org/article/10.3847/1538-4357/abcf31
https://www.proquest.com/docview/2489760002
https://www.osti.gov/servlets/purl/1817210
Volume 908
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xEFIvFSyt2PKQD4DEwWxiOy_1hCoQIAErtKh7sxzHkVqVZNUN0P57ZuIsaAVacfPBefnzjOezZ74A7CPDSJ0LIm7LRHCFc4jnKlfcIWPJhZORVVTvfHUdn9-py3E0XoLvL7Uw9aRz_cfY9ELBfgjJviX60kFro7jKJwOT25JqqFdlGqfEvG7kz9eiSJF1sa_isUzG_ozy3TvMrUnL-Fz0zzVa2Bv_3C46Z-vwuYsW2Yl_tw1YclUPtk6mtH9d3_9nh6xt--2JaQ_Whr61CfnQS7nisDNTFYwy3QlR_GRWl-z0X0Mbg2z0VHNSp-qkldkQg-l7M2W_KnZLqgXkDJlPmHtsJZ3Z6AFxaCuVvsDo7HT045x3_1PgFpfthotSOqeMNBj1EVFJ8lDYLEYLLkSJTMEGSC4ya7AzDouVRSILayPplAsja-RXWKnqym0Bi2UYFaEt4gL5mEWjD4x0QsWGig9dHvRhMBtQbTutcfrlxR-NnIMg0ASBJgi0h6APRy9XTLzOxoK-B4iR7oxtuqDf7lw_M_mtsyDVoU5CPSnKPmwTyhonHAnmWsosso3GmAdpMX7Dzgz811sIlWZ0lBmIbx98iW34JCgNpk303oGV5u-D28U4psn3YPniZrjXztpn1VXszw
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB3BIlAvVaFULCzgQ6nEwd3EdpLNEVFWfBVWaBF7sxzHkUCQrLqBtv-emTiAUCvEzQfHsf084xl75hngK3oYA-eCiNsiEVzhGuKZyhR36LFkwsnIKsp3_nkWH16q40k0ad85bXJhqmmr-r9j0RMF-ykk-ZaoS_uNjOIun_RNZgsZ9qd5MQ8LkYxjervhXF69JEaKtLV_FY9lMvH3lP9t5dW-NI__Rh1doZT9o6ObjWf4CT62FiPb8_1bhjlXrsDa3ozOsKu7v-wba8r-iGK2AosjX_oM2cjTueLUM1PmjKLdCVUcNqsKdvCnpsNBNv5dcWKoaumV2QgN6jszY9cluyDmAlKIzAfNPTS0zmx8j1g02UqrMB4ejPcPefumAre4dddcFNI5ZaRBy4-clSQLhU1jlOJcFOgt2AAdjNQarIzTYmWeyNzaSDrlwsga-QU6ZVW6NWCxDKM8tHmco09mUfADI51QsaEERJcFXeg_Tai2Ld84PXtxq9HvIAg0QaAJAu0h6MLu8xdTz7XxRt0dxEi3Ajd7o97mq3pmeqPTYKBDnYQaF04XNghljYuOSHMtRRfZWqPdg64xjqH3BP5LE0INUrrODMT6OzuxDUujH0N9enR2sgEfBEXFNHHfPejUv-7dJpo1dbbVLN1H3xfvtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+and+Persistence+of+Extreme+Two-temperature+Plasmas+in+Radiative+Relativistic+Turbulence&rft.jtitle=The+Astrophysical+journal&rft.au=Zhdankin%2C+Vladimir&rft.au=Uzdensky%2C+Dmitri+A.&rft.au=Kunz%2C+Matthew+W.&rft.date=2021-02-01&rft.pub=IOP+Publishing&rft.issn=1538-4357&rft.eissn=1538-4357&rft.volume=908&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fabcf31&rft.externalDocID=1817210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon