Application of Novel Machine Learning Techniques for Predicting the Surface Chloride Concentration in Concrete Containing Waste Material

Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experime...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 14; no. 9; p. 2297
Main Authors Ahmad, Ayaz, Farooq, Furqan, Ostrowski, Krzysztof Adam, Śliwa-Wieczorek, Klaudia, Czarnecki, Slawomir
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.04.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experimental activities in laboratories might be a solution, they may also be problematic due to time and costs. Thus, the application of individual machine learning (ML) techniques has been investigated to predict surface chloride concentrations (Cc) in marine structures. For this purpose, the values of Cc in tidal, splash, and submerged zones were collected from an extensive literature survey and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the most accurate algorithm was then selected. The GEP model was the most accurate when compared to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an effective and accurate way to predict the surface chloride concentration without the inconveniences of laboratory tests.
AbstractList Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experimental activities in laboratories might be a solution, they may also be problematic due to time and costs. Thus, the application of individual machine learning (ML) techniques has been investigated to predict surface chloride concentrations (Cc) in marine structures. For this purpose, the values of Cc in tidal, splash, and submerged zones were collected from an extensive literature survey and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the most accurate algorithm was then selected. The GEP model was the most accurate when compared to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an effective and accurate way to predict the surface chloride concentration without the inconveniences of laboratory tests.
Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experimental activities in laboratories might be a solution, they may also be problematic due to time and costs. Thus, the application of individual machine learning (ML) techniques has been investigated to predict surface chloride concentrations (Cc) in marine structures. For this purpose, the values of Cc in tidal, splash, and submerged zones were collected from an extensive literature survey and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the most accurate algorithm was then selected. The GEP model was the most accurate when compared to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an effective and accurate way to predict the surface chloride concentration without the inconveniences of laboratory tests.Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experimental activities in laboratories might be a solution, they may also be problematic due to time and costs. Thus, the application of individual machine learning (ML) techniques has been investigated to predict surface chloride concentrations (Cc) in marine structures. For this purpose, the values of Cc in tidal, splash, and submerged zones were collected from an extensive literature survey and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the most accurate algorithm was then selected. The GEP model was the most accurate when compared to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an effective and accurate way to predict the surface chloride concentration without the inconveniences of laboratory tests.
Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experimental activities in laboratories might be a solution, they may also be problematic due to time and costs. Thus, the application of individual machine learning (ML) techniques has been investigated to predict surface chloride concentrations (C c ) in marine structures. For this purpose, the values of C c in tidal, splash, and submerged zones were collected from an extensive literature survey and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the most accurate algorithm was then selected. The GEP model was the most accurate when compared to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an effective and accurate way to predict the surface chloride concentration without the inconveniences of laboratory tests.
Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experimental activities in laboratories might be a solution, they may also be problematic due to time and costs. Thus, the application of individual machine learning (ML) techniques has been investigated to predict surface chloride concentrations (C ) in marine structures. For this purpose, the values of C in tidal, splash, and submerged zones were collected from an extensive literature survey and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the most accurate algorithm was then selected. The GEP model was the most accurate when compared to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an effective and accurate way to predict the surface chloride concentration without the inconveniences of laboratory tests.
Author Farooq, Furqan
Śliwa-Wieczorek, Klaudia
Czarnecki, Slawomir
Ostrowski, Krzysztof Adam
Ahmad, Ayaz
AuthorAffiliation 1 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan; ayazahmad@cuiatd.edu.pk
2 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; krzysztof.ostrowski.1@pk.edu.pl (K.A.O.); klaudia.sliwa-wieczorek@pk.edu.pl (K.Ś.-W.)
3 Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
AuthorAffiliation_xml – name: 2 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; krzysztof.ostrowski.1@pk.edu.pl (K.A.O.); klaudia.sliwa-wieczorek@pk.edu.pl (K.Ś.-W.)
– name: 3 Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
– name: 1 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan; ayazahmad@cuiatd.edu.pk
Author_xml – sequence: 1
  givenname: Ayaz
  orcidid: 0000-0002-0312-2965
  surname: Ahmad
  fullname: Ahmad, Ayaz
– sequence: 2
  givenname: Furqan
  orcidid: 0000-0002-4671-1655
  surname: Farooq
  fullname: Farooq, Furqan
– sequence: 3
  givenname: Krzysztof Adam
  orcidid: 0000-0001-5047-5862
  surname: Ostrowski
  fullname: Ostrowski, Krzysztof Adam
– sequence: 4
  givenname: Klaudia
  orcidid: 0000-0002-4148-1491
  surname: Śliwa-Wieczorek
  fullname: Śliwa-Wieczorek, Klaudia
– sequence: 5
  givenname: Slawomir
  orcidid: 0000-0001-8021-943X
  surname: Czarnecki
  fullname: Czarnecki, Slawomir
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33946688$$D View this record in MEDLINE/PubMed
BookMark eNptkl1rFDEUhoNUbF174w-QgDcibJuPmczkRiiLX7CtghUvQyZzppOSTdYkU_Af-LPNzra1FnOTwznveXjPSZ6jAx88IPSSkhPOJTndaFoRyZhsnqAjKqVYUllVBw_iQ3Sc0jUph3PaMvkMHZbOSoi2PUK_z7ZbZ43ONngcBnwRbsDhc21G6wGvQUdv_RW-BDN6-3OChIcQ8dcIvTV5V8kj4G9THLQBvBpdiLYvQfAGfI57rPVzIkKeK1nbmflDp5I41xmi1e4Fejpol-D49l6g7x_eX64-LddfPn5ena2XpiIiL1kjOxC6IcY0rQDKq64hpJGsFryXtK15Y3Tf6a7tOsJq2ldlNZzpgXSaGRj4Ar3bc7dTt4F-b9OpbbQbHX-poK36t-LtqK7CjWopq4uFAnhzC4hht5CsNjYZcE57CFNSrGaMS8GKlQV6_Uh6Haboy3hFxQkVlMzAVw8d3Vu5e6QiIHuBiSGlCIMyNs-rLQatU5TstET9_Qql5e2jljvqf8R_AJdVtVo
CitedBy_id crossref_primary_10_1007_s40996_023_01153_3
crossref_primary_10_1038_s41598_024_54513_y
crossref_primary_10_3390_ma15134384
crossref_primary_10_1016_j_conbuildmat_2021_125021
crossref_primary_10_1038_s41598_024_69271_0
crossref_primary_10_1080_19648189_2022_2102081
crossref_primary_10_3390_ma14247531
crossref_primary_10_1016_j_mtcomm_2022_103964
crossref_primary_10_3390_ma15020647
crossref_primary_10_1016_j_istruc_2023_02_080
crossref_primary_10_3390_polym13193389
crossref_primary_10_1016_j_mtcomm_2023_105901
crossref_primary_10_1016_j_mtcomm_2024_109946
crossref_primary_10_1016_j_livsci_2022_105039
crossref_primary_10_1155_adce_8534390
crossref_primary_10_3390_buildings11080324
crossref_primary_10_1007_s11709_022_0830_4
crossref_primary_10_1016_j_jcomc_2024_100466
crossref_primary_10_1016_j_jmrt_2023_07_034
crossref_primary_10_3390_ma15217800
crossref_primary_10_1016_j_istruc_2024_106285
crossref_primary_10_3390_infrastructures9100181
crossref_primary_10_3233_JIFS_236111
crossref_primary_10_3390_ma14195762
crossref_primary_10_1016_j_cscm_2023_e01831
crossref_primary_10_1016_j_jobe_2021_103679
crossref_primary_10_3390_app12010361
crossref_primary_10_1016_j_istruc_2023_05_140
crossref_primary_10_1007_s42107_024_01192_9
crossref_primary_10_1016_j_matt_2023_04_016
crossref_primary_10_1016_j_conbuildmat_2022_128566
crossref_primary_10_1016_j_nucengdes_2024_112991
crossref_primary_10_3390_ma15134512
crossref_primary_10_1007_s41062_024_01378_9
crossref_primary_10_1007_s42107_025_01281_3
crossref_primary_10_1016_j_jmrt_2023_02_180
crossref_primary_10_1038_s41598_023_42270_3
crossref_primary_10_3390_geotechnics4010006
crossref_primary_10_1016_j_clema_2024_100263
crossref_primary_10_1016_j_mtcomm_2024_108543
crossref_primary_10_3390_ma15217412
crossref_primary_10_1016_j_conbuildmat_2023_134092
crossref_primary_10_1016_j_jcomc_2025_100579
crossref_primary_10_1007_s11709_024_1124_9
crossref_primary_10_3390_cryst12050569
crossref_primary_10_3390_ma14195675
crossref_primary_10_1016_j_engappai_2022_105190
crossref_primary_10_1016_j_cscm_2022_e01305
crossref_primary_10_3390_buildings14061879
crossref_primary_10_3390_polym14081583
crossref_primary_10_3390_buildings14030591
crossref_primary_10_3390_ma14185387
crossref_primary_10_3934_mbe_2024061
crossref_primary_10_1007_s41939_024_00641_x
crossref_primary_10_1016_j_cscm_2021_e00724
crossref_primary_10_3390_buildings14113505
crossref_primary_10_1016_j_marstruc_2022_103311
crossref_primary_10_1016_j_cscm_2025_e04207
crossref_primary_10_1007_s44268_025_00048_8
crossref_primary_10_1016_j_cscm_2021_e00840
crossref_primary_10_1108_WJE_05_2024_0299
crossref_primary_10_1016_j_cemconcomp_2022_104903
crossref_primary_10_3390_ma14227034
crossref_primary_10_1007_s40684_021_00377_w
crossref_primary_10_3390_gels10020148
crossref_primary_10_1016_j_asej_2021_11_002
crossref_primary_10_1016_j_autcon_2022_104440
crossref_primary_10_3390_buildings14123998
crossref_primary_10_1016_j_conbuildmat_2023_132604
crossref_primary_10_3390_su142214738
crossref_primary_10_1016_j_conbuildmat_2024_138657
crossref_primary_10_1016_j_mtcomm_2023_107778
crossref_primary_10_3390_ma14154222
crossref_primary_10_1016_j_mtcomm_2024_109419
crossref_primary_10_1108_IJSI_02_2024_0018
crossref_primary_10_3390_ma15093166
crossref_primary_10_1016_j_conbuildmat_2023_132012
crossref_primary_10_3390_ma15072400
crossref_primary_10_1016_j_cscm_2022_e01805
crossref_primary_10_1016_j_jobe_2022_104475
crossref_primary_10_3390_ma15010058
crossref_primary_10_1016_j_engfracmech_2023_109649
Cites_doi 10.1016/j.cemconcomp.2007.09.005
10.1007/s00521-018-3575-1
10.1016/j.conbuildmat.2020.118980
10.1016/j.measurement.2018.11.056
10.1016/j.conbuildmat.2017.10.083
10.1016/j.conbuildmat.2013.08.086
10.1016/j.conbuildmat.2011.11.044
10.1016/j.cemconres.2021.106449
10.1016/j.marstruc.2008.12.001
10.1007/s00521-016-2368-7
10.1016/j.cemconcomp.2009.11.001
10.1016/j.compgeo.2021.104141
10.1016/j.conbuildmat.2020.119889
10.1080/15732470903363313
10.1016/j.conbuildmat.2018.05.284
10.1080/19648189.2016.1246693
10.1016/j.cemconcomp.2006.08.004
10.3390/su12229322
10.1016/j.conbuildmat.2017.02.134
10.1016/j.conbuildmat.2019.02.071
10.1016/j.advengsoft.2011.05.016
10.1016/j.engstruct.2010.11.008
10.1186/s40069-018-0246-7
10.1016/j.conbuildmat.2019.117021
10.1007/s00521-014-1645-6
10.3390/cryst10090741
10.1016/j.electacta.2019.03.012
10.1016/j.jclepro.2018.08.065
10.1016/j.acme.2012.10.007
10.12989/cac.2015.15.4.589
10.1016/j.advengsoft.2015.05.007
10.1016/j.proeng.2017.01.418
10.1016/j.measurement.2017.08.031
10.1016/j.conbuildmat.2018.05.120
10.1016/j.conbuildmat.2017.05.078
10.1016/j.conbuildmat.2015.03.031
10.1007/s13369-020-04927-3
10.1016/j.conbuildmat.2015.09.059
10.1016/j.conbuildmat.2016.03.156
10.1016/j.conbuildmat.2007.12.014
10.3390/ma13081821
10.3390/coatings7100160
10.1016/j.cemconcomp.2015.03.006
10.1016/j.compstruct.2020.113160
10.3390/cryst10110967
10.1016/j.advengsoft.2017.09.004
10.1016/j.conbuildmat.2013.07.006
10.3390/ma13010174
10.1007/BF02479594
10.1155/2020/8850535
10.1007/s00521-017-3007-7
10.3390/ma12040561
10.1016/j.conbuildmat.2013.03.026
10.1016/j.neucom.2017.09.099
10.1016/j.conbuildmat.2008.01.014
10.1016/j.cemconres.2020.106164
10.1016/j.conbuildmat.2018.06.030
10.1016/j.cemconres.2009.09.023
10.1061/(ASCE)0899-1561(2008)20:1(2)
10.1007/s00521-019-04267-w
10.3390/app10207330
10.1016/j.cemconres.2010.05.003
10.1016/j.conbuildmat.2018.09.097
10.1016/j.autcon.2017.01.016
10.1016/j.jclepro.2021.126032
10.1016/j.conbuildmat.2019.03.189
10.1016/j.aej.2017.04.007
10.1016/j.conbuildmat.2021.122370
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma14092297
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC8125406
33946688
10_3390_ma14092297
Genre Journal Article
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c406t-279be6a70cc786e134b700792563d918537cadbab8bb0251d422932af0ba2cef3
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 18:02:48 EDT 2025
Thu Jul 10 23:18:03 EDT 2025
Fri Jul 25 12:02:34 EDT 2025
Thu Apr 03 06:59:25 EDT 2025
Tue Jul 01 03:41:36 EDT 2025
Thu Apr 24 23:04:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords concrete
individual algorithm
artificial neural networks
gene expression programming
surface chloride concentration
aggressive ions environment
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-279be6a70cc786e134b700792563d918537cadbab8bb0251d422932af0ba2cef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4671-1655
0000-0001-8021-943X
0000-0001-5047-5862
0000-0002-0312-2965
0000-0002-4148-1491
OpenAccessLink https://www.proquest.com/docview/2530161006?pq-origsite=%requestingapplication%
PMID 33946688
PQID 2530161006
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8125406
proquest_miscellaneous_2522396285
proquest_journals_2530161006
pubmed_primary_33946688
crossref_citationtrail_10_3390_ma14092297
crossref_primary_10_3390_ma14092297
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210429
PublicationDateYYYYMMDD 2021-04-29
PublicationDate_xml – month: 4
  year: 2021
  text: 20210429
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhang (ref_39) 2019; 210
Farahani (ref_61) 2015; 59
Sadowski (ref_12) 2014; 25
Asteris (ref_71) 2021; 145
Getahun (ref_22) 2018; 190
Gao (ref_62) 2017; 140
Scott (ref_1) 2019; 135
Safehian (ref_57) 2015; 15
Zuquan (ref_15) 2018; 177
ref_56
Dousti (ref_68) 2013; 49
Akiyama (ref_11) 2012; 8
Moradllo (ref_14) 2012; 30
Zhang (ref_4) 2017; 148
Chateauneuf (ref_17) 2011; 33
Moradllo (ref_51) 2018; 180
Siddique (ref_46) 2011; 42
ref_16
Jahangir (ref_70) 2021; 257
Sadowski (ref_8) 2013; 13
Behnood (ref_21) 2018; 202
Yaman (ref_44) 2017; 56
Sathyan (ref_41) 2018; 12
Pack (ref_59) 2010; 40
Balafas (ref_5) 2010; 40
Huan (ref_50) 2015; 33
Dai (ref_13) 2010; 32
Chen (ref_18) 2021; 135
ref_60
Song (ref_58) 2008; 30
Prasad (ref_47) 2009; 23
Yaseen (ref_24) 2018; 115
ref_66
Taffese (ref_25) 2017; 77
Ann (ref_6) 2009; 23
Chalee (ref_48) 2009; 22
Ju (ref_72) 2021; 278
ref_29
ref_28
ref_27
ref_26
Zhou (ref_10) 2015; 85
Zhang (ref_53) 2018; 181
Wang (ref_52) 2018; 159
ref_36
ref_35
ref_34
ref_33
ref_30
ref_74
ref_73
Hoang (ref_20) 2017; 112
Douma (ref_43) 2017; 28
Cai (ref_19) 2020; 136
Kaveh (ref_40) 2018; 62
Lindvall (ref_67) 2007; 29
Costa (ref_49) 1999; 32
Pakzad (ref_31) 2020; 230
Moreno (ref_3) 2015; 100
Ali (ref_9) 2020; 251
Alizadeh (ref_65) 2008; 20
Nanukuttan (ref_55) 2008; 105
Pang (ref_63) 2016; 113
Asteris (ref_37) 2019; 31
Saha (ref_32) 2020; 32
Vakhshouri (ref_42) 2018; 280
Selvaraj (ref_38) 2019; 31
Asteris (ref_45) 2016; 20
Ryl (ref_2) 2019; 304
Ling (ref_23) 2019; 206
Valipour (ref_64) 2013; 46
ref_7
Safehian (ref_54) 2013; 48
Gandomi (ref_69) 2015; 88
References_xml – volume: 30
  start-page: 113
  year: 2008
  ident: ref_58
  article-title: Factors influencing chloride transport in concrete structures exposed to marine environments
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2007.09.005
– volume: 31
  start-page: 1365
  year: 2019
  ident: ref_38
  article-title: Prediction model for optimized self-compacting concrete with fly ash using response surface method based on fuzzy classification
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3575-1
– volume: 251
  start-page: 118980
  year: 2020
  ident: ref_9
  article-title: A step towards durable, ductile and sustainable concrete: Simultaneous incorporation of recycled aggregates, glass fiber and fly ash
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118980
– volume: 135
  start-page: 617
  year: 2019
  ident: ref_1
  article-title: Development of low cost packaged fibre optic sensors for use in reinforced concrete structures
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2018.11.056
– volume: 159
  start-page: 297
  year: 2018
  ident: ref_52
  article-title: Prediction model of long-term chloride diffusion into plain concrete considering the effect of the heterogeneity of materials exposed to marine tidal zone
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.10.083
– volume: 49
  start-page: 393
  year: 2013
  ident: ref_68
  article-title: Influence of exposure temperature on chloride diffusion in concretes incorporating silica fume or natural zeolite
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.08.086
– volume: 33
  start-page: 60
  year: 2015
  ident: ref_50
  article-title: Chloride ion penetration into concrete exposed to marine environment for a long period
  publication-title: Ocean Eng.
– volume: 30
  start-page: 198
  year: 2012
  ident: ref_14
  article-title: Time-dependent performance of concrete surface coatings in tidal zone of marine environment
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2011.11.044
– volume: 145
  start-page: 106449
  year: 2021
  ident: ref_71
  article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2021.106449
– volume: 22
  start-page: 341
  year: 2009
  ident: ref_48
  article-title: Predicting the chloride penetration of fly ash concrete in seawater
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2008.12.001
– volume: 28
  start-page: 707
  year: 2017
  ident: ref_43
  article-title: Prediction of properties of self-compacting concrete containing fly ash using artificial neural network
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2368-7
– volume: 32
  start-page: 101
  year: 2010
  ident: ref_13
  article-title: Water repellent surface impregnation for extension of service life of reinforced concrete structures in marine environments: The role of cracks
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2009.11.001
– volume: 135
  start-page: 104141
  year: 2021
  ident: ref_18
  article-title: Metaheuristic model for the interface shear strength between granular soil and structure considering surface morphology
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2021.104141
– ident: ref_27
  doi: 10.1016/j.conbuildmat.2020.119889
– volume: 8
  start-page: 125
  year: 2012
  ident: ref_11
  article-title: Integration of the effects of airborne chlorides into reliability-based durability design of reinforced concrete structures in a marine environment
  publication-title: Struct. Infrastruct. Eng.
  doi: 10.1080/15732470903363313
– volume: 180
  start-page: 109
  year: 2018
  ident: ref_51
  article-title: Quantifying maximum phenomenon in chloride ion profiles and its influence on service-life prediction of concrete structures exposed to seawater tidal zone-A field oriented study
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.05.284
– volume: 20
  start-page: s102
  year: 2016
  ident: ref_45
  article-title: Prediction of self-compacting concrete strength using artificial neural networks
  publication-title: Eur. J. Environ. Civ. Eng.
  doi: 10.1080/19648189.2016.1246693
– volume: 29
  start-page: 88
  year: 2007
  ident: ref_67
  article-title: Chloride ingress data from field and laboratory exposure-Influence of salinity and temperature
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2006.08.004
– ident: ref_56
– ident: ref_33
  doi: 10.3390/su12229322
– volume: 140
  start-page: 485
  year: 2017
  ident: ref_62
  article-title: Probability distribution of convection zone depth of chloride in concrete in a marine tidal environment
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.02.134
– volume: 206
  start-page: 355
  year: 2019
  ident: ref_23
  article-title: Combination of Support Vector Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.02.071
– volume: 42
  start-page: 780
  year: 2011
  ident: ref_46
  article-title: Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2011.05.016
– volume: 33
  start-page: 720
  year: 2011
  ident: ref_17
  article-title: A comprehensive probabilistic model of chloride ingress in unsaturated concrete
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.11.008
– ident: ref_66
– volume: 12
  start-page: 1
  year: 2018
  ident: ref_41
  article-title: Modeling the Fresh and Hardened Stage Properties of Self-Compacting Concrete using Random Kitchen Sink Algorithm
  publication-title: Int. J. Concr. Struct. Mater.
  doi: 10.1186/s40069-018-0246-7
– volume: 230
  start-page: 117021
  year: 2020
  ident: ref_31
  article-title: Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.117021
– volume: 25
  start-page: 1627
  year: 2014
  ident: ref_12
  article-title: Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1645-6
– ident: ref_34
  doi: 10.3390/cryst10090741
– volume: 304
  start-page: 263
  year: 2019
  ident: ref_2
  article-title: Understanding the origin of high corrosion inhibition efficiency of bee products towards aluminium alloys in alkaline environments
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.03.012
– volume: 202
  start-page: 54
  year: 2018
  ident: ref_21
  article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.065
– volume: 62
  start-page: 281
  year: 2018
  ident: ref_40
  article-title: M5’ and mars based prediction models for properties of selfcompacting concrete containing fly ash
  publication-title: Period. Polytech. Civ. Eng.
– volume: 13
  start-page: 104
  year: 2013
  ident: ref_8
  article-title: Non-destructive investigation of corrosion current density in steel reinforced concrete by artificial neural networks
  publication-title: Archiv. Civ. Mech. Eng.
  doi: 10.1016/j.acme.2012.10.007
– volume: 15
  start-page: 589
  year: 2015
  ident: ref_57
  article-title: Prediction of RC structure service life from field long term chloride diffusion
  publication-title: Comput. Concr.
  doi: 10.12989/cac.2015.15.4.589
– volume: 88
  start-page: 63
  year: 2015
  ident: ref_69
  article-title: Assessment of artificial neural network and genetic programming as predictive tools
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.05.007
– ident: ref_26
  doi: 10.1016/j.proeng.2017.01.418
– volume: 112
  start-page: 141
  year: 2017
  ident: ref_20
  article-title: Prediction of chloride diffusion in cement mortar using Multi-Gene Genetic Programming and Multivariate Adaptive Regression Splines
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.08.031
– volume: 177
  start-page: 170
  year: 2018
  ident: ref_15
  article-title: Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.05.120
– volume: 148
  start-page: 113
  year: 2017
  ident: ref_4
  article-title: Steel reinforcement corrosion in concrete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.05.078
– volume: 85
  start-page: 9
  year: 2015
  ident: ref_10
  article-title: Bond behavior of FRP-to-concrete interface under sulfate attack: An experimental study and modeling of bond degradation
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.03.031
– ident: ref_29
  doi: 10.1007/s13369-020-04927-3
– volume: 100
  start-page: 11
  year: 2015
  ident: ref_3
  article-title: Determining corrosion levels in the reinforcement rebars of buildings in coastal areas. A case study in the Mediterranean coastline
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2015.09.059
– volume: 113
  start-page: 979
  year: 2016
  ident: ref_63
  article-title: Service life prediction of RC structures in marine environment using long term chloride ingress data: Comparison between exposure trials and real structure surveys
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.03.156
– volume: 23
  start-page: 239
  year: 2009
  ident: ref_6
  article-title: The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2007.12.014
– ident: ref_30
  doi: 10.3390/ma13081821
– ident: ref_7
  doi: 10.3390/coatings7100160
– volume: 105
  start-page: 81
  year: 2008
  ident: ref_55
  article-title: Muhammed Basheer, Full-scale marine exposure tests on treated and untreated concretes-initial 7-year results
  publication-title: ACI Mater. J.
– volume: 59
  start-page: 10
  year: 2015
  ident: ref_61
  article-title: Prediction of long-term chloride diffusion in silica fume concrete in a marine environment
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2015.03.006
– volume: 257
  start-page: 113160
  year: 2021
  ident: ref_70
  article-title: A new and robust hybrid artificial bee colony algorithm-ANN model for FRP-concrete bond strength evaluation
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.113160
– ident: ref_73
  doi: 10.3390/cryst10110967
– volume: 115
  start-page: 112
  year: 2018
  ident: ref_24
  article-title: Predicting compressive strength of lightweight foamed concrete using extreme learning machine model
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2017.09.004
– volume: 48
  start-page: 287
  year: 2013
  ident: ref_54
  article-title: Assessment of service life models for determination of chloride penetration into silica fume concrete in the severe marine environmental condition
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.07.006
– ident: ref_16
  doi: 10.3390/ma13010174
– volume: 32
  start-page: 252
  year: 1999
  ident: ref_49
  article-title: Chloride penetration into concrete in marine environment-Part I: Main parameters affecting chloride penetration
  publication-title: Mater. Struct. Constr.
  doi: 10.1007/BF02479594
– ident: ref_35
  doi: 10.1155/2020/8850535
– volume: 31
  start-page: 409
  year: 2019
  ident: ref_37
  article-title: Self-compacting concrete strength prediction using surrogate models
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-3007-7
– ident: ref_74
  doi: 10.3390/ma12040561
– volume: 46
  start-page: 63
  year: 2013
  ident: ref_64
  article-title: In situ study of chloride ingress in concretes containing natural zeolite, metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2013.03.026
– volume: 280
  start-page: 13
  year: 2018
  ident: ref_42
  article-title: Prediction of compressive strength of self-compacting concrete by ANFIS models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.099
– volume: 23
  start-page: 117
  year: 2009
  ident: ref_47
  article-title: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2008.01.014
– volume: 136
  start-page: 106164
  year: 2020
  ident: ref_19
  article-title: Prediction of surface chloride concentration of marine concrete using ensemble machine learning
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2020.106164
– ident: ref_60
– volume: 181
  start-page: 609
  year: 2018
  ident: ref_53
  article-title: Time dependence and similarity analysis of peak value of chloride concentration of concrete under the simulated chloride environment
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.06.030
– volume: 40
  start-page: 302
  year: 2010
  ident: ref_59
  article-title: Prediction of time dependent chloride transport in concrete structures exposed to a marine environment
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2009.09.023
– volume: 20
  start-page: 2
  year: 2008
  ident: ref_65
  article-title: Effect of Curing Conditions on the Service Life Design of RC Structures in the Persian Gulf Region
  publication-title: J. Mater. Civ. Eng.
  doi: 10.1061/(ASCE)0899-1561(2008)20:1(2)
– volume: 32
  start-page: 7995
  year: 2020
  ident: ref_32
  article-title: Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04267-w
– ident: ref_36
  doi: 10.3390/app10207330
– volume: 40
  start-page: 1429
  year: 2010
  ident: ref_5
  article-title: Environmental effects on cover cracking due to corrosion
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2010.05.003
– volume: 190
  start-page: 517
  year: 2018
  ident: ref_22
  article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.09.097
– volume: 77
  start-page: 1
  year: 2017
  ident: ref_25
  article-title: Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2017.01.016
– ident: ref_28
  doi: 10.1016/j.jclepro.2021.126032
– volume: 210
  start-page: 713
  year: 2019
  ident: ref_39
  article-title: Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.03.189
– volume: 56
  start-page: 523
  year: 2017
  ident: ref_44
  article-title: Predicting the ingredients of self compacting concrete using artificial neural network
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2017.04.007
– volume: 278
  start-page: 122370
  year: 2021
  ident: ref_72
  article-title: Prediction of chloride concentration with elevation in concrete exposed to cyclic drying-wetting conditions in marine environments
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.122370
SSID ssj0000331829
Score 2.5734613
Snippet Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2297
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Chloride
Chloride ions
Concrete
Construction
Correlation coefficients
Corrosion
Decision trees
Deep learning
Gene expression
Laboratories
Laboratory tests
Learning theory
Literature reviews
Machine learning
Mechanical properties
Reinforced concrete
Reinforcing steels
Root-mean-square errors
Support vector machines
Variables
Title Application of Novel Machine Learning Techniques for Predicting the Surface Chloride Concentration in Concrete Containing Waste Material
URI https://www.ncbi.nlm.nih.gov/pubmed/33946688
https://www.proquest.com/docview/2530161006
https://www.proquest.com/docview/2522396285
https://pubmed.ncbi.nlm.nih.gov/PMC8125406
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB2V5dIeqn43lCJX7aWHiKzjtZ0TAsSCKrFCLah7i2zHASSa0N0sv6E_uzOJN7u0iFsSj-TIMx4_e8ZvAL5InkkrhIm5GaWxKNUwNty6WAlP1zZ12VVvOJ3IkwvxbTqahgO3eUirXPrE1lEXtaMz8l0-SgmdoJHs3f6OqWoURVdDCY0N2EQXrPUANg-OJmff-1OWJEWb5VnHS5ri_n73lyGKJ86J5Wl9JfoPXv6bJbm27IxfwPOAF9l-p-CX8MRXr-DZGovga_izvwpCs7pkk_rO37DTNkvSs0CgesnOl2ytc4ZAlZ3NKERDSc8MMSD7sZiVxnl2eEUpeQU-0H3GKpDqsuuq_TBDiE0PTVdXgv00aCTYVdPa8Ru4GB-dH57EocBC7HAdb2KuMuulUYlzSks_TIVViBkyhEFpkdFKrpwprLHaWtqLFALHLeWmTKzhzpfpWxhUdeXfA5MZT1wifYEeVJQytc4r3N5Jp62ylg8j-Loc7NwF9nEqgnGT4y6EFJOvFBPB5172tuPceFBqe6mzPMy7eb6ykgg-9c04YygMYipfL0gGIVFGV0cjeNepuO8G-xBSah2Buqf8XoDYuO-3VNdXLSs3IiVEv3Lr8d_6AE85ZcUkIubZNgya2cJ_RFjT2B3Y0OPjnWDB-HY8Hf4FAL38qA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOFf-kLWAEHDhEzTpeOzkgVBWWLe2ukNiK3lLbcWilNml3s0W8AU_DMzKTv-0C4tabFVt2lJnxfI5nvgF4JXksjRDa57of-iJTPV9zY30lHKVtRlldvWE0lsMD8emwf7gCv9pcGAqrbPfEaqNOC0v_yLd4PyR0gkry7vzCp6pRdLvaltCo1WLP_fiOR7bZ2933KN_XnA8-THaGflNVwLfovEqfq9g4qVVgrYqk64XCKHSUMfr-MI3JfSmrU6NNZAwB8FRwdIlcZ4HR3LosxHlvwE0RoienzPTBx-6fThCihfC4ZkHF_mDrTBOhFE6glv3eX2D2z5jMK05ucBfWGnTKtmt1ugcrLr8Pd65wFj6An9uLK29WZGxcXLpTNqpiMh1r6Fq_sUnLDTtjCIvZ5yldCFGINUPEyb7Mp5m2ju0cUwBgig3KnswbCl92klcPpgjoqVHWVSzYV40qiUuVldU8hINr-fCPYDUvcvcEmIx5YAPpUtyvRSZDY53Cw6S0kVHG8J4Hb9qPndiG65xKbpwmeOYhwSQLwXjwsht7XjN8_HPUZiuzpLHyWbLQSQ9edN1on3TponNXzGkMArCYElU9eFyLuFsG1xBSRpEHakn43QDi_l7uyU-OKw5wxGWIteX6_1_rOdwaTkb7yf7ueG8DbnOKxwmEz-NNWC2nc_cUAVVpnlVazODous3mN1f5Nfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggPgnpYARcOAQbdbx2skBodJ21VK6WkErekttx6GV2qTsZkG8Ac_E0zGTv-0C4tabFVt25JnxfLbH3wC8lDyWRgjtcz0MfZGpga-5sb4Sjp5tRlmdvWF_LHcOxfuj4dEK_GrfwlBYZbsmVgt1Wlg6I-_zYUjoBJWknzVhEZOt0duLrz5lkKKb1jadRq0ie-7Hd9y-zd7sbqGsX3E-2j7Y3PGbDAO-RUdW-lzFxkmtAmtVJN0gFEah04wRB4RpTK5MWZ0abSJjCIyngqN75DoLjObWZSH2ew1WFe2KerD6bns8-did8AQh2guPa07UMIyD_rkmeinsQi17wb-g7Z8Rmpdc3ug23GqwKtuolesOrLj8Lty8xGB4D35uLC7AWZGxcfHNnbH9KkLTsYa89Qs7aJliZwxBMptM6XqIAq4Z4k_2aT7NtHVs84TCAVMs0FvKvCH0Zad59WGK8J4KZZ3Tgn3WqKA4VFnZ0H04vJKpfwC9vMjdI2Ay5oENpEtx9RaZDI11CreW0kZGGcMHHrxuJzuxDfM5JeA4S3AHRIJJFoLx4EXX9qLm-_hnq_VWZklj87NkoaEePO-q0VrpCkbnrphTG4RjMT1b9eBhLeJuGBxDSBlFHqgl4XcNiAl8uSY_PakYwRGlIfKWa___rWdwHU0m-bA73nsMNzgF5wTC5_E69Mrp3D1BdFWap40aMzi-asv5Daf7O44
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Novel+Machine+Learning+Techniques+for+Predicting+the+Surface+Chloride+Concentration+in+Concrete+Containing+Waste+Material&rft.jtitle=Materials&rft.au=Ahmad%2C+Ayaz&rft.au=Farooq%2C+Furqan&rft.au=Ostrowski%2C+Krzysztof+Adam&rft.au=%C5%9Aliwa-Wieczorek%2C+Klaudia&rft.date=2021-04-29&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=14&rft.issue=9&rft.spage=2297&rft_id=info:doi/10.3390%2Fma14092297&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ma14092297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon