Application of Novel Machine Learning Techniques for Predicting the Surface Chloride Concentration in Concrete Containing Waste Material
Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experime...
Saved in:
Published in | Materials Vol. 14; no. 9; p. 2297 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
29.04.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experimental activities in laboratories might be a solution, they may also be problematic due to time and costs. Thus, the application of individual machine learning (ML) techniques has been investigated to predict surface chloride concentrations (Cc) in marine structures. For this purpose, the values of Cc in tidal, splash, and submerged zones were collected from an extensive literature survey and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the most accurate algorithm was then selected. The GEP model was the most accurate when compared to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an effective and accurate way to predict the surface chloride concentration without the inconveniences of laboratory tests. |
---|---|
AbstractList | Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experimental activities in laboratories might be a solution, they may also be problematic due to time and costs. Thus, the application of individual machine learning (ML) techniques has been investigated to predict surface chloride concentrations (Cc) in marine structures. For this purpose, the values of Cc in tidal, splash, and submerged zones were collected from an extensive literature survey and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the most accurate algorithm was then selected. The GEP model was the most accurate when compared to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an effective and accurate way to predict the surface chloride concentration without the inconveniences of laboratory tests. Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experimental activities in laboratories might be a solution, they may also be problematic due to time and costs. Thus, the application of individual machine learning (ML) techniques has been investigated to predict surface chloride concentrations (Cc) in marine structures. For this purpose, the values of Cc in tidal, splash, and submerged zones were collected from an extensive literature survey and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the most accurate algorithm was then selected. The GEP model was the most accurate when compared to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an effective and accurate way to predict the surface chloride concentration without the inconveniences of laboratory tests.Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experimental activities in laboratories might be a solution, they may also be problematic due to time and costs. Thus, the application of individual machine learning (ML) techniques has been investigated to predict surface chloride concentrations (Cc) in marine structures. For this purpose, the values of Cc in tidal, splash, and submerged zones were collected from an extensive literature survey and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the most accurate algorithm was then selected. The GEP model was the most accurate when compared to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an effective and accurate way to predict the surface chloride concentration without the inconveniences of laboratory tests. Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experimental activities in laboratories might be a solution, they may also be problematic due to time and costs. Thus, the application of individual machine learning (ML) techniques has been investigated to predict surface chloride concentrations (C c ) in marine structures. For this purpose, the values of C c in tidal, splash, and submerged zones were collected from an extensive literature survey and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the most accurate algorithm was then selected. The GEP model was the most accurate when compared to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an effective and accurate way to predict the surface chloride concentration without the inconveniences of laboratory tests. Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete elements. This corrosion severely affects the performance of the elements and may shorten the lifespan of an entire structure. Even though experimental activities in laboratories might be a solution, they may also be problematic due to time and costs. Thus, the application of individual machine learning (ML) techniques has been investigated to predict surface chloride concentrations (C ) in marine structures. For this purpose, the values of C in tidal, splash, and submerged zones were collected from an extensive literature survey and incorporated into the article. Gene expression programming (GEP), the decision tree (DT), and an artificial neural network (ANN) were used to predict the surface chloride concentrations, and the most accurate algorithm was then selected. The GEP model was the most accurate when compared to ANN and DT, which was confirmed by the high accuracy level of the K-fold cross-validation and linear correlation coefficient (R2), mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE) parameters. As is shown in the article, the proposed method is an effective and accurate way to predict the surface chloride concentration without the inconveniences of laboratory tests. |
Author | Farooq, Furqan Śliwa-Wieczorek, Klaudia Czarnecki, Slawomir Ostrowski, Krzysztof Adam Ahmad, Ayaz |
AuthorAffiliation | 1 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan; ayazahmad@cuiatd.edu.pk 2 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; krzysztof.ostrowski.1@pk.edu.pl (K.A.O.); klaudia.sliwa-wieczorek@pk.edu.pl (K.Ś.-W.) 3 Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland |
AuthorAffiliation_xml | – name: 2 Faculty of Civil Engineering, Cracow University of Technology, 24 Warszawska Str., 31-155 Cracow, Poland; krzysztof.ostrowski.1@pk.edu.pl (K.A.O.); klaudia.sliwa-wieczorek@pk.edu.pl (K.Ś.-W.) – name: 3 Faculty of Civil Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland – name: 1 Department of Civil Engineering, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan; ayazahmad@cuiatd.edu.pk |
Author_xml | – sequence: 1 givenname: Ayaz orcidid: 0000-0002-0312-2965 surname: Ahmad fullname: Ahmad, Ayaz – sequence: 2 givenname: Furqan orcidid: 0000-0002-4671-1655 surname: Farooq fullname: Farooq, Furqan – sequence: 3 givenname: Krzysztof Adam orcidid: 0000-0001-5047-5862 surname: Ostrowski fullname: Ostrowski, Krzysztof Adam – sequence: 4 givenname: Klaudia orcidid: 0000-0002-4148-1491 surname: Śliwa-Wieczorek fullname: Śliwa-Wieczorek, Klaudia – sequence: 5 givenname: Slawomir orcidid: 0000-0001-8021-943X surname: Czarnecki fullname: Czarnecki, Slawomir |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33946688$$D View this record in MEDLINE/PubMed |
BookMark | eNptkl1rFDEUhoNUbF174w-QgDcibJuPmczkRiiLX7CtghUvQyZzppOSTdYkU_Af-LPNzra1FnOTwznveXjPSZ6jAx88IPSSkhPOJTndaFoRyZhsnqAjKqVYUllVBw_iQ3Sc0jUph3PaMvkMHZbOSoi2PUK_z7ZbZ43ONngcBnwRbsDhc21G6wGvQUdv_RW-BDN6-3OChIcQ8dcIvTV5V8kj4G9THLQBvBpdiLYvQfAGfI57rPVzIkKeK1nbmflDp5I41xmi1e4Fejpol-D49l6g7x_eX64-LddfPn5ena2XpiIiL1kjOxC6IcY0rQDKq64hpJGsFryXtK15Y3Tf6a7tOsJq2ldlNZzpgXSaGRj4Ar3bc7dTt4F-b9OpbbQbHX-poK36t-LtqK7CjWopq4uFAnhzC4hht5CsNjYZcE57CFNSrGaMS8GKlQV6_Uh6Haboy3hFxQkVlMzAVw8d3Vu5e6QiIHuBiSGlCIMyNs-rLQatU5TstET9_Qql5e2jljvqf8R_AJdVtVo |
CitedBy_id | crossref_primary_10_1007_s40996_023_01153_3 crossref_primary_10_1038_s41598_024_54513_y crossref_primary_10_3390_ma15134384 crossref_primary_10_1016_j_conbuildmat_2021_125021 crossref_primary_10_1038_s41598_024_69271_0 crossref_primary_10_1080_19648189_2022_2102081 crossref_primary_10_3390_ma14247531 crossref_primary_10_1016_j_mtcomm_2022_103964 crossref_primary_10_3390_ma15020647 crossref_primary_10_1016_j_istruc_2023_02_080 crossref_primary_10_3390_polym13193389 crossref_primary_10_1016_j_mtcomm_2023_105901 crossref_primary_10_1016_j_mtcomm_2024_109946 crossref_primary_10_1016_j_livsci_2022_105039 crossref_primary_10_1155_adce_8534390 crossref_primary_10_3390_buildings11080324 crossref_primary_10_1007_s11709_022_0830_4 crossref_primary_10_1016_j_jcomc_2024_100466 crossref_primary_10_1016_j_jmrt_2023_07_034 crossref_primary_10_3390_ma15217800 crossref_primary_10_1016_j_istruc_2024_106285 crossref_primary_10_3390_infrastructures9100181 crossref_primary_10_3233_JIFS_236111 crossref_primary_10_3390_ma14195762 crossref_primary_10_1016_j_cscm_2023_e01831 crossref_primary_10_1016_j_jobe_2021_103679 crossref_primary_10_3390_app12010361 crossref_primary_10_1016_j_istruc_2023_05_140 crossref_primary_10_1007_s42107_024_01192_9 crossref_primary_10_1016_j_matt_2023_04_016 crossref_primary_10_1016_j_conbuildmat_2022_128566 crossref_primary_10_1016_j_nucengdes_2024_112991 crossref_primary_10_3390_ma15134512 crossref_primary_10_1007_s41062_024_01378_9 crossref_primary_10_1007_s42107_025_01281_3 crossref_primary_10_1016_j_jmrt_2023_02_180 crossref_primary_10_1038_s41598_023_42270_3 crossref_primary_10_3390_geotechnics4010006 crossref_primary_10_1016_j_clema_2024_100263 crossref_primary_10_1016_j_mtcomm_2024_108543 crossref_primary_10_3390_ma15217412 crossref_primary_10_1016_j_conbuildmat_2023_134092 crossref_primary_10_1016_j_jcomc_2025_100579 crossref_primary_10_1007_s11709_024_1124_9 crossref_primary_10_3390_cryst12050569 crossref_primary_10_3390_ma14195675 crossref_primary_10_1016_j_engappai_2022_105190 crossref_primary_10_1016_j_cscm_2022_e01305 crossref_primary_10_3390_buildings14061879 crossref_primary_10_3390_polym14081583 crossref_primary_10_3390_buildings14030591 crossref_primary_10_3390_ma14185387 crossref_primary_10_3934_mbe_2024061 crossref_primary_10_1007_s41939_024_00641_x crossref_primary_10_1016_j_cscm_2021_e00724 crossref_primary_10_3390_buildings14113505 crossref_primary_10_1016_j_marstruc_2022_103311 crossref_primary_10_1016_j_cscm_2025_e04207 crossref_primary_10_1007_s44268_025_00048_8 crossref_primary_10_1016_j_cscm_2021_e00840 crossref_primary_10_1108_WJE_05_2024_0299 crossref_primary_10_1016_j_cemconcomp_2022_104903 crossref_primary_10_3390_ma14227034 crossref_primary_10_1007_s40684_021_00377_w crossref_primary_10_3390_gels10020148 crossref_primary_10_1016_j_asej_2021_11_002 crossref_primary_10_1016_j_autcon_2022_104440 crossref_primary_10_3390_buildings14123998 crossref_primary_10_1016_j_conbuildmat_2023_132604 crossref_primary_10_3390_su142214738 crossref_primary_10_1016_j_conbuildmat_2024_138657 crossref_primary_10_1016_j_mtcomm_2023_107778 crossref_primary_10_3390_ma14154222 crossref_primary_10_1016_j_mtcomm_2024_109419 crossref_primary_10_1108_IJSI_02_2024_0018 crossref_primary_10_3390_ma15093166 crossref_primary_10_1016_j_conbuildmat_2023_132012 crossref_primary_10_3390_ma15072400 crossref_primary_10_1016_j_cscm_2022_e01805 crossref_primary_10_1016_j_jobe_2022_104475 crossref_primary_10_3390_ma15010058 crossref_primary_10_1016_j_engfracmech_2023_109649 |
Cites_doi | 10.1016/j.cemconcomp.2007.09.005 10.1007/s00521-018-3575-1 10.1016/j.conbuildmat.2020.118980 10.1016/j.measurement.2018.11.056 10.1016/j.conbuildmat.2017.10.083 10.1016/j.conbuildmat.2013.08.086 10.1016/j.conbuildmat.2011.11.044 10.1016/j.cemconres.2021.106449 10.1016/j.marstruc.2008.12.001 10.1007/s00521-016-2368-7 10.1016/j.cemconcomp.2009.11.001 10.1016/j.compgeo.2021.104141 10.1016/j.conbuildmat.2020.119889 10.1080/15732470903363313 10.1016/j.conbuildmat.2018.05.284 10.1080/19648189.2016.1246693 10.1016/j.cemconcomp.2006.08.004 10.3390/su12229322 10.1016/j.conbuildmat.2017.02.134 10.1016/j.conbuildmat.2019.02.071 10.1016/j.advengsoft.2011.05.016 10.1016/j.engstruct.2010.11.008 10.1186/s40069-018-0246-7 10.1016/j.conbuildmat.2019.117021 10.1007/s00521-014-1645-6 10.3390/cryst10090741 10.1016/j.electacta.2019.03.012 10.1016/j.jclepro.2018.08.065 10.1016/j.acme.2012.10.007 10.12989/cac.2015.15.4.589 10.1016/j.advengsoft.2015.05.007 10.1016/j.proeng.2017.01.418 10.1016/j.measurement.2017.08.031 10.1016/j.conbuildmat.2018.05.120 10.1016/j.conbuildmat.2017.05.078 10.1016/j.conbuildmat.2015.03.031 10.1007/s13369-020-04927-3 10.1016/j.conbuildmat.2015.09.059 10.1016/j.conbuildmat.2016.03.156 10.1016/j.conbuildmat.2007.12.014 10.3390/ma13081821 10.3390/coatings7100160 10.1016/j.cemconcomp.2015.03.006 10.1016/j.compstruct.2020.113160 10.3390/cryst10110967 10.1016/j.advengsoft.2017.09.004 10.1016/j.conbuildmat.2013.07.006 10.3390/ma13010174 10.1007/BF02479594 10.1155/2020/8850535 10.1007/s00521-017-3007-7 10.3390/ma12040561 10.1016/j.conbuildmat.2013.03.026 10.1016/j.neucom.2017.09.099 10.1016/j.conbuildmat.2008.01.014 10.1016/j.cemconres.2020.106164 10.1016/j.conbuildmat.2018.06.030 10.1016/j.cemconres.2009.09.023 10.1061/(ASCE)0899-1561(2008)20:1(2) 10.1007/s00521-019-04267-w 10.3390/app10207330 10.1016/j.cemconres.2010.05.003 10.1016/j.conbuildmat.2018.09.097 10.1016/j.autcon.2017.01.016 10.1016/j.jclepro.2021.126032 10.1016/j.conbuildmat.2019.03.189 10.1016/j.aej.2017.04.007 10.1016/j.conbuildmat.2021.122370 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma14092297 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC8125406 33946688 10_3390_ma14092297 |
Genre | Journal Article |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c406t-279be6a70cc786e134b700792563d918537cadbab8bb0251d422932af0ba2cef3 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 18:02:48 EDT 2025 Thu Jul 10 23:18:03 EDT 2025 Fri Jul 25 12:02:34 EDT 2025 Thu Apr 03 06:59:25 EDT 2025 Tue Jul 01 03:41:36 EDT 2025 Thu Apr 24 23:04:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | concrete individual algorithm artificial neural networks gene expression programming surface chloride concentration aggressive ions environment |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-279be6a70cc786e134b700792563d918537cadbab8bb0251d422932af0ba2cef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4671-1655 0000-0001-8021-943X 0000-0001-5047-5862 0000-0002-0312-2965 0000-0002-4148-1491 |
OpenAccessLink | https://www.proquest.com/docview/2530161006?pq-origsite=%requestingapplication% |
PMID | 33946688 |
PQID | 2530161006 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8125406 proquest_miscellaneous_2522396285 proquest_journals_2530161006 pubmed_primary_33946688 crossref_citationtrail_10_3390_ma14092297 crossref_primary_10_3390_ma14092297 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210429 |
PublicationDateYYYYMMDD | 2021-04-29 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210429 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zhang (ref_39) 2019; 210 Farahani (ref_61) 2015; 59 Sadowski (ref_12) 2014; 25 Asteris (ref_71) 2021; 145 Getahun (ref_22) 2018; 190 Gao (ref_62) 2017; 140 Scott (ref_1) 2019; 135 Safehian (ref_57) 2015; 15 Zuquan (ref_15) 2018; 177 ref_56 Dousti (ref_68) 2013; 49 Akiyama (ref_11) 2012; 8 Moradllo (ref_14) 2012; 30 Zhang (ref_4) 2017; 148 Chateauneuf (ref_17) 2011; 33 Moradllo (ref_51) 2018; 180 Siddique (ref_46) 2011; 42 ref_16 Jahangir (ref_70) 2021; 257 Sadowski (ref_8) 2013; 13 Behnood (ref_21) 2018; 202 Yaman (ref_44) 2017; 56 Sathyan (ref_41) 2018; 12 Pack (ref_59) 2010; 40 Balafas (ref_5) 2010; 40 Huan (ref_50) 2015; 33 Dai (ref_13) 2010; 32 Chen (ref_18) 2021; 135 ref_60 Song (ref_58) 2008; 30 Prasad (ref_47) 2009; 23 Yaseen (ref_24) 2018; 115 ref_66 Taffese (ref_25) 2017; 77 Ann (ref_6) 2009; 23 Chalee (ref_48) 2009; 22 Ju (ref_72) 2021; 278 ref_29 ref_28 ref_27 ref_26 Zhou (ref_10) 2015; 85 Zhang (ref_53) 2018; 181 Wang (ref_52) 2018; 159 ref_36 ref_35 ref_34 ref_33 ref_30 ref_74 ref_73 Hoang (ref_20) 2017; 112 Douma (ref_43) 2017; 28 Cai (ref_19) 2020; 136 Kaveh (ref_40) 2018; 62 Lindvall (ref_67) 2007; 29 Costa (ref_49) 1999; 32 Pakzad (ref_31) 2020; 230 Moreno (ref_3) 2015; 100 Ali (ref_9) 2020; 251 Alizadeh (ref_65) 2008; 20 Nanukuttan (ref_55) 2008; 105 Pang (ref_63) 2016; 113 Asteris (ref_37) 2019; 31 Saha (ref_32) 2020; 32 Vakhshouri (ref_42) 2018; 280 Selvaraj (ref_38) 2019; 31 Asteris (ref_45) 2016; 20 Ryl (ref_2) 2019; 304 Ling (ref_23) 2019; 206 Valipour (ref_64) 2013; 46 ref_7 Safehian (ref_54) 2013; 48 Gandomi (ref_69) 2015; 88 |
References_xml | – volume: 30 start-page: 113 year: 2008 ident: ref_58 article-title: Factors influencing chloride transport in concrete structures exposed to marine environments publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2007.09.005 – volume: 31 start-page: 1365 year: 2019 ident: ref_38 article-title: Prediction model for optimized self-compacting concrete with fly ash using response surface method based on fuzzy classification publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3575-1 – volume: 251 start-page: 118980 year: 2020 ident: ref_9 article-title: A step towards durable, ductile and sustainable concrete: Simultaneous incorporation of recycled aggregates, glass fiber and fly ash publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118980 – volume: 135 start-page: 617 year: 2019 ident: ref_1 article-title: Development of low cost packaged fibre optic sensors for use in reinforced concrete structures publication-title: Meas. J. Int. Meas. Confed. doi: 10.1016/j.measurement.2018.11.056 – volume: 159 start-page: 297 year: 2018 ident: ref_52 article-title: Prediction model of long-term chloride diffusion into plain concrete considering the effect of the heterogeneity of materials exposed to marine tidal zone publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.10.083 – volume: 49 start-page: 393 year: 2013 ident: ref_68 article-title: Influence of exposure temperature on chloride diffusion in concretes incorporating silica fume or natural zeolite publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.08.086 – volume: 33 start-page: 60 year: 2015 ident: ref_50 article-title: Chloride ion penetration into concrete exposed to marine environment for a long period publication-title: Ocean Eng. – volume: 30 start-page: 198 year: 2012 ident: ref_14 article-title: Time-dependent performance of concrete surface coatings in tidal zone of marine environment publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2011.11.044 – volume: 145 start-page: 106449 year: 2021 ident: ref_71 article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2021.106449 – volume: 22 start-page: 341 year: 2009 ident: ref_48 article-title: Predicting the chloride penetration of fly ash concrete in seawater publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2008.12.001 – volume: 28 start-page: 707 year: 2017 ident: ref_43 article-title: Prediction of properties of self-compacting concrete containing fly ash using artificial neural network publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2368-7 – volume: 32 start-page: 101 year: 2010 ident: ref_13 article-title: Water repellent surface impregnation for extension of service life of reinforced concrete structures in marine environments: The role of cracks publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2009.11.001 – volume: 135 start-page: 104141 year: 2021 ident: ref_18 article-title: Metaheuristic model for the interface shear strength between granular soil and structure considering surface morphology publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2021.104141 – ident: ref_27 doi: 10.1016/j.conbuildmat.2020.119889 – volume: 8 start-page: 125 year: 2012 ident: ref_11 article-title: Integration of the effects of airborne chlorides into reliability-based durability design of reinforced concrete structures in a marine environment publication-title: Struct. Infrastruct. Eng. doi: 10.1080/15732470903363313 – volume: 180 start-page: 109 year: 2018 ident: ref_51 article-title: Quantifying maximum phenomenon in chloride ion profiles and its influence on service-life prediction of concrete structures exposed to seawater tidal zone-A field oriented study publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.05.284 – volume: 20 start-page: s102 year: 2016 ident: ref_45 article-title: Prediction of self-compacting concrete strength using artificial neural networks publication-title: Eur. J. Environ. Civ. Eng. doi: 10.1080/19648189.2016.1246693 – volume: 29 start-page: 88 year: 2007 ident: ref_67 article-title: Chloride ingress data from field and laboratory exposure-Influence of salinity and temperature publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2006.08.004 – ident: ref_56 – ident: ref_33 doi: 10.3390/su12229322 – volume: 140 start-page: 485 year: 2017 ident: ref_62 article-title: Probability distribution of convection zone depth of chloride in concrete in a marine tidal environment publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.02.134 – volume: 206 start-page: 355 year: 2019 ident: ref_23 article-title: Combination of Support Vector Machine and K-Fold cross validation to predict compressive strength of concrete in marine environment publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.02.071 – volume: 42 start-page: 780 year: 2011 ident: ref_46 article-title: Prediction of compressive strength of self-compacting concrete containing bottom ash using artificial neural networks publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2011.05.016 – volume: 33 start-page: 720 year: 2011 ident: ref_17 article-title: A