Accuracy of Information and References Using ChatGPT-3 for Retrieval of Clinical Radiological Information
Purpose: To assess the accuracy of answers provided by ChatGPT-3 when prompted with questions from the daily routine of radiologists and to evaluate the text response when ChatGPT-3 was prompted to provide references for a given answer. Methods: ChatGPT-3 (San Francisco, OpenAI) is an artificial int...
Saved in:
Published in | Canadian Association of Radiologists journal Vol. 75; no. 1; pp. 69 - 73 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose: To assess the accuracy of answers provided by ChatGPT-3 when prompted with questions from the daily routine of radiologists and to evaluate the text response when ChatGPT-3 was prompted to provide references for a given answer. Methods: ChatGPT-3 (San Francisco, OpenAI) is an artificial intelligence chatbot based on a large language model (LLM) that has been designed to generate human-like text. A total of 88 questions were submitted to ChatGPT-3 using textual prompt. These 88 questions were equally dispersed across 8 subspecialty areas of radiology. The responses provided by ChatGPT-3 were assessed for correctness by cross-checking them with peer-reviewed, PubMed-listed references. In addition, the references provided by ChatGPT-3 were evaluated for authenticity. Results: A total of 59 of 88 responses (67%) to radiological questions were correct, while 29 responses (33%) had errors. Out of 343 references provided, only 124 references (36.2%) were available through internet search, while 219 references (63.8%) appeared to be generated by ChatGPT-3. When examining the 124 identified references, only 47 references (37.9%) were considered to provide enough background to correctly answer 24 questions (37.5%). Conclusion: In this pilot study, ChatGPT-3 provided correct responses to questions from the daily clinical routine of radiologists in only about two thirds, while the remainder of responses contained errors. The majority of provided references were not found and only a minority of the provided references contained the correct information to answer the question. Caution is advised when using ChatGPT-3 to retrieve radiological information.
Graphical Abstract |
---|---|
AbstractList | To assess the accuracy of answers provided by ChatGPT-3 when prompted with questions from the daily routine of radiologists and to evaluate the text response when ChatGPT-3 was prompted to provide references for a given answer.
ChatGPT-3 (San Francisco, OpenAI) is an artificial intelligence chatbot based on a large language model (LLM) that has been designed to generate human-like text. A total of 88 questions were submitted to ChatGPT-3 using textual prompt. These 88 questions were equally dispersed across 8 subspecialty areas of radiology. The responses provided by ChatGPT-3 were assessed for correctness by cross-checking them with peer-reviewed, PubMed-listed references. In addition, the references provided by ChatGPT-3 were evaluated for authenticity.
A total of 59 of 88 responses (67%) to radiological questions were correct, while 29 responses (33%) had errors. Out of 343 references provided, only 124 references (36.2%) were available through internet search, while 219 references (63.8%) appeared to be generated by ChatGPT-3. When examining the 124 identified references, only 47 references (37.9%) were considered to provide enough background to correctly answer 24 questions (37.5%).
In this pilot study, ChatGPT-3 provided correct responses to questions from the daily clinical routine of radiologists in only about two thirds, while the remainder of responses contained errors. The majority of provided references were not found and only a minority of the provided references contained the correct information to answer the question. Caution is advised when using ChatGPT-3 to retrieve radiological information. Purpose: To assess the accuracy of answers provided by ChatGPT-3 when prompted with questions from the daily routine of radiologists and to evaluate the text response when ChatGPT-3 was prompted to provide references for a given answer. Methods: ChatGPT-3 (San Francisco, OpenAI) is an artificial intelligence chatbot based on a large language model (LLM) that has been designed to generate human-like text. A total of 88 questions were submitted to ChatGPT-3 using textual prompt. These 88 questions were equally dispersed across 8 subspecialty areas of radiology. The responses provided by ChatGPT-3 were assessed for correctness by cross-checking them with peer-reviewed, PubMed-listed references. In addition, the references provided by ChatGPT-3 were evaluated for authenticity. Results: A total of 59 of 88 responses (67%) to radiological questions were correct, while 29 responses (33%) had errors. Out of 343 references provided, only 124 references (36.2%) were available through internet search, while 219 references (63.8%) appeared to be generated by ChatGPT-3. When examining the 124 identified references, only 47 references (37.9%) were considered to provide enough background to correctly answer 24 questions (37.5%). Conclusion: In this pilot study, ChatGPT-3 provided correct responses to questions from the daily clinical routine of radiologists in only about two thirds, while the remainder of responses contained errors. The majority of provided references were not found and only a minority of the provided references contained the correct information to answer the question. Caution is advised when using ChatGPT-3 to retrieve radiological information. Graphical Abstract |
Author | Wagner, Matthias W. Ertl-Wagner, Birgit B. |
Author_xml | – sequence: 1 givenname: Matthias W. orcidid: 0000-0001-6501-839X surname: Wagner fullname: Wagner, Matthias W. email: m.w.wagner@me.com organization: Department of Medical Imaging – sequence: 2 givenname: Birgit B. surname: Ertl-Wagner fullname: Ertl-Wagner, Birgit B. organization: Department of Medical Imaging |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37078489$$D View this record in MEDLINE/PubMed |
BookMark | eNplUGFLwzAQDTJx3fQH-EX6BzpzSZO0H0fRORgoY_tczjSZGV062k7Yvzd1CoJwcHe8d497b0JGvvGGkHugMwClHmmWSsEVMB5WACauSARpliWMSxiRaMCTgTAmk67bU0pTrvIbMuaKqizN8oi4udanFvU5bmy89LZpD9i7xsfoq3htrGmN16aLt53zu7j4wH7xtkl4HIgB7ltnPrEebovaeafDvMbKNXWz-17-KN6Sa4t1Z-5--pRsn582xUuyel0si_kq0SmVfcJynUvKVC7BQMWksFRRhAw4NSggrTQaZFYxodIKOBMWWXBe5VRyEYpPycNF93h6P5iqPLbugO25_PUcCLMLocOdKffNqfXhnxJoOYRa_guVfwGmx2cR |
CitedBy_id | crossref_primary_10_1007_s11739_023_03484_5 crossref_primary_10_1093_bjro_tzae018 crossref_primary_10_3390_jpm13101457 crossref_primary_10_7759_cureus_39238 crossref_primary_10_1177_08465371231177674 crossref_primary_10_2196_63188 crossref_primary_10_1080_10447318_2024_2344142 crossref_primary_10_3390_info15110725 crossref_primary_10_1002_ohn_489 crossref_primary_10_1016_j_apjo_2024_100089 crossref_primary_10_1055_s_0044_1786033 crossref_primary_10_1080_10875301_2024_2426793 crossref_primary_10_1016_j_teln_2024_09_009 crossref_primary_10_1016_j_ultrasmedbio_2024_07_007 crossref_primary_10_2196_51526 crossref_primary_10_1515_iwp_2024_2016 crossref_primary_10_1001_jamanetworkopen_2024_57879 crossref_primary_10_1007_s00270_023_03563_2 crossref_primary_10_1111_1754_9485_13621 crossref_primary_10_7759_cureus_50881 crossref_primary_10_2196_55799 crossref_primary_10_1186_s12903_025_05479_4 crossref_primary_10_1007_s00117_023_01187_8 crossref_primary_10_1097_GOX_0000000000005929 crossref_primary_10_2196_50357 crossref_primary_10_1007_s11604_023_01489_w crossref_primary_10_2147_JMDH_S441790 crossref_primary_10_1589_jpts_36_234 crossref_primary_10_1111_hae_14858 crossref_primary_10_62487_ypqhkt57 crossref_primary_10_1177_08465371231193733 crossref_primary_10_1186_s12911_024_02459_6 crossref_primary_10_1088_1361_6560_ad387d crossref_primary_10_1186_s12911_024_02709_7 crossref_primary_10_1016_j_diii_2024_04_003 crossref_primary_10_1007_s00146_023_01840_9 crossref_primary_10_1007_s44217_024_00138_2 crossref_primary_10_1177_08465371231181910 crossref_primary_10_1002_jso_27715 crossref_primary_10_1186_s12911_024_02757_z crossref_primary_10_3390_informatics12010009 crossref_primary_10_1038_s41598_023_41032_5 crossref_primary_10_1093_cid_ciad633 crossref_primary_10_1177_10711813241261689 crossref_primary_10_1016_j_ipha_2024_03_003 crossref_primary_10_1007_s00247_023_05746_y crossref_primary_10_1016_j_compbiomed_2024_109545 crossref_primary_10_4055_cios23181 crossref_primary_10_2106_JBJS_OA_24_00099 crossref_primary_10_1186_s13018_023_04467_0 crossref_primary_10_1007_s00405_024_08710_0 crossref_primary_10_7759_cureus_73874 crossref_primary_10_2196_22769 crossref_primary_10_1177_08465371231193716 crossref_primary_10_1177_15589447241257643 crossref_primary_10_6087_kcse_343 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 |
Copyright_xml | – notice: The Author(s) 2023 |
DBID | AFRWT CGR CUY CVF ECM EIF NPM |
DOI | 10.1177/08465371231171125 |
DatabaseName | Sage Journals GOLD Open Access 2024 Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1488-2361 |
EndPage | 73 |
ExternalDocumentID | 37078489 10.1177_08465371231171125 |
Genre | Journal Article |
GroupedDBID | --- --K 0R~ 1B1 29B 2QL 2WC 36B 4.4 457 4IJ 53G 5GY 6J9 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8FQ 8G5 8R4 8R5 AABMB AACMV AADUE AAEDT AAEDW AAEWN AAGLT AAJQC AAKGS AALRI AAQXI AARIX AATAA AAWTL AAXUO AAYWO ABIDT ABJNI ABJZC ABKRH ABLUO ABMAC ABPNF ABRHV ABUJY ABUWG ABXGC ACARO ACFEJ ACGFS ACIWK ACJER ACLDX ACLFY ACOFE ACOXC ACPRK ACROE ACSIQ ACUAV ACUIR ACXKE ACXMB ADBBV ADEBD ADRRZ ADVBO ADVLN AESZF AEVXI AEWHI AEXNY AFKRA AFKRG AFMOU AFQAA AFRAH AFRWT AFTJW AFUIA AGHKR AGKLV AGNHF AGPXR AHDMH AHMBA AITUG AJUZI AJXAJ ALIPV ALKWR ALMA_UNASSIGNED_HOLDINGS AMRAJ ANDLU ARAPS ARTOV AZQEC BBNVY BBRGL BELOY BENPR BGLVJ BHPHI BKEYQ BKIIM BMSDO BPACV BPHCQ BVXVI BWJAD C1A C5W CCPQU CDWPY CFDXU DC- DF. DOPDO DWQXO EBS EJD EX3 F5P FDB FHBDP FYUFA GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION GUQSH H13 HCIFZ HMCUK HZ~ J8X KOM LK8 M1P M2O M3G M41 M7P MO0 NAPCQ O9- OI~ OK1 OU0 OVD P2P P62 PADUT PHGZM PHGZT PQQKQ PROAC PSQYO Q1R Q2X ROL SAFTQ SASJQ SAUOL SCNPE SEL SES SFC SSZ TEORI UKHRP WH7 WOW XH2 XSB ZONMY ZPPRI ZRKOI ZXP ALTZF CGR CUY CVF ECM EIF M4V NPM |
ID | FETCH-LOGICAL-c406t-29c96027961e1d265f070a18130ea514dcaea2f72574d1325fa2125d906356353 |
IEDL.DBID | AFRWT |
ISSN | 0846-5371 |
IngestDate | Sun May 18 01:30:14 EDT 2025 Tue Jun 17 22:27:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | AI large language models decision support ChatGPT radiology |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-29c96027961e1d265f070a18130ea514dcaea2f72574d1325fa2125d906356353 |
ORCID | 0000-0001-6501-839X |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/08465371231171125?utm_source=summon&utm_medium=discovery-provider |
PMID | 37078489 |
PageCount | 5 |
ParticipantIDs | pubmed_primary_37078489 sage_journals_10_1177_08465371231171125 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA – name: United States |
PublicationTitle | Canadian Association of Radiologists journal |
PublicationTitleAlternate | Can Assoc Radiol J |
PublicationYear | 2024 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Biswas 2023 Rao, Kim, Kamineni, Pang, Lie, Succi 2023 Kitamura 2023 Chavez, Butler, Rekawek, Heo, Kinzler 2023 Kung, Cheatham, Medenilla 2023; 2 Christiano, Leike, Brown, Martic, Legg, Amodei 2017; 30 Ouyang, Wu, Jiang 2022 Hirosawa, Harada, Yokose, Sakamoto, Kawamura, Shimizu 2023; 20 Shen, Heacock, Elias 2023 37171079 - Can Assoc Radiol J. 2024 Feb;75(1):202. doi: 10.1177/08465371231177674. 37283095 - Can Assoc Radiol J. 2024 Feb;75(1):203. doi: 10.1177/08465371231181910. |
References_xml | – volume: 20 start-page: 3378 issue: 4 year: 2023 article-title: Diagnostic accuracy of differential-diagnosis lists generated by generative pretrained transformer 3 chatbot for clinical vignettes with common chief complaints: A pilot study publication-title: Int J Environ Res Public Health – start-page: 230163 year: 2023 article-title: ChatGPT and other large language models are double-edged swords publication-title: Radiology – year: 2022 article-title: Training language models to follow instructions with human feedback – volume: 30 year: 2017 article-title: Deep reinforcement learning from human preferences publication-title: Adv Neural Inf Process Syst – start-page: 230171 year: 2023 article-title: ChatGPT is shaping the future of medical writing but still requires human judgment publication-title: Radiology – start-page: 223312 year: 2023 article-title: ChatGPT and the future of medical writing publication-title: Radiology – start-page: 2023 year: 2023 article-title: Evaluating ChatGPT as an adjunct for radiologic decision-making publication-title: medRxiv – volume: 2 start-page: e0000198 issue: 2 year: 2023 article-title: Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models publication-title: PLOS Digit Health – year: 2023 article-title: ChatGPT(Generative Pre-trained Transformer): Why we should embrace this technology publication-title: Am J Obstet Gynecol – reference: 37171079 - Can Assoc Radiol J. 2024 Feb;75(1):202. doi: 10.1177/08465371231177674. – reference: 37283095 - Can Assoc Radiol J. 2024 Feb;75(1):203. doi: 10.1177/08465371231181910. |
SSID | ssj0004379 |
Score | 2.545767 |
Snippet | Purpose: To assess the accuracy of answers provided by ChatGPT-3 when prompted with questions from the daily routine of radiologists and to evaluate the text... To assess the accuracy of answers provided by ChatGPT-3 when prompted with questions from the daily routine of radiologists and to evaluate the text response... |
SourceID | pubmed sage |
SourceType | Index Database Publisher |
StartPage | 69 |
SubjectTerms | Artificial Intelligence Humans Pilot Projects Radiography Radiologists Radiology |
Title | Accuracy of Information and References Using ChatGPT-3 for Retrieval of Clinical Radiological Information |
URI | https://journals.sagepub.com/doi/full/10.1177/08465371231171125 https://www.ncbi.nlm.nih.gov/pubmed/37078489 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ7wSIwXo_jCB-nB4MUK3fceiRGJCYQQjN42ddtGEgEDy4F_7wzbFWI8eNzd2e1mOp1HZ-YrwI2IIrTKQnCjg5R7yvN5bIThygTue4oBWRhRv3N_EPRevOc3_60E86IXxnJweU9lVfhHG2VNq5t2o1s2ydhqRwQLFqLWxUv0GDCkz6ZJvt1dnKpBdyg_vZpSajulgsg1L9rbylB1wsDHlVztdEev420rpYXnwwE4jWAToX8OumO0dqrANoapewgH1qNknVwEjqCkZzXY69uceQ2awxyden3Hxttmq-Uda7LhFrd6fQyTTpquFkjI5obZNiWaNiZniv0A0i7ZpsqAPXzI7Gk45i5DQnxMB3Oh1NK7Fmv0k42kmhTKdfeLJ_DSfRw_9Lg9iYGnaPAz7sQpRjpOGAdCC-UEvkFNIdE5cNtaosulUqmlY0Jc_57C-NY3Ek2ir-I2wd-5vnsKldl8ps-BySiIXelII0KFzBaEeOeqgCKjyNM6rMNZztTkK4fbSFwCJPKiuA63xOWkEJFEFFDlvyfm4t-Ul7DvoJeSl2FfQSVbrPQ1ehnZe8NKRgPKg2H_G0T1ysE |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4oJOrFKL7w2YPBCzV0u88jISIqEEKWyG1Tt20kMWBgOfDvnbLlEePB46aPbGY6882kM18B7lkYIiozRrXyU-pK16ORZppK7fOPFBOyIDT9zp2u3xq4r0NvaKsqTS-MleDs0ZRV4R8tnfXaug1TUmgYwQJ0uPiJwYK3C0XXoFYBivVm_z3edEVapj1cQM0Ke6f55yZb-LNV0LXEmOYRHNrgkNRzbR7DjhqXYK9jr79LUOnlRNOLKok3fVOzKqmQ3oaCenECo3qazqc4kUw0sR1HRgNEjCVZc8vOyLJggDQ-RfbciyknOBGHzRtbeADNWksb-kX6Qo5WfnJ7x1MYNJ_iRovaRxVoitidUSdKMWlxgshniknH9zQavUCc5zUlMHqSqVDC0QGasisxVfW0QHTzZFQzTHbc42dQGE_G6gKICP2IC0doFkgUNjPkdVz6JskJXaWCMpznQk2-c-aMhBtuITeMyvBgpJystJ2wFev4b8Vc_nvmHey34k47ab90367gwMHgI6-uvoZCNp2rGwweso9be0p-APdntx4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4oJMSLUXzhsweDF6p033sk6IoPCCEQuW3Kto0kZiGwHPj3TtkixHjwuNm22cx05pvZznwFuGVBgKjMGFXSS6gjHJeGiikqlGePEkzI_ED3O7c7XmvgvA7dofnhpnthjATn97qsCr9o5ay1dU-FejBnjA_1QLOC-eh08REDBncXio6D2FiAYiPqffQ3nZGGbQ8nUD3DnGv-ucgWBm0Vda1wJjqAfRMgkkau0UPYkWkZSm1zBF6Gajcnm17WSH_TOzWvkSrpbmiol0cwbiTJYoYDyUQR03WktUB4KsgPv-ycrIoGSPOTZ8_dPrUJDsTX-p4t3IR6rqEO_SI9LsZrX7m94jEMoqd-s0XNxQo0QfzOqBUmmLhYfugxyYTluQoNnyPW23XJMYISCZfcUj6asyMwXXUVR4RzRVjXbHa2a59AIZ2k8gwID7zQ5hZXzBcobKYJ7Gzh6UQncKT0K3CaCzWe5uwZsa35hZwgrMCdlnK81njM1szjvxVz_u-RN1DqPkbx-0vn7QL2LIw_8gLrSyhks4W8wvghG12bTfIN6g64Lg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+Information+and+References+Using+ChatGPT-3+for+Retrieval+of+Clinical+Radiological+Information&rft.jtitle=Canadian+Association+of+Radiologists+journal&rft.au=Wagner%2C+Matthias+W.&rft.au=Ertl-Wagner%2C+Birgit+B.&rft.date=2024-02-01&rft.pub=SAGE+Publications&rft.issn=0846-5371&rft.eissn=1488-2361&rft.volume=75&rft.issue=1&rft.spage=69&rft.epage=73&rft_id=info:doi/10.1177%2F08465371231171125&rft.externalDocID=10.1177_08465371231171125 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0846-5371&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0846-5371&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0846-5371&client=summon |