comprehensive probabilistic model of chloride ingress in unsaturated concrete publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2010.11.008 – ident: ref_66 – volume: 12 start-page: 1 year: 2018 ident: ref_41 article-title: Modeling the Fresh and Hardened Stage Properties of Self-Compacting Concrete using Random Kitchen Sink Algorithm publication-title: Int. J. Concr. Struct. Mater. doi: 10.1186/s40069-018-0246-7 – volume: 230 start-page: 117021 year: 2020 ident: ref_31 article-title: Linear and non-linear SVM prediction for fresh properties and compressive strength of high volume fly ash self-compacting concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117021 – volume: 25 start-page: 1627 year: 2014 ident: ref_12 article-title: Corrosion current density prediction in reinforced concrete by imperialist competitive algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1645-6 – ident: ref_34 doi: 10.3390/cryst10090741 – volume: 304 start-page: 263 year: 2019 ident: ref_2 article-title: Understanding the origin of high corrosion inhibition efficiency of bee products towards aluminium alloys in alkaline environments publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.03.012 – volume: 202 start-page: 54 year: 2018 ident: ref_21 article-title: Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.08.065 – volume: 62 start-page: 281 year: 2018 ident: ref_40 article-title: M5’ and mars based prediction models for properties of selfcompacting concrete containing fly ash publication-title: Period. Polytech. Civ. Eng. – volume: 13 start-page: 104 year: 2013 ident: ref_8 article-title: Non-destructive investigation of corrosion current density in steel reinforced concrete by artificial neural networks publication-title: Archiv. Civ. Mech. Eng. doi: 10.1016/j.acme.2012.10.007 – volume: 15 start-page: 589 year: 2015 ident: ref_57 article-title: Prediction of RC structure service life from field long term chloride diffusion publication-title: Comput. Concr. doi: 10.12989/cac.2015.15.4.589 – volume: 88 start-page: 63 year: 2015 ident: ref_69 article-title: Assessment of artificial neural network and genetic programming as predictive tools publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.05.007 – ident: ref_26 doi: 10.1016/j.proeng.2017.01.418 – volume: 112 start-page: 141 year: 2017 ident: ref_20 article-title: Prediction of chloride diffusion in cement mortar using Multi-Gene Genetic Programming and Multivariate Adaptive Regression Splines publication-title: Measurement doi: 10.1016/j.measurement.2017.08.031 – volume: 177 start-page: 170 year: 2018 ident: ref_15 article-title: Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.05.120 – volume: 148 start-page: 113 year: 2017 ident: ref_4 article-title: Steel reinforcement corrosion in concrete under combined actions: The role of freeze-thaw cycles, chloride ingress, and surface impregnation publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.05.078 – volume: 85 start-page: 9 year: 2015 ident: ref_10 article-title: Bond behavior of FRP-to-concrete interface under sulfate attack: An experimental study and modeling of bond degradation publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.03.031 – ident: ref_29 doi: 10.1007/s13369-020-04927-3 – volume: 100 start-page: 11 year: 2015 ident: ref_3 article-title: Determining corrosion levels in the reinforcement rebars of buildings in coastal areas. A case study in the Mediterranean coastline publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2015.09.059 – volume: 113 start-page: 979 year: 2016 ident: ref_63 article-title: Service life prediction of RC structures in marine environment using long term chloride ingress data: Comparison between exposure trials and real structure surveys publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2016.03.156 – volume: 23 start-page: 239 year: 2009 ident: ref_6 article-title: The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2007.12.014 – ident: ref_30 doi: 10.3390/ma13081821 – ident: ref_7 doi: 10.3390/coatings7100160 – volume: 105 start-page: 81 year: 2008 ident: ref_55 article-title: Muhammed Basheer, Full-scale marine exposure tests on treated and untreated concretes-initial 7-year results publication-title: ACI Mater. J. – volume: 59 start-page: 10 year: 2015 ident: ref_61 article-title: Prediction of long-term chloride diffusion in silica fume concrete in a marine environment publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2015.03.006 – volume: 257 start-page: 113160 year: 2021 ident: ref_70 article-title: A new and robust hybrid artificial bee colony algorithm-ANN model for FRP-concrete bond strength evaluation publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.113160 – ident: ref_73 doi: 10.3390/cryst10110967 – volume: 115 start-page: 112 year: 2018 ident: ref_24 article-title: Predicting compressive strength of lightweight foamed concrete using extreme learning machine model publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2017.09.004 – volume: 48 start-page: 287 year: 2013 ident: ref_54 article-title: Assessment of service life models for determination of chloride penetration into silica fume concrete in the severe marine environmental condition publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.07.006 – ident: ref_16 doi: 10.3390/ma13010174 – volume: 32 start-page: 252 year: 1999 ident: ref_49 article-title: Chloride penetration into concrete in marine environment-Part I: Main parameters affecting chloride penetration publication-title: Mater. Struct. Constr. doi: 10.1007/BF02479594 – ident: ref_35 doi: 10.1155/2020/8850535 – volume: 31 start-page: 409 year: 2019 ident: ref_37 article-title: Self-compacting concrete strength prediction using surrogate models publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-3007-7 – ident: ref_74 doi: 10.3390/ma12040561 – volume: 46 start-page: 63 year: 2013 ident: ref_64 article-title: In situ study of chloride ingress in concretes containing natural zeolite, metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.03.026 – volume: 280 start-page: 13 year: 2018 ident: ref_42 article-title: Prediction of compressive strength of self-compacting concrete by ANFIS models publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.09.099 – volume: 23 start-page: 117 year: 2009 ident: ref_47 article-title: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2008.01.014 – volume: 136 start-page: 106164 year: 2020 ident: ref_19 article-title: Prediction of surface chloride concentration of marine concrete using ensemble machine learning publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2020.106164 – ident: ref_60 – volume: 181 start-page: 609 year: 2018 ident: ref_53 article-title: Time dependence and similarity analysis of peak value of chloride concentration of concrete under the simulated chloride environment publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.06.030 – volume: 40 start-page: 302 year: 2010 ident: ref_59 article-title: Prediction of time dependent chloride transport in concrete structures exposed to a marine environment publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2009.09.023 – volume: 20 start-page: 2 year: 2008 ident: ref_65 article-title: Effect of Curing Conditions on the Service Life Design of RC Structures in the Persian Gulf Region publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2008)20:1(2) – volume: 32 start-page: 7995 year: 2020 ident: ref_32 article-title: Prediction of fresh and hardened properties of self-compacting concrete using support vector regression approach publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04267-w – ident: ref_36 doi: 10.3390/app10207330 – volume: 40 start-page: 1429 year: 2010 ident: ref_5 article-title: Environmental effects on cover cracking due to corrosion publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2010.05.003 – volume: 190 start-page: 517 year: 2018 ident: ref_22 article-title: Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.09.097 – volume: 77 start-page: 1 year: 2017 ident: ref_25 article-title: Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions publication-title: Autom. Constr. doi: 10.1016/j.autcon.2017.01.016 – ident: ref_28 doi: 10.1016/j.jclepro.2021.126032 – volume: 210 start-page: 713 year: 2019 ident: ref_39 article-title: Modelling uniaxial compressive strength of lightweight self-compacting concrete using random forest regression publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.03.189 – volume: 56 start-page: 523 year: 2017 ident: ref_44 article-title: Predicting the ingredients of self compacting concrete using artificial neural network publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2017.04.007 – volume: 278 start-page: 122370 year: 2021 ident: ref_72 article-title: Prediction of chloride concentration with elevation in concrete exposed to cyclic drying-wetting conditions in marine environments publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.122370 |
SSID | ssj0000331829 |
Score | 2.5734613 |
Snippet | Structures located on the coast are subjected to the long-term influence of chloride ions, which cause the corrosion of steel reinforcements in concrete... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2297 |
SubjectTerms | Accuracy Algorithms Artificial neural networks Chloride Chloride ions Concrete Construction Correlation coefficients Corrosion Decision trees Deep learning Gene expression Laboratories Laboratory tests Learning theory Literature reviews Machine learning Mechanical properties Reinforced concrete Reinforcing steels Root-mean-square errors Support vector machines Variables |
Title | Application of Novel Machine Learning Techniques for Predicting the Surface Chloride Concentration in Concrete Containing Waste Material |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33946688 https://www.proquest.com/docview/2530161006 https://www.proquest.com/docview/2522396285 https://pubmed.ncbi.nlm.nih.gov/PMC8125406 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB2V5dIeqn43lCJX7aWHiKzjtZ0TAsSCKrFCLah7i2zHASSa0N0sv6E_uzOJN7u0iFsSj-TIMx4_e8ZvAL5InkkrhIm5GaWxKNUwNty6WAlP1zZ12VVvOJ3IkwvxbTqahgO3eUirXPrE1lEXtaMz8l0-SgmdoJHs3f6OqWoURVdDCY0N2EQXrPUANg-OJmff-1OWJEWb5VnHS5ri_n73lyGKJ86J5Wl9JfoPXv6bJbm27IxfwPOAF9l-p-CX8MRXr-DZGovga_izvwpCs7pkk_rO37DTNkvSs0CgesnOl2ytc4ZAlZ3NKERDSc8MMSD7sZiVxnl2eEUpeQU-0H3GKpDqsuuq_TBDiE0PTVdXgv00aCTYVdPa8Ru4GB-dH57EocBC7HAdb2KuMuulUYlzSks_TIVViBkyhEFpkdFKrpwprLHaWtqLFALHLeWmTKzhzpfpWxhUdeXfA5MZT1wifYEeVJQytc4r3N5Jp62ylg8j-Loc7NwF9nEqgnGT4y6EFJOvFBPB5172tuPceFBqe6mzPMy7eb6ykgg-9c04YygMYipfL0gGIVFGV0cjeNepuO8G-xBSah2Buqf8XoDYuO-3VNdXLSs3IiVEv3Lr8d_6AE85ZcUkIubZNgya2cJ_RFjT2B3Y0OPjnWDB-HY8Hf4FAL38qA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOFf-kLWAEHDhEzTpeOzkgVBWWLe2ukNiK3lLbcWilNml3s0W8AU_DMzKTv-0C4tabFVt2lJnxfI5nvgF4JXksjRDa57of-iJTPV9zY30lHKVtRlldvWE0lsMD8emwf7gCv9pcGAqrbPfEaqNOC0v_yLd4PyR0gkry7vzCp6pRdLvaltCo1WLP_fiOR7bZ2933KN_XnA8-THaGflNVwLfovEqfq9g4qVVgrYqk64XCKHSUMfr-MI3JfSmrU6NNZAwB8FRwdIlcZ4HR3LosxHlvwE0RoienzPTBx-6fThCihfC4ZkHF_mDrTBOhFE6glv3eX2D2z5jMK05ucBfWGnTKtmt1ugcrLr8Pd65wFj6An9uLK29WZGxcXLpTNqpiMh1r6Fq_sUnLDTtjCIvZ5yldCFGINUPEyb7Mp5m2ju0cUwBgig3KnswbCl92klcPpgjoqVHWVSzYV40qiUuVldU8hINr-fCPYDUvcvcEmIx5YAPpUtyvRSZDY53Cw6S0kVHG8J4Hb9qPndiG65xKbpwmeOYhwSQLwXjwsht7XjN8_HPUZiuzpLHyWbLQSQ9edN1on3TponNXzGkMArCYElU9eFyLuFsG1xBSRpEHakn43QDi_l7uyU-OKw5wxGWIteX6_1_rOdwaTkb7yf7ueG8DbnOKxwmEz-NNWC2nc_cUAVVpnlVazODous3mN1f5Nfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrYTggPgnpYARcOAQbdbx2skBodJ21VK6WkErekttx6GV2qTsZkG8Ac_E0zGTv-0C4tabFVt25JnxfLbH3wC8lDyWRgjtcz0MfZGpga-5sb4Sjp5tRlmdvWF_LHcOxfuj4dEK_GrfwlBYZbsmVgt1Wlg6I-_zYUjoBJWknzVhEZOt0duLrz5lkKKb1jadRq0ie-7Hd9y-zd7sbqGsX3E-2j7Y3PGbDAO-RUdW-lzFxkmtAmtVJN0gFEah04wRB4RpTK5MWZ0abSJjCIyngqN75DoLjObWZSH2ew1WFe2KerD6bns8-did8AQh2guPa07UMIyD_rkmeinsQi17wb-g7Z8Rmpdc3ug23GqwKtuolesOrLj8Lty8xGB4D35uLC7AWZGxcfHNnbH9KkLTsYa89Qs7aJliZwxBMptM6XqIAq4Z4k_2aT7NtHVs84TCAVMs0FvKvCH0Zad59WGK8J4KZZ3Tgn3WqKA4VFnZ0H04vJKpfwC9vMjdI2Ay5oENpEtx9RaZDI11CreW0kZGGcMHHrxuJzuxDfM5JeA4S3AHRIJJFoLx4EXX9qLm-_hnq_VWZklj87NkoaEePO-q0VrpCkbnrphTG4RjMT1b9eBhLeJuGBxDSBlFHqgl4XcNiAl8uSY_PakYwRGlIfKWa___rWdwHU0m-bA73nsMNzgF5wTC5_E69Mrp3D1BdFWap40aMzi-asv5Daf7O44 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Novel+Machine+Learning+Techniques+for+Predicting+the+Surface+Chloride+Concentration+in+Concrete+Containing+Waste+Material&rft.jtitle=Materials&rft.au=Ahmad%2C+Ayaz&rft.au=Farooq%2C+Furqan&rft.au=Ostrowski%2C+Krzysztof+Adam&rft.au=%C5%9Aliwa-Wieczorek%2C+Klaudia&rft.date=2021-04-29&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=14&rft.issue=9&rft.spage=2297&rft_id=info:doi/10.3390%2Fma14092297&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ma14092297 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |